(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2021-12-22
(45)【発行日】2022-01-18
(54)【発明の名称】定量分配装置の較正方法
(51)【国際特許分類】
B26D 5/00 20060101AFI20220111BHJP
B26D 9/00 20060101ALI20220111BHJP
B26D 5/34 20060101ALI20220111BHJP
B26D 5/32 20060101ALI20220111BHJP
【FI】
B26D5/00 B
B26D9/00
B26D5/34 Z
B26D5/34 A
B26D5/32
(21)【出願番号】P 2019530470
(86)(22)【出願日】2017-12-05
(86)【国際出願番号】 US2017064633
(87)【国際公開番号】W WO2018106647
(87)【国際公開日】2018-06-14
【審査請求日】2020-11-30
(32)【優先日】2016-12-07
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】514016784
【氏名又は名称】ジョン・ビーン・テクノロジーズ・コーポレイション
【氏名又は名称原語表記】JOHN BEAN TECHNOLOGIES CORPORATION
(74)【代理人】
【識別番号】110001195
【氏名又は名称】特許業務法人深見特許事務所
(72)【発明者】
【氏名】ブレイン,ジョージ・アール
【審査官】山本 裕太
(56)【参考文献】
【文献】米国特許第07251537(US,B1)
【文献】米国特許出願公開第2006/0156878(US,A1)
【文献】特開2016-032841(JP,A)
【文献】特開平09-029693(JP,A)
【文献】特開平10-156793(JP,A)
【文献】特表平03-505813(JP,A)
【文献】特表2007-522948(JP,A)
【文献】米国特許第08839949(US,B2)
(58)【調査した分野】(Int.Cl.,DB名)
B26D 5/00
B26D 9/00
B26D 5/34
B26D 5/32
(57)【特許請求の範囲】
【請求項1】
コンベア上を運ばれる加工対象物をスキャンするためのスキャナと、前記コンベアに対して動くように構成されたアクチュエータとを有する処理システムを較正する方法であって、前記方法は、
(a) 加工対象物をシミュレートする少なくとも1つのターゲットを前記コンベアに載せることと、
(b) 前記ターゲットが前記コンベアによって搬送される際に、前記ターゲットをスキャンして、前記コンベア上の前記ターゲットの位置を特定し、前記ターゲットの物理的なパラメータを確認することと、
(c) 前記ターゲットが前記コンベアによって搬送される際に、前記ターゲットに対する前記アクチュエータの場所または移動経路を前記ターゲットにマーク付けすることと、
(d) マーク付けされた前記ターゲットを前記コンベアから取出すことと、
(e) マーク付けされた前記ターゲットを前記コンベアに再び載せることと、
(f) マーク付けされた前記ターゲットを再スキャンして、前記ターゲットに対する前記アクチュエータの場所または移動経路を特定することと、
(g) 特定された前記ターゲットに対する前記アクチュエータの位置または移動経路に基づいて、前記コンベアに対して横方向における前記スキャナの場所に対する前記アクチュエータの位置を較正し、前記コンベアの長さに沿った方向における前記スキャナに対する前記アクチュエータの位置を較正することとを備える、方法。
【請求項2】
前記アクチュエータは、注入針、印刷ヘッド、塗装ヘッド、スタンピングヘッド、穿孔ヘッド、穴あけヘッド、釘打ちヘッド、ステープリングヘッド、およびレーザからなる群から選択される、請求項1に記載の較正方法。
【請求項3】
前記ターゲットにマーク付けすることは、前記ターゲットに穴をあけること、前記ターゲットに徴を付けること、前記ターゲット上に徴を形成すること、前記ターゲットに塗料を塗布すること、前記ターゲットに設計を適用すること、前記ターゲットに孔を形成すること、前記ターゲットに穿孔すること
、および前記ターゲットに形状を焼付けることからなる群から選択されるステップによって行なわれる、請求項1または2に記載の較正方法。
【請求項4】
前記ターゲットは、発泡プラスチック、発泡熱可塑性物質、発泡ゴム、発泡合成ゴム、ポリ乳酸、有機食品を用いた材料、ゴム、合成ゴム、紙、厚紙および波形厚紙からなる、請求項1から3のいずれか1項に記載の較正方法。
【請求項5】
少なくとも1つのカッタを含む前記アクチュエータは、前記コンベアに対して横方向に、かつ前記コンベアの長さに沿って動くように構成され、
前記方法は、
(a) 前記ターゲットが前記コンベアによって搬送される際に、前記少なくとも1つのカッタで前記ターゲットに特定の切込みパターンを切込むことによって、前記ターゲットにマーク付けすることと、
(b) 切込まれた前記ターゲットを再スキャンすることとを備え、前記再スキャンすることは、前記ターゲットに対する前記切込みパターンの位置を分析することを含み、
(c) 分析された前記ターゲット上の前記切込みパターンの位置に基づい
て、前記コンベアに対して横方向における前記スキャナの場所に対する前記少なくとも1つのカッタの位置を較正し、前記コンベアの長さに沿った方向における前記スキャナに対する前記少なくとも1つのカッタの位置を較正することを備える、請求項1または4に記載の較正方法。
【請求項6】
複数のターゲットが前記コンベアの長さに沿って離間している、請求項5に記載の較正方法。
【請求項7】
前記コンベアの長さに沿って離間している前記ターゲットは、前記コンベアの幅にわたっても離間している、請求項6に記載の較正方法。
【請求項8】
複数のターゲットが前記コンベアの幅にわたって離間している、請求項5に記載の較正方法。
【請求項9】
前記複数のターゲットは、加工対象物が前記コンベア上を運ばれる前記コンベアにわたる1つまたは複数の場所に対応して前記コンベアの幅にわたって位置している、請求項5から8のいずれか1項に記載の較正方法。
【請求項10】
前記特定の切込みパターンは、前記少なくとも1つのカッタで前記ターゲットに切込まれる形状を含む、請求項5から9のいずれか1項に記載の較正方法。
【請求項11】
前記形状は、円形、楕円形、三角形、正方形、星形、および多面体からなる群から選択される、請求項10に記載の較正方法。
【請求項12】
前記加工対象物から切抜かれる前記形状は、前記ターゲット上に特定のパターンで配置される、請求項10または11に記載の較正方法。
【請求項13】
前記ターゲットから切抜かれる前記形状は、前記コンベアの移動方向に沿って配置される、請求項10から12のいずれか1項に記載の較正方法。
【請求項14】
前記加工対象物から切抜かれる前記形状は、前記コンベアの片側に平行に配置される、請求項10から12のいずれか1項に記載の較正方法。
【請求項15】
前記ターゲットに切込まれる前記形状は、前記ターゲットを前記コンベアに再び載せる前に前記ターゲットから除去される、請求項10から14のいずれか1項に記載の較正方法。
【請求項16】
前記少なくとも1つのカッタで前記ターゲットに切込むことは、予め選択された形状を前記ターゲットに切込むことを含む、請求項5から15のいずれか1項に記載の較正方法。
【請求項17】
前記ターゲットに切込まれる前記形状は、前記ターゲットを前記コンベアに再び載せる前に前記ターゲットから除去される、請求項5から14および16のいずれか1項に記載の較正方法。
【請求項18】
前記
アクチュエータは複数のカッタを含み、前記カッタの各々は固有の形状を前記ターゲットに切込む、請求項5から17のいずれか1項に記載の較正方法。
【請求項19】
前記カッタの各々は、固有の形状を複数のターゲットに切込む、請求項18に記載の較正方法。
【請求項20】
前記カッタの各々は、固有の形状を前記ターゲットの各々に切込む、請求項19に記載の較正方法。
【請求項21】
前記定量分配システムを、前記ターゲットが再スキャンされると、前記スキャナによって初めにスキャンされた後に前記少なくとも1つのカッタによって切込まれた各特定のターゲットを認識するように構成することをさらに備える、請求項5から20のいずれか1項に記載の較正方法。
【請求項22】
前記定量分配システムは、前記スキャナによって初めにスキャンされた時に前記定量分配システムによって確認された前記ターゲットの1つ以上の物理的なパラメータを認識する、請求項21に記載の較正方法。
【請求項23】
前記定量分配システムによって認識される前記ターゲットの前記1つ以上の物理的なパラメータは、ターゲット長、幅、アスペクト比、厚さ、厚さプロファイル、外形、外面形状、外周サイズ、および/または外周形状からなる群から選択される、請求項22に記載の較正方法。
【請求項24】
前記物理的なパラメータは、前記ターゲット上に位置する徴、または前記ターゲットに切込まれた前記パターンの様相を含む、請求項22に記載の較正方法。
【請求項25】
前記徴は、前記ターゲットに付けられた識別コードを含む、請求項24に記載の較正方法。
【請求項26】
前記識別コードは、製造時に前記ターゲットに付けられた通し番号、前記較正方法の実行時に前記ターゲットに付けられた識別コード、バーコード、1Dバーコード、2Dバーコード、3Dバーコード、QRコード、およびRFIDタグを含む、請求項25に記載の較正方法。
【請求項27】
前記ターゲットに切込まれた前記パターンの様相は、前記少なくとも1つのカッタの各々によって前記ターゲットに切込まれた固有のパターンを含む、請求項24に記載の較正方法。
【請求項28】
前記固有のパターンは、特定のカッタが前記ターゲットに同じパターンを少なくとも2回切込むこと、前記カッタの少なくとも1つがターゲットの切込みごとに前記ターゲットに異なる固有のパターンを切込むこと、前記ターゲットに切込まれた同じパターンのさまざまな配置または組合せ、および前記ターゲットに切込まれたさまざまなパターンのさまざまな配置または組合せからなる群から選択される、請求項27に記載の較正方法。
【請求項29】
前記ターゲットが前記再スキャンされると前記ターゲットの前記物理的なパラメータを分析して、再スキャンされた前記ターゲットを対応する初めにスキャンされたターゲットと一致させることをさらに備える、請求項22から27のいずれか1項に記載の較正方法。
【請求項30】
前記ターゲットの前記初めのスキャンの際に確認された前記ターゲットの前記物理的なパラメータを、前記ターゲットの前記再スキャンの際に確認された前記ターゲットの前記物理的なパラメータに変換して、前記ターゲットに対する前記切込みパターンの位置の分析を助けることをさらに備える、請求項22から29のいずれか1項に記載の較正方法。
【請求項31】
前記少なくとも1つのカッタを較正することは、前記ターゲットに前記特定のパターンを切込む際に前記少なくとも1つのカッタの位置を求めることと、前記スキャナに関連付けられた基準場所に対する、求められた切込む際の前記少なくとも1つのカッタの位置を記憶することとを含む、請求項5から30のいずれか1項に記載の較正方法。
【請求項32】
前記少なくとも1つのカッタの位置を求めることは、前記ターゲットに切込まれた前記特定のパターンの物理的属性の場所を求めることに基づく、請求項31に記載の較正方法。
【請求項33】
前記物理的属性は前記切込みパターンの重心である、請求項32に記載の較正方法。
【請求項34】
前記少なくとも1つのカッタの位置は、前記コンベアの幅にわたる複数の場所で較正される、請求項5から33のいずれか1項に記載の較正方法。
【請求項35】
前記コンベアの幅にわたる前記場所は、加工対象物が前記コンベアによって運ばれる場所に対応する、請求項34に記載の較正方法。
【請求項36】
前記コンベアの移動方向に対して横方向における前記少なくとも1つのカッタの場所についての前記スキャナの場所に関連してデータを確立することをさらに備える、請求項5から35のいずれか1項に記載の較正方法。
【請求項37】
前記コンベアの移動方向に沿った方向における前記少なくとも1つのカッタの場所についての前記スキャナの場所に関連してデータを確立することをさらに備える、請求項5から36のいずれか1項に記載の較正方法。
【発明の詳細な説明】
【技術分野】
【0001】
発明の分野
本発明は、高速定量分配機を用いた食料品などの加工対象物の処理に関し、特にそのような定量分配機の較正に関する。
【背景技術】
【0002】
背景
食料品を含む加工対象物は、顧客のニーズに従ってプロセッサによって小片に定量分配されるかまたはそうでなければ切分けられる。また、余分な脂肪、骨、および他の異物または望ましくない物質も食料品から慣例的に切落とされる。たとえば、レストランで出されるステーキ、または冷凍食品もしくはチキンバーガーに用いられる鶏肉の切り身用に、食料品を均一のサイズに定量分配するおよび/または切落とすことが通常は非常に望ましい。
【0003】
加工対象物、特に食料品の定量分配/切落としの多くは、今や高速定量分配機を用いて行なわれている。これらの機械はさまざまなスキャン技術を用いて、食料品が移動コンベア上を進む際に食料品のサイズおよび形状を確認する。この情報はコンピュータを用いて分析されて、どのようにして最も効率的に食料品を最適なサイズに定量分配すべきかが判断される。たとえば、顧客は、鶏の胸肉部分を2つの異なる重さサイズで、しかし脂肪なしで、または限られた許容量の脂肪付きで、望む場合がある。鶏の胸肉は送込みコンベアベルト上を進む際にスキャンされて、鶏の胸肉を最も効果的に用いるために、どのように鶏の胸肉部分を顧客が望むように脂肪なしのまたは限られた量の脂肪付きの重さに定量分配するのが最善であるかについての判断がコンピュータを用いて行なわれる。
【0004】
加工対象物の定量分配および/または切落としは、食料品が送込みから切断コンベアに移された後に、高速液体ジェットカッタ(液体はたとえば水または液体窒素を含み得る)または回転刃もしくは往復動刃を含むさまざまな切断装置によって行なうことができる。多くの高速定量分配システムでは、いくつかの高速ウォータージェットカッタがコンベアの長さに沿って位置決めされて、定量分配された/切断された加工対象物の高い処理量が達成される。定量分配/切落としが行なわれると、もたらされた定量分配部分が切断コンベアから搬出されて持去りコンベアに置かれて、さらなる処理が行なわれるか、または場合によっては貯蔵所に入れられる。
【0005】
高速ウォータージェットカッタなどの切断装置を用いて正確な定量分配または切落としを行なうためには、定量分配システムを較正することが必要である。この点に関して、食料品が所望のサイズまたは重さに正確に定量分配されるように、かつ脂肪が食料品から正確に切落とされて骨または他の異物または望ましくない物質が食料品から正確に切除されるように、スキャナが見ているものとウォータージェットカッタの配置または移動とが一致している必要がある。
【0006】
ウォータージェットカッタをウォータージェットカッタの横またはクロスベルト移動方向、およびウォータージェットの縦またはダウンベルト移動方向において較正することが必要である。現在、この較正は、たとえばPlay-Doh(登録商標)から形成された三次元形状などのシミュレートした食料品を用いることによって行なわれている。これらのPlay-Doh形状はコンベアに置かれ、スキャンステーションを通過する際にスキャンされてから、ウォータージェットカッタによって切断される。典型的な較正手順では、定量分配器は、シミュレートした加工物を、重さの等しい左半分と右半分に2等分するようにプログラムされる。切断が行なわれた後、これら2つの部分が計量される。2つの部分の重さが異なる場合は、コンピュータ操作されるコントローラプログラムが2つの重さの差に注目し、スキャナデータに対するウォータージェットカッタのクロスベルト位置またはオフセットを「調整」する。この処理は、利用中のウォータージェットカッタごとに数回繰返される。
【0007】
図1A、
図1Bおよび
図1Cは、シミュレートした加工対象物WPが矢印によって示される下流方向においてコンベアベルトCB上を運ばれる際の加工対象物の3つの切断を示す。
図1Aでは、カッタが左に寄り過ぎており、
図1Bではカッタが右に寄り過ぎている。
図1Cでは、カッタは加工対象物WPに対して正確に位置決めされている。
図1Aおよび
図1Bの状況では、定量分配器制御システムは、スキャナデータに対する較正中のウォータージェットカッタの位置またはオフセットを調整する。
【0008】
その後、スキャナに対するダウンベルト方向におけるウォータージェットカッタの場所も較正される。これは、試験加工物を前半分と後半分に2等分するように定量分配器をプログラムすることによって行なうことができる。試験物がこのように切断された後、これら2つの部分が計量され、それらの重さに差がある場合は、定量分配器制御システムはウォータージェットカッタとスキャナにおけるデータ点または線との間の距離または遅れを「調整」する。ウォータージェットカッタの横方向の場所についての較正処理と同様に、スキャナに対するウォータージェットカッタのダウンベルト場所の較正はカッタごとに典型的に最大10回行なわれる。
【0009】
図2A、
図2Bおよび
図2Cは、シミュレートした加工対象物WPが矢印によって示される方向においてコンベアベルトCB上を運ばれる際の加工対象物の3つの切断を示す。
図2Aでは、加工対象物の切断が行なわれるのが早過ぎるのに対して、
図2Bでは加工対象物の切断が行なわれるのが遅過ぎる。
図2Cでは、加工対象物の切断は、加工対象物をサイズの等しい後半分と前半分に2等分するように正確な時間に行なわれている。
図2Aおよび
図2Bの状況では、定量分配器制御システムは、較正中のウォータージェットカッタとスキャナにおいて整列しているデータ点との間の距離または遅れを調整する。
【0010】
8個のウォータージェットカッタを利用し、カッタごとに10回の切断を行ってカッタを横またはクロスベルト方向において較正し、さらに10回の切断を行ってウォータージェットカッタをダウンベルト方向において較正した場合は、合計160個の試験片が切断されて計量されることが理解され得る。典型的に、定量分配装置を較正するのに最大で少なくとも3時間掛かり得る。これは、特に較正が決まって週に少なくとも一度行なわれる場合、または較正をコンベア、ウォータージェットカッタ、もしくは定量分配装置の他の構成要素の交換もしくは修理の後に行なわなければならない場合、かなりのダウンタイムである。
【0011】
したがって、正確なだけでなく、現在用いられている較正手順よりも高速な較正方法を開発することが望ましい。本開示はこの特定のニーズに対処することを目的とする。
【発明の概要】
【課題を解決するための手段】
【0012】
概要
本概要は、選択された概念を詳細な説明において以下にさらに説明される単純化された形で紹介するために与えられる。本概要は、請求項に記載の主題の主な特徴を特定することは意図されておらず、請求項に記載の主題の範囲を決定する際の補助として用いられることも意図されていない。
【0013】
コンベア上を運ばれる加工対象物をスキャンするためのスキャナと、コンベアに対して動くように構成されたアクチュエータとを有する処理システムを較正する方法であって、当該方法は、
加工対象物をシミュレートする少なくとも1つのターゲットをコンベアに載せることと、
ターゲットがコンベアによって搬送される際に、ターゲットをスキャンして、コンベア上のターゲットの位置を特定し、ターゲットの物理的なパラメータを確認することと、
ターゲットがコンベアによって搬送される際に、ターゲットに対するアクチュエータの場所または移動経路をターゲットにマーク付けすることと、
マーク付けされたターゲットをコンベアから取出すことと、
マーク付けされたターゲットをコンベアに再び載せることと、
マーク付けされたターゲットを再スキャンして、ターゲットに対するアクチュエータの場所または移動経路を特定することと、
特定されたターゲットに対するアクチュエータの位置または移動経路に基づいて、コンベア移動経路に対して横方向におけるスキャナの場所に対するアクチュエータの位置を較正し、コンベア移動経路の長さに沿った方向におけるスキャナに対するアクチュエータの位置を較正することとを含む、方法。
【0014】
本開示のさらなる局面に従うと、アクチュエータは、カッタ、ウォータージェットカッタ、注入計量器、印刷ヘッド、スタンピングヘッド、穿孔ヘッド、穴あけヘッド、釘打ちヘッド、ステープリングヘッド、およびレーザからなる群から選択される。
【0015】
本開示のさらなる局面に従うと、ターゲットにマーク付けすることは、ターゲットを切ること、ターゲットに形状を切込むこと、ターゲットに穴をあけること、ターゲットに徴を付けること、ターゲット上に徴を形成すること、ターゲットに塗料を塗布すること、ターゲットに設計を適用すること、ターゲットに孔を形成すること、ターゲットに穿孔すること、ターゲットに穴をあけること、およびターゲットに形状を焼付けることからなる群から選択されるステップによって行なわれる。
【0016】
本開示のさらなる局面に従うと、ターゲットは以下の材料、すなわち、発泡プラスチック、発泡熱可塑性物質、発泡ゴム、発泡合成ゴム、ポリ乳酸、有機食品を用いた材料、ゴム、合成ゴム、紙、厚紙、および波形厚紙、の1つ以上からなる。
【0017】
コンベア上を運ばれる加工対象物をスキャンするためのスキャナと、コンベア移動経路に対して横方向に、かつコンベア移動経路の長さに沿って動くように構成された少なくとも1つのカッタとを有する定量分配システムを較正するための方法であって、当該方法は、
加工対象物をシミュレートする少なくとも1つのターゲットをコンベアに載せることと、
ターゲットがコンベアによって搬送される際に、ターゲットをスキャンして、コンベア上のターゲットの位置を特定し、ターゲットの物理的なパラメータを確認することと、
ターゲットがコンベアによって搬送される際に、少なくとも1つのカッタでターゲットに特定の切込みパターンを切込むことと、
切込まれたターゲットをコンベアから取出すことと、
切込まれたターゲットをコンベアに再び載せることと、
切込まれたターゲットを再スキャンして、ターゲットに対する切込みパターンの位置を分析することと、
分析されたターゲット上のカッタパターンの位置に基づいて、切込みパターンの位置に基づいて、コンベアの移動方向に対して横方向におけるスキャナの場所に対する少なくとも1つのカッタの位置を較正し、コンベアの移動長さに沿った方向におけるスキャナに対する少なくとも1つのカッタの位置を較正することとを含む、方法。
【0018】
本開示のさらなる局面に従うと、複数のターゲットがコンベアの長さに沿って離間しており、および/またはコンベアの幅にわたって離間している。コンベアの幅にわたって位置しているターゲットの場所は、加工対象物がコンベアによって運ばれるコンベアにわたる1つまたは複数の場所に対応し得る。
【0019】
本開示のさらなる局面に従うと、特定の切込みパターンは、少なくとも1つのカッタでターゲットに切込まれる形状を含み、形状は、円形、楕円形、三角形、正方形、星形、および多面体からなる群から選択される。さらに、加工対象物から切抜かれる形状は、ターゲット上に特定のパターンで配置され、および/またはターゲットから切抜かれる形状は、コンベアの移動方向に沿って配置される。
【0020】
本開示のさらなる局面に従うと、加工対象物から切抜かれる形状は、コンベアの片側に平行に配置される。
【0021】
本開示のさらなる局面に従うと、ターゲットから切抜かれる形状は、ターゲットをコンベアに再び載せる前にターゲットから除去される。
【0022】
本開示のさらなる局面に従うと、少なくとも1つのカッタでターゲットに切込むことは、予め選択された形状をターゲットに切込むことを含み、さらに、ターゲットから切抜かれる形状は、ターゲットをコンベアに再び載せる前にターゲットから除去される。
【0023】
本開示のさらなる局面に従うと、定量分配システムは複数のカッタを含み、各カッタは固有の形状をターゲットに切込む。固有の形状は複数のターゲットに切込まれ得る。
【0024】
本開示のさらなる局面に従うと、定量分配システムは、ターゲットが再スキャンされると、スキャナによって初めにスキャンされた後に少なくとも1つのカッタによって切込まれた各特定のターゲットを認識するように構成される。さらに、定量分配システムは、スキャナによって初めにスキャンされた時に定量分配システムによって確認されたターゲットの1つ以上の物理的なパラメータを認識する。定量分配システムによって認識されるターゲットの1つ以上の物理的なパラメータは、ターゲット長、幅、アスペクト比、厚さ、厚さプロファイル、外形、外面形状、外周サイズ、および/または外周形状からなる群から選択される。
【0025】
本開示のさらなる局面に従うと、物理的なパラメータは、ターゲット上に位置する徴、またはターゲットに切込まれたパターンの様相を含む。徴は、ターゲットに付けられた識別コードを含み得る。さらに、識別コードは、製造時にターゲットに付けられた通し番号、較正方法の実行時にターゲットに付けられた識別コード、バーコード、1Dバーコード、2Dバーコード、3Dバーコード、QRコード(登録商標)、および/またはRFIDタグを含む。
【0026】
本開示のさらなる局面に従うと、ターゲットに切込まれたパターンは、少なくとも1つのカッタの各々によってターゲットに切込まれた固有のパターンを含む。固有のパターンは、特定のカッタがターゲットに同じパターンを少なくとも2回用いること、カッタの少なくとも1つが切込みごとにターゲットに異なる固有のパターンを切込むこと、ターゲットに切込まれた同じパターンのさまざまな配置または組合せ、およびターゲットに切込まれたさまざまなパターンのさまざまな配置または組合せからなる群から選択される。
【0027】
本開示のさらなる局面に従うと、較正方法は、ターゲットが再スキャンされるとターゲットの物理的なパラメータを分析して、再スキャンされたターゲットを対応する初めにスキャンされたターゲットと一致させることをさらに含む。ターゲットの初めのスキャンの際に確認されたターゲットの物理的なパラメータを、ターゲットの再スキャンの際に確認されたターゲットの物理的なパラメータに変換して、ターゲットに対する切込みパターンの位置の分析を助けてもよい。
【0028】
本開示のさらなる局面に従うと、少なくとも1つのカッタを較正することは、ターゲットに特定のパターンを切込む際に少なくとも1つのカッタの位置を求めることと、スキャナに関連付けられた基準場所に対する、求められた切込む際の少なくとも1つのカッタの位置を記憶することとを含む。少なくとも1つのカッタの位置を求めることは、ターゲットに切込まれた特定のパターンの物理的属性の場所を求めることに基づく。特定の属性は切込みパターンの重心を含み得る。
【0029】
本開示のさらなる局面に従うと、少なくとも1つのカッタの位置は、コンベアの幅にわたる複数の場所で較正される。コンベアの幅にわたるこれらの場所は、加工対象物がコンベアによって運ばれる場所に対応し得る。
【0030】
本開示のさらなる局面に従うと、コンベアの移動方向に対して横方向における少なくとも1つのカッタの場所についてのスキャナの場所に関連してデータが確立される。さらに、コンベアの移動方向に沿った方向における少なくとも1つのカッタの場所についてのスキャナの場所に関連してデータが確立される。
【0031】
本発明の上記の局面および付随する利点の多くは、添付の図面に関連して考慮されると、以下の詳細な説明を参照することでよりよく理解されるようになるため、より容易に認識されるようになる。
【図面の簡単な説明】
【0032】
図面の説明
【
図1A】定量分配機を較正するための既存の処理におけるシミュレートした加工対象物の切断を示す図であり、当該シミュレート片は横方向に分割される。
【
図1B】定量分配機を較正するための既存の処理におけるシミュレートした加工対象物の切断を示す図であり、当該シミュレート片は横方向に分割される。
【
図1C】定量分配機を較正するための既存の処理におけるシミュレートした加工対象物の切断を示す図であり、当該シミュレート片は横方向に分割される。
【
図2A】既存の方法を用いた定量分配機の較正時にシミュレートした加工対象物になされる切断を示す図であり、当該加工対象物は前半分と後半分に分割される。
【
図2B】既存の方法を用いた定量分配機の較正時にシミュレートした加工対象物になされる切断を示す図であり、当該加工対象物は前半分と後半分に分割される。
【
図2C】既存の方法を用いた定量分配機の較正時にシミュレートした加工対象物になされる切断を示す図であり、当該加工対象物は前半分と後半分に分割される。
【
図3】本開示の較正システムおよび方法を利用する定量分配システムを示す図である。
【
図4】
図3の定量分配システムのキャリアシステムの透視図である。
【
図9】スキャン中に加工対象物に照射される光ストライプまたはレーザ線の概略図である。
【
図13】
図3に示されるシステムのカッタによってターゲットに切込まれた較正孔を示す
図12と同様の図である。
【
図14A】較正処理時に較正ターゲットが動き得るまたは歪み得る態様を概略的に示す図である。
【
図14B】較正処理時に較正ターゲットが動き得るまたは歪み得る態様を概略的に示す図である。
【
図14C】較正処理時に較正ターゲットが動き得るまたは歪み得る態様を概略的に示す図である。
【
図14D】較正処理時に較正ターゲットが動き得るまたは歪み得る態様を概略的に示す図である。
【
図14E】較正処理時に較正ターゲットが動き得るまたは歪み得る態様を概略的に示す図である。
【
図14F】較正処理時に較正ターゲットが動き得るまたは歪み得る態様を概略的に示す図である。
【
図15】クロスベルト方向における整列に関してカッタを較正した結果を示す表の図である。
【
図16】ダウンベルト方向においてカッタを較正した結果を示す表の図である。
【
図17】
図3のシステムについてカッタを較正するための1つの可能なデータ場所を示す概略図である。
【
図18】本開示のさらなる較正手順の流れ図である。
【発明を実施するための形態】
【0033】
詳細な説明
同様の番号は同様の要素を指す添付の図面に関連して以下に記載される説明は、開示される主題のさまざまな実施形態の説明として意図されており、唯一の実施形態を表わすことは意図されていない。本開示に記載される各実施形態は、例または例示として与えられているにすぎず、他の実施形態に対して好ましいまたは有利であるとして解釈されるべきではない。本明細書において与えられる例示的な例は、網羅的であること、または開示される厳密な形態に開示を限定することは意図されていない。同様に、本明細書に記載されるステップはいずれも、同一または実質的に同様の結果を達成するために、他のステップまたはステップの組合せと交換可能であり得る。
【0034】
以下の説明では、本開示の例示的な実施形態の十分な理解を与えるために多くの特定の詳細が記載される。しかしながら、本開示の多くの実施形態は特定の詳細の一部またはすべてがなくても実施され得ることが当業者には明らかであろう。場合によっては、本開示のさまざまな局面を不必要に曖昧にしないために周知の処理ステップは詳細に記載されていない。さらに、本開示の実施形態は本明細書に記載される特徴のいずれの組合せも使用し得ることが理解されるであろう。
【0035】
本願は、「前方」、「後方」、「前」、「後ろ」、「前部」、「後部」、「上方」、「下方」、「上」、「下」、「頂部」、「底部」、「右側」、「左側」、「内」、「外」、「延びた」、「進んだ」、「引込んだ」、「近位」、および「遠位」などの、「方向」の言及を含み得る。本願におけるこれらの言及および他の同様の言及は本開示の説明および理解を助けるためのものに過ぎず、本発明をこれらの方向に限定することは意図されていない。
【0036】
本願は、「概して」、「およそ」、「約」、または「実質的に」という語などの修飾語を含み得る。これらの用語は、問題の「寸法」、「形状」、「温度」、「時間」、または他の物理的なパラメータが厳密である必要はなく、実行されることが要求される機能を果たすことができる限り異なっていてもよいことを示す修飾語の働きをすることが意図されている。たとえば、「概して円形形状の」という句では、問題の構造の必要な機能を果たすことができる限り当該形状は厳密に円形である必要はない。
【0037】
以下の説明および添付の図面では、対応するシステム、アセンブリ、装置およびユニットは同じ部品番号によって識別され得るが、アルファ接尾辞が付けられている。同一または同様であるそのようなシステム、アセンブリ、装置、およびユニットの部品/構成要素の説明は、本願における冗長性を回避するために繰返さない。
【0038】
本願および請求項において、「食料」、「食料品」、「食片」、および「食品」の言及は同じ意味で用いられており、あらゆる形態の食料を含むことが意図されている。そのような食料として、たとえば、肉、魚、家禽、果物、野菜、ナッツ類、または他の種類の食料が挙げられ得る。また、本システム、装置および方法は、生の食料品、ならびに部分的におよび/または完全に処理されたまたは調理された食料品に向けられる。
【0039】
さらに、本願に開示されており本願の請求項に定義されているシステム、装置および方法は、具体的には食料品および食品に適用可能であるが、食物分野外でも用いられ得る。したがって、本願および請求項は「加工物」および「加工対象物」に言及し、これらの用語は互いに同義である。加工物および加工対象物の言及も、食料、食料品、食片、および食品を含むことを理解すべきである。
【0040】
本開示のシステム、装置および方法は、食品を含む加工対象物をスキャンして、加工対象物のサイズおよび/または形状を含む加工対象物の物理的なパラメータを確認することを含む。そのようなサイズおよび/または形状パラメータは、数あるパラメータの中でもとりわけ、加工対象物の長さ、幅、アスペクト比、厚さ、厚さプロファイル、外形、外面形状、外周、外周構成、外周サイズ、外周形状、および/または重さを含み得る。食品を含む加工対象物の長さ、幅、長さ/幅アスペクト比、および厚さの物理的なパラメータに関して、そのような物理的なパラメータは、そのようなパラメータの最大、平均、中間、および/または中央値を含み得る。加工対象物の厚さプロファイルに関して、そのようなプロファイルは、加工対象物の長さに沿ったものでもよく、加工対象物の幅にわたるものでもよく、加工対象物の幅にわたるもの/長さに沿ったものの双方であってもよい。
【0041】
上述のように、確認、測定、分析等され得る加工対象物のさらなるパラメータは、加工対象物の外形である。外形という用語は、加工対象物の基部もしくは底部におけるものであるか、加工対象物の厚さに沿った任意の高さにおけるものであるかにかかわらず、加工対象物の輪郭、形状および/または形態を指し得る。「外面形状」というパラメータ用語は、加工対象物の最も外側の境界または端縁に沿った加工対象物の輪郭、形状、形態等を指し得る。
【0042】
加工対象物の「周囲」と称されるパラメータは、加工対象物の周りの境界または距離を指す。したがって、外周、外周構成、外周サイズ、および外周形状という用語は、加工対象物の最も外側の境界または端縁の周りの距離、最も外側の境界または端縁の構成、ならびに最も外側の境界または端縁のサイズおよび形状に関連する。
【0043】
上記に列挙したサイズおよび/または形状パラメータは限定的または包括的であることは意図されていない。他のサイズおよび/または形状パラメータが本システム、装置および方法によって確認、監視、測定等され得る。さらに、上記の特定のサイズおよび/または形状パラメータの定義または説明は限定的または包括的であることは意図されていない。
【0044】
全体のシステム
図3は、本開示の実施形態を実現するのに適した、定量分配部分に切断して搬出するためのシステム100を概略的に示す。システム100は、加工物104を運ぶための搬送システム102の形態の移動支持面を含み、加工物104は、複数のレーンまたはウインドローに配置され、搬送システムに沿って延び、定量分配部分Pに切落とされ得るおよび/または切分けられ得る。加工物104は、搬送システムに沿って離間した肉、家禽、または魚などの食料品であり得る。他の種類の加工物として、たとえば、搬送システムに沿って離間した織物、ゴム、厚紙、プラスチック、木材または他の種類の材料からなる品目が挙げられ得る。
【0045】
本開示のスキャン局面では、システム100は、加工物104をスキャンするためのスキャナ110を含む。本開示の切断/切落とし/定量分配局面では、システム100は、1つ以上のカッタアセンブリ/ユニット/装置122からなるカッタシステム120を含み、カッタアセンブリ/ユニット/装置122は、加工物104を所望のサイズまたは他の物理的なパラメータの最終片Pに切断する/切落とす/定量分配するために、カッタアセンブリのアレイとしてまたは一連のカッタアセンブリとして配置され得る。カッタアセンブリ122は動力付きキャリアシステム124によって運ばれて、カッタアセンブリを搬送システムに対して縦方向および横方向に動かす。
【0046】
コンベアシステム102、スキャナ110、および切断システム120は、プロセッサまたはコンピュータ150に結合され、プロセッサまたはコンピュータ150によって制御される。
図3に示されるように、プロセッサ/コンピュータ150は入力装置152(キーボード、マウス、タッチパッド等)および出力装置154(モニタ、プリンタ)を含む。コンピュータ150は、CPU156および少なくとも1つのメモリユニット158も含む。1つのプロセッサまたはコンピュータを用いる代わりに、コンベアシステム、スキャナおよび切断システムの1つ以上は各自のプロセッサまたはコンピュータを利用してもよい。また、プロセッサ/コンピュータは、システム100を定量分配部分Pの下流処理などの加工対象物104の処理の他の局面に結び付けるネットワーク159に接続されてもよい。
【0047】
一般に、スキャナ110は加工物104をスキャンして加工物104を表わすスキャン情報を生成し、このスキャン情報をプロセッサ/コンピュータ150に転送する。プロセッサ/コンピュータは、スキャンプログラムを用いて、スキャンデータを分析して搬送システム上の加工物の場所を求め、スキャンした加工物の長さ、幅、面積、および/または体積分布を展開する。プロセッサ/コンピュータ150は、スキャンした加工物の厚さプロファイルも展開し得る。そして、プロセッサ/コンピュータ150は加工物をモデル化して、たとえば形状、面積、重さおよび/または厚さを含む具体的な物理的基準からなる最終片Pに加工物をどのように分割する、切落とす、および/または切断することができるかを判断することができる。この点に関して、プロセッサ/コンピュータ150は、加工物がカッタシステム120によって、または図示しないスライサによって切断される前後のいずれかに、加工物の厚さが変わり得ることを考慮に入れる。プロセッサ/コンピュータ150は、スキャンプログラムまたは定量分配プログラムを用いて、加工物を1つ以上の最終片生産物セットにどのように定量分配することができるかを判断する。プロセッサ/コンピュータは次に、定量分配ソフトウェアを用いてコントローラとして機能して、選択された最終生産物/片Pに従って加工対象物104を定量分配するようにカッタシステム120を制御する。
【0048】
搬送システム
具体的に
図3および
図4を参照して、搬送システム102は、下にある支持部またはベッド164の上を摺動する移動ベルト160を含む。ベルト160は、標準的な態様でフレーム構造(図示せず)によって運ばれる駆動ローラによって駆動される。駆動ローラは次に、これも標準的な態様で、選択された速度で駆動モータ166によって駆動される。駆動モータ166は可変速度モータからなるため、加工物104が運ばれてスキャナ110およびカッタシステム120を通り過ぎる際に、ベルト160の速度を所望通りに調整することができる。
【0049】
エンコーダ162が、たとえば駆動モータ166において搬送システム102に統合されて、コンベアベルト160の前進移動に対応する固定距離間隔で電気パルスを生成する。この情報は、特定の加工物104の場所、または加工物から切断された定量分配部分Pを、加工物または定量分配部分がシステム100に沿って移動する際に判断および監視することができるように、プロセッサ/コンピュータ150に送られる。この情報は、カッタアセンブリ122を位置決めするために、および他の目的で用いることができる。
【0050】
スキャン
上記のシステム100および対応する方法をより詳細に説明すると、コンベア102は加工物104をスキャンシステム110の下で運ぶ。スキャンシステムは、1つ以上の光源によって照らされた加工物104を見るためのビデオカメラ112を含むさまざまな種類のものであってもよい。光源114からの光は、搬送システム102の移動コンベアベルト160を横断してはっきりとした影または光ストライプ線116を規定し、横梁の前方の領域が暗くなっている。
図9参照。コンベアベルト160によって運ばれている加工物104がない場合は、影の線/光ストライプ116はコンベアベルトを横切る直線を形成する。しかし、加工物104が影の線/光ストライプを通過すると、加工物の上側の不規則な表面が不規則な影の線/光ストライプを生成し、これが、加工物および影の線/光ストライプ上で下向きに傾けられたビデオカメラ112によって見られる。ビデオカメラは、コンベアベルト160上に加工物がない場合に影の線/光ストライプ116が占めることになる位置からの影の線/光ストライプ116の変位を検出する。この変位は、影の線/光ストライプに沿った加工物の厚さを表わす。加工物の長さは、影の線/光ストライプが加工物によって形成されるベルトの移動距離によって求められる。この点に関して、搬送システムに統合されたエンコーダ162は、コンベアベルト160の前進移動に対応する固定距離間隔でパルスを生成する。
【0051】
ビデオカメラの代わりに、スキャンステーションはX線装置130を利用して、加工物の形状、質量、および重さを含む加工物の物理的特性を求めてもよい。
図10参照。一般に、X線は、物体を通過する際に、X線が通過する材料の全質量に比例して減衰する。したがって、X線が加工物104などの物体を通過した後に検出器131などのX線検出器で受信するX線の強度は、物体の密度に反比例する。たとえば、鶏肉の切り身または魚の切り身よりも密度が比較的高い鶏肉の骨または魚の骨を通過するX線は、鶏肉または魚の身しか通過しないX線よりも減衰することになる。したがって、X線は、加工対象物を検査して、特定の密度またはX線変更特性を有する望ましくない物質の存在を検出するのに適している。加工対象物を処理する際のX線の性質および使用の一般的な説明は米国特許第5,585,605号に見つけることができ、当該米国特許は引用により本明細書に援用される。
【0052】
図10を参照して、X線スキャンシステム130は、加工対象物104に向けてX線
133を放射するためのX線源132を含む。X線検出器131のアレイがコンベアベルト160の上側走路に隣接してかつ上側走路の下に配置されて、加工対象物104がX線133の範囲内にある時に加工対象物を通過したX線133を受信する。アレイ131内のX線検出器の各々は、X線検出器131に衝突するX線の強度に対応する信号を生成する。X線検出器アレイによって生成された信号はプロセッサ150に送信される。プロセッサはこれらの信号を処理して、加工対象物104内に存在するいずれかの望ましくない物質の存在および場所を判断する。
【0053】
上述のように、システム100は、加工対象物104がX線システム130に関してコンベア上を動く際にコンベア102の長さに沿った加工対象物104の位置を示す信号を生成するエンコーダ162の形態の位置センサを含み得る。コンベア102の長さおよび幅に沿った加工対象物の位置は、X線システムによって確認することができる。X線システムは、たとえば、加工対象物の長さ、幅、アスペクト比、厚さ、厚さプロファイル、外形、外面形状構成、周囲、外周構成、外周サイズおよび/または形状、および/または重さ、ならびに物理的なパラメータの他の局面などの、加工対象物のサイズおよび/または形状に関連する物理的なパラメータを含む、加工対象物に関する他の情報も提供することができる。加工対象物104の外周構成に関して、X線検出器システムは、X-Y座標系または他の座標系に基づいて加工対象物の外周に沿った場所を求めることができる。
【0054】
具体的に
図10を引続き参照して、X線検出器アレイ131は、複数のフォトダイオード135a~135nの上方に位置するシンチレータ材料134の層を含む。X線源132は、X線源132から放射されたX線133がX線検出器アレイ131の幅を完全に含むように、コンベアベルト160の上方に十分離れて位置している。X線133は加工対象物104を通過し、コンベアベルト160を通過した後、シンチレータ材料134の層に衝突する。フォトダイオード135a~135nは可視光にしか反応しないため、シンチレータ材料134を用いて、シンチレータ材料134に衝突するX線エネルギを、受信したX線の強度に比例する可視光の閃光に変換する。フォトダイオード135は、シンチレータ材料66から受光した光の強度に比例する振幅を有する電気信号を生成する。これらの電気信号はプロセッサ150に中継される。
【0055】
フォトダイオード135はコンベアベルト160の幅にわたって一列に配置されて、加工対象物104の「スライス」を通過するX線を検出することができる。当然のことながら、代替のフォトダイオードのレイアウトも可能である。たとえば、フォトダイオードを数列に位置決めして正方形の格子を形成して、X線検出器130のスキャン面積を増加させてもよい。
【0056】
スキャン装置によって測定/収集されたデータおよび情報はプロセッサ/コンピュータ150に送信され、プロセッサ/コンピュータ150は、コンベア上の加工物104の場所と、とりわけ加工物全体に関する加工物の長さ、幅、および厚さに関連するデータとを記録/確認する。この情報を用いて、プロセッサはスキャンシステムソフトウェアの下で動作し、加工物の面積プロファイルおよび体積プロファイルを展開することができる。加工物の密度がわかると、プロセッサは加工物またはその部分もしくは区分の重さを求めることもできる。
【0057】
上記の説明はビデオカメラおよび光源の使用による、かつX線の使用によるスキャンについて述べたが、他の三次元スキャン技術も利用され得る。たとえば、そのような付加的な技術は超音波またはモアレ縞法によるものであってもよい。また、電磁撮像技術を使用してもよい。このように、本発明はビデオまたはX線法の使用に限定されず、他の三次元スキャン技術も含む。
【0058】
キャリアシステム
キャリアシステム124は、搬送システム102に沿って離間した複数のキャリアアセンブリ/ユニット/装置126からなるとして
図3~
図8に示されている。キャリアアセンブリ126は、カッタシステム120を搬送システム102に対して運んで動かすように適合される。
【0059】
基本的な形態のキャリアアセンブリ126は、搬送システム102を横断してキャリッジ172をコンベアベルトの移動方向を横切って動かすように支持および案内するガントリ170を含む。キャリッジ172は、動力系174および関連のドライブトレイン176を部分的に含む駆動系によって動力が供給される。第2の、縦方向の支持構造または梁178が、コンベアベルト160の移動方向と概して整列した方向においてキャリッジ172から外向きに片持ち梁式に支持される。第2の縦キャリッジ180が、動力系174を部分的に含む駆動系によって梁構造178に沿って動いて、ドライブトレイン176を用いて縦キャリッジ180に動力を供給するように適合される。カッタアセンブリ122がキャリッジ180に装着されて、カッタアセンブリが搬送システムによって搬送中の下にある加工物104に対して動作する際に、コンベアベルト160に対して縦方向に、またはコンベアベルト160に対して動く。
【0060】
ガントリ170は、ベルトの上方に離間した高さでコンベアベルト160を横切ってまたがる支持構造190からなる。支持構造190は中空の矩形構造からなり得るが、本発明の精神および範囲から逸脱することなく他の態様および形状で形成されてもよい。支持構造190の端は、長尺の直立ブラケット192および194によって支持される。
図4に示されるように、ブラケット192は支持構造190の隣接端に固定されて、下向きに延びてコンベアシステム102に対して装着される。複数のハードウェア部材196が、ブラケット192の下側のオフセット部分に形成された隙間穴(図示せず)を通って延びて、ブラケットをコンベアシステムにまたはコンベアシステム用のフレーム構造に取付ける。ブラケット194は支持構造の反対側の端から下向きに延びて、コンベアシステムまたはそのフレームに対して取付けられる。この点に関して、ハードウェア部材198がブラケット194の下端に設けられた隙間穴を通って延びて、ブラケットをコンベアまたはフレームに取付ける。このように、支持構造190はコンベアシステムまたはそのためのフレームに対して確実にかつ静止して装着される。
【0061】
ガントリ170は横キャリッジ172を支持構造190に沿って案内するためのトラックも含み、当該トラックは、キャリッジに対向する支持構造の面に取付けられた上レール200および下レール202からなる。
図7に示されるように、上レール200は支持構造の上側の角に沿って延びるのに対して、下レール202は支持構造の下側の角に沿って延びる。これも図示されるように、上レールの上面および下レールの下面は、キャリッジ172のローラ204の凹状の外周に係合するように冠状になっている。こうして、キャリッジ172は支持構造に沿って前後に移動しながらトラック上に係留される。
【0062】
図4~
図7に示されるように、キャリッジ172は、構造完全性を高めるために外周が補強された、実質的に平面で概して矩形状のベッド部206を含む。キャリッジローラ204はスタブアクスル214によってベッド206の角に取付けられ、スタブアクスル214は、キャリッジベッド206の四隅の各々から横に延びるボス216に形成された貫通ボア内に係合する。ローラ204とスタブアクスル214との間に転がり軸受(図示せず)を利用して、支持構造190に沿ったキャリッジ172の自由回転を向上させる。
【0063】
キャリッジ172は、動力系174によって動力が供給されて支持構造190に沿って前後に動く。この点に関して、タイミングベルト220が、動力系174の駆動シャフトアセンブリ223の下端に位置する駆動プーリ222の周りに、かつ上下ブラケット耳228および230によってブラケット192の上端に装着されたアイドラアセンブリ226のアイドラプーリ224の周りに延びる。こうして、ベルト220は支持構造190の周りに輪を作り、構造の側壁に密接して沿って延びる。アイドラプーリ224は、転がり軸受(図示せず)を使用してアイドラアセンブリ226の中心シャフト232の周りを自由に回転するように適合され、シャフトの上下端はブラケット耳228および230によって保持される。
【0064】
ベルト220はキャリッジベッド206の裏側に接続される。
図6に最も明確に示されるように、バネ付きのクランプ構造240がベルト220をキャリッジベッド206に接続しているので、キャリッジが支持構造に沿って動かなくなったまたは固定されても、キャリッジ172が「暴走」状態になっても、または動力系174がキャリッジに支持構造190をオーバーランさせようとして正しく作動しなくなっても、ベルト220はキャリッジ172に対して摺動または移動可能である。こうして、カッタ装置122に対する潜在的な損傷が回避または少なくとも最小化され得る。
【0065】
クランプ構造240は、キャリッジベッド206の背面に装着された基部または後部ブロック242を含む。後部ブロック242に装着された面板244が、ベルト220の鋸歯状面に弾性的にクランプされる。ベルト220と噛合う面板224の表面は、ベルト220の外形と一致するように畝状になっている。通常は、面板244をブロック242にクランプするクランプ力によってベルト220はクランプ構造に確実にクランプされる。しかし、ベルト220内の張力が一定のレベルに達した場合は、ベルト220はクランプ構造に対して滑動可能である。
【0066】
図4を参照して、動力系174は、支持構造190に沿ったキャリッジ172の前後の動きを所望通りに制御するようにプログラム可能なサーボモータ260を含む。サーボモータ260は、加工物104上で実行中の作業/処理に関連し得る水分または他の汚染物質から実質的に遮断された場所に位置決めされる。中空駆動シャフト(図示せず)が駆動シャフトアセンブリ223を通って下方に延びる。駆動プーリ222は中空駆動シャフトの下端に取付けられ、駆動プーリ262は中空駆動シャフトの上端に取付けられる。駆動プーリ262は、サーボモータ260によって動力が供給される出力駆動プーリ(見えない)にベルト264によって接続される。上記の構造によって、サーボモータ260はキャリッジ172から遠隔に位置しており、軽量のタイミングベルト220によってキャリッジ172に駆動力が印加されることが理解されるであろう。図示しないエンコーダが、サーボモータ260または関連のドライブトレイン176の他の構成要素に関連付けられて、キャリッジ172の、したがってキャリッジ172によって運ばれるカッタアセンブリ122の場所を、システム100およびプロセッサ150に知らせることができるようにしてもよい。
【0067】
上記の構造によって、動力系174は、キャリッジ172を迅速に加速および減速して支持構造190に沿って動かすことができる。理想的には動力系174はサーボモータを利用するが、他の種類の電気、油圧、または空気圧モータも本発明の精神および範囲から逸脱することなく使用され得る。そのようなモータは標準的な商品である。
【0068】
次に、具体的に
図4~
図8を参照して、縦方向の支持構造または梁178は、キャリッジ172から横に片持ち梁式に支持されてキャリッジによって運ばれる。梁178は、キャリッジベッド206の隣接面に実質的に垂直な鉛直側壁290からなる。反対側の側壁292は、キャリッジベッド206に実質的に垂直ではなく、キャリッジベッド206から離れる方向において側壁290に向かってテーパ状である。同様に、梁178の頂部壁および/または底部壁294および296も梁の自由端に向かってテーパ状であるため、共同して概してテーパ形状を形成する。理解されるように、これによって並列配管構造に対する梁の重さが減少しつつ、梁の構造完全性が向上する。
【0069】
図8に示されるように、ある形態では、梁178は2つの流路形状部材298および300からなる中空構造であってもよい。流路部材300は流路部材298よりも浅く、
図8に示されるように、流路部材300のフランジが流路形状部材298のフランジの自由端縁に重なるように流路形状部材298の中に収まっている。複数のスペーサ302が梁部材178の内部に配置されてその長さに沿って位置して、流路部材298および300の側壁290および292を押圧する。2つの流路部材のフランジは互いに取付けられ、スペーサ302は溶接物を含む任意の便利な手段によって流路部材に取付けられる。上記の構造によって、梁178は軽量なだけでなく、撓むことなくかなりの重さを支えるのに十分な構造完全性を有することが理解されるであろう。梁178は、ハードウェア締結具、溶接物などを含む任意の適切な技術によってキャリッジベッド206に固定され得る。
【0070】
図5、
図7および
図8を参照して、キャリッジ180用の長尺トラック310が梁側壁290に装着され、梁側壁290上を縦方向に延びる。トラック310は、側壁290から離間して縦キャリッジ180を案内するための上下レールを規定する、形成された上下端縁部312および314を含む。トラック310は複数のハードウェア部材316によって梁側壁290に取付けられ、トラックに形成された隙間穴を通って、かつトラックの裏側で側壁290に固定装着されたスペーサ317を通って延びて梁178に係合する。また、トラック310の重さを最小化するために、切抜かれた楕円開口部318がトラックに形成されている。
【0071】
縦キャリッジ180はトラック310に沿って移動するように適合される。この点に関して、キャリッジ180は、実質的に平面で矩形状のベッド部320と、1対の上ローラ322および1対の同等の下ローラ323とを含み、これらの上下ローラは、対応して冠状になっているトラック上下レール端縁部312および314に密接係合するようにサイズ決めされた凹状の外周部を有する。上下ローラ322、323は、キャリッジベッド320から横に延びるスタブ軸324に装着される。理想的には、図示されていないが、スタブ軸324とローラとの間に転がり軸受を利用して、トラック310に沿ったキャリッジ180の自由移動を向上させる。
【0072】
キャリッジ180は、タイミングベルト330に動力を供給する動力系174によってトラック310に沿って前後に動かされる。このため、アイドラプーリ332が、梁構造178に固定的に取付けられる形成ブラケット334によって支持梁構造178の遠位自由端に装着される。ピボット軸335が、プーリ322内に装着された転がり軸受(図示せず)の中心を通って延び、ピボット軸の端はブラケット334の上下耳によって保持される。
【0073】
ベルト330の端はキャリッジ180のベッド320に取付けられる。この取付けは、上述のキャリッジ172へのベルト220の取付けに関して上述したものと同様のシステムの使用を含む、多数の方法で行なうことができる。また、ベルト330は方向性プーリ338および340の周りに部分的に延び、方向性プーリ338および340はキャリッジベッド206に減摩的に装着されて、ベルトを支持構造190に沿って、かつ縦方向の支持構造178に沿って導く。
【0074】
駆動シャフトアセンブリ223の下端によって運ばれる駆動プーリ350が回転するとベルト330が動き、これによって次にキャリッジ180がトラック310に沿って動く。この点に関して、動力系174は、駆動シャフトアセンブリ223を通って下向きに延びる駆動シャフト362によって駆動プーリ350に駆動接続されるサーボモータ360を含む。駆動プーリ364が駆動シャフト362の上端に取付けられ、当該プーリはモータ360によって動力が供給される駆動プーリ(見えない)にタイミングベルト366を介して接続される。駆動シャフト362は、プーリ222と262との間に延びる中空駆動シャフトDの中に配置される。図示しないエンコーダが、サーボモータ360または関連のドライブトレイン174の他の構成要素に関連付けられて、キャリッジ180の、したがってキャリッジ180によって運ばれるカッタアセンブリ122の場所を、システム100およびプロセッサ150に知らせることができるようにしてもよい。
【0075】
モータ260と同様に、他の種類の周知の市販の回転アクチュエータがサーボモータ360の代わりに利用されてもよい。また上述のように、動力系170は横キャリッジ172だけでなく、縦キャリッジ180からも遠隔に位置している。この結果、動力系174の質量はこれら2つのキャリッジのいずれによっても運ばれず、むしろ動力系は静止場所に位置決めされ、駆動力は軽量のタイミングベルト330によって動力系174からキャリッジ180に伝達される。結果として、キャリアシステム124(キャリッジ172、支持梁178およびキャリッジ180)の移動部分の総質量が最小限に抑えられる。これによって2つのキャリッジの極度に高速かつ正確な動きが可能となり、加速度は8Gを超える。
【0076】
切断システム
高圧液体ノズルアセンブリ368の形態として描かれているカッタ装置122の形態の作業工具が縦キャリッジ180に装着されて、キャリッジ180とともに動く。ノズルアセンブリは、コンベアベルト160の平面を名目上は横切る下向きの切断線内に配置される、非常に集束された高圧水の流れを放射する。ノズルアセンブリ368は、鉛直方向に離間した1対のブラケット372および374によってキャリッジベッド320に固定される本体部370を含む。ノズルアセンブリは、コンベアベルト160に向かって下向きに方向付けられた下出口を含む。取付具376がノズル本体370の上端に取付けられて、ノズル本体370を高圧流体吸込み管路378に接続する。作業工具122によって具体化される種類の高圧液体ノズルは、周知の商品である。
【0077】
較正システム/手順
上述のように、切断装置またはユニット122を利用して正確な定量分配または切落としを行なうためには、定量分配システム100を較正することが必要である。この点に関して、加工物104が所望のサイズもしくは重さに正確に定量分配されるように、および/または脂肪もしくは他の望ましくない成分が食料品から正確に切落とされる、または骨もしくは他の異物もしくは望ましくない物質が食料品から正確に切除されるように、スキャンシステム110が見ているものとカッタユニット122の場所および/または移動とが一致している必要がある。この点に関して、切断ユニット122を移動の横またはクロスベルト方向、および縦またはダウンベルト方向の双方において較正することが必要である。さらに、カッタユニットのそのような較正をできるだけ迅速に、しかし正確に実行することが必要である。
【0078】
図11は、定量分配システム100を速やかにしかし正確に較正するための1つの方法400を概略的に示す。方法400はステップ402で開始し、ステップ402では、専用のターゲット404が、ベルト160の縦移動方向、すなわち「ダウンベルト」方向と比較的整列した向きでコンベア102に載せられる。ターゲット404はコンベア102によって運ばれてスキャンステーション110を通過し、ターゲット404はステップ406においてスキャンされる。スキャンステーションでは、ターゲット404の物理的属性に関連するデータ、たとえば、ターゲットの長さ、幅、外面形状等を含むターゲットの形状およびサイズが確認される。また、ターゲットの重心に関するデータ、ならびにコンベア102に関するターゲットの場所および向きが取得される。この情報はステップ408においてプロセッサ150によって記憶される。
【0079】
その後、ステップ410において、切断ユニット122の各々は、プロセッサ150によって予めプログラムされたようにターゲット上の特定の場所で特定のサイズで、ターゲット402にパターンまたは形状を切込む。
図12および
図13は、円形孔412の形態の切込み形状の一例を示す。
【0080】
次に、ステップ414において、切込まれたターゲットがコンベアから取出され、その後ステップ416において、切込み部分または形状が孔412から除去される。その後、ステップ418において、切込み形状が除去されたターゲット404がコンベア102に再び載せられ、再びターゲットが相対的にダウンベルト方向に整列する。次に、ステップ420において、再び載せられたターゲット404が再スキャンされる。この時点で、システム100はターゲットが初めにスキャンされたときとは異なる向きになっているか否かを判断することができ、そうである場合はステップ422において変換処理が実行されることにより、ターゲット404は、ターゲットが初めにスキャンされた時のコンベア102に対する自身の場所に仮想的に方向付けられる。この場合、スキャナ110は、ターゲット404に切込まれた孔122の各々の場所およびサイズと、各孔の互いに対する場所とを確認または測定することができる。
【0081】
次に、ステップ424において、システム100は、孔412の場所がコンベア102を横切る、かつコンベアに対して縦方向である方向においてターゲット上の予想場所にあるか否かを確認する。この比較は、孔412の重心またはターゲットに切込まれた他の形状/パターンを比較することに基づいて行なわれる。予想場所からの孔の偏差は、スキャナに関連付けられたデータに対するカッタユニット122の予想場所からのカッタユニット122の偏差を表わす。予想場所からのこれらの偏差は、ステップ426においてメモリ158に記憶される。
【0082】
ステップ428によって表わされるように、上記の手順が合計10回繰返されることによって、切断ユニット122の各々の測定場所の公差、およびカッタの測定場所の標準偏差を求めるのに十分なデータが蓄積される。プロセッサ150はカッタの位置偏差のすべてを平均化して、修正された場所または位置を計算し、これが必要に応じて各カッタに適用される。カッタの中間測定場所は、各カッタの場所を調整または修正するためのデータを提供する。
【0083】
カッタの測定位置の公差が計算されて、データセットの信頼度のある程度の指標が与えられる。計算結果の統計は各試験の後にリアルタイムで更新可能であるが、カッタ場所の実際の更新が実行されるのはオペレータによって命令されてからであってもよい。これによって、オペレータは試験の数を制限することによって、実行される試験の数をさらに制御することができる。というのも、機械システム100は既に十分較正されており、さらに多くの試験が行なわれても値が変化する可能性は低いから、またはシステムはさらなる較正によっても修正されない可能性が高い明らかな機械的な問題を有しているからである。
【0084】
カッタ位置の差の標準偏差によって、システム100に固有のカッタ場所の変化の表示が与えられる。一例として、高い標準偏差は、ベルト160が引張られている、捩じれている、またはそうでなければ損傷もしくは摩耗していること、またはカッタ駆動メカニズムが位置ずれしている、摩耗もしくは損傷していることを示し得る。較正の失敗を示す標準偏差値に限度を設定して、何らかの機械的修正がシステムに必要であることを示すようにしてもよい。
【0085】
ステップ430において、10個すべてのターゲットからのデータが分析され、孔の1つ以上の場所が予想場所から横方向にオフセットしていることが分かった場合は、システム100は横方向における適用可能なカッタ122の場所を「リセット」することができる。必要であれば、この同じ処理をコンベア102に対して縦方向において行なうことができる。孔412の1つ以上の「ダウンベルト」場所が予想される場所にない場合は、切断装置122の場所は、スキャナに関連付けられたデータに対してカッタの実際の場所を反映するように「調整」される。実践的には、カッタ場所の「リセット」時には、スキャナに関するデータ場所またはシステム100に対する他の場所に対してカッタの各々の公称または「ゼロ点」場所が調整される。カッタ122の「ゼロ点」場所の例を以下に記載する。
【0086】
上記の手順のステップおよび他の局面の一部を以下により詳細に述べる。
ターゲット
ターゲット404は、厚さ「T」を有する概して矩形状として
図12および
図13に示されている。ターゲット404は、たとえば、ターゲットに入れる切込みの数、およびターゲットに入れる切込みのサイズなどのさまざまな要因に依存して、多くの選択形状およびサイズであることができる。好ましくは、ターゲットは、高速定量分配機の構成要素として典型的に使用される種類のカメラおよびレーザによって容易に見ることができる材料からなる。また、ターゲットに切込みまたは切抜きを入れるため、ターゲットの組成はウォータージェットまたは使用される他の種類のカッタによって容易に切込み可能であるようなものが望ましい。さらに、ターゲット材料は、ターゲットが切込まれている間に移動または滑動しないようにコンベアベルト106によって確実に把持されるようなものであるべきである。
【0087】
さらに、ターゲットが食品等級材料からなり、非毒性組成物からなり、較正の後に十分な衛生手順を受ける定量分配機との使用に適合していると有利である。この点に関して、好適なターゲット材料として、連続気泡ポリウレタンまたは同様の材料からなるメモリフォームが挙げられ得る。そのようなフォーム材料は上記の要件を満たしており、かつ安価で再利用可能である。したがって、メモリフォームからなるターゲットは使用後に再利用可能である。
【0088】
ターゲットの他の好適な材料として、発泡熱可塑性物質、発泡ゴム、発泡合成ゴム、ポリ乳酸、他の有機食品を用いた材料、ゴム、合成ゴム、紙、厚紙および波形厚紙、または同様の材料が挙げられる。
【0089】
ターゲット404に切込まれた孔または他の形状が有する三次元構造を、切込まれたターゲットを再スキャンする際にスキャナ110が容易にかつ正確に検出して、切込み孔または他の切込み形状の各々と、切込み孔または他の形状同士の空間関係とを特徴付けることができることができるように、ターゲット404は一定の厚さを有することが望ましい。
【0090】
ターゲットの載置
ターゲット404はコンベアベルト160に載せられ、ベルトの片側の全長に沿って延びるようにベルトの長さに沿って離間し得る。このように、本開示の較正システムおよび方法400は、ベルト160がその長さに沿った特定の場所で引張られている、捩じれている、またはそうでなければ損傷しているか否かを検出することができ得る。これは、切断ユニット122の確認されたクロスベルト場所が、利用される他の9個のターゲットのベルト上の場所においてよりも、特定のベルト場所において大きく異なっていることによって示され得る。同様の異常は、利用中の他の9個のターゲットに対する特定のターゲット404についてのカッタ122のダウンベルト場所についても起こり得る。
【0091】
ターゲット404が、サイズおよび形状は同じであるが、可変角度でベルト160に置かれており、孔または他の形状が平行なダウンベルト方向においてターゲットに切込まれる場合は、ターゲットの再スキャンの際にターゲットの各々を識別可能であることが必要となることが理解される。これは多数の方法によって実行可能である。たとえば、ターゲットの各々に予め番号を付けておき、スキャナ110は後で単にターゲットの番号を読取るだけでもよい。そのような番号は、ターゲット上の標準的な場所に機械オペレータによって付けられてもよい。代替例として、各ターゲットが、スキャナ110が読取可能な固有の通し番号を製造時に有していてもよい。他の代替例として、標準的な1Dバーコード、2Dバーコードもしくは3Dバーコード、またはQRコードにかかわらず、バーコードの使用が挙げられる。さらに、RFIDタグが使用される。
【0092】
また、以下にさらに十分に述べるように、システム100は、孔または他の切込みパターンをターゲットの周囲または他の特徴に対して位置決めすることによって各ターゲットを認識するようにプログラムされ得る。この情報は、ターゲットの最初のスキャンおよび切込みの際に確認される。ターゲットが再スキャンされると、システムは、ターゲットにあけられた孔または他の切込みのパターンと、ターゲットの外周または他の形状パラメータとの固有の関係を認識することができる。
【0093】
これも以下にさらに十分に述べるように、システム100は、ターゲットが最初にスキャンされた時のターゲットの位置と、ターゲットが再スキャンされた時のターゲットのその後の位置との間の変換を実行することができる。システムは、変換されたターゲットの孔の各々と、ターゲットにあけられたそのような孔または他の切抜き同士の空間関係とを特徴付けることができる。したがって、ターゲットを最初にコンベアに載せたのと同じ順序でターゲットをコンベアに再び載せる必要はなく、ターゲットをコンベアに再び載せた時にターゲットをコンベアベルトに対してターゲットの初めの位置または角度方向に非常に近付けて再び位置決めする必要はない。
【0094】
最初のスキャン
ターゲット404に孔または他の形状を切込む前にスキャナ110が最初にターゲットをスキャンする時、スキャナはターゲットの全体の輪郭を明確に見ることが可能でなければならない。システム100は、この情報を用いて、たとえばコンベアの縦方向に対するターゲットの向きを確立することができ、ターゲットの全体寸法を求めることもできる。さらに、コンベア160上のターゲットの場所を高精度に知ることができる。ターゲットの場所は、上述のように、ターゲットがベルト駆動エンコーダ162によってコンベア上を移動する際に追跡される。ターゲットの場所は、少なくともターゲットが切断ユニット122到達する時まで追跡される。
【0095】
ターゲットの切込み
図12および
図13に示されるように、円形孔412a~412fの形態の形状がターゲット404に切込まれ、各孔は切断ユニット122のうちの1つによって切込まれる。好ましくは、較正処理時に切込まれる複数のターゲットの各々について、同じ切込み形状場所およびサイズが特定の切断ユニット122によって作られる。入れられる切込みの形状およびサイズは切断ユニットの各々について同じである必要はないが、所望であれば同じであることができる。これによって、切断ユニット122の各々のクロスベルト場所およびダウンベルト場所の双方を、単一の孔または他の種類もしくは形状の切抜きを用いて較正することが可能となる。
【0096】
あるいは、別個のターゲットを用いて、切断ユニットのダウンベルト場所に対する切断ユニットのクロスベルト場所を較正することができる。この状況では、一例として、切断ユニット122は、ターゲット404に細いスリットを切込むことによって、スキャンユニットに関連付けられたクロスベルトデータに対して、およびたとえばスキャンユニットに関連付けられたダウンベルトデータに対して、切断ユニットの場所を確立するようにプログラムされ得る。スリットによって、切断ユニットのクロスベルトまたはダウンベルト場所が較正中であるか否かが明確になる。
【0097】
上述のように、本願の較正手順では、特定の切断ユニット122によってターゲットに切込まれた特定の孔(または他の形状)を識別する必要がある。そのようにする1つの方法は、各カッタを異なるサイズの孔を切込むようにプログラムすることによって、どのカッタがどの孔を切込んだかを便利で正確に識別できるようにすることである。それにもかかわらず、カッタによって切込まれた孔のすべてが同じサイズである可能性もあり、その場合は、どのカッタがターゲットに特定の孔を切込んだかを識別するために他の技術が必要となる。
【0098】
代替例として、カッタ122の1つ以上が、ターゲットごとに1つ以上の付加的な孔を切込むようにプログラムされてもよい。同じカッタからの孔は下流に整列することになるため、そのような付加的な孔は、ターゲットが最初に切込まれた時のベルトに対するターゲットの向きを明確に識別する基準となることができる。
【0099】
さらなる代替例として、1つ以上のカッタがターゲットごとに1つ以上の付加的な孔を切込むようにプログラムされてもよく、当該孔を用いて、ターゲットが切込まれた順番でターゲットを識別することができる。たとえば、第1のターゲットでは、第1のカッタは2つの切込みを入れるようにプログラムされ得る。その後、第2のターゲットでは、第2のカッタは2つの切込みを入れるように用いられ得る、などである。このように、ターゲットが切込まれた順番を容易に確認することができる。
【0100】
図12および
図13ではターゲット404に入れられた切込みが円形孔412a~412fとして示されているが、正方形、三角形、星形などの他の形状がターゲットに切込まれてもよい。唯一の要件は、成形された切込みが、容易に確認可能な重心を成形された切込みに与えるために測定可能かつ予測可能な寸法を有していることである。
【0101】
2回目のスキャン
上述のように、ターゲット404の切込みが行なわれた後、ターゲットがベルト160から取出され、切込み片がターゲットから除去されて円形孔412a~412fが残る。ターゲット404は次に、スキャナ110が各孔412a~412fと、孔同士の空間関係とを特徴付けることができるように、再スキャンされる。
【0102】
プロセッサ150は1回目および2回目のスキャンステップから第1および第2のデータセットを受信し、第2のデータセットを、ターゲットから切抜かれたパターンからの表面上は対応する第1のデータセットと比較する。この比較は、光学スキャナによって再スキャンされた切込まれたターゲット404がスキャナによって以前にスキャンされた同じ切込まれたターゲット404に対応することを検証するためのものである。
【0103】
上述のように、第1および第2のデータセット同士を比較する際に、ターゲットのサイズ/形状パラメータに関連するそのようなデータセット同士の間に十分な変化が存在する場合は、第1のデータセットを第2のデータセット上に移行させることができる。この移行は、ターゲットの方向移行、ターゲットの回転移行、ターゲットのサイズのスケール変更、またはターゲットのせん断歪み、の1つ以上を含み得る。そのような移行は、以下により十分に述べるように
図14A~14Fに示されている。
【0104】
スキャナによって比較中のターゲットの物理的なパラメータは、ターゲットの外周構成に対応し得る。この点に関して、第1および第2のデータセットはターゲットの外周に沿った場所に関連し得る。より具体的には、第1および第2のデータセットは、ターゲットの外周に沿った場所に対応する座標に対応し得る。しかし、スキャン処理時にはターゲットの他の物理的なパラメータも確認され得る。そのようなパラメータとして、さまざまなサイズおよび形状パラメータが挙げられ、より具体的には、ターゲット長、ターゲット幅、アスペクト比、厚さ、厚さプロファイル、外形、外面形状、外周サイズ、および/または外周形状が挙げられ得る。
【0105】
プロセッサ150は、再スキャン中のターゲットが、予想される以前にスキャンされたターゲットと同じターゲットではないと判断する場合がある。この場合、プロセッサは、次の再スキャンされるターゲットが光学スキャナによって初めにスキャンされたのと同じターゲットであるか否かを判断する。この状況では、問題のターゲットはコンベアに再び載せられなかったため、または異なる順序で再び載せられたため、再スキャンからのデータに対応するデータセットは存在しない。このため、プロセッサは初めのスキャンからの次のデータセットを見て、対応するターゲットが問題のターゲットのデータセットと一致するか否かを判断することになる。1つのターゲットが交換されなかった場合は、格子上のスキャンからの次のデータセットが、問題の再スキャンされるターゲットのデータと一致すべきである。その後、システム100は、光学スキャナに到着して再スキャンされる次のターゲットに進み、続いて、そのターゲットについての初めのスキャンデータを探索することになる。ターゲットが単に順序が入れ変わってコンベアに再び載せられているが、すべてのターゲットが存在している場合は、プロセッサ150は単に初めのスキャンからのすべてのデータを巡回して正確なターゲット404の位置を特定することができる。
【0106】
プロセッサによる第1および第2のデータセット同士の比較は、さまざまな分析方法を用いて実行可能である。1つのそのような方法は、第1および第2のデータセットの値同士が比較され得る二乗平均平方根誤差分析である。利用され得る第2の分析方法は、第1および第2のデータセットのデータ値の標準偏差である。閾値またはベンチマーク標準偏差を予め設定することによって、設定値未満の偏差は、第1および第2のデータセットからのデータが十分に同様であり、スキャナによってスキャンされる対応するターゲットが同じであることを示すようしてもよい。利用され得る第3の分析方法は、第1および第2のデータセットのデータ値の最小二乗回帰分析である。他の分析方法も利用され得る。
【0107】
変換
第2の光学スキャンの結果はプロセッサに送信される。プロセッサは、切込まれていないターゲットの記憶された1回目のスキャンからのデータを分析して、再スキャンされたターゲットが予めスキャンされたまたはメモリにおいて比較されたターゲットと同じであることをまず確認する。この識別が確認されると、再スキャンステップ中にターゲットの向きもしくは相対位置に十分な変化があった場合は、またはターゲットの形状に大きな歪みがあった場合は、最初のスキャンからの適用可能な情報またはデータが、2回目のスキャンによって生成される対応するデータ上にプロセッサによって移行される(「変換される」とも称される)。そのような移行は、以下により十分に述べるように、Xおよび/またはY方向におけるターゲットの移動、ターゲットの回転、ターゲットのサイズのスケール変更、ならびにターゲットのせん断歪み、の1つ以上を含み得る。
【0108】
光学スキャナは、ベルト上のターゲットの位置を特定すること、したがってターゲットが2回目のスキャンのためにベルト上に戻された後にベルトに対してXおよび/またはY方向において移動しているか否かを確認することができる。スキャナは、ターゲットが最初のスキャン中にベルト上のターゲットの向きに対して回転したか否か、またはターゲットが最初のスキャンにおけるベルト上の自身の構成に対して長さもしくは幅が増減したか、またはそうでなければ形状が歪んだか否かを判断することもできる(これら後者の変化または歪みは、ターゲット404が十分な構造完全性を有している場合は問題とならない)。
【0109】
上述のように、ターゲットの外部構成はスキャナによって認識可能であり、これによってターゲットのサイズおよび/または形状に関連するパラメータ(たとえば、ターゲットの長さ、幅、アスペクト比、厚さ、厚さプロファイル、外形(二次元および三次元の双方)、外面形状構成、周囲、外周構成、外周サイズおよび/または形状、および/または重さ)が確認される。これらのパラメータの一部は、ターゲットが三次元形状である場合にのみ適用される。
【0110】
ターゲットの外周構成に関して、スキャナは、ターゲットの外周に沿った別個の場所をX/Y座標系または他の座標系において求めることができる。プロセッサはこの後者の情報を用いて、スキャン中のターゲットが予想されるのと同じターゲットであると判断/検証することができる。たとえば、プロセッサは、スキャンによって求められたターゲットの外周に沿った座標を識別するデータを、最初のスキャンにおいて以前に得られた対応するデータと比較することができる。データセットが固定閾値レベル内で一致する場合は、スキャンされたターゲットは予想されるターゲットと同じであるという確認が与えられる。
【0111】
切込み形状ジオメトリ
ソフトウェアは、各形状の地点である、ターゲットに切込まれるその特定の形状の場所を求める。これは形状の重心であってもよいが、地点は、形状の最も遠くのアップベルト、ダウンベルト、またはクロスベルト位置などのその他の定義点であってもよい。
【0112】
重心(または切込み形状の他の指定点)を用いて、スキャナの場所に対する、カッタがターゲットに形状を切込む際のカッタの場所が求められる。スキャナのそのような場所はレーザ線116の場所であり得る。スキャナによって求められるダウンベルトカッタ場所は、コンピュータに予め記憶されている値に基づいてレーザ線データに対するカッタの予想場所と比較され得る。
【0113】
一例として、ターゲットの前方端から26mmの距離に円を切込むようにソフトウェアがカッタに命令した場合、ターゲットの最前方位置からのカッタによって切込まれる円の重心からの距離は24mmであり得る。その場合、カッタの実際の場所はその予想場所から2mmであると判断することができる。
【0114】
切込まれたターゲットをスキャンすることによって生成された情報は、プロセッサ150が使用中の較正ソフトウェアにおいて直接取得される。ゆえに、ターゲットのスキャンによって生成されたデータをオペレータが物理的に入力する必要はない。したがって、本願に開示される方法を用いることによって、光分離カッタ122を用いるシステム100のクロスベルトおよびダウンベルト較正全体が、最小限の訓練を受けたオペレータによってわずか10分で完了可能である。
【0115】
システム分析
開示される較正手順の簡単さおよび簡潔さによって、当該較正手順を用いて、本願の「背景」段落で上述した既存の較正技術を用いる場合よりもはるかに完全にシステム100の動作を特徴付けることが可能となり得る。一例として、さらに多くのターゲットを利用して、ダウンベルトおよびクロスベルト較正測定の双方の変化についての統計的に有意のデータを収集することができ、ベルト上のより多くの場所でデータを得ることができる。10個のターゲットをベルトの長さに沿って均等に離間させる代わりに、ターゲットの数をベルトにわたる5個、10個またはそれ以上の場所でベルトに沿って20個またはさらには30個のターゲットに増やしてもよい。
【0116】
高速産業用食品処理設備における電気機械問題の診断は、経済的な食品処理動作に不可欠であり得る。本願の較正手順は、最適なダウンベルトおよびクロスベルト較正設定に機械を微調整できるようにする情報を提供することができる。さらに、本願の較正方法は、システム100の既存の機械的な課題または問題を正確に指摘することを助けることもできる。一例として、データは、1つのカッタがすべての他のカッタよりも高い標準偏差で切込んでいることを示し、その1つのカッタに何らかの問題があることを示してもよく、この問題をさらに診断して修正することができる。
【0117】
代替方法
本開示の代替方法500を
図18に示す。示される代替例では、ステップ501において、仮想切込みパターンが確立され、このパターンでは、ターゲット404がベルト160の端縁と平行に配置され、予め定められたサイズの孔412または他の形状がターゲットに切込まれ、各サイズおよび/または形状は特定のカッタを識別している。これらの孔または他の形状の重心は仮想ターゲットの端縁に平行である。
【0118】
ステップ502において実際のターゲットが実質的にダウンベルト方向において載せられるが、厳密にダウンベルトに向けられなくてもよい。ステップ506においてターゲットがスキャンされ、
図18に示されるように処理の他のステップが実行される。これらのステップは
図11に示されるステップに対応するが、500番台の連続番号で識別されている。したがって、簡単にするためにそれらのステップの説明は繰返さない。
【0119】
方法500において、システムソフトウェアは、厳密なダウンベルト方向に対するターゲット404の向きを求める。プロセッサ150はこの情報を用いて変換を形成し、当該変換では、ターゲット404に孔412が切込まれると、そのような孔は行なわれた変換のためにターゲットの端縁に平行になる。すなわち、プロセッサ150のソフトウェアは、厳密なダウンベルト方向に対するターゲット404の傾斜度を修正する。
【0120】
10個すべてのターゲット404を典型的にベルトにわたってベルトの下り方向に離間させることによって、これらのターゲットに切込むことができる。孔412または他の形状の切込みが行なわれた後、先の手順400と同様に、ステップ514においてターゲット404がコンベア102から取出され、ステップ516において切込み部分がターゲット自体から除去される。その後、ターゲットはステップ518において、この場合もターゲットの順序にかかわらず典型的にベルトの下り方向にベルトにわたって離間して、コンベアに再び載せられる。これら10個のターゲットはすべて、ターゲットのすべてにおいて切込みがどのようなものであるべきかの単一の保存画像と比較される。これが可能である理由は、孔412はすべてターゲット404の端縁に平行であるように切込まれているので、各ターゲット404は理想的には全く同一に切込まれているはずだからである。したがって、初めにスキャンされたターゲットを同一の再スキャンされたターゲットと一致させる必要はない。代わりに、再スキャンされたターゲットはすべて、初めに切込まれた仮想ターゲットと一致しているべきである。こうして、ターゲットの各々が仮想ターゲットと比較される。個々のカッタの予想位置と比較された個々のカッタの実際のクロスベルトおよびダウンベルト場所に関連する情報を利用して、定量分配システム100に知らせたこれらのカッタの場所を調整することができる。この方法は本明細書に記載される他の方法ほど正確ではない場合があるが、この方法は非常に簡単明瞭であり、他の方法よりも容易にかつ高速に実行される可能性がある。
【0121】
さらなる代替方法
さらなる代替方法として、カッタ120によってターゲット404に切込まれる孔412は、カッタ120ごとに、かつターゲット404ごとに異なるサイズおよび/または形状であることができる。こうして、各ターゲットにおいて孔の形状および/またはサイズが固有であるため、カッタ120をシステムソフトウェアによって10個のターゲット404の各々について固有に識別することができる。システム100は、再スキャン処理時にターゲットを同じ順番に維持する必要なしに、10個のターゲットの各々について再スキャンデータを初めのスキャンデータと容易に一致させることができる。
【0122】
孔は、形状および/またはサイズが異なるだけでなく、ターゲット上の位置も異なっていてもよく、これは、ソフトウェアが、再スキャンされた各固有のターゲットを認識し、そのターゲットを当該ターゲットの初めのスキャンからの正確なスキャンデータと一致させる助けとなる。必須ではないが、ターゲットに切込まれる固有のサイズおよび/または成形孔は、ターゲット端縁に平行に、またはベルト端縁に平行に整列してもよい。上述のように、ベルト端縁との平行を保つため、システムは、ターゲットの端縁とベルトの端縁との間の傾斜度に基づいて変換を実行する。こうして、ターゲットがベルトの端縁に厳密に平行に(厳密にダウンベルト方向に)配置されていなくても、孔をすべてターゲットの端縁に平行に整列させることができる。
【0123】
さらに、ターゲットに形成される孔の形状および/もしくはサイズのさまざまな組合せ、またはターゲットに形成される孔の形状および/もしくはサイズのさまざまなパターンのさまざまな組合せを利用して、ターゲットの各々およびカッタの各々を識別するだけでなく、たとえば、形状が切込まれたクロスベルト方向におけるレーンまたは場所を含む、較正手順の他の局面を監視することもできる。切込まれたターゲットのこれらの局面を再スキャン処理時に確認して、カッタ120を較正するためだけでなく、定量分配システムの動作パラメータを含む局面を分析するための情報を提供することができる。たとえば、上述のように、上記の較正手順の結果は、コンベアベルト破損している可能性があるか否か、または特定のカッタが位置ずれしているかもしくはそうでなければ調整もしくは保守を必要としている可能性があるか否かを示すこともできる。
【0124】
データ
上述のように、較正時に、カッタのクロスベルト場所はスキャナに関連付けられたデータに基づいて較正される。同様に、カッタのダウンベルト場所も、スキャナに関連するデータに基づいている。さまざまなデータをこの目的で利用することができる。
【0125】
カッタのダウンベルト場所についての1つの便利なデータは、
図9に示されるレーザ線または光ストライプ線116の場所である。この点に関して、レーザ線116と、距離「X」によって表わされる任意の示されるカッタのダウンベルト場所とを概略的に描いている
図17も参照。この距離は、ダウンベルト「遅れ」とも称される。光ストライプ/レーザ線116を利用する代わりに、たとえばコンベア102に沿った固定場所などの別のデータを使用してもよい。
【0126】
スキャナに対するカッタのクロスベルト場所に関してデータを確立することもできる。
図17に示されるように、カッタのクロスベルト場所は、ベルトの「オペレータ側」600から離れる方向におけるレーザ線116の「ハードストップ」場所に基づいて較正される。この点は、
図17の点1として識別される。この点は、スキャナに対する実際の物理的な場所である必要はなく、代わりに、スキャナと実際には物理的に一致していないスキャンソフトウェア内の仮想点であってもよい。
【0127】
しかし、
図17において識別される点2は物理的な関連性を有している。点2は、オペレータ側600から離れる方向におけるカッタの「ハードストップ」である。これは、カッタがオペレータ場所600から離れる方向においてコンベアを横切って移動できる最も遠い場所である。これはカッタの「0」の場所と定義される。点1と点2とを分けるベルトに対して横方向における距離は寸法「Y」として識別される。上述のように、キャリッジ172をベルト160を横切って動かすために用いられるサーボモータ260はエンコーダを含んでいるため、システム100は、エンコーダ読取値に基づいてクロスベルト方向におけるカッタ120の位置が常に分かっている。
【0128】
カッタ120は、
図17に示されるように「Y」寸法を求めることによってクロスベルト方向において較正される。この寸法はカッタごとに異なる。この点に関して、
図15は、「Y」寸法、およびしたがってカッタのハードストップ場所「2」のクロスベルト場所を求めるために6個のカッタの各々について10個の較正測定値の結果を含む表の形態である。
図15に示されるように、「Y」寸法はカッタ番号2の31.32mmからカッタ番号5の39.89mmまで異なる。寸法「Y」についての測定公差、および測定寸法「Y」の標準偏差も
図15に記載されている。上述のように、この情報はプロセッサ150によって分析され、各カッタについての横方向のオフセット寸法「Y」を用いてスキャナ光またはレーザ線1の「1」の終点に対するカッタの「0」の場所が確立される。
【0129】
図16は、「X」寸法を求めるために6個のカッタの各々について10個の較正測定値の結果を含む表である。上述のように、「X」寸法または距離は、スキャナ110のレーザ線116に対するカッタ120の「ダウンベルト」遅れである。
図16に示されるように、カッタ番号1の「X」は1561.19mmであり、これはレーザ線116に最も近いカッタである。「X」距離は、スキャナ110から離れて位置する次のカッタユニット120ごとに徐々に増加する。最も遠くに位置するカッタであるカッタ番号6は、レーザ線116から4261.73mmの距離にある。距離「X」についての測定公差、および測定距離「X」の標準偏差が
図16に記載されている。上述のように、この情報はプロセッサ150によって分析され、各カッタについてのダウンベルト遅れを用いて「X」方向におけるカッタの「0」の場所が確立される。
【産業上の利用可能性】
【0130】
例示的な実施形態を図示および説明してきたが、発明の精神および範囲から逸脱することなくこれらの実施形態にさまざまな変更が加えられ得ることが理解されるであろう。たとえば、本開示の定量分配システムは、コンベア上で運ばれる加工対象物に作用するように構成されたアクチュエータの位置を制御するまたは場所を監視するためにスキャナを用いる実質的にいかなる処理システムにも適用され得る。この点に関して、アクチュエータは、数例を挙げると、カッタ、ウォータージェットカッタ、注入針、印刷ヘッド、塗装ヘッド、スタンピングヘッド、穿孔ヘッド、穴あけヘッド、釘打ちヘッド、ステープリングヘッド、およびレーザを含む多種多様な装置であることができる。
【0131】
さらなる例として、加工対象物をシミュレートするターゲットに切込む代わりに、ターゲットは、ターゲットに徴を付けること、ターゲット上に徴を形成すること、ターゲットに塗料を塗布すること、ターゲットに設計を適用すること、ターゲットに孔を形成すること、ターゲットに穿孔すること、ターゲットに穴をあけること、ターゲットに形状を焼付けること、およびターゲットに形状を打抜くことを含むさまざまな技術によって指定またはマーク付けされてもよい。
【0132】
さらに、ターゲットに物理的にマーク付けする代わりに、ターゲットに場所および構成または形状で仮想的にマーク付けしてもよく、この仮想的なマーク付けは処理システムのメモリに保持されてもよい。その後、ターゲットが再スキャンされると、ターゲット上の仮想的なマーク付けの場所がコンピュータメモリから検索して取出され、較正処理が本明細書に記載されるように継続される。
【0133】
請求項
排他的な特性または特権が請求される発明の実施形態は以下のように規定される。