IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東芝電機サービス株式会社の特許一覧 ▶ 株式会社クボタの特許一覧

<>
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図1
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図2
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図3
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図4
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図5
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図6
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図7
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図8
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図9
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図10
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図11
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図12
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図13
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図14
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図15
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図16
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図17
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図18
  • 特許-洗浄風量制御装置及び洗浄風量制御方法 図19
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2021-12-27
(45)【発行日】2022-01-19
(54)【発明の名称】洗浄風量制御装置及び洗浄風量制御方法
(51)【国際特許分類】
   B01D 65/02 20060101AFI20220112BHJP
   B01D 61/22 20060101ALI20220112BHJP
   B01D 65/00 20060101ALI20220112BHJP
【FI】
B01D65/02 520
B01D61/22
B01D65/00
【請求項の数】 5
(21)【出願番号】P 2017148570
(22)【出願日】2017-07-31
(65)【公開番号】P2019025437
(43)【公開日】2019-02-21
【審査請求日】2020-06-18
(73)【特許権者】
【識別番号】598076591
【氏名又は名称】東芝インフラシステムズ株式会社
(73)【特許権者】
【識別番号】000001052
【氏名又は名称】株式会社クボタ
(74)【代理人】
【識別番号】110001634
【氏名又は名称】特許業務法人 志賀国際特許事務所
(72)【発明者】
【氏名】難波 諒
(72)【発明者】
【氏名】阿部 法光
(72)【発明者】
【氏名】山中 理
(72)【発明者】
【氏名】竹田 智
(72)【発明者】
【氏名】前田 勝史
(72)【発明者】
【氏名】田邉 耕平
【審査官】富永 正史
(56)【参考文献】
【文献】特開2017-018940(JP,A)
【文献】特開2008-142675(JP,A)
【文献】特開2013-022549(JP,A)
【文献】特開平10-290983(JP,A)
【文献】中国特許出願公開第104941454(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
B01D 61/00-71/82
C02F 1/44
(57)【特許請求の範囲】
【請求項1】
液体に含まれる固体を前記液体から分離させる分離膜を備える膜ろ過装置と、
前記分離膜を通過する液体の流れにくさを表す抵抗値の実績である実績抵抗値と、所定の時期における前記分離膜の抵抗値の目標を表す目標抵抗値と、に基づいて前記分離膜を洗浄する空気の量である洗浄風量を制御する風量制御部と、
膜ろ過流量を膜表面積で割った値である膜ろ過流束値と前記洗浄風量とに基づいて前記分離膜の将来の抵抗値を表す予測抵抗値を算出する抵抗変化予測部と、
自装置の運用費が所定の条件を満たし、且つ、前記予測抵抗値と前記目標抵抗値との偏差及び有機物残存濃度が所定の条件を満たすように活性炭注入率、凝集剤注入率及び洗浄風量を算出する運用費算出部と、
を備え
前記風量制御部は、前記運用費算出部によって算出された前記洗浄風量を用いて制御を行う、洗浄風量制御装置。
【請求項2】
前記洗浄風量制御装置の運用費と膜洗浄周期とが所定の条件を満たすように前記活性炭注入率、前記凝集剤注入率及び前記洗浄風量を算出する運用費算出部をさらに備える、
請求項に記載の洗浄風量制御装置。
【請求項3】
前記運用費算出部は前記活性炭注入率が所定の下限値より低くならないように前記活性炭注入率、前記凝集剤注入率及び前記洗浄風量を算出する請求項に記載の洗浄風量制御装置。
【請求項4】
前記条件は原水の水質に基づいて決定される請求項に記載の洗浄風量制御装置。
【請求項5】
液体に含まれる固体を前記液体から分離させる分離膜を備える膜ろ過装置が実行する膜ろ過ステップと、
前記分離膜を通過する液体の流れにくさを表す抵抗値の実績である実績抵抗値と、所定
の時期における前記分離膜の抵抗値の目標を表す目標抵抗値と、に基づいて前記分離膜を洗浄する空気の量である洗浄風量を制御する風量制御ステップと、
膜ろ過流量を膜表面積で割った値である膜ろ過流束値と前記洗浄風量とに基づいて前記分離膜の将来の抵抗値を表す予測抵抗値を算出する抵抗変化予測ステップと、
自装置の運用費が所定の条件を満たし、且つ、前記予測抵抗値と前記目標抵抗値との偏差及び有機物残存濃度が所定の条件を満たすように活性炭注入率、凝集剤注入率及び洗浄風量を算出する運用費算出ステップと、
を備え、
前記風量制御ステップにおいて、前記運用費算出ステップによって算出された前記洗浄風量を用いて制御を行う、洗浄風量制御装置が実行する洗浄風量制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、洗浄風量制御装置及び洗浄風量制御方法に関する。
【背景技術】
【0002】
水処理プロセスにおいて、沈殿やろ過等の固体及び液体を分離させる固液分離技術は頻繁に用いられる技術である。特に浄水処理分野では、クリプトスポリジウム等の原虫や細菌類などの確実な除去の点から膜を使用した膜分離処理の普及が進んでいる。膜分離処理は省スペース性や処理水質の安定性といった点で他の個液分離処理と比較して優位である。一方、コスト面で不利な側面がある。特に、イニシャルコストだけでなくランニングコストもかさむことが、膜分離処理普及の課題となっている。そのため、膜分離処理のランニングコストを低減する技術的ニーズは高くなっている。
【0003】
膜分離処理における特徴的な現象として目詰まり(膜ファウリング現象)が挙げられる。膜ファウリング現象が進むことで、加圧又は吸引によるろ過するエネルギーが変化する。また、膜ファウリング現象を抑制するために、空気による物理的洗浄(散気)と薬品による化学的洗浄とが必要となる。したがって、ランニングコストにはこれらの電力費及び薬品費が含まれる。すなわち、運用や制御に応じて電力費及び薬品費は変化する。しかし、従来の制御では、膜のファウリングにより運用や制御が変化するが、ランニングコストが低減されていない場合があった。
【先行技術文献】
【特許文献】
【0004】
【文献】特許第5624598号公報
【文献】特許第5365509号公報
【文献】特許第5034337号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明が解決しようとする課題は、ランニングコストを低減することができる洗浄風量制御装置及び洗浄風量制御方法を提供することである。
【課題を解決するための手段】
【0006】
実施形態の洗浄風量制御装置は、膜ろ過装置と風量制御部とを持つ。膜ろ過装置は、液体に含まれる固体を前記液体から分離させる分離膜を備える。風量制御部は、前記分離膜を通過する液体の流れにくさを表す抵抗値の実績である実績抵抗値と、所定の時期における前記分離膜の抵抗値の目標を表す目標抵抗値と、に基づいて前記分離膜を洗浄する空気の量である洗浄風量を制御する。
【図面の簡単な説明】
【0007】
図1】実施形態の洗浄風量制御装置1を示す図。
図2】第1の実施形態の洗浄風量制御装置1の形態を示す構成図。
図3】第1の実施形態の膜洗浄周期、目標抵抗曲線及び洗浄風量制御の実績の関係を表す図。
図4】第1の実施形態の風量指令を決定する際の処理の流れを表すフローチャート。
図5】第2の実施形態の洗浄風量制御装置1の形態を示す構成図。
図6】第2の実施形態の予測抵抗値及び実績抵抗値が推移する関係を表す図。
図7】第2の実施形態の風量指令を決定する際の処理の流れを表すフローチャート。
図8】第3の実施形態の洗浄風量制御装置1の形態を示す構成図。
図9】第3の実施形態の風量指令を決定する際の処理の流れを表すフローチャート。
図10】第4の実施形態の洗浄風量制御装置1の形態を示す構成図。
図11】第4の実施形態の風量指令を決定する際の処理の流れを表すフローチャート。
図12】第5の実施形態の洗浄風量制御装置1の形態を示す構成図。
図13】第5の実施形態の風量指令を決定する際の処理の流れを表すフローチャート。
図14】第6の実施形態の洗浄風量制御装置1の形態を示す構成図。
図15】第7の実施形態の洗浄風量制御装置1の運用費計算モデルを示す機能ブロック図。
図16】第7の実施形態の洗浄風量制御装置1の運用費計算モデル及び最適運用費算出部を示す機能ブロック図。
図17】第7の実施形態の式(10)により得られる最適化の例を示した図。
図18】第8の実施形態の洗浄風量制御装置1の運用費計算モデル及び月間費用計算部を示す機能ブロック図。
図19】第8の実施形態の式(11)により得られる最適化の例を示した図。
【発明を実施するための形態】
【0008】
以下、実施形態の洗浄風量制御装置及び洗浄風量制御方法を、図面を参照して説明する。
【0009】
(第1の実施形態)
図1は、実施形態の洗浄風量制御装置1を示す図である。洗浄風量制御装置1は、膜ろ過装置100、水温計102、分離膜103、圧力計104、流量計105、洗浄ブロワ107を備える。
【0010】
膜ろ過装置100は、塩素、活性炭等の薬品が注入される前処理を実施した水(以下「前処理水101」という。)を通水させ、膜ろ過装置100が備える分離膜103を通して膜ろ過水を得る装置である。膜をろ過する際の水の流れはポンプ(不図示)により発生させる。前処理水101は液体の一態様である。
【0011】
水温計102は、前処理水101の水温を測定するためのセンサである。水温は分離膜103を通過する前処理水101の透過性能に影響する。
【0012】
分離膜103は、膜ろ過装置100内の前処理水101中に浸漬して配置される。分離膜103は、例えば平均孔径0.1[μm]の複数の透過流路を備えた多孔性の膜である。このため、基本的に平均孔径よりも大きな不純物は、分離膜103を通過できない。したがって、清澄な処理水が分離膜103を通過する。分離膜103は、膜の構造に応じて、吸引ろ過してもよいし、加圧ろ過してもよい。不純物は例えば、微生物や濁質等である。分離膜103は前処理水101を通過させると、不純物が孔径に目詰まりする現象(以下「膜ファウリング現象」という。)が発生する。
【0013】
圧力計104は、膜の状態を監視するためのセンサである。圧力計の計測値は、膜差圧を得るために用いられる。膜差圧ΔPは、流体粘度μ、膜抵抗R及び膜ろ過流束J(洗浄風量と膜ろ過流量を膜表面積で割った値)により表される式(1)の関係にあることが知られている。
【0014】
【数1】
【0015】
流体粘度μは水温に基づいて決定される。流体粘度μは温度補正係数TCF(Temperature Correction Factor)としてもよい。式(1)を用いて膜抵抗Rを算出する場合、流体粘度μ又はTCFは水温計102の計測値から算出され、膜ろ過流束Jは流量計105の計測値から算出される。流量計105は、膜ろ過水の処理量である膜ろ過流量を計測するためのセンサである。膜抵抗Rは膜ファウリング現象により変化する。膜抵抗Rは水質や前処理で注入する薬品の作用等に影響される。
【0016】
洗浄ブロワ107は、膜ろ過装置100と洗浄ブロワ107をつなぐ配管を通じて、空気を膜ろ過装置100内の前処理水101に供給する装置である。これにより、膜ろ過装置100内の前処理水101中に気泡106が放出される。気泡106により分離膜103の表面は洗浄散気される。
【0017】
図2は、第1の実施形態の洗浄風量制御装置1の形態を示す構成図である。洗浄風量制御装置1は、実績抵抗算出部108、目標抵抗算出部109及び風量制御部110を備える。第1の実施形態では、分離膜103を通過する液体の流れにくさを表す抵抗値の実績である実績抵抗値と、所定の時期における分離膜103の抵抗値の目標を表す目標抵抗値と、に基づいて分離膜103を洗浄する風量が決定される。実績抵抗値はフィードバック入力される。所定の時期は、分離膜103を薬品で洗浄する膜洗浄周期であれば、どのような時期であってもよい。
【0018】
実績抵抗算出部108は実績抵抗値を算出する。実績抵抗値は式(2)に基づいて算出される。実績抵抗値は単位系によって、桁数が大きくなる場合がある。実績抵抗算出部108は、数値演算上でそれが問題となる場合、係数を乗じて換算してもよい。
【0019】
【数2】
【0020】
膜差圧ΔP及び膜ろ過流束Jは、圧力計104及び流量計105の計測値から算出される。流体粘度μは、純水の水温と粘度との関係に基づいて決定してもよいし、水温に対するTCFの変化を収集する膜の透水性能試験を実施し、試験結果に基づいて算出しても良い。圧力計104、流量計105及び水温計102を使用することにより、実績抵抗算出部108は式(2)に基づいて膜抵抗の実績抵抗値を算出する。
【0021】
目標抵抗算出部109は時間に応じた目標抵抗値を算出する。
目標抵抗値は式(3)に基づいて算出される。算出された目標抵抗値は、図3に示される目標抵抗曲線に従う。
【0022】
【数3】
【0023】
図3は、第1の実施形態の膜洗浄周期、目標抵抗曲線及び洗浄風量制御の実績の関係を表す図である。横軸は分離膜103を薬品で洗浄する期間示す膜洗浄周期である。縦軸は膜洗浄周期における分離膜103の膜抵抗の値である。分離膜103は経時的に膜ファウリング現象が進む。そのため、膜抵抗の実績抵抗値は単調増加する。実績抵抗値が増加すると、膜ろ過流束J又は流体粘度μに変化がない限り、膜差圧ΔPも増加する。膜抵抗が膜差圧上限時の膜抵抗となると、薬品洗浄により機能回復し、膜抵抗を再び低下させる場合、膜洗浄周期毎に目標抵抗の曲線を算出して制御する。
【0024】
図2に戻り、目標抵抗算出部109の説明を続ける。式(3)における未知変数はA、k及び初期値Rsv(0)である。式(3)の初期値は、分離膜103が洗浄された直後の実績抵抗を表すRsv(0)=Rpv(0)とする。kは、分離膜103の閉塞の進行度合いを表す変数である。k=0の時はいわゆるケーキろ過に対応して膜抵抗が線形に上昇する。分離膜103に膜ファウリング現象が発生する膜閉塞現象により、k=1は中間閉塞、k=1.5は標準閉塞、k=2.0は完全閉塞と呼ばれる現象に対応する。k=1の場合、式(3)は、Rsvが指数関数的に増加する関数となる。k>1の場合、有限時間での値が無限大に発散する関数となる。膜閉塞現象は原水中の粒子径と分離膜の孔径の関係とに基づいて分類された現象である。したがって、前処理水101が分離膜103を通過する膜ろ過処理開始前に、事前に処理する原水と小規模な分離膜等とを利用して決定してもよい。kの値と図3中の膜洗浄周期と膜差圧上限時の膜抵抗とが決定されると、未知変数Aは式(4)及び式(5)により算出される。
【0025】
【数4】
【0026】
【数5】
【0027】
式(4)と式(5)では予め定められる膜洗浄周期と膜差圧上昇時の膜抵抗とに対し、未知変数A及びkを変更した際の曲線を図3に図示して、その曲線の形に基づいて未知変数A、kを探索的に決定してもよい。例えば、t=0における初期値Rsv(0)、t=Lにおける膜洗浄周期到達時の膜差圧上限時の膜抵抗Rsv(L)の2点に加え、中間時点t=τの膜抵抗Rsv(τ)を加えた3点を決めれば、未知変数A、kを連立方程式を解くことで求めることができる。あるいは、3点以上の膜抵抗値の組に対して、2乗誤差最小基準とした回帰により、未知変数A、kを求めてもよい。目標抵抗算出部109は、膜洗浄する際に決められた未知変数A及びkに基づいて、時間に応じた目標抵抗値を出力する。なお、膜差圧上限時の膜抵抗を求める際、水温は洗浄期間後の水温を利用して水温に対応する流体粘度μを利用するか、膜の透水性能試験で得られたTCFを用いて設定する。
【0028】
風量制御部110は、得られた実績抵抗値と目標抵抗値の偏差に基づいて洗浄ブロワ107の風量を制御する風量指令を決定する。風量指令は実績抵抗値が目標抵抗値に近接するように決定される。風量制御部110は、例えばPID制御、I-PD制御、2自由度PID制御等のフィードバック制御を利用してもよい。風量制御部110は、実績抵抗値と目標抵抗値に基づいて風量指令を決定するならばどのような制御方式でもよい。
【0029】
図4は第1の実施形態の風量指令を決定する際の処理の流れを表すフローチャートである。洗浄風量制御装置1の実績抵抗算出部108は、水温、圧力及び膜ろ過流量に基づいて実績抵抗値を算出する(ステップS101)。目標抵抗算出部109は、膜差圧上限、膜洗浄周期及び洗浄期間後の水温に基づいて目標抵抗値を算出する(ステップS102)。風量制御部110は、算出された目標抵抗値及び実績抵抗値に基づいて風量指令を決定する(ステップS103)。洗浄ブロワ107は、風量指令により指定された空気量に基づいて、膜ろ過装置100内に気泡106を放出する(ステップS104)。
【0030】
このように構成された洗浄風量制御装置1では、膜ファウリング現象の進行を定量的に表した膜抵抗を扱って制御することにより、膜差圧の制御を安定的に行なうことができる。また、膜洗浄周期を予め計画したとおり運転ができるようになるため、メンテナンスの省力化や電力費及び薬品費等のランニングコストが低減される。
【0031】
(第2の実施形態)
次に、第2の実施形態における洗浄風量制御装置について説明する。図5は、第2の実施形態の洗浄風量制御装置1の形態を示す構成図である。第2の実施形態における洗浄風量制御装置は、抵抗変化予測部111をさらに備える点で第1の実施形態とは異なるが、それ以外の構成は同じである。以下、第1の実施形態と異なる点について説明する。
【0032】
抵抗変化予測部111は、実績抵抗値から所定期間後の膜抵抗の変化量を表す予測抵抗変化値を決定する。所定期間は、実績抵抗値が算出されたタイミングから抵抗値が予測されるタイミングまでの期間を表す。予測抵抗変化値は、膜ろ過流束及び洗浄風量によって算出される。例えば、抵抗変化予測部111は式(6)により予測抵抗変化値を決定する。この場合、所定期間をΔTとすると、所定期間後の予測抵抗R(t+ΔT)は式(7)により決定される。
【0033】
【数6】
【0034】
【数7】
【0035】
式(6)では、入力値として膜ろ過流束及び洗浄風量が使用されているが、他の計測値が使用されてもよい。膜ろ過流束は、分離膜103の膜面へ膜ファウリング現象の要因となる物質(例えば、不純物)を届ける作用を示す。洗浄風量は分離膜103の膜面の膜ファウリング現象を抑制する作用を示す。すなわち、膜ろ過流束及び洗浄風量は、物理的に膜ろ過抵抗の変化に寄与する。膜ろ過流束及び洗浄風量は膜分離処理にて計測される。
【0036】
膜分離処理を運用する前にこれら入力と膜抵抗の変化を示すデータを収集してもよい。ユーザは、収集されたデータを用いて、オフラインにて式(6)の未知変数ai、niを決定してもよい。
【0037】
未知変数ai、niを決定する際に、最小二乗法、PLS(Partial Least Square)回帰、リッジ回帰又はラッソ回帰等を用いられてもよい。オンライン最小二乗法などオンラインで未知変数を更新されてもよい。未知変数を決定するために、どのような方法が用いられてもよい。
【0038】
図6は、第2の実施形態の予測抵抗値及び実績抵抗値が推移する関係を表す図である。横軸及び縦軸は図3と同じである。図6では、現在の実績抵抗値から将来の抵抗値が予測される。予測された予測抵抗値と目標抵抗値との偏差から風量が制御される。
【0039】
図7は第2の実施形態の風量指令を決定する際の処理の流れを表すフローチャートである。洗浄風量制御装置の実績抵抗算出部108は、水温、圧力及び膜ろ過流量に基づいて実績抵抗値を算出する(ステップS201)。抵抗変化予測部111は、膜ろ過流束及び洗浄風量に基づいて予測抵抗変化値を算出する。抵抗変化予測部111は、予測抵抗変化値及び実績抵抗値に基づいて、予測抵抗値を算出する(ステップS202)。目標抵抗算出部109は、膜差圧上限、膜洗浄周期及び洗浄期間後の水温に基づいて目標抵抗値を算出する(ステップS203)。風量制御部110は、算出された目標抵抗値及び予測抵抗値に基づいて風量指令を決定する(ステップS204)。洗浄ブロワ107は、風量指令により指定された空気量に基づいて、膜ろ過装置100内に気泡106を放出する(ステップS205)。
【0040】
このように構成された洗浄風量制御装置では、予測抵抗R(t+ΔT)と目標抵抗Rsv(t+ΔT)との偏差を用いたフィードバック制御を行うことにより、風量の変化が実績抵抗に反映されるまでの遅延が大きい膜分離処理に対しても目標抵抗値に沿うように風量を制御できる。
【0041】
(第3の実施形態)
次に、第3の実施形態における洗浄風量制御装置について説明する。図8は、第3の実施形態の洗浄風量制御装置1の形態を示す構成図である。第3の実施形態における洗浄風量制御装置は、抵抗変化予測部111の代わりに抵抗変化予測部111aを備え、前処理装置112をさらに備える点で第2の実施形態とは異なるが、それ以外の構成は同じである。以下、第2の実施形態と異なる点について説明する。
【0042】
抵抗変化予測部111aは、実績抵抗値から所定期間後の膜抵抗の変化量を表す予測抵抗変化値を決定する。予測抵抗変化値は、pH、残留塩素、pH調整剤注入率、塩素注入率、オゾン注入率、凝集剤注入率、活性炭注入率のうち少なくともいずれか1つの値を含む薬品注入指標と膜ろ過流束と洗浄風量とによって算出される。抵抗変化予測部111aは式(8)により予測抵抗変化値を決定する。
【0043】
【数8】
【0044】
式(8)の未知変数ai、ni、xiを決定する際に、最小二乗法、PLS(Partial Least Square)回帰、リッジ回帰又はラッソ回帰等を用いられてもよい。オンライン最小二乗法などオンラインで未知変数を更新されてもよい。未知変数を決定するために、どのような方法が用いられてもよい。
【0045】
前処理装置112は、原水に前処理を行う。前処理装置112に流れ込んだ原水には、必要に応じて、pHが測定されたり、pH調整剤、塩素、オゾン、活性炭又は凝集剤等の薬品が投入される。これにより、原水に含まれる臭気物質、濁質、塩素消費物質等の膜ファウリング現象の原因となりうる物質が処理される。さらに塩素等の薬品は膜差圧を低下させる。前処理装置112は、前処理が行われた前処理水101を膜ろ過装置100へ排出する。前処理装置112は、前処理で用いられたpH、pH調整剤、塩素、オゾン、活性炭及び凝集剤を薬品注入指標として、抵抗変化予測部111aへ送信する。原水は例えば、導水管から、沈砂池及び凝集沈澱池等を経て供給される液体である。
【0046】
前処理装置112は、例えば、塩素が投入される塩素槽、活性炭が投入される活性炭槽のように、投入される薬品毎に槽で仕切られてもよいし、全ての薬品が同じ槽で投入されてもよい。投入される薬品はどのような順番で投入されてもよい。なお、膜ろ過装置100及び前処理装置112は異なるメーカーの装置であってもよいし、同じメーカーの装置であってもよい。
【0047】
図9は第3の実施形態の風量指令を決定する際の処理の流れを表すフローチャートである。洗浄風量制御装置の実績抵抗算出部108は、水温、圧力及び膜ろ過流量に基づいて実績抵抗値を算出する(ステップS201)。抵抗変化予測部111aは、膜ろ過流束、洗浄風量及び薬品注入指標に基づいて予測抵抗変化値を算出する。抵抗変化予測部111aは、予測抵抗変化値及び実績抵抗値に基づいて、予測抵抗値を算出する(ステップS202a)。目標抵抗算出部109は、膜差圧上限、膜洗浄周期及び洗浄期間後の水温に基づいて目標抵抗値を算出する(ステップS203)。風量制御部110は、算出された目標抵抗値及び予測抵抗値に基づいて風量指令を決定する(ステップS204)。洗浄ブロワ107は、風量指令により指定された空気量に基づいて、膜ろ過装置100内に気泡106を放出する(ステップS205)。
【0048】
このように構成された洗浄風量制御装置では、前処理装置112から送信される薬品注入指標を抵抗変化予測部111aが抵抗の予測変化に加えることにより余分なセンサを追加することなく、膜ファウリング現象による膜抵抗の予測を実施できる。さらに前処理において、薬品を投入することで、膜差圧を低下させることができる。
【0049】
(第4の実施形態)
次に、第4の実施形態における洗浄風量制御装置について説明する。図10は、第4の実施形態の洗浄風量制御装置1の形態を示す構成図である。第4の実施形態における洗浄風量制御装置は、抵抗変化予測部111aの代わりに抵抗変化予測部111bを備え、前処理装置112の代わりに前処理装置112aをさらに備える点で第3の実施形態とは異なるが、それ以外の構成は同じである。以下、第3の実施形態と異なる点について説明する。
【0050】
抵抗変化予測部111bは、実績抵抗値から所定期間後の膜抵抗の変化量を表す予測抵抗変化値を決定する。予測抵抗変化値は、薬品注入指標と膜ろ過流束と洗浄風量とに加えて、濁度、色度、SS(Suspended Substance:懸濁物質)、SDI(Silt Density Index:シルト密度指数)、FI(Fouling Index:汚れ指数)、紫外線吸光度(E260)、蛍光強度又は全有機炭素(Total Organic Carbon)のうち少なくともいずれか1つの値を含む有機物指標とによって算出される。抵抗変化予測部111bは式(8)により予測抵抗変化値を決定する。
【0051】
前処理装置112aは、原水に前処理を行う。前処理装置112aに流れ込んだ原水には、必要に応じて、pHが測定されたり、塩素、活性炭又は凝集剤が投入される。さらに、前処理装置112aは、濁度、E260、蛍光強度又は全有機炭素のうち少なくともいずれか1つの値を含む有機物指標を測定する。前処理装置112aは、前処理が行われた前処理水を膜ろ過装置100へ排出する。前処理装置112aは、前処理で用いたpH、pH調整剤、塩素、オゾン、活性炭及び凝集剤を薬品注入指標として、抵抗変化予測部111aへ送信する。前処理装置112aは、測定された有機物指標を抵抗変化予測部111aへ送信する。前処理装置112aに投入される薬品はどのような順番で投入されてもよい。前処理装置112aで測定される有機物指標はどのような順番で測定されてもよい。有機物指標の測定及び薬品の投入は、どのような順番で行われてもよい。なお、膜ろ過装置100及び前処理装置112aは異なるメーカーの装置であってもよいし、同じメーカーの装置であってもよい。
【0052】
図11は第4の実施形態の風量指令を決定する際の処理の流れを表すフローチャートである。第4の実施形態のフローチャートは、ステップS202aの代わりにステップS202bを行い、それ以外のステップは第3の実施形態のフローチャートと同じである。洗浄風量制御装置の実績抵抗算出部108は、水温、圧力及び膜ろ過流量に基づいて実績抵抗値を算出する(ステップS201)。抵抗変化予測部111bは、膜ろ過流束、洗浄風量、薬品注入指標及び有機物指標に基づいて予測抵抗変化値を算出する。抵抗変化予測部111bは、予測抵抗変化値及び実績抵抗値に基づいて、予測抵抗値を算出する(ステップS202b)。目標抵抗算出部109は、膜差圧上限、膜洗浄周期及び洗浄期間後の水温に基づいて目標抵抗値を算出する(ステップS203)。風量制御部110は、算出された目標抵抗値及び予測抵抗値に基づいて風量指令を決定する(ステップS204)。洗浄ブロワ107は、風量指令により指定された空気量に基づいて、膜ろ過装置100内に気泡106を放出する(ステップS205)。
【0053】
このように構成された洗浄風量制御装置では、有機物指標を式(8)などに加えることで、第1~第3の実施形態よりも膜ファウリング現象の予測精度を向上させることができる。
【0054】
(第5の実施形態)
次に、第5の実施形態における洗浄風量制御装置について説明する。図12は、第5の実施形態の洗浄風量制御装置1の形態を示す構成図である。第5の実施形態における洗浄風量制御装置は、前処理後の溶解性有機物(Dissolved Organic Carbon)の残存量に基づいて抵抗変化を予測する。第5の実施形態における洗浄風量制御装置は、抵抗変化予測部111bの代わりに抵抗変化予測部111cを備え、有機物濃度算出部113及び有機物除去率算出部114をさらに備える点で第4の実施形態とは異なるが、それ以外の構成は同じである。以下、第4の実施形態と異なる点について説明する。
【0055】
抵抗変化予測部111cは実績抵抗値から所定期間後の膜抵抗の変化量を表す予測抵抗変化値を決定する。予測抵抗変化値は、膜ろ過流束、洗浄風量、pH、塩素注入率及び溶解性有機物の残存量によって算出される。溶解性有機物の残存量は、有機物濃度算出部113により算出される有機物濃度と、有機物除去率算出部114により算出される有機物残存率と、に基づいて算出される。抵抗変化予測部111cは式(8)により予測抵抗変化値を決定する。
【0056】
有機物濃度算出部113は、有機物濃度を算出する。有機物濃度は、有機物指標と溶解性有機物との相関に基づいて算出される。具体的には、有機物濃度算出部113は、有機物指標Cに対して、有機物濃度を式(9)により算出する。ここで、未知変数α及びβは有機物指標と溶解性有機物との関係に基づいて事前に決定される。
【0057】
【数9】
【0058】
有機物除去率算出部114は、有機物除去率を算出する。有機物除去率は、活性炭注入率、凝集剤注入率及び滞留時間に対する溶解性有機物の関係に基づいて算出される。
【0059】
図13は第5の実施形態の風量指令を決定する際の処理の流れを表すフローチャートである。第5の実施形態のフローチャートは、ステップS301からステップS303を行うこと、ステップS202bの代わりにステップS202cを行うこと、が第4の実施形態のフローチャートとは異なり、それ以外のステップは第3の実施形態のフローチャートと同じである。有機物濃度算出部113は、有機物指標と溶解性有機物との相関に基づいて有機物濃度を算出する(ステップS301)。有機物除去率算出部114は、活性炭注入率、凝集剤注入率及び滞留時間に対する溶解性有機物の関係に基づいて有機物除去率を算出する(ステップS302)。抵抗変化予測部111cは、有機物濃度及び有機物除去率に基づいて溶解性有機物の残存量を算出する(ステップS303)。実績抵抗算出部108は、水温、圧力及び膜ろ過流量に基づいて実績抵抗値を算出する(ステップS201)。抵抗変化予測部111cは、膜ろ過流束、洗浄風量、pH、塩素注入率及び溶解性有機物の残存量に基づいて予測抵抗変化値を算出する。抵抗変化予測部111cは、予測抵抗変化値及び実績抵抗値に基づいて、予測抵抗値を算出する(ステップS202c)。目標抵抗算出部109は、膜差圧上限、膜洗浄周期及び洗浄期間後の水温に基づいて目標抵抗値を算出する(ステップS203)。風量制御部110は、算出された目標抵抗値及び予測抵抗値に基づいて風量指令を決定する(ステップS204)。洗浄ブロワ107は、風量指令により指定された空気量に基づいて、膜ろ過装置100内に気泡106を放出する(ステップS205)。
【0060】
このように構成された洗浄風量制御装置では、前処理後の溶解性有機物の残存量を考慮して抵抗変化を予測することで、第1~4の実施形態よりも膜ファウリング現象による膜抵抗の予測を精度よく実施することができる。
【0061】
(第6の実施形態)
次に、第6の実施形態における洗浄風量制御装置について説明する。図14は、第6の実施形態の洗浄風量制御装置1の形態を示す構成図である。第6の実施形態における洗浄風量制御装置は、予測情報記憶部115及びパラメータ調整部116をさらに備える点で第5の実施形態とは異なるが、それ以外の構成は同じである。以下、第5の実施形態と異なる点について説明する。
【0062】
予測情報記憶部115は、磁気ハードディスク装置や半導体記憶装置等の記憶装置を用いて構成される。予測情報記憶部115は、実績抵抗値の履歴、抵抗変化予測部111cへの入力信号の時系列データ及び調整パラメータを記憶する。調整パラメータは、各式に含まれる未知変数の決定に用いられる。
【0063】
パラメータ調整部116は、予測情報記憶部115に記憶される情報を用いて、予測抵抗値の算出に用いられる未知変数の決定に用いられるパラメータを調整する。例えば、パラメータの調整にはオンライン最小二乗法が用いられてもよいし、他の方法が用いられてもよい。パラメータ調整部116は過去の一定期間の調整パラメータの平均値や分散から、所定の差がある場合、パラメータを更新しない等の条件を設けてもよい。所定の差とは、過去の一定期間の調整パラメータの平均値から10%以上差がある場合などであってもよい。また、調整パラメータが予め設定した上下限範囲内にない場合や、調整パラメータの変化率が上下限範囲内にない場合にパラメータを更新しない等の条件でもよい。このように構成されることで、調整パラメータが不適切な場合にも対応でき、処理の変化に応じた緩やかなパラメータ変更が可能となる。
【0064】
このように構成された洗浄風量制御装置では、過去の調整パラメータ、実績抵抗値、抵抗変化予測部111cの入力信号の履歴に基づいて、プロセスの変化により生じるパラメータ更新にも対応できる。したがって、第1~5の実施形態よりも膜ファウリング現象による膜抵抗の予測を精度よく実施することができる。
【0065】
(第7の実施形態)
次に、第7の実施形態における洗浄風量制御装置の運用費計算モデル200について説明する。図15は、第7の実施形態の洗浄風量制御装置1の運用費計算モデルを示す機能ブロック図である。第7の実施形態における運用費計算モデル200は、実績抵抗算出部108、目標抵抗算出部109、抵抗変化予測部111c、有機物濃度算出部113、有機物除去率算出部114、電力費算出部201、薬品費算出部202及び運用費算出部203を備える。このうち電力費算出部201、薬品費算出部202及び運用費算出部203は第6の実施形態とは異なるが、それ以外の構成は同じである。以下、第6の実施形態と異なる点について説明する。
【0066】
電力費算出部201は、洗浄風量、機器の電力量及び電力の単価に基づいて、電力費を算出する。薬品費算出部202は、活性炭注入率、凝集剤注入率、膜ろ過流量及び薬品の単価に基づいて、薬品費を算出する。運用費算出部203は、算出された電力費と薬品費との和を運用費とする。
【0067】
図16は、第7の実施形態の洗浄風量制御装置1の運用費計算モデル及び最適運用費算出部を示す機能ブロック図である。図16の最適運用費算出部は、式(10)に基づいて、最適運用費を算出する。最適運用費は、式(10)に基づいて最適化された運用費である。式(10)の変数yは運用費、xは活性炭注入率、xは凝集剤注入率、xは洗浄風量、xは抵抗偏差、xは有機物残存濃度、εは抵抗偏差許容幅、εは有機物残存濃度許容幅を表す。このとき、膜差圧上限、洗浄期間、洗浄期間後水温、現在の水温、圧力及び膜ろ過流量は運用費計算モデル200において運用費、抵抗偏差を求める関数f、関数gおよび関数hを決めるパラメータとなる。第7の実施形態では、式(10)を解くことにより得られる、活性炭注入率、凝集剤注入率及び洗浄風量を使用する。
【0068】
【数10】
【0069】
図17は、第7の実施形態の式(10)により得られる最適化の例を示した図である。図17では、活性炭注入率を3.5、凝集剤注入率を5.0、洗浄風量を103とすることにより、運用費を図16中で最小の17.8にすることができる。このように薬品費及び電力費を算出する計算を追加した運用費計算モデルを利用して最適化問題を解くことにより、運用費を低減する制御を実現できる。最適化問題の解法としては、最急降下法や準ニュートン法といった一般的な最適化問題の解法アルゴリズムであってもCMA-ES(Covariance Matrix Adaptation Evolution Strategy)などのアルゴリズムを用いてもよい。また、遺伝的アルゴリズムや粒子群最適化、焼きなまし法、自己組織化写像などのメタヒューリスティックな手法を使用してもよい。
【0070】
(第8の実施形態)
次に、第8の実施形態における洗浄風量制御装置の運用費計算モデル200a及び月間費用算出部300について説明する。第8の実施形態では、膜洗浄周期を変数として運用費の低減を図る。図18は、第8の実施形態の洗浄風量制御装置1の運用費計算モデル及び月間費用計算部を示す機能ブロック図である。第8の実施形態では、運用費計算モデル200の代わりに運用費計算モデル200aを備える点、月間費用算出部300をさらに備える点で第7の実施形態と異なるが、それ以外の構成は同じである。以下、第7の実施形態と異なる点について説明する。
【0071】
運用費計算モデル200aは、運用費算出部203の代わりに運用費算出部203a(不図示)を備える。運用費算出部203aは、運用費を膜洗浄周期分計算する。
【0072】
月間費用算出部300は、式(11)に基づいて月間費用を算出する。月間費用は、最小化された月間あたりの運用費である。月間費用は、膜洗浄周期分の運用費に基づき、月間当たりの平均費用を算出し、さらに平均費用を最小化することで求められる。式(11)の変数yは運用費、xは活性炭注入率、xは凝集剤注入率、xは洗浄風量、xは膜洗浄周期、xは抵抗偏差、xは有機物残存濃度、εは抵抗偏差許容幅、εは有機物残存濃度許容幅を表す。このとき、膜差圧上限、洗浄期間、洗浄期間後水温、現在の水温、圧力及び膜ろ過流量は関数f、関数gおよび関数hを決めるパラメータとなる。第8の実施形態では、膜洗浄周期は、式(11)を解くことにより得られた値が使用される。
【0073】
【数11】
【0074】
図19は、第8の実施形態の式(11)により得られる最適化の例を示した図である。図19では、膜洗浄周期を13、活性炭注入率を3.5、凝集剤注入率を5.0、洗浄風量を103とすることにより、運用費を図19中で最小の4,314にすることができる。このように薬品費及び電力費を算出する計算を追加した運用費計算モデルを利用して最適化問題を解くことにより、運用費を低減し、かつ膜洗浄周期の最適化を実現できる。最適化問題の解法としては、最急降下法や準ニュートン法といった一般的な最適化問題の解法アルゴリズムであってもCMA-ESなどのアルゴリズムを用いてもよい。また、遺伝的アルゴリズムや粒子群最適化、焼きなまし法、自己組織化写像などのメタヒューリスティックな手法を使用してもよい。
【0075】
(第9の実施形態)
次に、第9の実施形態における、洗浄風量制御装置の運用費計算モデルについて説明する。第9の実施形態における運用費計算モデルでは、原水の有機物指標に基づいて活性炭注入率の下限が設定される。活性炭注入率の下限は、測定された原水の有機物指標に基づいて設定される。
【0076】
このように原水の有機物指標に基づいて活性炭注入率の下限を設定されることで、第7又は第8の実施形態のように、活性炭注入率が低くなり、水質を担保できない状況を防ぐ。したがって、処理水質が担保されつつ、可能な限り運用費が低減される。
【0077】
(第10の実施形態)
次に、第10の実施形態における、洗浄風量制御装置の運用費計算モデルについて説明する。第10の実施形態における運用費計算モデルでは、オフラインの水質分析結果に基づいて活性炭注入率の下限が設定される。オフラインで水質分析される項目は、例えば2-MIB、ジェオスミンなどの臭気物質や色度、トリハロメタン前駆物質などの水質分析項目であれば、どのような項目であってもよい。
【0078】
このようにオフライン水質分析結果に基づいて活性炭注入率の下限を設定されることで、処理水質が担保されつつ、可能なかぎり運用費が低減される。なお、第9の実施形態による有機物指標による下限値も設定される場合は、下限値の大きい方を採用してもよい。
【0079】
以上説明した少なくともひとつの実施形態によれば、実績抵抗値と目標抵抗値とに基づいて洗浄風量を制御することにより、膜ろ過装置100のランニングコストを低減できる。
【0080】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
【符号の説明】
【0081】
1…洗浄風量制御装置、100…膜ろ過装置、101…前処理水、102…水温計、103…分離膜、104…圧力計、105…流量計、106…気泡、107…洗浄ブロワ、108…実績抵抗算出部、109…目標抵抗算出部、110…風量制御部、111…抵抗変化予測部、111a…抵抗変化予測部、112…前処理装置、111b…抵抗変化予測部、112a…前処理装置、111c…抵抗変化予測部、113…有機物濃度算出部、114…有機物除去率算出部、115…予測情報記憶部、116…パラメータ調整部、200…運用費計算モデル、201…電力費算出部、202…薬品費算出部、203…運用費算出部、200a…運用費計算モデル、203a…運用費算出部、300…月間費用算出部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19