(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2021-12-27
(45)【発行日】2022-01-19
(54)【発明の名称】光輝性顔料、顔料含有組成物、及び顔料含有塗装体
(51)【国際特許分類】
C09C 1/00 20060101AFI20220112BHJP
C09C 1/28 20060101ALI20220112BHJP
C09C 3/06 20060101ALI20220112BHJP
C09C 3/08 20060101ALI20220112BHJP
C09D 201/00 20060101ALI20220112BHJP
C09D 7/62 20180101ALI20220112BHJP
【FI】
C09C1/00
C09C1/28
C09C3/06
C09C3/08
C09D201/00
C09D7/62
(21)【出願番号】P 2019514587
(86)(22)【出願日】2018-04-25
(86)【国際出願番号】 JP2018016858
(87)【国際公開番号】W WO2018199182
(87)【国際公開日】2018-11-01
【審査請求日】2019-10-10
(31)【優先権主張番号】P 2017089625
(32)【優先日】2017-04-28
(33)【優先権主張国・地域又は機関】JP
【前置審査】
(73)【特許権者】
【識別番号】000004008
【氏名又は名称】日本板硝子株式会社
(74)【代理人】
【識別番号】100107641
【氏名又は名称】鎌田 耕一
(72)【発明者】
【氏名】堀口 治子
【審査官】上條 のぶよ
(56)【参考文献】
【文献】国際公開第2016/194352(WO,A1)
【文献】特開2006-299051(JP,A)
【文献】特開平02-032170(JP,A)
【文献】特開2003-002634(JP,A)
【文献】特開2001-288038(JP,A)
【文献】特開2003-212721(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C09C, C09D
(57)【特許請求の範囲】
【請求項1】
フレーク状基体と、前記フレーク状基体の表面に形成された光干渉膜と、前記光干渉膜に付着した光散乱微粒子とを備えた光揮性顔料であって、
D65光源を用いて
、前記光揮性顔料を全体の3質量%の比率で含有する透明アクリル樹脂塗料からなり、白色の平面上に形成された(75±5)μmの厚さを有する塗膜に対して測定
された反射光が、L
*C
*h表色系により表示して、100を超えるL
*(15)、30未満のΔL
*(h-s)、及び40°未満のΔh(h-s)により表示される光揮性顔料。
ここで、前記L
*(15)は、前記光源からの入射光の入射角が45°となるように前記光源を配置した状態で前記入射光が正反射する角度を0°、前記入射光の入射方向を90°とそれぞれ定義して設定した角度表示に基づいて、15°の方向への前記反射光のL
*であり、
前記ΔL
*(h-s)は、前記角度表示に基づいて、15°の方向への前記反射光のL
*(15)と25°の方向への前記反射光のL
*(25)との平均値L
*(h)から、75°の方向への前記反射光のL
*(75)と110°の方向への前記反射光のL
*(110)との平均値L
*(s)を差し引いた差分であり、
前記Δh(h-s)は、前記角度表示に基づいて、15°の方向への前記反射光のh(15)と25°の方向への前記反射光のh(25)との平均値h(h)と、75°の方向への前記反射光のh(75)と110°の方向への前記反射光のh(110)との平均値h(s)とを角度表示したときの角度の相違である。
【請求項2】
前記光散乱微粒子が、質量基準で、前記フレーク状基体と前記光干渉膜とから構成された基体顔料の0.05~1%の範囲にある、請求項1に記載の光揮性顔料。
【請求項3】
前記フレーク状基体と前記光干渉膜とから構成された基体顔料について前記h(15)と同様に定義したhs(15)と、前記光散乱微粒子について前記h(15)と同様に定義した色相角hf(15)とを角度表示したときの角度の相違が、60°以下である、請求項1又は2に記載の光揮性顔料。
【請求項4】
前記光揮性顔料の前記h(15)が20~90である、請求項1~3のいずれか1項に記載の光揮性顔料。
【請求項5】
前記光干渉膜が単層膜である酸化チタン膜であって、前記酸化チタン膜の厚さが105nm~125nmである、請求項4に記載の光揮性顔料。
【請求項6】
前記光散乱微粒子が無機化合物微粒子又は有機化合物微粒子である、請求項1~5のいずれか1項に記載の光揮性顔料。
【請求項7】
前記光散乱微粒子が銀微粒子である、請求項1~5のいずれか1項に記載の光揮性顔料。
【請求項8】
前記フレーク状基体がフレーク状ガラスである、請求項1~7のいずれか1項に記載の光揮性顔料。
【請求項9】
請求項1~8のいずれか1項に記載の光輝性顔料を含む顔料含有組成物。
【請求項10】
基材と、請求項1~8のいずれか1項に記載の光輝性顔料を含む、前記基材上に形成された塗膜とを備えた顔料含有塗装体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光輝性顔料、具体的には、フレーク状基体と、フレーク状基体の表面に形成された光干渉膜と、光干渉膜に付着した微粒子と、を備えた光揮性顔料に関する。本発明はさらに、光輝性顔料を含有する組成物、及び塗膜が光輝性顔料を含む塗装体に関する。
【背景技術】
【0002】
光揮性顔料は、塗料、化粧料等種々の製品に添加され、それらの製品に粒子状の光の反射を与えている。光揮性顔料に求められる代表的な特性は高い輝度である。フレーク状基体を備えた光揮性顔料はこの望ましい特性の実現に適している。光干渉膜を備えた光揮性顔料は、光干渉効果によりパール調の光沢を発現する。代表的な光干渉膜は酸化チタン膜である。金属微粒子を付着させることにより、所望の色調に発色させた光揮性顔料も知られている。代表的な金属微粒子は表面プラズモン共鳴により発色する金微粒子である。
【0003】
光干渉膜による干渉色と金属微粒子による発色とを同系色とすることにより、反射光の鮮やかさを向上させることが提案されている。特許文献1には鮮やかさが改善した赤色又は黄色の光揮性顔料が開示されている。特許文献1の実施例1~4には、フレーク状基体の表面に干渉色が赤色となる厚さを有する酸化チタン膜が形成され、その上に赤色の金微粒子を付着させた光揮性顔料が開示されている。特許文献1の実施例5には、フレーク状基体の表面に干渉色が黄色となる厚さを有する酸化チタン膜が形成され、その上に黄色の銀微粒子を付着させた光揮性顔料が開示されている。
【0004】
特許文献2には、赤色の発色剤として用いられてきた金微粒子を用いて青色又は緑色の反射色の鮮やかさを改善する技術が開示されている。特許文献2の光揮性顔料は、干渉色が青色又は緑色となる厚さを有するようにフレーク状基体の表面に形成された酸化チタン膜と、酸化チタン膜に付着させてから加熱することにより凝集状態を変化させた金微粒子とを備えている。金微粒子は、加熱により凝集状態が変化し、青色又は緑色の反射光の鮮やかさを改善する発色剤となる。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2006-299051号公報
【文献】国際公開第2016/194352号
【発明の概要】
【発明が解決しようとする課題】
【0006】
光干渉による光揮性顔料の反射色は、観察する角度に応じて変化する。例えば、光干渉膜は、入射光の正反射方向で、人の肌に近い反射色が得られるように設計することができる。しかし、この光干渉膜を備えた光揮性顔料を含む膜を別の方向から観察すると、やや緑がかった反射色が観察されることがある。このような色調のシフト(以下、「カラーシフト」ともいう)は、化粧料に代表される一部の用途では不自然な印象を与える要因になるため、抑制することが望ましい。
【0007】
光干渉膜に金属微粒子を付着させた光揮性顔料では、金属微粒子の発色により、観察する角度に応じた反射光のカラーシフトが緩和される。しかし、特許文献1及び2に開示されているように、光干渉膜と金属微粒子とを備えた光揮性顔料は、これまでは正反射方向における反射光の鮮やかさの向上を目的として設計されてきた。このため、これらの光揮性顔料は、観察する角度に応じて反射光の輝度が大きく変化するものとなっており、この点で不自然な印象を十分解消するには至っていない。
【0008】
そこで本発明は、正反射方向への反射光に高い輝度を与えつつ、観察する角度による反射光の変化による不自然さを緩和することに適した光揮性顔料を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明は、フレーク状基体と、前記フレーク状基体の表面に形成された光干渉膜と、前記光干渉膜に付着した光散乱微粒子とを備えた光揮性顔料であって、
D65光源を用いて測定した反射光が、L*C*h表色系により表示して、100を超えるL*(15)、30未満のΔL*(h-s)、及び40°未満のΔh(h-s)により表示される光揮性顔料、を提供する。
ここで、前記L*(15)は、前記光源からの入射光の入射角が45°となるように前記光源を配置した状態で前記入射光が正反射する角度を0°、前記入射光の入射方向を90°とそれぞれ定義して設定した角度表示に基づいて、15°の方向への前記反射光のL*であり、
前記ΔL*(h-s)は、前記角度表示に基づいて、15°の方向への前記反射光のL*(15)と25°の方向への前記反射光のL*(25)との平均値L*(h)から、75°の方向への前記反射光のL*(75)と110°の方向への前記反射光のL*(110)との平均値L*(s)を差し引いた差分であり、
前記Δh(h-s)は、前記角度表示に基づいて、15°の方向への前記反射光のh(15)と25°の方向への前記反射光のh(25)との平均値h(h)と、75°の方向への前記反射光のh(75)と110°の方向への前記反射光のh(110)との平均値h(s)とを角度表示したときの角度の相違である。
【発明の効果】
【0010】
本発明によれば、正反射方向で観察する反射光の輝度の高さを維持しながら、観察する角度による反射光の変化、具体的には反射光の輝度及び色調の変化を抑制することに適した光揮性顔料が提供される。
【図面の簡単な説明】
【0011】
【発明を実施するための形態】
【0012】
以下、本発明の詳細を説明するが、以下の説明は、本発明を特定の実施形態に制限する趣旨ではない。
【0013】
本実施形態により提供される光揮性顔料は、フレーク状基体と、その表面に形成された光干渉膜と、光干渉膜に付着した光散乱微粒子とを備えている。以下、表面に光干渉膜が形成され、光干渉膜に光散乱微粒子が付着していない状態のフレーク状基体を「基体顔料」ということがある。
【0014】
(フレーク状基体)
フレーク状基体は、鱗片状基体等とも呼ばれる微小な板状の薄片である。フレーク状基体は、例えば、フレーク状ガラス、フレーク状アルミナ、雲母、タルク又はセリサイトである。フレーク状基体は、好ましくはフレーク状ガラス、フレーク状アルミナ又は雲母である。雲母は天然雲母であっても合成雲母であってもよい。以下、特に好ましいフレーク状基体であるフレーク状ガラスについて説明する。
【0015】
フレーク状ガラスを構成するガラス組成物は、特に制限はないが、通常、酸化ケイ素を主成分とし、酸化アルミニウム、酸化カルシウム、酸化ナトリウム等その他の金属酸化物成分をさらに含むものが用いられる。なお、本明細書では、「主成分」を質量基準で含有率が最大となる成分を意味する用語として用いる。ガラス組成物としては、ソーダライムガラス、Aガラス、Cガラス、Eガラス、ホウケイ酸ガラス、アルミノケイ酸ガラス等を例示できる。
【0016】
フレーク状ガラスの好ましい平均粒径は、1~1000μm、さらに3~500μm、特に3~200μmである。なお、フレーク状ガラスの平均粒径は、レーザ回折法により測定した光散乱相当径の粒度分布において、粒径が小さい側からの体積累積が50%に相当する粒径(D50)により定めることとする。フレーク状ガラスの好ましい厚みは、0.1~50μm、特に0.1~10μmである。なお、これらのうち少なくとも最も広い数値範囲は、フレーク状ガラス以外のフレーク状基体の好ましい平均粒径及び厚さでもある。
【0017】
フレーク状ガラスは、例えばブロー法により製造することができる。ブロー法とは、原料カレットを溶融し、溶融したガラスを円形スリットから連続的に取り出し、その際に円形スリットの内側に設けられたブローノズルから空気等の気体を吹き込んで溶融したガラスを膨らませてバルーン状とし、膨張して薄くなったガラスを粉砕してフレーク状(鱗片状)とする方法である。フレーク状ガラスとしては、例えば日本板硝子株式会社よりガラスフレーク(登録商標)シリーズとして販売されている市販品を使用することが可能である。
【0018】
フレーク状ガラスの表面は、雲母等の結晶性粒体と比較して平滑性に優れ、光を散乱させずに反射させる傾向が強い。また、フレーク状ガラスは透明であるために、フレーク状ガラスを基体とする光輝性顔料からは、半透明の結晶性粒体を用いたときに観察されることがある反射色の白濁が生じにくい。フレーク状ガラスを基体とする光輝性顔料からは、高い輝度感、澄んだ粒子感等の外観を生み出す優れた光反射特性が得られやすい。
【0019】
(光干渉膜)
光干渉膜は、光干渉効果により反射光に干渉色を生じさせるための膜である。光干渉膜は、例えば、酸化チタン、酸化ケイ素、酸化アルミニウム、酸化鉄、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化セリウム、酸化ニッケル、酸化クロム及び酸化バナジウムから選ばれる少なくとも1種の酸化物を含む、あるいは当該少なくとも1種の酸化物から構成された膜である。なお、本明細書では、酸化物の名称を、金属元素の酸化数を問わず、該当する化合物をすべて包含する趣旨で使用する。例えば、「酸化鉄」は、Fe2O3、Fe3O4、FeOをすべて含む意味である。
【0020】
光干渉膜は単層膜であっても多層膜であってもよい。好ましい単層の光干渉膜は、酸化チタン膜である。酸化チタンは、屈折率が高く、発色性に優れた膜の形成に適している。酸化チタンは、アナターゼ型、ブルーカイト型、ルチル型の3種の結晶型を有し、アナターゼ型及びルチル型が工業的に量産されている。好ましい酸化チタンの結晶型はルチル型である。ルチル型の酸化チタンは、光触媒活性が低いために光輝性顔料が添加される塗料等のマトリクス材料に影響を与えにくく、屈折率が最も高い。
【0021】
フレーク状基体上へのルチル型酸化チタン膜の成膜は、例えば特開2001-31421号公報、特開2003-12962号公報等に開示されている方法を参照して実施すればよい。上記公報に開示されている方法では、四塩化チタン等のチタン化合物を含む溶液中においてフレーク状ガラス上にルチル型酸化チタンが析出して被膜が形成される。チタン化合物を含む、温度55~85℃、pH1.3以下の溶液に、アルカリ性化合物又はアルカリ性溶液を添加することにより、ルチル型酸化チタンをフレーク状ガラス上に析出させることができる。予めフレーク状ガラスにスズ又はスズ化合物を付着させておくと、ルチル型酸化チタンの析出は促進される。この方法は、予め金微粒子を付着させたフレーク状ガラス上にルチル型酸化チタン膜を形成する手法として用いることもできる。この方法を用いれば、結晶転移のための加熱を必要とせずにルチル型酸化チタン膜を形成することができる。
【0022】
ルチル型酸化チタン膜が表面に形成されたフレーク状ガラスは、日本板硝子株式会社よりメタシャイン(登録商標)チタニアコートシリーズとして販売されている。基体顔料としてこのような市販品を使用してもよい。
【0023】
酸化チタン膜による光干渉により、この膜が形成されたフレーク状基体からは酸化チタン膜の膜厚に応じた干渉色が観察される。フレーク状ガラス上に成膜した酸化チタン膜からは、例えば、厚み100nm程度で黄色、厚み130nm程度で赤色、厚み160nm程度で青色、厚み175nm程度で緑色の干渉色が得られる。ただし、成膜条件その他によっては、酸化チタン膜の膜厚が同じであっても色調が微妙に異なることはある。
【0024】
多層膜である光干渉膜は、例えば、単層膜として上記に例示した膜が積層されて構成される。光干渉膜は、多層膜である場合にも酸化チタン層を含むことが好ましい。多層膜である光干渉膜を備えた基体顔料の積層構成を以下に例示する。
・フレーク状基体/酸化ケイ素/酸化チタン
・フレーク状基体/酸化ケイ素/酸化鉄
・フレーク状基体/酸化ケイ素/酸化チタン/酸化鉄
・フレーク状基体/酸化ケイ素/酸化チタン/酸化アルミニウム
・フレーク状基体/酸化ケイ素/酸化チタン/酸化ケイ素/酸化チタン
・フレーク状基体/酸化チタン/酸化鉄
・フレーク状基体/酸化チタン/酸化アルミニウム
・フレーク状基体/酸化チタン/酸化ケイ素/酸化チタン
・フレーク状基体/酸化錫/酸化チタン
・フレーク状基体/酸化アルミニウム/酸化チタン
・フレーク状基体/酸化鉄/酸化チタン
各層はそれぞれ公知の方法によって成膜すればよい。
【0025】
上記積層構成において「/」は層の境界を示す。各層は、表示した酸化物を主成分とする層であってもよく、表示した酸化物から構成された層であってもよい。なお、光干渉膜は好ましくはフレーク状基体の表面全体を覆うように形成されるが、上記の表示では、便宜上、フレーク状基体の一方の主面上の多層膜のみが記載されている。
【0026】
(光散乱微粒子)
光干渉膜における多重干渉によって生じた干渉色は、光干渉膜への光の入射角に応じて光が膜を通過する距離が変わるために、観察する角度によってその色調が相違する。観察角度の相違による色調の変化(カラートラベル)は、観察者の注意を惹く要因になり得るが、同時に不自然な印象を与える要因にもなる。このため、化粧料に代表される一部の用途においては、光揮性顔料のカラートラベルを小さくすることが望ましい。主反射方向への干渉光と同系色の反射光を生じさせて、干渉光の変化による影響を相対的に小さくすればカラートラベルは相対的に小さくなる。干渉光以外の反射光としては、特許文献1及び2に開示されている金属微粒子による散乱光が挙げられる。金属微粒子を付加する手法は、反射光の鮮やかさの向上のために開発された技術であるが、カラートラベルの抑制にも有効である。しかし、本発明者が確認したところによると、この手法により干渉光と散乱光とを同系色としてカラートラベルを小さくすると、膜の観察角度が変わるにつれて生じる反射光の輝度L*の変化ΔL*が拡大する。色調の変化が抑制されたとしても輝度の変化が過大となったのでは、観察者はやはり不自然な印象を受けることになる。
【0027】
本発明者の検討によると、金属微粒子の付加に伴う反射光の輝度の変化の抑制は、基体顔料の表面における金属微粒子の凝集を緩和することにより実現できる。金属微粒子の部分的な凝集を防止するための具体的な方法の一つは、金属微粒子の供給源である金属コロイド溶液におけるコロイド粒子の分散性を向上させることである。この観点からは、金属コロイド溶液としては、コロイド粒子の安定性の指標となるゼータ電位の絶対値が高いものが適している。
【0028】
市販の金属コロイド溶液のゼータ電位は、コロイド粒子の粒径が小さいものについては十分に大きくない。粒径10nm程度以下の金属コロイド粒子を含む市販のコロイド溶液は、pH7となるように十分に希釈して測定したゼータ電位の絶対値が概ね40mV未満である。微粒子の種類によるものの、反射光の輝度の変化を抑制するためには、上記と同様にして測定したコロイド溶液のゼータ電位の絶対値は50mV程度以上が望ましい。しかし、市販されている金属コロイド溶液のゼータ電位の絶対値は、通常、コロイド粒子の粒径50nm程度以下の範囲ではこれよりも小さくなる。市販品のゼータ電位の絶対値が小さいのは、微小なコロイド粒子には分散剤が付着しにくいこと、一般的な用途ではゼータ電位の絶対値を上記程度にまで大きくすることまでは望まれていないことがその要因になっていると考えられる。したがって、金属コロイド溶液の場合には、市販品をそのまま使用すると、基体顔料の表面における金属微粒子の分散状態を十分に良好に保つことはできない。凝集を十分に防ぐことができる金属コロイド溶液の作製例は実施例の欄に記述されている。
【0029】
なお、コロイド溶液のゼータ電位は、コロイド粒子の粒径だけでなく、コロイド溶液のpHにも依存する。一般的に、金属コロイド粒子を含むコロイド溶液では、pHが増加するにつれて、ゼータ電位が低下する。例えば、特開2011-190535号公報の表2には、個別に調製された(市販品でない)銀コロイド溶液について、pHが増加するにつれて、ゼータ電位が-24mV程度から-44mV程度まで低下することが開示されている。しかし、この銀コロイド溶液が-44mV程度のゼータ電位を示すのは、あくまで銀コロイド溶液のpHが10のときである。この銀コロイド溶液のpHが7付近であるとき、銀コロイド溶液のゼータ電位は、-38mV程度である。
【0030】
光輝性顔料の反射色の彩度向上という観点からは、金属微粒子の部分的凝集は好ましい結果をもたらすことがある(特許文献2)。これに対し、観察角度による反射光の輝度の変化を抑制する観点からは、金属微粒子の凝集は避けるべきである。
【0031】
光散乱微粒子は、金属微粒子以外の微粒子であってもよく、例えば、無機化合物微粒子又は有機化合物微粒子であり得る。非金属微粒子は、反射光の鮮やかさの向上には金微粒子を始めとする金属微粒子ほどには適していないが、観察角度による反射光の輝度の変化を抑制することには適した材料である。非金属微粒子を含む市販のコロイド溶液には、ゼータ電位の絶対値が十分に高い(例えば50mV以上の)製品も存在するが、そうでないものも存在する。非金属微粒子の供給源として市販のコロイド溶液を用いる場合には、そのゼータ電位の絶対値に基づいて適切な製品を選択するべきである。
【0032】
光散乱微粒子として適した金属微粒子としては、金微粒子、白金微粒子及び銀微粒子を例示できるが、これらに制限されるわけではなく、求められる色調等によってこれら以外の微粒子を用いてもよい。ただし、上記に例示した貴金属微粒子は、相対的に劣化しにくく、これらを用いて実現できる色調に関しては使用が望ましい材料である。例えば、黄色から橙色にかけての色調の発現には、銀微粒子が適している。光散乱微粒子として非金属微粒子を使用する場合は、市販されている顔料から、色調、粒径、コロイド溶液のゼータ電位等を参照して適切な製品を適宜選択して用いるとよい。黄色から赤色にかけての色調を有する顔料としては、黄色酸化鉄、赤色酸化鉄、ジスアゾイエロー、ジスアゾオレンジ、ナフトールレッド、キナクリドンレッドを挙げることができる。また、青色系の色調を有する顔料としてはフタロシアニンブルーを、緑色系の色調を有する顔料としてはフタロシアニングリーンを、紫系の色調を有する顔料としてはジオキサジンバイオレットを、黒色系の色調を有する顔料としてはカーボンブラックを、それぞれ例示できる。
【0033】
光散乱微粒子の平均粒径は、1nm~50nm、特に5nm~30nmが好ましく、10nm~30nmであってもよい。付着した光散乱微粒子の平均粒径は、透過型電子顕微鏡(TEM)を用いて測定することができる。この測定では、10~20個、好ましくは100個の微粒子の粒径を測定してその平均値を平均粒径とするとよい。一般に、同量を付着させることを前提にすると、粒径が相対的に小さい光散乱微粒子からはより高い光散乱効果が得られる。したがって、輝度の相違ΔL*を抑制する観点からは粒径が小さい微粒子が適している。しかし、正反射方向の反射光の輝度を向上させるためには、光散乱微粒子の粒径は小さすぎないことが望ましい。
【0034】
光揮性顔料において、光散乱微粒子は、質量基準で、フレーク状基体と光干渉膜とから構成された基体顔料に対し、0.05~1%、さらには0.1~0.6%、特に0.15~0.4%とするとよい。付着量が多すぎると、粒子の被覆によって光干渉膜による干渉光が観察されにくくなる。
【0035】
光散乱微粒子は、その散乱光の色調が光干渉膜による干渉光の色調に近いものとすることが望ましい。具体的には、フレーク状基体と光干渉膜とから構成された基体顔料についてh(15)と同様に定義したhs(15)と、光散乱微粒子についてh(15)と同様に定義した色相角hf(15)とを角度表示したときの角度の相違は、60°以下、さらには40°以下、例えば0°~20°であることが好ましい。
【0036】
(光輝性顔料)
D65光源を用いて測定した本実施形態の光揮性顔料の反射光は、L*C*h表色系により表示して、100を超えるL*(15)、30未満のΔL*(h-s)、及び40°未満のΔh(h-s)により表示される。
【0037】
反射光の角度表示は
図1に示した配置に基づいている。光源1は、光源1から対象物2への光が入射角45°で入射して、所定の正反射方向で観察されるように配置される。正反射方向を0°、光源1からの光が入射する方向を90°と定義して角度が表示される。角度15°及び25°では正反射近傍の方向(ハイライト)の反射光が測定され、角度75°及び110°では正反射する光の影響を受けない方向(シェード)の反射光が測定される。角度θの輝度及び色相角は、それぞれL
*(θ)、h(θ)と表記される。
【0038】
L*(15)は、角度15°における輝度であり、100を超えることがより好ましく、105を超えることが特に好ましい。この程度の高い輝度は、顔料が添加される製品に「光揮性」をもたらす。L*(15)は、その上限が制限されるわけではないが、115以下であってもよい。
【0039】
ΔL*(h-s)は、ハイライトにおける輝度L*(h)からシェードにおける輝度L*(s)を差し引いた値である。L*(h)はL*(15)とL*(25)との平均値であり、L*(s)はL*(75)とL*(110)との平均値である。ΔL*(h-s)は、30未満が好ましく、28未満がより好ましく、25以下が特に好ましい。この程度に小さいΔL*(h-s)と、次に述べる小さいΔh(h-s)とにより、観察する角度による反射光の不自然な急変が緩和され、光揮性顔料が添加される製品に自然な光揮性が与えられる。なお、ΔL*(h-s)は0であってもよいが、15以上であったほうが好ましい外観が得られる場合がある。
【0040】
Δh(h-s)は、ハイライトにおける色相角h(h)とシェードにおける色相角h(s)との角度の相違である。h(h)はh(15)とh(25)との平均値であり、h(s)はh(75)とh(110)との平均値である。Δh(h-s)は、40°未満が好ましく、35°未満がより好ましく、30°未満であってもよい。Δh(h-s)は180°以下の角度として表示される。例えば、h(h)が38(°)でh(s)が359(°)である場合のΔh(h-s)は、39°であって321°ではない。なお、Δh(h-s)は0であってもよいが、1以上であったほうが好ましい外観が得られる場合がある。
【0041】
光揮性顔料のh(15)は、用途に応じて適宜設定すればよいが、例えば化粧料の用途においては、製品の種類によっては黄色から橙色にかけての色調となるように、20~90、さらには30~80とすることが望ましい。この色相角の実現に適した光干渉膜は、例えば、厚さが105nm~125nm、好ましくは110nm~120nmの単層膜である酸化チタン膜である。
【0042】
なお、光揮性顔料の反射光の特性は、透明樹脂に分散させた塗膜の状態で測定することが適切である。具体的には、光揮性顔料を全体の3質量%の比率で含有する透明アクリル樹脂塗料からなり、(75±5)μmの厚さを有するようにフィルムアプリケータを用いて白色の平面上に形成された塗膜を対象物として、反射光を測定するとよい。なお、フィルムアプリケータを用いて上記程度の厚みとなるように形成した塗膜では、光揮性顔料はその主面が塗布面に実質的に平行になるように配列する。
【0043】
(顔料含有組成物及び顔料含有塗装体)
本発明による光輝性顔料は、各種組成物に配合されることにより、正反射方向では高い輝度を示しながらも自然な発色を示す。本発明は、その別の側面から、本発明による光輝性顔料を含む顔料含有組成物を提供する。顔料含有組成物としては、塗料、インキ、化粧料及び樹脂組成物から選ばれる少なくとも1つ、好ましくは化粧料、を例示できる。樹脂組成物としては、光輝性顔料と共に、PMMA及び/又はポリカーボネートである樹脂を含むものを例示できる。樹脂組成物は、人造大理石成型品であってもよい。
【0044】
また、本発明は、さらに別の側面から、基材と、本発明による光輝性顔料を含む、基材上に形成された塗膜とを備えた顔料含有塗装体を提供する。顔料含有塗装体は、塗装紙であってもよい。この場合の基材は紙であるが、基材は紙に限られるわけでなく、金属、樹脂、セラミックスその他であってもよい。塗膜は、本発明による顔料含有組成物から構成されていてもよく、本発明による顔料含有組成物を基材上に塗布することによって形成されていてもよい。
【0045】
顔料含有組成物及び顔料含有塗装体の好ましい実施形態や具体例は、本出願人が過去に提出してきた出願の公開公報(例えば特開2008-63525号公報)に開示されているとおりであり、同様の組成物や塗装体自体はよく知られているから、ここでは、化粧料に関する以下の記載を除いて、その説明を省略する。
【0046】
化粧料としては、フェーシャル化粧料、メーキャップ化粧料、ヘア化粧料等が挙げられる。特に、アイシャドー、ネイルエナメル、アイライナー、マスカラ、口紅、ファンシーパウダー等のメーキャップ化粧料において、本実施形態の光輝性顔料は特に好適に使用される。化粧料の形態としては、特に限定されないが、粉末状、ケーキ状、ペンシル状、スティック状、軟膏状、液状、乳液状、クリーム状等が挙げられる。本実施形態の適用が特に好ましい化粧料は、ファンデーション、フェイスパウダー等のフェーシャル化粧料である。
【実施例】
【0047】
(実施例1;銀微粒子)
3-アミノ-1-プロパノール(東京化成製)179.1g、純水249.9g、カゼイン(キシダ化学製)12.1gを1Lビーカーに投入し、撹拌した。ここに、硝酸銀(大浦貴金属工業製)2.18gと純水200gとを混合したものを投入し、撹拌した。引き続き、ジメチルアミンボラン(和光純薬製)0.16gと純水200gとを混合したものを投入し、30分撹拌した。ここに酢酸を添加してpHを4.4に調整し、銀を沈殿させた。上澄み液を除去し、純水洗浄後、2%アンモニア水溶液500mlを加えて撹拌することにより、銀を分散させ、銀コロイド溶液を得た。
【0048】
上記で作製した銀コロイド溶液12.5g、純水50g、基体顔料5gをビーカーに投入した。用いた基体顔料は、フレーク状ガラス上に厚み約110nmのルチル型酸化チタン膜を形成したフレーク状ガラスである。なお、この基体顔料を構成するフレーク状ガラスは、平均粒径約15μm、厚さ約0.3μmである。ビーカー内で攪拌羽根を用いて銀コロイド溶液及び基体顔料を攪拌しながら塩酸を投入してpHを2.0~4.5に調整し、10分間攪拌を行った。その後、ろ過により上澄み液から光輝性顔料を分離し、光輝性顔料を180℃で12時間乾燥した。こうして光輝性顔料を得た。
【0049】
(実施例2;黄色酸化鉄微粒子)
EMF OCHER HLコロイド溶液(東洋インキ製)を顔料濃度が0.5%になるように純水で希釈した。この0.5%コロイド溶液1.0g、純水50g、基体顔料2gを用いた以外は実施例1と同様の方法で光輝性顔料を得た。
【0050】
(実施例3;ジスアゾイエロー微粒子)
EMF YELLOW HGコロイド溶液(東洋インキ製)を顔料濃度が0.3%になるように純水で希釈した。この0.3%コロイド溶液1.7g、基体顔料2gを用いた以外は実施例1と同様の方法で光輝性顔料を得た。
【0051】
(実施例4;ナフトールレッド微粒子)
EMF RED HRコロイド溶液(東洋インキ製)を顔料濃度が0.5%になるように純水で希釈した。この0.5%分散液1.0g、基体顔料2gを用いた以外は実施例1と同様の方法で作製し、光輝性顔料を得た。
【0052】
(比較例1;銀微粒子)
銀コロイド作製時に2%アンモニア水溶液500mlに代えて0.4%アンモニア水溶液500mlを加えた以外は実施例1と同様の方法で光輝性顔料を得た。
【0053】
(比較例2;金微粒子)
塩化金酸四水和物(粉末、大浦貴金属工業製、純度99.0%以上)100gを480gの水で希釈し、8.24質量(wt)%の塩化金酸溶液を作製した。また、クエン酸ナトリウム(ナカライテスク製)を純水で10wt%に希釈したクエン酸ナトリウム溶液を作製した。1Lの丸底フラスコに17.24wt%の塩化金酸溶液2.0gと純水994.99gとを投入し、100℃に保持しながら30分加熱還流した。引き続き、丸底フラスコに10wt%クエン酸ナトリウム溶液3.01gを投入し、100℃に保持しながらさらに30分加熱還流した後、丸底フラスコを水中で室温まで冷却して、金コロイド溶液を得た。
【0054】
上記で作製した金コロイド溶液10g、基体顔料2gを用いた以外は実施例1と同様の方法で光輝性顔料を得た。
【0055】
上記実施例及び比較例から得た光輝性顔料の粉体が透明アクリル樹脂に分散した塗布体を作製した。塗布体の作製にはフィルムアプリケータ(安田精機製作所製ドクターブレード)を用いた。フィルムアプリケータに投入する塗布用組成物は、粉体が全体の3質量%となるように透明アクリル樹脂塗料(日本ペイント製Nアクリル オートクリヤースーパー)に混合して調製した。塗布用組成物は、白地の紙の上に塗布し、常温で乾燥させた。なお、塗膜は9mil(約228.6μm)となるように形成したが、乾燥後の塗膜の厚さは70~80μmの範囲となった。白地の紙によって提供される白色の平面のL*(15)の値は、94.1であった。
【0056】
形成した塗布体について、マルチ-アングル測色計BYK-mac(BYK-GardnerGmbH製)を用いて、光源を塗布体への光が入射角45°で入射するように配置し、輝度L*及び色相角hを測定した。使用した光源はD65光源である。測定は、上述したとおりの角度表示に従い、15°、25°、75°及び110°の角度において実施した。また、各実施例及び比較例において使用した光散乱微粒子の色相角を測定した。この測定は、微粒子の0.1%希釈液を透明ガラス容器に入れ、分光測色計(コニカミノルタ製CM-5)を用いて実施した。測定した角度は上記角度表示に従って15°とした。
【0057】
また、ゼータ電位測定装置(大塚電子社製ELS-6000)を用いて、基体顔料と接触させたコロイド溶液のゼータ電位を測定した。ゼータ電位の測定は、純水を用いて10000倍に希釈したコロイド溶液について実施した。希釈した各コロイド溶液はいずれもそのpHが7であった。
【0058】
測定結果を表1に示す。実施例1~4では、ΔL*(h-s)、Δh(h-s)がともに小さいために、角度を変えながら目視により観察すると、ソフトフォーカス効果が高い反射光が観察された。また、正反射方向では高い輝度も観察された。比較例1~2では、カラーシフトは抑えられていたものの、観察する角度による輝度の相違ΔL*(h-s)が大きく、その反射光は人為的な印象を拭えず、やや不自然であった。
【0059】