(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2021-12-20
(45)【発行日】2022-01-17
(54)【発明の名称】平滑回路、および平滑回路基板
(51)【国際特許分類】
H02M 7/06 20060101AFI20220107BHJP
H02M 7/04 20060101ALI20220107BHJP
H02M 7/48 20070101ALI20220107BHJP
【FI】
H02M7/06 A
H02M7/04 Z
H02M7/48 Z
(21)【出願番号】P 2020566063
(86)(22)【出願日】2019-01-18
(86)【国際出願番号】 JP2019001393
(87)【国際公開番号】W WO2020148880
(87)【国際公開日】2020-07-23
【審査請求日】2021-04-08
(73)【特許権者】
【識別番号】505461072
【氏名又は名称】東芝キヤリア株式会社
(74)【代理人】
【識別番号】110001380
【氏名又は名称】特許業務法人東京国際特許事務所
(72)【発明者】
【氏名】吉村 公志
(72)【発明者】
【氏名】森本 敏行
(72)【発明者】
【氏名】高田 鉄平
【審査官】栗栖 正和
(56)【参考文献】
【文献】特開2005-243742(JP,A)
【文献】特開2001-351829(JP,A)
【文献】特開2017-192204(JP,A)
【文献】特開2014-033521(JP,A)
【文献】国際公開第2015/075976(WO,A1)
【文献】特開2013-005542(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02M 7/06
H02M 7/04
H02M 7/48
(57)【特許請求の範囲】
【請求項1】
並列に接続される複数のキャパシタと、前記複数のキャパシタの正極に電気的に接続される一対の正極端子と、前記複数のキャパシタの負極に電気的に接続される一対の負極端子と、をそれぞれが有する複数の回路基板と、
少なくとも2つの前記回路基板の間で、前記複数のキャパシタを電気的に直列または並列に接続する少なくとも1つの接続導電体と、を備え、
前記一対の正極端子および前記一対の負極端子は、前記2つの前記回路基板が並ぶ方向に直交する方向において、相互にずれて重ならない平滑回路。
【請求項2】
並列に接続される複数のキャパシタと、前記複数のキャパシタの正極に電気的に接続される一対の正極端子と、前記複数のキャパシタの負極に電気的に接続される一対の負極端子と、をそれぞれが有する複数の回路基板と、
少なくとも2つの前記回路基板の間で、前記複数のキャパシタを電気的に直列または並列に接続する少なくとも1つの接続導電体と、を備え、
前記複数の回路基板の前記一対の正極端子の二列に整列し、
前記複数の回路基板の前記一対の負極端子の二列に整列し、
前記一対の正極端子の列の少なくとも一方と前記一対の負極端子の列とは、相互にずれて重ならない平滑回路。
【請求項3】
前記回路基板の一方の前記正極端子と一方の前記負極端子とは、流れる電流経路が前記複数のキャパシタのいずれを経ても実質的に同等の距離になるように配置され、他方の前記正極端子と他方の前記負極端子とは、流れる電流経路が前記複数のキャパシタのいずれを経ても実質的に同等の距離に配置されている請求項1または2に記載の平滑回路。
【請求項4】
前記回路基板の前記一対の前記正極端子の間を結ぶ線分の二等分線と前記一対の前記負極端子間を結ぶ線分の二等分線とが、同一線である請求項3に記載の平滑回路。
【請求項5】
前記接続導電体は、少なくとも2つの前記回路基板を電気的に接続し、かつ前記平滑回路の入力端および出力端を兼ねている請求項1から4のいずれか1項に記載の平滑回路。
【請求項6】
並列に接続される複数のキャパシタと、
前記複数のキャパシタの正極に電気的に接続され、前記複数のキャパシタを間に挟む一対の正極端子と、
前記複数のキャパシタの負極に電気的に接続され、前記複数のキャパシタを間に挟む一対の負極端子と、を備え、
前記複数のキャパシタの並びの少なくとも一方の側方に配置される前記正極端子および前記負極端子は、前記一対の正極端子の離間方向において、相互にずれて重ならない平滑回路基板。
【請求項7】
前記一対の正極端子および前記一対の負極端子の両方が、前記一対の正極端子の離間方向において、相互にずれて重ならない請求項6に記載の平滑回路基板。
【請求項8】
一方の前記正極端子と一方の前記負極端子とは、流れる電流経路が前記複数のキャパシタのいずれを経ても実質的に同等の距離になるように配置され、他方の前記正極端子と他方の前記負極端子とは、流れる電流経路が前記複数のキャパシタのいずれを経ても実質的に同等の距離に配置されている請求項7に記載の平滑回路基板。
【請求項9】
前記一対の前記正極端子間を結ぶ線分の二等分線と前記一対の前記負極端子間を結ぶ線分の二等分線とが、同一線である請求項7または8のいずれか1項に記載の平滑回路基板。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、平滑回路、および平滑回路基板に関する。
【背景技術】
【0002】
複数のキャパシタ、(電解コンデンサ、Electrolytic Capacitor)が実装された平滑回路、および複数のキャパシタが実装された回路基板が知られている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、負荷へ交流電源を供給するインバータが知られている。一例のインバータは、商用交流電源を直流電源に変換するコンバータ回路(整流回路)と、コンバータ回路が出力する直流電源を平滑化する平滑回路と、平滑回路を経た直流電源を交流電源に変換して負荷へ交流電源を供給するインバータ回路と、を備えている。
【0005】
そして、平滑用キャパシタの大容量化を図るために、複数の電解キャパシタ(Electrolytic Capacitor)を並列に接続することが一般的に行われている。このような多数のキャパシタを含む平滑回路とコンバータ回路もしくはインバータ回路とを同一の回路基板に実装する場合には、基板上の多数の平滑キャパシタが、回路基板の質量バランスを片寄らせる。このような回路基板の質量のアンバランス(不均衡)は、回路基板を筐体へ組み込む際に、回路基板に反りを生じさせたり、単一の回路基板の大型化を招くという問題がある。
【0006】
そこで、本発明は、例えばコンバータ回路等の回路が実装された回路基板から平滑回路を独立させ、かつ複数の同じ平滑回路基板を組み合わせることによって、所望の静電容量を容易に得ることや、電源電圧の大小の差異に容易に対応可能な平滑回路、および平滑回路基板を提供することを目的とする。
【課題を解決するための手段】
【0007】
前記の課題を解決するため本発明の実施形態に係る平滑回路は、並列に接続される複数のキャパシタと、前記複数のキャパシタの正極に電気的に接続される一対の正極端子と、前記複数のキャパシタの負極に電気的に接続される一対の負極端子と、をそれぞれが有する複数の回路基板と、少なくとも2つの前記回路基板の間で、前記複数のキャパシタを電気的に直列または並列に接続する少なくとも1つの接続導電体と、を備え、前記一対の正極端子および前記一対の負極端子は、前記2つの前記回路基板が並ぶ方向に直交する方向において、相互にずれて重ならない。
【0008】
また、本発明の実施形態に係る平滑回路は、並列に接続される複数のキャパシタと、前記複数のキャパシタの正極に電気的に接続される一対の正極端子と、前記複数のキャパシタの負極に電気的に接続される一対の負極端子と、をそれぞれが有する複数の回路基板と、少なくとも2つの前記回路基板の間で、前記複数のキャパシタを電気的に直列または並列に接続する少なくとも1つの接続導電体と、を備え、前記複数の回路基板の前記一対の正極端子の二列に整列し、前記複数の回路基板の前記一対の負極端子の二列に整列し、前記一対の正極端子の列の少なくとも一方と前記一対の負極端子の列とは、相互にずれて重ならない。
【0009】
また、前記の課題を解決するため本発明の実施形態に係る平滑回路基板は、並列に接続される複数のキャパシタと、前記複数のキャパシタの正極に電気的に接続され、前記複数のキャパシタを間に挟む一対の正極端子と、前記複数のキャパシタの負極に電気的に接続され、前記複数のキャパシタを間に挟む一対の負極端子と、を備え、前記複数のキャパシタの並びの少なくとも一方の側方に配置される前記正極端子および前記負極端子は、前記一対の正極端子の離間方向において、相互にずれて重ならない。
【図面の簡単な説明】
【0010】
【
図1】本発明の実施形態に係る平滑回路、および平滑回路基板が適用される回路の一例として、ヒートポンプ機器の圧縮機を駆動させる電源回路の概略的な図。
【
図2】本発明の実施形態に係る平滑回路の第一例の回路図。
【
図3】本発明の実施形態に係る平滑回路の第一例の平面図。
【
図4】本発明の実施形態に係る平滑回路の第一例の側面図。
【
図5】本発明の実施形態に係る平滑回路の第一例の模式図。
【
図6】本発明の実施形態に係る平滑回路の第二例の回路図。
【
図7】本発明の実施形態に係る平滑回路の第二例の平面図。
【
図8】本発明の実施形態に係る平滑回路の第二例の模式図。
【
図9】本発明の実施形態に係る平滑回路の第三例の回路図。
【
図10】本発明の実施形態に係る平滑回路の第三例の平面図。
【
図11】本発明の実施形態に係る平滑回路の第三例の模式図。
【発明を実施するための形態】
【0011】
本発明に係る平滑回路、および平滑回路基板の実施形態について
図1から
図11を参照して説明する。なお、複数の図面中、同じまたは相当する構成には同一の符号が付されている。
【0012】
図1は、本発明の実施形態に係る平滑回路、および平滑回路基板が適用される回路の一例として、ヒートポンプ機器の圧縮機を駆動させる電源回路の概略的な図である。
【0013】
なお、
図1では平滑回路、および平滑回路基板を単純化して1つのキャパシタ(便宜的に「平滑回路1」という)で表現している。
【0014】
ヒートポンプ機器は、冷暖房または冷却を行うための冷凍サイクル160を備えている。冷凍サイクルは、吸熱する熱交換器152と、放熱する熱交換器154と、両熱交換器の間に設けられる膨張装置153と、両熱交換器152、154および膨張装置153に流通される冷媒を圧縮する圧縮機150と、を備えている。
【0015】
圧縮機151は、DCブラシレスモータM(以下、「モータM」または「DCモータM」という)によって駆動される。ここで、モータMは、本実施形態に係る平滑回路、および平滑回路基板が適用される電源回路の負荷の一例である。モータMは、圧縮機150の密閉容器内にともに収容される圧縮機構151を回転させて冷凍サイクル内を循環する冷媒を圧縮する。
【0016】
図1に示すように、本実施形態に係る平滑回路1が適用される電源回路PSCは、モータMを可変速駆動する。電源回路PSCは、交流電源Eの電圧を直流電圧に変換し、その直流電圧を所定周波数の交流電圧に変換し、その交流電圧をモータMへ出力する。
【0017】
大電力用の三相交流電源Eの電源電圧は、国ごとに異なるが、一般的に交流電源Eの電圧は、200ボルト系または400ボルト系のいずれかである。
【0018】
モータMは、複数の相巻線Lu(図示省略)、Lv(図示省略)、Lw(図示省略)を有するステータ(電機子、図示省略)、および複数、例えば4極の永久磁石が埋設されたロータ(回転子、図示省略)を備えている。ロータは、相巻線Lu、Lv、Lwに電流が流れることにより生じる磁界とステータの各永久磁石が作る磁界との相互作用によって回転する。このロータは、軸を介して圧縮機構151に直結されていて、圧縮機構151を駆動する。
【0019】
電源回路PSCは、コンバータ回路101、平滑回路1、およびインバータ回路102を備えている。
【0020】
コンバータ回路101は、三相交流電源Eの電源電圧を直流電圧に変換する。コンバータ回路101は、交流電源Eに接続されるダイオード111からダイオード116を有する全波整流回路121と、この整流回路121の出力側に接続されるリアクトル122と、を備えている。コンバータ回路101は、交流電源Eの出力電圧を整流して直流電圧に変換する。
【0021】
整流回路121は、6つのダイオード111~116を持ち、正側出力端と負側出力端から直流出力を行う三相全波整流回路である。
【0022】
リアクトル122は、流れる電流を蓄積・放出して電流の流れを平準化して、力率を向上させる。リアクトル122の一端側には、整流回路121の正側出力端が接続されている。リアクトル122の他端側には、平滑回路1の正側入力端が接続されている。
【0023】
複数のキャパシタで形成される平滑回路1は、リアクトル122の他端側と整流回路121の負側出力端との間に接続され、整流回路121の出力する直流電圧を平滑化する。
【0024】
インバータ回路102は、コンバータ回路101の直流出力電圧を交流電圧に変換し、その交流電圧をモータMに供給する。インバータ回路102は、コンバータ回路101の出力電圧(具体的には平滑回路1の電圧)を所定の周波数の三相交流電圧に変換して出力する。インバータ回路102の出力周波数は、モータ上位にある制御器(図示省略)から指示される。
【0025】
インバータ回路102の出力端は、モータMの相巻線Lu、Lv、Lwに接続されている。インバータ回路102は、モータMの上位にある制御器の指令、具体的にはモータMの目標回転数指令に基づいて、モータMが同目標回転数になるよう制御される。この結果、圧縮機150は可変速駆動され、冷凍サイクルの能力が可変される。
【0026】
次に、平滑回路1について詳しく説明する。なお、各例で説明する平滑回路1A、1B、1Cにおいて、同じ構成には同一の符号を付し、重複する説明は省略する。
【0027】
図2から
図5に示すように、本実施形態に係る第一例の平滑回路1(以下、単に「平滑回路1A」と呼ぶ。)は、並列に接続される複数の電解コンデンサ7(Electrolytic Capacitor、以下、「キャパシタ7」ともいう。)を含んでいる。また、平滑回路1Aは、並列に接続される複数の同一の平滑回路基板11を備えている。電解コンデンサ7は、例えばアルミ電解コンデンサ(Aluminum Electrolytic Capacitor)である。
【0028】
ひとつの平滑回路基板11は、基板12と、電気的に並列に接続される複数のキャパシタ7と、複数のキャパシタ7の正極に電気的に接続される一対の正極端子13と、複数のキャパシタ7の負極に電気的に接続される一対の負極端子15と、基板12の正側と負側とを電気的に接続する抵抗16と、を備えている。
【0029】
この抵抗16は、電源遮断時にキャパシタ7の充電電圧を放電するための放電用抵抗である。図中、平滑回路基板11は、4個の同一容量のキャパシタ7が並列に接続されている。各キャパシタ7は、円筒形状を有している。キャパシタ7の下側には、基板12に接続するための正側の端子7aと、負側の端子7bと、が延びている。例示のために
図3中、左端に位置するキャパシタ7のみ2つの端子7a、7bを破線で示している。
【0030】
基板12は、例えば、強度の高いガラスエポキシ基板である。基板12の表面には、正側配線層17、および負側配線層19が設けられている。正側配線層17、および負側配線層19は、銅板のパターンである。正側配線層17、および負側配線層19は、大電流を流すためにある程度の幅を有して直線状に設けられている。正側配線層17と負側配線層19との間には、間隔が隔てられている。正側配線層17および負側配線層19のそれぞれには、搭載される複数のキャパシタ7の各端子7a、7bの位置に対応してランド(半田付け部)が設けられている。ランド以外の部分の表面には、レジストが施され、絶縁されている。各配線層17、19に設けられるランドの数は、搭載されるキャパシタ7の数と同じである。ここで、正側配線層17と負側配線層19とを隔てる方向(離間方向)を、基板12の縦方向と定め、これに直交する方向を基板の横方向と定める。基板12は、平面視において縦方向へ延びる辺の対と横方向へ延びる辺の対に確定される横長の矩形を有している。縦方向に沿って正側配線層17側を基板12の上側とし、負側配線層19側を基板12の下側とする。
【0031】
正側配線層17は、基板12の横方向へ延びる一方の辺に沿っている。負側配線層19は、基板12の横方向へ延びる他方の辺に沿っている。なお、正側配線層17および負側配線層19は、基板12の角をなす2つの辺の間で延びていても良い。また、基板12は、矩形でなくても良い。
【0032】
複数のキャパシタ7は、基板12のいずれか一方の主面に配置され、かつ基板12の横方向へ並んでいる。キャパシタ7が配置されている方の面を基板12の実装面21と呼ぶ。また、基板12の上下方向を視線の上下に揃え、かつ実装面21に向かって右側を基板12の右側とし、実装面21に向かって左側を基板12の左側とする。
【0033】
単一の基板12には、例えば4つのキャパシタ7が実装されている。それぞれのキャパシタ7の正極7aは、正側配線層17のランドに半田付けによって接続されている。それぞれのキャパシタ7の負極7bは、同様に負側配線層19のランドに半田付けによって接続されている。結果的に、キャパシタ7は、正側配線層17と負側配線層19との間で直線的に整列する。
【0034】
基板12上の正側配線層17の両端部には、一対の正極端子13が設けられ、負側配線層19の両端部には、一対の負極端子15が設けられている。正極端子13および負極端子15は、例えばねじ端子である。各端子13、15は、キャパシタ7と同様に各配線層17、19に半田付けによって接続されている。
【0035】
一対の正極端子13は、キャパシタ7が配置されている方の面、つまり基板12の実装面21に設けられている。一対の正極端子13は、基板12の横方向へ離間している。基板12の横方向において、複数のキャパシタ7は、離間する一対の正極端子13の間に配置されている。換言すると、一対の正極端子13は、複数のキャパシタ7を、その間に挟んでいる。つまり、一方の正極端子13、ここでは基板12の左側に配置されている左側正極端子13Lは、複数のキャパシタ7よりも基板12の左側に配置されている。他方の正極端子13、ここでは基板12の右側に配置されている右側正極端子13Rは、複数のキャパシタ7よりも基板12の右側に配置されている。
【0036】
同様に一対の負極端子15も、基板12の実装面21に設けられている。一対の負極端子15は、基板12の横方向へ離間している。基板12の横方向において、複数のキャパシタ7は、離間する一対の負極端子15の間に配置されている。換言すると、一対の負極端子15は、複数のキャパシタ7を、その間に挟んでいる。つまり、一方の負極端子15、ここでは基板12の左側に配置されている左側負極端子15Lは、複数のキャパシタ7よりも基板12の左側に配置されている。他方の負極端子15、ここでは基板12の右側に配置されている右側負極端子15Rは、複数のキャパシタ7よりも基板12の右側に配置されている。
【0037】
使用される複数のキャパシタ7の寿命を均一化するために、基板12上の各キャパシタ7に流れる電流量を同じにすることが望まれる。また、後述するようにこの基板12は、単体で使用できるとともに、複数の基板12を用いて直列や並列の様々な接続形態で使用される。このため、正側の配線が接続される正極端子13から負側の配線が接続される負極端子15に至る間の電流の流通経路として、複数のキャパシタ7のいずれを経ても実質的に同等の長さ(距離)になるように配置されることが好ましい。なお、この際、正側の配線が接続される正極端子13から最も遠い負極端子15に負側の配線が接続されることを前提として、複数の端子13、15の配置が設定される。例えば、1枚のみの単体の基板12が平滑回路として使用される場合には、左側正極端子13Lと右側負極端子15Rとの組み合わせ、または右側正極端子13Rと左側負極端子15Lとの組み合わせが、負側と正側の配線接続に使用される。まず、
図2の左端のキャパシタ7を経る左側正極端子13Lと右側負極端子15Rとの距離は、
図2の左から2つ目のキャパシタ7を経る左側正極端子13Lと右側負極端子15Rとの距離、
図2の左から3つ目のキャパシタ7を経る左側正極端子13Lと右側負極端子15Rとの距離、および
図2の右端のキャパシタ7を経る左側正極端子13Lと右側負極端子15Rとの距離と、いずれも実質的に等しくなっている。同様に、右側正極端子13Rから左側負極端子15Lに至る距離も複数のキャパシタ7のいずれを経ても実質的に同等の距離に配置されている。
【0038】
左側正極端子13Lと右側負極端子15Rとの組み合わせ、または右側正極端子13Rと左側負極端子15Lとの組み合わせのいずれを使用してもよいように、いずれかのキャパシタ7を経る左側正極端子13Lと右側負極端子15Rとの距離は、いずれかのキャパシタ7を経る右側正極端子13Rと左側負極端子15Lとの距離に実質的に等しいことが好ましい。そのため、左側負極端子15Lは左側正極端子13Lよりも基板12の中央(横方向における中央)あるいはキャパシタ7に近く、右側負極端子15Rは右側正極端子13Rよりも基板12の中央(横方向における中央)、あるいはキャパシタ7に近い。換言すると、一対の正極端子13の距離は、一対の負極端子15の距離より大きい。
【0039】
なお、左側負極端子15Lと左側正極端子13Lとの配置の関係と、右側負極端子15Rと右側正極端子13Rとの配置の関係とは、逆転していても良い。つまり、左側正極端子は13L左側負極端子15Lよりも基板12の中央(横方向における中央)あるいはキャパシタ7に近く、右側正極端子13Rは右側負極端子15Rよりも基板12の中央(横方向における中央)、あるいはキャパシタ7に近かくても良い。この場合、一対の正極端子13の距離は、一対の負極端子15の距離より小さくなる。
【0040】
さらに後述する複数の基板12を用いる様々な接続形態を考えると、基板12の横方向における左側負極端子15Lと左側正極端子13Lとの距離は、基板12の横方向における右側負極端子15Rと右側正極端子13Rとの距離に等しいことが好ましい。
【0041】
そして、一対の正極端子13および一対の負極端子15は、平滑回路基板11の横方向へ相互にずれていて、平滑回路基板11の縦方向へ重ならない。つまり、基板12の左側に配置されている左側正極端子13Lは、平滑回路基板11の縦方向において一対の負極端子15のいずれとも重ならず、基板12の右側に配置されている右側正極端子13Rは、平滑回路基板11の縦方向において一対の負極端子15のいずれとも重ならない。同様に、基板12の左側に配置されている左側負極端子15Lは、平滑回路基板11の縦方向において一対の正極端子13のいずれとも重ならず、基板12の右側に配置されている右側負極端子15Rは、平滑回路基板11の縦方向において一対の正極端子13のいずれとも重ならない。
【0042】
換言すると、一対の正極端子13および一対の負極端子15は、一対の正極端子13の離間方向、または一対の負極端子15の離間方向において、相互にずれて重ならない。複数のキャパシタ7の並びの一方の側、例えば左側に配置される左側正極端子13Lおよび左側負極端子15Lは、一対の正極端子13の離間方向、または一対の負極端子15の離間方向において、相互にずれて重ならない。複数のキャパシタ7の並びの他方の側、例えば右側に配置される右側正極端子13Rおよび右側負極端子15Rは、一対の正極端子13の離間方向、または一対の負極端子15の離間方向において、相互にずれて重ならない。さらに、基板12の一対の正極端子15の間を結ぶ線分の二等分線と一対の負極端子13の間を結ぶ線分の二等分線とが、同一線Biであることが好ましい。
【0043】
抵抗16は、複数のキャパシタ7に並列に接続されている。つまり、抵抗16は、その両端の端子部が、正側配線層17と負側配線層19とを跨る様に半田付けされて電気的に接続されている。本実施形態に係る抵抗16は、4つのキャパシタ7の中央に実装されている。
【0044】
次いで、
図2から4を用いて複数の平滑回路基板11が組み合わされた回路、つまり平滑回路1Aについて説明する。
【0045】
図2の回路図でなる平滑回路1Aは、
図3、4に示すように同じ構成を有する複数の平滑回路基板11を並列に組み合わせた回路である。平滑回路1Aは、例えば並列に接続される2つの平滑回路基板11を備えている。
【0046】
平滑回路1Aは、基板12の正側配線層17と負側配線層19との離間方向、つまり基板12の縦方向へ整列する複数の平滑回路基板11を備えている(
図3)。したがって、複数の平滑回路基板11の並びの方向(複数の平滑回路基板11の整列方向であり、
図3中の実線矢印AL)は、基板12の正側配線層17と負側配線層19との離間方向に一致し、基板12の縦方向に一致する。
【0047】
隣り合う一対の平滑回路基板11は、一方の平滑回路基板11の負極端子15を他方の平滑回路基板11の正極端子13に対向させて配置される。換言すると、隣り合う一対の平滑回路基板11において、一方の平滑回路基板11の負極端子15は、他方の平滑回路基板11の負極端子15より他方の平滑回路基板11の正極端子13に近い。なお、対向する相手のない正側配線層17を有する平滑回路基板11を、整列する複数の平滑回路基板11の先頭回路基板11sと呼び、対向する相手のない負側配線層19を有する平滑回路基板11を、整列する複数の平滑回路基板11の末尾回路基板11eと呼ぶ。
【0048】
また、全ての平滑回路基板11は、一対の正極端子13が二列に整列し、一対の負極端子15が二列に整列するよう並べられる。つまり、平滑回路1Aの全ての正極端子13は、二列に整列し、平滑回路1Aの全ての負極端子15は、二列に整列する。これら、正極端子13の列および負極端子15の列は、複数の平滑回路基板11の並びの方向に一致し、基板12の正側配線層17と負側配線層19との離間方向に一致し、基板12の縦方向に一致する。このように平滑回路基板11を整列させると、本実施形態に係る矩形の平滑回路基板11では、横方向に離間している一対の辺、つまり平滑回路基板11の左辺と右辺とが実質的に一直線に揃う。
【0049】
ここで、一対の正極端子13がなす二列について、左側列を正極端子左列22Lと呼び、右側列を正極端子右列22Rと呼ぶ。一対の負極端子15がなす二列について、左側列を負極端子左列23Lと呼び、右側列を負極端子右列23Rと呼ぶ。これら正極端子左列22L、正極端子右列22R、負極端子左列23L、および負極端子右列23Rは、相互にずれて重ならない。また、これら4つの列22L、22R、23L、23R、は、平行に並んでいる。これら正極端子左列22L、正極端子右列22R、負極端子左列23L、および負極端子右列23Rの延び方向は、複数の平滑回路基板11の並びの方向に一致し、基板12の正側配線層17と負側配線層19との離間方向に一致し、基板12の縦方向に一致する。
【0050】
正極端子左列22Lと正極端子右列22Rとの距離は、負極端子左列23Lと負極端子右列23Rとの距離より大きい。正極端子左列22Lと負極端子左列23Lとの距離は、正極端子右列22Rと負極端子右列23Rとの距離に実質的に等しい。正極端子左列22Lと負極端子左列23Lとの距離は、正極端子左列22Lと負極端子右列23Rとの距離より短い。
【0051】
負極端子左列23Lおよび負極端子右列23Rは、正極端子左列22Lと正極端子右列22Rとの間に配置されている。逆に正極端子左列22Lと正極端子右列22Rとが、負極端子左列23Lおよび負極端子右列23Rの間に配置されていても良い。要は、基板12の一対の正極端子15の間を結ぶ線分の二等分線と一対の負極端子13の間を結ぶ線分の二等分線とが、同一線Biとなればよい。
【0052】
そして、平滑回路1Aは、電気的に並列に接続される複数のキャパシタ7と、複数のキャパシタ7の正極7aに電気的に接続される一対の正極端子13と、複数のキャパシタ7の負極7bに電気的に接続される一対の負極端子15と、をそれぞれが有する複数の平滑回路基板11と、少なくとも2つの平滑回路基板11の間で、複数のキャパシタ7を電気的に並列に接続する接続導電体25Aと、を備えている。
【0053】
図3および
図4に示すように、本実施形態に係る平滑回路1Aの接続導電体25Aは、隣り合う平滑回路基板11の正極端子13間を接続する正側接続導電体26Pと、隣り合う平滑回路基板11の負極端子15間を接続する負側接続導電体26Nと、を含んでいる。接続導電体25Aは、リード線、またはバスバー(bus bar)である。
図3、4ではバスバーを用いた例を示している。接続導電体25Aは、正極端子13、または負極端子15にねじ止めされている。
【0054】
正側接続導電体26Pは、隣り合う平滑回路基板11の正極端子13であり、かつ同じ列に並ぶ2つの正極端子13を電気的に接続する。具体的には、正側接続導電体26Pは、正極端子左列22Lに並び、かつ隣り合う2つの左側正極端子13Lの間に架け渡されている。
【0055】
負側接続導電体26Nは、隣り合う平滑回路基板11の負極端子15であり、かつ同じ列に並ぶ2つの負極端子15を電気的に接続する。具体的には、負側接続導電体26Nは、負極端子左列23Lに並び、かつ隣り合う2つの左側負極端子15Lの間に架け渡されている。
【0056】
このため、正側接続導電体26P、および負側接続導電体26Nは、直線状に各基板12上に配置されている正側配線層17、および負側配線層19に直交する。正極端子左列22L、正極端子右列22R、負極端子左列23L、および負極端子右列23Rは、相互にずれて重ならない。そのため、正側接続導電体26Pと負側接続導電体26Nとは、交差することがなく、換言すると、相互に干渉することがない。また、正側接続導電体26Pと正極端子13とのネジ止めが容易であり、負側接続導電体26Nと負極端子15とののネジ止めが容易である。大電流を流す接続導電体25Aであるリード線やバスバー(bus bar)は、太い銅線や厚みのある銅板などの金属板が使用される。そのため、接続導電体25Aを曲げて使用することは困難であり、2本の接続導電体25Aが交差するような組み立ては作業性の観点からも好ましくない。
【0057】
本実施形態に係る平滑回路1Aでは、先頭回路基板11sの右側正極端子13Rを平滑回路1Aの正側入力端子2piとして利用し、末尾回路基板11eの右側正極端子13Rを平滑回路1Aの正側出力端子2poとして利用する。また、先頭回路基板11sの右側負極端子15Rを平滑回路1Aの負側入力端子2niとして利用し、末尾回路基板11eの右側負極端子15Rを平滑回路1Aの負側出力端子2noとして利用する。
【0058】
このように、隣り合う平滑回路基板11に架け渡される正側接続導電体26P、および負側接続導電体26Nは、複数のキャパシタ7の左側、または右側に集約され、他方側に位置するネジ端子は、入力端子2pi、2ni、および出力端子2po、2noに利用される。そのため、複数のキャパシタ7のいずれにおいても電流経路の長さは実質的に同じになり、キャパシタ7の寿命の均一化、ひいては長寿命化を図ることができる。
【0059】
なお、3つ以上の平滑回路基板11を並列に接続する場合には、隣り合う平滑回路基板11に架け渡される正側接続導電体26Pおよび負側接続導電体26Nは、複数のキャパシタ7の左側および右側に交互に集約される。例えば、3つの平滑回路基板11を並列に接続する場合には、先頭回路基板11sと2番目の平滑回路基板11とを接続する接続導電体25Aは、複数のキャパシタ7の左側で2つの平滑回路基板11の間に架け渡される。2番目の平滑回路基板11と末尾回路基板11eとを接続する接続導電体25Aは、複数のキャパシタ7の右側で2つの平滑回路基板11の間に架け渡される。先頭回路基板11sの右側正極端子13Rが平滑回路1Aの正側入力端子2piとして利用され、末尾回路基板11eの左側正極端子13Lが平滑回路1Aの正側出力端子2poとして利用される。先頭回路基板11sの右側負極端子15Rが平滑回路1の負側入力端子2niとして利用され、末尾回路基板11eの左側負極端子15Lが平滑回路1Aの負側出力端子2noとして利用される。
【0060】
また、平滑回路1Aに用いられる平滑回路基板11は、抵抗16を備えていなくても良い。
【0061】
本実施形態に係る平滑回路1の第二例(以下、単に「平滑回路1B」と呼ぶ。)を
図6から
図8に基づき説明する。この例では、
図6の回路図に示すように直列に接続される複数のキャパシタ7を含んでいる。また、平滑回路1Bは、直列に接続される複数の平滑回路基板11を備えている。この第二例では、キャパシタ7が直列に接続されるため、全体として平滑回路の電圧定格を高めることができる。このため、前述の第一例は交流電源電圧が低い場合、例えば200V系電源の場合に好適であり、本第二例は、電源電圧が高い場合、例えば400V系電源の場合に好適である。
【0062】
平滑回路基板11自体は、第一例の平滑回路1Aと共通である。つまり、平滑回路基板11は、複数のキャパシタ7が並列に接続される第一例の平滑回路1Aにも、複数のキャパシタ7が直列に接続される第二例の平滑回路1Bにも、適用できる。このため、部品が共通化され、製造やサービス、在庫管理が容易となる。
【0063】
平滑回路1Bは、同じ複数の平滑回路基板11を直列に接続した回路である。平滑回路1Bは、例えば2つの平滑回路基板11を備えている。平滑回路1Bにおける平滑回路基板11の配列は、平滑回路1Aにおける平滑回路基板11の配列と同じであり、説明が重複するので省略する。
【0064】
平滑回路1Bは、電気的に並列に接続される複数のキャパシタ7と、複数のキャパシタ7の正極7aに電気的に接続される一対の正極端子13と、複数のキャパシタ7の負極7bに電気的に接続される一対の負極端子15と、をそれぞれが有する複数の平滑回路基板11と、少なくとも2つの平滑回路基板11の間で、複数のキャパシタ7を電気的に直列に接続する接続導電体25Bと、を備えている。
【0065】
図6から
図8に示すように、本実施形態に係る平滑回路1Bの接続導電体25Bは、隣り合う平滑回路基板11の負極端子15と正極端子13との間を接続する。具体的には、接続導電体25Bは、複数のキャパシタ7の一方の側方、例えば左側方の正極端子左列22Lに並ぶ左側正極端子13Lと負極端子左列23Lに並ぶ左側負極端子15Lの間に架け渡される。同じ側方の端子を用いることで、接続導電体25Bの長さを短くすることが可能である。
【0066】
隣り合う平滑回路基板11に架け渡される接続導電体25Bは、複数のキャパシタ7の左側、または右側に配置される。一方、平滑回路1Bの正側端子3pと負側端子3nとには、接続導電体25Bが接続された端子とは左右反対側の端子が利用される。このように接続することで、各キャパシタ7を経由して流れる電流経路の距離を略等しくすることができる。本実施形態に係る平滑回路1Bでは、先頭回路基板11sの右側正極端子13Rを平滑回路1Bの正側端子3pとして利用し、末尾回路基板11eの右側負極端子15Rを平滑回路1Bの負側端子3nとして利用している。
【0067】
なお、3つ以上の平滑回路基板11を直列に接続する場合には、隣り合う平滑回路基板11に架け渡される接続導電体25Bは、複数のキャパシタ7の左側および右側に交互に配置される。例えば、3つの平滑回路基板11を直列に接続する場合には、先頭回路基板11sと2番目の平滑回路基板11とを接続する接続導電体25Bは、複数のキャパシタ7の左側で2つの平滑回路基板11の間に架け渡される。2番目の平滑回路基板11と末尾回路基板11eとを接続する接続導電体25Bは、複数のキャパシタ7の右側で2つの平滑回路基板11の間に架け渡される。先頭回路基板11sの右側正極端子13Rが平滑回路1Bの正側端子3pとして利用され、末尾回路基板11eでは、接続導電体25Bが接続される側の反対側である左側負極端子15Lが平滑回路1Bの負側端子3nとして利用される。
【0068】
なお、2つの平滑回路基板11を使用する場合には、基板11上の一対の正極端子15および一対の負極端子13の両方が、前記一対の正極端子の離間方向において、相互にずれて重ならないようにする必要はない。つまり、基板11上の一対の正極端子15および一対の負極端子13について、複数のキャパシタ7のいずれか一方の側方、つまり右側の側方または左側の側方の正極端子15L(または正極端子R)と負極端子13L(または負極端子13R)が、一対の正極端子15の離間方向において、相互にずれて重ならなければよい。
【0069】
図9から
図11に示すように、本実施形態に係る平滑回路1の第三例(以下、単に「平滑回路1C」と呼ぶ。)は、並列に接続される複数のキャパシタ7を含んでいる。また、平滑回路1Cは、並列に接続される複数の平滑回路基板11を備えている。
【0070】
平滑回路基板11は、第一例、第二例の平滑回路1Aと共通する。
【0071】
平滑回路1Cは、同じ複数の平滑回路基板11を並列に組み合わせた回路である。平滑回路1Cは、例えば並列に接続される2つの平滑回路基板11を備えている。
【0072】
平滑回路1Cの接続導電体25Cは、少なくとも2つの平滑回路基板11を電気的に接続し、かつ平滑回路1Cの入力端および出力端を兼ねている。つまり、接続導電体25Cは、少なくとも2つの平滑回路基板11の間で、複数のキャパシタ7を電気的に並列に接続し、かつ平滑回路1Cの入力端および出力端を兼ねている。
【0073】
本実施形態に係る平滑回路1Cの接続導電体25Cは、隣り合う平滑回路基板11の正極端子13間を接続し、かつ平滑回路1Cの正側端子を兼ねる正側接続導電体31Pと、隣り合う平滑回路基板11の負極端子15間を接続し、かつ平滑回路1Cの負側端子を兼ねる負側接続導電体31Nと、を含んでいる。この場合、配線接続箇所を減らすため、接続導電体25Cは、バスバーが用いられる。
【0074】
正側接続導電体31Pは、同じ列に並ぶ全ての正極端子13を電気的に接続する。具体的には、正側接続導電体31Pは、正極端子右列22Rに並び全ての右側正極端子13Rの間に架け渡されている。
【0075】
負側接続導電体31Nは、同じ列に並ぶ全ての負極端子15を電気的に接続する。具体的には、負側接続導電体31Nは、負極端子左列23Lに並ぶ全ての左側負極端子15Lの間に架け渡されている。
【0076】
正側接続導電体31Pおよび負側接続導電体31Nは、接続作業を容易にするため、複数のキャパシタ7の左側と右側とに分けて配置することが好ましい。3つ以上の平滑回路基板11を並列に接続する場合にも、同様である。
【0077】
以上のように本実施形態に係る平滑回路1Aは、複数の平滑回路基板11と、少なくとも2つの平滑回路基板11の間で、複数のキャパシタ7を電気的に並列に接続する少なくとも1つの接続導電体25Aと、を備えている。そして、一対の正極端子13および一対の負極端子15は、複数の平滑回路基板11が並ぶ方向(整列方向)に交差する方向において、相互にずれて重ならない。換言すると、複数の平滑回路基板11の一対の正極端子13の全てが二列に整列し、複数の平滑回路基板11の一対の負極端子15の全てが二列に整列し、かつ一対の正極端子13の列と一対の負極端子15の列が、相互にずれて重ならない。そのため、平滑回路1は、例えばコンバータ回路101を含む他の回路が実装された回路基板から平滑回路1を独立させ、かつ複数の平滑回路基板11を組み合わせることによって、所望の静電容量を容易に得ることができる。そして、複数の平滑回路基板11を組み合わせた平滑回路1Aでは、正極端子13の列と一対の負極端子15の列とが、相互にずれて重ならないことから、接続導電体25Aの取り付けが容易となる。
【0078】
また、本実施形態に係る平滑回路1Bは、複数の平滑回路基板11と、少なくとも2つの平滑回路基板11の間で、複数のキャパシタ7を電気的に直列に接続する少なくとも1つの接続導電体25Bと、を備えている。そして、一対の正極端子13および一対の負極端子15は、複数の平滑回路基板11が並ぶ方向(整列方向)に交差する方向において、相互にずれて重ならない。換言すると、複数の平滑回路基板11の一対の正極端子13の全てが二列に整列し、複数の平滑回路基板11の一対の負極端子15の全てが二列に整列し、かつ一対の正極端子13の列と一対の負極端子15の列が、相互にずれて重ならない。そのため、平滑回路1は、例えばコンバータ回路101を含む他の回路が実装された回路基板から平滑回路1を独立させ、かつ複数の平滑回路基板11を組み合わせることによって、電源電圧の大小の差異に容易に対応することができる。
【0079】
さらに、本実施形態に係る平滑回路1A、1Bは、電流経路が複数のキャパシタ7のいずれを経ても実質的に同等の距離となるように配置される一方の正極端子13と一方の負極端子15との対と、複数のキャパシタ7のいずれを経ても実質的に同等の距離となるように配置される他方の正極端子13と他方の負極端子15との対と、を備えている。そのため、平滑回路1A、1Bは、平滑回路基板11を並列に接続して大容量化を図る場合であっても、平滑回路基板11を直列に接続して許容可能な最大電圧の高電圧化を図る場合であっても、特定のキャパシタ7に偏って大きな電流が流れることを防ぎ、各キャパシタ7の負荷の平準化を図って、回路全体の寿命を損なうことがない。
【0080】
また、本実施形態に係る平滑回路1Cは、少なくとも2つの平滑回路基板11を電気的に接続し、かつ平滑回路1の入力端および出力端を兼ねる接続導電体25Cを備えている。そのため、平滑回路1Cは、平滑回路基板11へリプル電流のみを流すことが可能であり、基板12の簡素化を容易に図ることができる。
【0081】
さらに、平滑回路基板11は、それ単体であっても並列に接続されるキャパシタ7を有する平滑回路を提供可能である一方で、複数を組み合わせることによって、平滑回路1A、1B、1Cに代表される様々な平滑回路を容易に構成することができ、複数の平滑回路を構成する場合の基本構成として共通化を図ることができる。
【0082】
したがって、本実施形態に係る平滑回路1(1A、1B、1C)、および平滑回路基板11によれば、例えばコンバータ回路101を含む他の回路が実装された回路基板から平滑回路1を独立させ、かつ複数の同じ平滑回路基板11を組み合わせることによって、所望の静電容量を容易に得ることや、電源電圧の大小の差異に容易に対応可能である。
【0083】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0084】
1、1A、1B、1C…平滑回路、2pi…正側入力端子、2po…正側出力端子、2ni…負側入力端子、2no…負側出力端子、3p…正側端子、3n…負側端子、7…キャパシタ(電解コンデンサ)、11…平滑回路基板、11s…先頭回路基板、11e…末尾回路基板、12…基板、13…正極端子、13L…左側正極端子、13R…右側正極端子、15…負極端子、15L…左側負極端子、15R…右側負極端子、17…正側配線層、19…負側配線層、21…実装面、22L…正極端子左列、22R…正極端子右列、23L…負極端子左列、23R…負極端子右列、25A、25B、25C…接続導電体、26P…正側接続導電体、26N…負側接続導電体、31P…正側接続導電体、31N…負側接続導電体、E…交流電源モータ。