IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ イラミーナ インコーポレーテッドの特許一覧

<>
  • 特許-統合マニホルドを有するフローセル 図1A
  • 特許-統合マニホルドを有するフローセル 図1B
  • 特許-統合マニホルドを有するフローセル 図2
  • 特許-統合マニホルドを有するフローセル 図3
  • 特許-統合マニホルドを有するフローセル 図4
  • 特許-統合マニホルドを有するフローセル 図5
  • 特許-統合マニホルドを有するフローセル 図6
  • 特許-統合マニホルドを有するフローセル 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2021-12-28
(45)【発行日】2022-01-20
(54)【発明の名称】統合マニホルドを有するフローセル
(51)【国際特許分類】
   G01N 35/08 20060101AFI20220112BHJP
   G01N 37/00 20060101ALI20220112BHJP
【FI】
G01N35/08 A
G01N37/00 101
【請求項の数】 12
(21)【出願番号】P 2019571238
(86)(22)【出願日】2019-04-30
(65)【公表番号】
(43)【公表日】2020-11-19
(86)【国際出願番号】 US2019029783
(87)【国際公開番号】W WO2019213007
(87)【国際公開日】2019-11-07
【審査請求日】2020-03-13
(31)【優先権主張番号】62/666,897
(32)【優先日】2018-05-04
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】514202402
【氏名又は名称】イラミーナ インコーポレーテッド
(74)【代理人】
【識別番号】100147485
【弁理士】
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【弁護士】
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100119530
【弁理士】
【氏名又は名称】冨田 和幸
(72)【発明者】
【氏名】スズ-チン リン
(72)【発明者】
【氏名】ジェイ テイラー
(72)【発明者】
【氏名】ミンソン リー
(72)【発明者】
【氏名】ジェニファー フォーリー
(72)【発明者】
【氏名】ウェスリー コックス-ムラナミ
(72)【発明者】
【氏名】シリル ドラットル
(72)【発明者】
【氏名】タルン クラナ
(72)【発明者】
【氏名】ポール クリヴェッリ
【審査官】福田 裕司
(56)【参考文献】
【文献】特開2007-209910(JP,A)
【文献】米国特許出願公開第2006/0019273(US,A1)
【文献】特表2010-502217(JP,A)
【文献】国際公開第2017/065163(WO,A1)
【文献】特表2011-525109(JP,A)
【文献】特開2006-043696(JP,A)
【文献】特開2002-236131(JP,A)
【文献】特開2018-057366(JP,A)
【文献】特開2003-202347(JP,A)
【文献】特開2001-004628(JP,A)
【文献】特開2011-022031(JP,A)
【文献】米国特許出願公開第2018/0280973(US,A1)
【文献】米国特許出願公開第2015/0060303(US,A1)
【文献】米国特許出願公開第2013/0345096(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 35/00~37/00
(57)【特許請求の範囲】
【請求項1】
フローセルであって、次の:
複数の入口ポートであり、複数の入口ポートの各入口ポートは複数の試薬の対応する試薬からのフローセルへの試薬のフローを受け入れるための、
複数の入口ポート;
フローセル中から試薬のフローを通すための出口ポート;および
複数の入口ポートの各入口ポートと出口ポートとの間に位置付けられ、およびそれらと流体連通するフローチャネルを含み、フローチャネルは次の:
共通ラインと流体連通する複数のマニホルドブランチを有するマニホルドセクションであり、複数のマニホルドブランチの各マニホルドブランチは複数の入口ポートの対応する入口ポートに接続されるものである、マニホルドセクション、および
共通ラインおよび出口ポートと流体連通する検出セクションであり、検出セクションは検出セクションにおいて位置付けられる複数の試薬と分析対象との間で複数の異なる化学反応を実行するために動作可能である、検出セクションを含むものであり、
ここで、マニホルドセクションの複数のマニホルド分岐は、第1の高さを有し、検出セクションは、第2の高さを有し、第1の高さは、第2の高さよりも低く、
マニホルドセクションは、検出セクションの掃引容量よりも少なくとも10倍小さい掃引容量を有する、
フローセル。
【請求項2】
フローチャネルのマニホルドセクションおよび検出セクションは実質平坦である、請求項1のフローセル。
【請求項3】
複数のマニホルドブランチは複数のフォークトジャンクションを通して共通ラインと流体連通し、各々の複数のフォークトジャンクションにより試薬の対応するフローが共通ラインを通しておよび検出セクション中に向けられ、少なくとも一のフォークトジャンクションはそれぞれのマニホルドブランチ間に鋭角を形成する、請求項1のフローセル。
【請求項4】
次の:
フローチャネルの上面を規定する上部層;
フローチャネルの底面を規定する底部層;および
フローチャネルのジオメトリーを規定する中間層
を含む、請求項1のフローセル。
【請求項5】
機器であって、次の:
複数の試薬ウェルであり、複数の試薬ウェルの各試薬ウェルはその中に試薬を含むために動作可能であるものである、複数の試薬ウェル;
複数のバルブであり、複数のバルブの各バルブは複数の試薬ウェルの対応する試薬ウェルと流体連通し、複数のバルブの各バルブは複数の試薬ウェルの対応する試薬ウェルからの試薬のフローをコントロールするために動作可能であるものである、複数のバルブ;および
フローセルであり、機器に流体的に接合する(fluidically couple)ために動作可能であり、フローセルは、次の:
複数の入口ポートであり、各入口ポートは複数のバルブの対応するバルブと流体連通し、複数の入口ポートの各入口ポートは複数の試薬ウェルの対応する試薬ウェルから試薬のフローを受け入れるための、複数の入口ポート;
フローセル中から試薬のフローを通すための出口ポート;および
複数の入口ポートの各入口ポートと出口ポートとの間に位置付けられ、およびそれらと流体連通するフローチャネルを含む、フローセル
を含むものであり、フローチャネルは、次の:
共通ラインと流体連通する複数のマニホルドブランチを有するマニホルドセクションであり、各ブランチは複数の入口ポートのうちのある入口ポートに接続されるものである、マニホルドセクション、および
共通ラインおよび出口ポートと流体連通する検出セクションであり、検出セクションは、検出セクションにおいて位置付けられる複数の試薬と分析対象との間で複数の異なる化学反応を実行するために動作可能である、検出セクションを含み、
ここで、マニホルドセクションの複数のマニホルド分岐は、第1の高さを有し、検出セクションは、第2の高さを有し、第1の高さは、第2の高さよりも低く、
マニホルドセクションは、検出セクションの掃引容量よりも少なくとも10倍小さい掃引容量を有する、機器。
【請求項6】
フローチャネルのマニホルドセクションおよび検出セクションは実質平坦である、請求項5の機器。
【請求項7】
マニホルドブランチは、試薬の各フローが、共通ラインを通しておよび検出セクション中に向けられる複数のフォークトジャンクションを通して共通ラインと流体連通し、フォークトジャンクションはマニホルドブランチ間で鋭角だけを形成する、請求項5の機器。
【請求項8】
次の:
フローチャネルの上面を規定する上部層;
フローチャネルの底面を規定する底部層;および
フローチャネルのジオメトリーを規定する中間層;
を含む請求項6の機器。
【請求項9】
フローセルは機器内に位置付けられる、請求項5の機器。
【請求項10】
方法であって、次の:
フローセルを機器に接続することであり、フローセルは、複数の入口ポート、出口ポートおよびそれらの間で流体連通するフローチャネルを含み、フローチャネルはマニホルドセクションおよび検出セクションを含み、
ここで、マニホルドセクションは、第1の高さを有し、検出セクションは、第2の高さを有し、第1の高さは、第2の高さよりも低く、
マニホルドセクションは、検出セクションの掃引容量よりも少なくとも10倍小さい掃引容量を有する、こと;
複数の試薬の第一の試薬を選ぶために機器の複数のバルブの第一のバルブを操作することであり、各試薬は、機器に流体的に結合したカートリッジまたは機器の一方の試薬ウェルにおいて位置付けられること;
第一の試薬を複数の入口ポートの第一の入口ポートを通しておよびフローセルのフローチャネルを通してポンプで送ること;
フローチャネルの検出セクションにおいて位置付けられる第一の試薬と分析対象との間で第一の化学反応を実行することであり、そこで第一の化学反応の完了後、少なくともいくらかの第一の試薬がフローチャネルにおいて残りの試薬として残ること;
複数の試薬の後続の試薬を選ぶために複数のバルブの後続のバルブを操作すること;および
後続の試薬の合計フラッシュ容量がフローチャネルの掃引容量の2.5倍に等しいか、またはそれ未満であるように、複数の入口ポートの後続の入口ポートを通しておよびフローチャネルから残りの試薬を流し出すためにフローチャネルを通して後続の試薬をポンプで送ること
を含む、方法。
【請求項11】
出セクションにおいて位置付けられる後続の試薬と分析対象との間で後続の化学反応を実行することを含み、そこで後続の化学反応の完了後、後続の試薬の少なくともいくらかはフローチャネルにおいて第二の残りの試薬として残ることを含む、請求項10の方法。
【請求項12】
後続のバルブの動作を繰り返すこと、後続の試薬をポンプで送ることおよび後続の化学反応を実行することを含む、請求項11の方法。
【発明の詳細な説明】
【関連出願の相互参照】
【0001】
この出願は、米国仮出願第62/666,897号の、2018年5月4日に出願された「Flow Cell with Integrated Manifold(統合マニホルドを有するフローセル)」と題するものの非仮出願(ノン-プロビジョナル)であり、およびその出願日の利益を主張し、その内容を参照することによってここに組み込む。
バックグラウンド
【0002】
マイクロ流体デバイスを使用する多くの機器は、様々な試薬を含む複数の試薬ウェルを含む場合があり、そこで各試薬ウェルはロータリーセレクターバルブに接続される。ロータリーバルブは、試薬のいずれか一を選ぶために各ウェルチャネルと整列される。次いで、共通のラインが、選定した試薬をロータリーバルブからフローセルの入口ポートに経路指定するために利用される。分析対象、例えば、DNAセグメント、核酸鎖またはその種の他のものなどのようなものは、フローチャネルにおいて位置付けられてもよい。選ばれる試薬は、分析対象に対して様々な制御された化学反応を実行するためにフローセルを通して流れ得る。
【発明の概要】
【発明が解決しようとする課題】
【0003】
試薬の交差汚染を最小限にし、およびいくらかの場合においてはさらに完全に排除するために、化学反応のシーケンスにおいて利用される各試薬は、フローセルの外部にある共通ライン(即ち、外部共通ライン)およびフローセルの双方中から、シーケンスにおいて次の試薬(またはフラッシング試薬)によって予め定めるフラッシュ効率にまでフラッシュされることが多い。
【0004】
しかしながら、そのような順序付けられた化学反応において利用される試薬は非常に高価であり得る。さらに、フローセルのフローチャネルにおいてそのようなレベルのフラッシュ効率を達成するには、フローチャネルの掃引容量の何倍もの量の試薬がフローチャネルを通してフラッシングされるよう求められることが多い。例えば、フローチャネルにおいて配置される試薬の予め定める濃度のフラッシュ効率を達成することは、フローチャネルを通してその試薬の容量をフラッシングすることを含み得、それはフローチャネルの掃引容量の5ないし10倍である。
【0005】
試薬のそのような高容量、そして従ってそのような高フラッシュ係数が関与する理由の一つは、機器において外部共通ラインの掃引容量が、フローチャネルの掃引容量と比べてしばしば高いことである。多くの場合、フローセルの外部にある共通ラインの掃引容量は、フローセル自体の掃引容量の2倍以上であり、そこで連続化学反応に伴うフラッシュ効率を達成するために双方をフラッシュし得る。
【0006】
加えて、外部共通ラインを通したフローパスおよびフローセルのフローチャネルを通したフローパスは、しばしば同一平面内にない。例えば、共通ラインは、フローセルおよび/またはロータリーバルブに接続するために、フローパスにおいて鋭い曲がり(例は、直角またはそれよりも大きいもの)を引き起こすフィッティング(fittings、装具などとも言う)、マニホルド、層、材料またはその種の他のものなどを含むかもしれない。また、一例として、試薬ウェルは、機器内のフローセルとは異なるレベルにて位置付けられることが多く、および外部共通ラインはこの差を調整し得ることが多い。
【0007】
これらのレベル変化および鋭い曲がりは、フローパスの大部分を通した試薬フローのものに比べて著しくより一層遅いフローのエリア(ここでは、デッドエリア)の一因となることがある。デッドエリアは、ゆっくりと移動する層流、傍流または渦のエリアであり得、それは試薬を閉じ込めることがあり、および試薬を洗い流すのを困難にする場合がある。いくらかの例では、これらのデッドエリアは、それらのデッドエリアにおいて捕捉された以前の化学反応後に残る以前に位置付けられた試薬(例は、残留試薬)を流し出すために、著しい量のフラッシング試薬容量を必要とされ得る。さらに、共通ラインとロータリーバルブとの間、または共通ラインとフローセルとの間のフィッティングおよび他の機械的接続もまた、追加のデッドエリアの増加に寄与し、それは一定のフラッシュ効率を達成するために含まれるフラッシング試薬の容量を増やすことがある。
概要説明
【課題を解決するための手段】
【0008】
本開示は、先行技術と比較して、フローセルをフラッシュし、およびフローセルのフローチャネルにおいて予め定めるレベルの試薬濃度(即ち、フラッシュ効率)を達成するのに関与する試薬フローの容量(即ち、合計フラッシュ容量)を低減するための器具および方法の例を提供する。より一層具体的には、本開示は、フローセルの例を提供し、そこでは、フローチャネルが、検出セクションとその中に一体化されたマニホルドセクションとを有する。検出セクションは、分析対象および様々な試薬間で化学反応が実行されるフローチャネルのエリアである。マニホルドセクションは、検出セクションに入る前に試薬フロー用の内部共通ラインエリアを提供する。
【0009】
本開示は、一定のフラッシュ効率を達成するのに使用される合計フラッシュ容量を低減するために、マニホルドセクションが検出セクションに比べて小さい例を提供する。本開示は、試薬フローのデッドエリアを減らすのを助けるために、マニホルドセクションおよび検出セクションが同じ平面にあり、または平坦である例を提供する。さらに、本開示は、試薬フローのデッドエリアを減らすのをまた助けるために、単に鋭角にて形成される試薬フローパスジャンクションを有するマニホルドセクションの例を提供する。
【0010】
本開示の一以上の態様に従うフローセルには、複数の試薬の一からフローセルへの試薬のフローを受け入れるためにサイズ設定される複数の入口ポートが含まれる。フローセルの出口ポートは、フローセル中から試薬の各フローを通すためにサイズ設定される。フローセルのフローチャネルは、各入口ポートと出口ポートとの間に位置され、およびそれらと流体連通する。フローチャネルには、マニホルドセクションおよび検出セクションが含まれる。マニホルドセクションは、共通ラインと流体連通する複数のマニホルドブランチを有し、そこで各ブランチは各入口ポートの一に接続される。検出セクションは共通ラインおよび出口ポートと流体連通する。検出セクションは検出セクションにおいて位置付けられる複数の試薬と分析対象との間で複数の異なる化学反応を実行するために動作可能である。
【0011】
本開示の一以上の態様に従う機器には、複数の試薬ウェルが含まれる。各試薬ウェルは、その中に配置された複数の試薬のある試薬を含むために動作可能である。機器の複数のバルブは、各試薬ウェルの一と流体連通する。各バルブは、バルブが連絡する試薬ウェルからの試薬のフローをコントロールするために動作可能である。フローセルは機器内に位置付けられる。フローセルには、複数の入口ポート、出口ポート、およびそれらの間に位置付けられるフローチャネルが含まれる。各入口ポートは各バルブの一と流体連通し、および各入口ポートは試薬の各フローの一を受け入れるためにサイズ設定される。出口ポートはフローセル中から試薬の各フローを通すためにサイズ設定される。フローチャネルは、各入口ポートおよび出口ポートと流体連通する。フローチャネルには、マニホルドセクションと検出セクションとが含まれる。マニホルドセクションは共通ラインと流体連通する複数のマニホルドブランチを有し、そこで各ブランチは入口ポートに接続される。検出セクションは、共通ラインおよび出口ポートと流体連通する。検出セクションは、検出セクションにおいて位置付けられる複数の試薬と分析対象との間で複数の異なる化学反応を実行するために動作可能である。
【0012】
本開示の一以上の態様に従う方法には、フローセルを機器に接続することが含まれる。フローセルには、複数の入口ポート、出口ポート、およびそれらの間で流体連通するフローチャネルが含まれる。フローチャネルには、マニホルドセクションおよび検出セクションが含まれる。機器の複数のバルブの第一のバルブは、複数の試薬の第一の試薬を選ぶために操作される。各試薬は、機器のそれぞれの試薬ウェルにおいて位置付けられる。第一の試薬は、複数の入口ポートの第一の入口ポートを通して、およびフローセルのフローチャネルを通してポンプで送られる。第一の化学反応は、フローチャネルの検出セクションにおいて位置付けられた第一の試薬と分析対象との間で実行される。第一の化学反応の完了後、第一の試薬の少なくともいくらかは、フローチャネルにおいて残りの試薬として残るであろう。複数の試薬の後続の試薬を選ぶために、複数のバルブの後続のバルブを操作する。後続の試薬は、複数の入口ポートの後続の入口ポートを通して、およびフローチャネルから残りの試薬を流し出すためにフローチャネルを通してポンプで送る。残りの試薬は、検出セクションにおいて位置付けられる後続の試薬の少なくとも約99.95パーセントの濃度がフローチャネルの掃引容量の約2.5倍に等しいかまたはそれより低い後続の試薬の合計フラッシュ容量において達成されるように流し出す。
図面
【0013】
本開示は、添付の図面で、そこでは次のようなものと併せて以下の詳細な記載からより一層十分に理解されるであろう:
【図面の簡単な説明】
【0014】
図1図1Aはフローチャネルを有するフローセルの斜視図の例を描き、そこでフローチャネルはここに開示する態様に従うマニホルドセクションおよび検出セクションを含み、図1Bはここに開示する態様に従う図1Aのフローセルの正面図の一例を示す。
図2】ここに開示する態様に従う線2-2に沿って得る図1Bのフローセルの断面図の一例を示す。
図3】ここで開示する態様に従う図2のマニホルドセクションの拡大図の一例を示す。
図4】ここに開示する態様に従うフラッシュ効率対フラッシュ係数の様々なグラフの例を示す。
図5】ここで開示する態様に従う図2のフローセルを含む機器のカートリッジの概略図の例を示す。
図6】ここで開示する態様に従う図5のカートリッジを含む機器の概略ブロック図の例を示す。
図7】ここに開示する態様に従うフローセルを利用する一連の実験を実行する方法のフローダイアグラムの例を示す。 詳細記載
【発明を実施するための形態】
【0015】
ここに開示する方法、システム、およびデバイスの構造、機能、製造、および使用の原理の全体的な理解を提供するために、一定の例を次に説明する。添付の図面において一またはそれよりも多く(単に、一以上とも言う)の例を例示する。本技術において熟練する者(当業者とも言う)は、ここに具体的に記載し、および添付の図面に例示する方法、システム、およびデバイスが非制限的な例であること、および本開示の範囲は請求の範囲によって単独に規定されることを理解するであろう。一例に関連して例示または説明する特長は他の例の特長と組み合わせ得る。そのような修飾および変形は本開示の範囲内に含まれることを意図する。
【0016】
「実質」、「およそ」、「約」、「比較的」という用語、またはこの開示で、請求の範囲を含めたものの全体を通して使用され得る他のそのような似た用語は、小変動、例えば、参照またはパラメータからの、処理中の変形によるなどのようなものについて記載し、および説明するために使用する。そのような小変動には、基準またはパラメータからのゼロ変動も含まれる。例えば、それらは、±10%より小さいかまたはそれに等しく(less than or equal to ± 10%、±10%以下などとも言う)、例えば、±5%以下などのようなもの、例えば、±2%以下などのようなもの、例えば、±1%以下などのようなもの、例えば、±0.5%以下などのようなもの、例えば、±0.2%以下などのようなもの、例えば、±0.1%以下などのようなもの、例えば、±0.05%以下などのようなものに言及することができる。
【0017】
フラッシュ効率は、ここで使用するように、フラッシング操作後に分析対象が配置されるフローチャネルのエリアにおいて残るフラッシング試薬の容量によるパーセント濃度である。多くの場合、達成される望ましいフラッシュ効率は、実行される化学反応のパラメータに応じてフローチャネルにおいてフラッシング試薬の96%から100%までの濃度に及ぶ。
【0018】
ここで使用する掃引容量は、試薬のフローパスにおいて構成要素の内部容量である。したがって、フローチャネルの掃引容量は、フローセルのフローチャネルの合計内部容量である。また、ここで使用されるフラッシュ係数は、その構成要素の掃引容量のユニット(単位とも言う)において表される構成要素を通してフラッシュされる試薬の容量である。したがって、合計フラッシュ容量は掃引容量にフラッシュ係数を乗じたものである。
【0019】
したがって、例えば、予め定めるフラッシュ効率を達成するためにフローチャネルを通してフラッシュされる試薬の10倍のその掃引容量をフローチャネルが必要とする場合、そのフラッシュ効率を達成するための試薬のフラッシュ係数は10(または掃引容量のユニットにおいて10)である。さらに、そのフローチャネルが5マイクロリットルの掃引容量を有する場合、そのときそのフラッシュ効率を達成するための合計フラッシュ容量は50マイクロリットル(即ち、5マイクロリットル(掃引容量)×10(フラッシュ係数))である。
【0020】
図1A-4は、ここで開示する態様に従うフローセルの様々な例を例示する。図5-6は、ここで開示する態様に従う機器の様々な例を例示する。図7は、ここで開示する態様に従う方法の様々な例を例示する。
【0021】
図1Aおよび図1Bに関して、フローチャネル102を有するフローセル100の斜視図(図1A)および正面図(図1B)を示す。フローチャネル102は、ここに開示する態様に従いマニホルドセクション104および検出セクション106(図2に最もよく見られる)を含む。マニホルドセクション104および検出セクション106は、フローセル100内で一緒に流体連通して一体的に接続される。
【0022】
図1Aおよび1Bのフローセル100はまた、フローチャネル102の上面116を規定する上部層108と、フローチャネル102の底面118を規定する底部層110とを含む。中間層112は上部層108と底部層110との間に配置される。中間層112はフローチャネル102のジオメトリー(幾何学的形状とも言う)を規定する。
【0023】
上部、底部および中間層108、110、112は、ガラス、シリコン、ポリマーまたは任意の層108、110、112の適用要件を満たすことが可能な他の物質から構成されてもよい。任意の三つの層108、110、112において使用し得るポリマーの例は:ポリカーボナート、ポリメチルメタクリラート、ポリイミド、ポリエチレンテレフタラート、ポリエステル、環状オレフィン共重合体(COC)および環状オレフィン重合体(COP)である。COCおよびCOPは光学的にクリア(透明とも言う)なポリマーの例であり、それらは上部および底部層108、110においてしばしば使用される。三つの層108、110、112は同じ物質で構成されてもよく、またはそれらは異なる物質で構成されてもよい。
【0024】
三つの層108、110、112は、様々な接着剤、例えば、感圧性または熱活性化接着剤などのようなものと一緒に結合され得る。加えて、層108、110、112は、熱的に結合またはレーザー溶接されてもよい。
【0025】
中間層112は図1Aおよび図1Bにおいて単一層として例示する。しかしながら、中間層112は、フローチャネル102のジオメトリーを規定するために一緒に結合された層のスタック(積重ねとも言う)であり得る。さらに、層のスタックにより、マニホルドセクション104は、検出セクション106とは異なる高さを有するように作成され得る。例えば、中間層112は、6層のスタックから構成され得、そこでスタックの底部三層はマニホルドセクションを構成し、および6層の全体のスタックが検出セクションを構成する。
【0026】
フローセル100のフローチャネル102はギャップ高さ114を含む。ギャップ高さ114は、フローチャネルの底面118とフローチャネルの上面116との間の距離によって画定される。ギャップ高さ114は、図1Aおよび1Bにおいて例示するように、フローチャネル102の全体にわたって実質一定である。一例として、いくらかのフローチャネル102においてギャップ高さ114は、約10ミクロン(μm)と約100ミクロンとの間であり得る。例えば、ギャップ高さ114は、約10ミクロン、約20ミクロン、約50ミクロン、約60ミクロンまたは約100ミクロンであり得る。
【0027】
図2に関して、図1Bのフローセル100のライン2-2に沿った断面図をここに開示する態様に従って描く。フローセル100は、複数の入口ポート120、122、124、126、128、130(ここでは、120-130)および少なくとも一つの出口ポート132を含み、そこでフローチャネル102はそれらの間に配置される。
【0028】
各入口ポート120-130は、試薬のフロー(またはフローパス)を受け入れるためにサイズ設定される(フローパスは、複数の試薬146、148、150、152、154、156(ここでは146-156)(図5において最もよく見られる)の一つからフローセル100中への矢印134、136、138、140、142、144(ここでは134-144)によって表される。出口ポート132は、フローセル100中からの試薬の各フローパス134-144を通すためにサイズ設定される。
【0029】
フローチャネル102は、各入口ポート120-130と出口ポート132との間に位置付けられ、およびそれらと流体連通する。フローチャネル102は、マニホルドセクション104および検出セクション106を含み、それらは一体的に接続され、および互いに流体連通する。
【0030】
マニホルドセクション104は、共通ライン172と流体連通する複数のマニホルドブランチ(多様体分岐とも言う)160、162、164、166、168、170(ここでは160-170)を有する。各ブランチ(160-170)は各入口ポート(120-130)の一つにそれぞれ接続する。検出セクション106は、共通ライン172および出口ポート132と流体連通する。検出セクション106は、複数の試薬146-156と検出セクション106において位置付けられた分析対象(示していない)との間で複数の異なる化学反応を実行するために動作可能である。分析対象は、DNAセグメント、オリゴヌクレオチド、他の核酸鎖またはその種の他のものなどであり得る。
【0031】
フローチャネル102の底面118は、実際にはフローセル100の底層110の上面である。ナノウェル(示していない)は分析対象を捕捉するために底面118中にパターン化し得る。あるいはまた、底面118は、分析対象を捕捉するために表面処理によりコーティングされ得る。また、分析対象を捕捉するためにナノウェルと表面処理との組合せを使用してもよい。
【0032】
試薬146-156は、検出セクション106内で配列される(disposed)分析対象に対して多数の様々な制御された化学反応を実行するために利用され得る。例えば、各試薬146-156のフローパス134-144は、識別可能なラベル(例えば、蛍光を利用して標識したヌクレオチド分子またはその種の他のものなどのようなもの)をデリバリーし得、それは分析対象にタグ付けするのに使用することができる。しかる後、励起光は上部層108を通しおよび分析対象に対して照射され得、分析対象にタグ付けされた蛍光ラベルが放射性光量子(emissive light photons)を蛍光発光させるようにする。放射性光量子は、検出プロセス中に機器200の検出モジュール266(図6において最もよく見られる)によって検出され得る。(この特定の例では、検出モジュール266がイメージングプロセス中に使用されるイメージングモジュールであることに注目される。)機器200内のデバイス回路構成(Device circuitry)は、次にそれらの検出された光子導き出されるデータ信号を処理および送信し得る。次いで、分析対象の特性を明らかにするためにデータ信号を分析し得る。
【0033】
検出モジュール266は、この例では、光の光子を検出するために使用されるイメージングモジュールであるとして例示されたが、分析対象に関連する他の形態の検出可能な特性を検出するために他の形態の検出モジュールおよび検出スキームを使用してよい。例えば、分析対象に関連する検出可能な特性には、電荷、磁場、電気化学的特性、pH変化またはその種の他のものなどが含まれ得る。さらに、検出モジュール266は、制限を伴わずに、フローセル100において埋め込まれ、フローセル100の外部の機器に装備され、またはそれらの任意の組合せのいずれかであることができる検知デバイスを含み得る。
【0034】
図3に関して、図2のマニホルドセクション104の拡大図をここで開示する態様に従い描く。有利には、マニホルドセクション104は、既存の技術と比較して、フローセル100をフラッシュし、およびフローセル100のフローチャネル102における予め定めるレベルの試薬濃度(即ち、フラッシュ効率)(図4のグラフ180、182および184に最もよく見られる)を達成するために必要とされる試薬フローの量(即ち、合計フラッシュ容量)を著しく減少させる容量およびジオメトリーを有する。
【0035】
望ましいフラッシュ効率を達成するためにフラッシュ係数を低減するジオメトリーのそのような例の一つは、マニホルドブランチ160-170が共通ライン172に接続する仕方にある。より一層具体的には、マニホルドセクション104のマニホルドブランチ160-170は、各フローパス134-144または試薬が共通ライン172を通しておよび検出セクション106中に向けられ(direct、方向付けられとも言う)る複数のフォークトジャンクション(forked junction、分岐接合部などとも言う)174を通して共通ライン172と流体連通にある。示した実践において、フォークトジャンクション174はブランチ160-170間で鋭角176を形成し、それらは試薬146-156の複数のフローパス134-144のフローパスを含む。いくらかの実践では、フォークトジャンクション174はすべて鋭角176だけであることができ、またはフォークトジャンクション174のいくらかだけが鋭角176を形成することができる。
【0036】
共通ライン172を図3においてマニホルドブランチ160-170と検出セクション106との間で流体連通にある単一の共通ラインとして示す。しかしながら、共通ライン172はまた、マニホルドブランチ160-170とフローチャネル102の検出セクション106との間で流体連通にある複数の共通ラインであってもよい。
【0037】
ジャンクション174を鋭角176(即ち、90度未満の角度)として形成することによって、各ジャンクションでのフローのデッドエリア(dead areas、死角などとも言う)の量を先行技術のそれと比較して低減することができる。すなわち、フローパス134-144が渦、傍流(eddies)、遅い層流のエリアまたはその種の他のものなどを形成する傾向は、フローパスが周りを流れ得る鋭い曲がりが少ないので、大きく減少する。デッドエリアは流し出す(flush out)のが困難であることができるため、それらのデッドエリアの減少は、予め定めるフラッシュ効率を達成するために必要なフラッシュ係数も減らす。
【0038】
望ましいフラッシュ効率を達成するためにフラッシュ係数を低減するジオメトリーの別の例は、フローチャネル102のマニホルドセクション104および検出セクション106が実質同じ平面上、または平坦であることである。そのようなものとして、フローチャネル102において不連続性またはレベル変化はなく、それはフローのデッドエリア、例えば、渦、傍流またはその種の他のものなどのようなを誘発することがある。
【0039】
マニホルドセクション104の容量はまた、マニホルドセクション104の掃引容量が検出セクション106の掃引容量よりも小さいため、フラッシュ係数の低減およびフラッシュ効率の増大を促す。より一層具体的には、いくらかの実践において、マニホルドセクション104は検出セクション106の掃引容量よりも少なくとも約10倍小さい掃引容量を有し得る。追加的に、いくらかの実践では、マニホルドセクション104は、検出セクション106の掃引容量よりも少なくとも約20、50、または100倍小さい掃引容量を有し得る。マニホルドセクション104の小さい掃引容量のため、試薬の交差汚染を最小にし、および場合によっては完全に排除するためでさえフラッシュする必要のある試薬が少なくなる。
【0040】
フローセル100には、複数の入口ポート120-130が含まれ、そこで各入口ポート120-130は、複数の試薬146-156の一つからフローセル100へのフローパス134-144を受け入れるためにサイズ設定される。いくらかの実践では、各入口ポート120-130は一つの試薬146-156だけを受け入れ得るため、そのとき試薬フローパス134-144は、それらがフローセルの外部にあるとき別々にしておいてよく、および他の試薬に汚染され得る外部の共通ラインを持たないでよい。換言すれば、機器200(図5および6に最もよく見られる)において、それはフローセル100を含み、フローチャネル102のマニホルドセクション104は、機器200において唯一の共通アリアであり得、そこで異なる試薬146-156の異なるフローパス134-144が、フローチャネル102の検出セクション106中に流入する前に一緒に経路指定される(routed together)。
【0041】
このことは、試薬の交差汚染を低減し、および場合によっては完全に排除するために、機器200において位置付けられるフローセル100のフローチャネル102だけがフラッシュされる必要があり得ることを意味し、その理由は試薬146-156が別個のフローセル100の外部にある別々のフローパス134-144を有するからである。それはまた、フローセル100について予め定めるフラッシュ効率を達成するために関係するフラッシュ係数が、フローセル100を含む機器200に関与するフラッシュ係数と同じであることができることを意味する。
【0042】
図4に関して、ここで開示する態様に従い、フラッシュ効率対フラッシュ係数の様々なグラフ180、182、184を描く。フラッシュ効率は、ここで用いるように、フラッシング操作後に分析対象が配置されるフローチャネルのエリア(例えば、検出セクションなどのようなもの)において残るフラッシング試薬の容量によるパーセント濃度である。フラッシュ係数は、ここで用いるように、その構成要素の掃引容量のユニットにおいて表される構成要素を通してフラッシュされる試薬の容量である。
【0043】
より一層具体的には、図4は三つのグラフ180、182、および184を例示する。グラフ180は、ここに開示する態様に従うフローセル100のフローチャネル102のフラッシュ効率対フラッシュ係数のプロットであり、そこでギャップ高さ114は100マイクロメートルであり、およびフラッシング試薬の流量は毎分1500マイクロリットルである。グラフ182は、ここに開示する態様に従うフローセル100のフローチャネル102のフラッシュ効率対フラッシュ係数のプロットであり、そこでギャップ高さ114は60マイクロメートルであり、およびフラッシング試薬のフラッシング流量は分当たり1500マイクロリットルである。グラフ184は、ここに開示する態様に従うフローセル100のフローチャネル102のフラッシュ効率対フラッシュ係数のプロットであり、そこでギャップ高さ114は60マイクロメートルであり、およびフラッシング試薬のフラッシング流量は分当たり500マイクロリットルである。
【0044】
グラフ180、182、184から、すべての場合において、フローチャネル102は、フラッシュ係数が、検出セクション106において位置付けられた試薬の少なくとも約99.95パーセント濃度のフラッシュ効率を達成するために使用され、約3以下(about 3 or less、約3またはそれよりも低いとも言う)-例は、約2.5以下、約2.3、またはそれら未満(掃引容量のユニットにおいて)であるように、掃引容量およびジオメトリーを含むことを見ることができる。加えて、2.3のフラッシュ係数は、少なくとも約99.95%-例は、少なくとも約99.96%、少なくとも約99.97%、少なくとも約99.98%、少なくとも約99.99%、少なくとも約99.995、またはそれらより高いフラッシュ効率を達成し得る。加えて、2.5のフラッシュ係数は、少なくとも約99.95%-例は、少なくとも約99.96%、少なくとも約99.97%、少なくとも約99.98%、少なくとも約99.99%、少なくとも約99.995%、またはそれらより高いフラッシュ効率を達成し得る。加えて、3.0のフラッシュ係数は、少なくとも約99.95%-例は、少なくとも約99.96%、少なくとも約99.97%、少なくとも約99.98%、少なくとも約99.99%、少なくとも約99.995%、またはそれらより高いフラッシュ効率を達成し得る。さらに、2.0のフラッシュ係数は、少なくとも約99%-例は、少なくとも約99.1%、少なくとも約99.2%、少なくとも約99.3%、少なくとも約99.4%、少なくとも約99.5%、またはそれらより高いフラッシュ係数を達成し得る。比較すると、多くの場合に、既存のフローチャネルは、少なくとも約99.95パーセントのフラッシュ効率を達成するために既存のフローチャネルの掃引容量の4ないし5ユニットのフラッシュ係数を伴い得る。
【0045】
そのような高いフラッシュ効率(例は、99.95以上)を達成するための低いフラッシュ係数(例は、2.5以下)は、フローセル100のいくつかの特長によるものであり得る。例えば、マニホルドセクション104および検出セクション106はフローセル100内のフローチャネル102の一体的部分(integrally part)であり、および同じ平面上にあるか、または平坦である。さらに例として、フローセル100の各入口ポート120-130は、試薬のフローパス134-144がマニホルドセクション104まで一緒に経路指定されないように、一つの試薬146-156だけを受け入れ得る。追加的には、例として、マニホルドセクション104のマニホルドブランチ160-170は、ジャンクション174にて鋭角を形成し得る。また、例として、マニホルドセクション104は、検出セクション106の掃引容量より少なくとも約10倍小さい掃引容量を有する。
【0046】
さらに、各試薬146-156について一つの入口ポート120-130があるので、フローセル100を含む機器200(図5および6において最もよく見られる)において試薬を別々に保ち得る。したがって、フローチャネル102のマニホルドセクション104は、機器200において唯一の共通エリアを含み、そこで異なる試薬146-156の異なるフローパス134-144がフローチャネル102の検出セクション106中に流れるのに先立ち一緒に経路指定される。
【0047】
そのようなものとして、フローセル100についてグラフ180、182、184は、流体接続のタイプに関係なく実質無変化のままであり得、機器200は試薬146-156をフローセル100に接続するために利用する。例えば、試薬ウェルとフローセル100との間の流体接続は実質直線および水平な金属チュービング(金属管系とも言う)にしっかりと接続し得、またはそれらの接続は試薬ウェルとフローセル100との間の異なるレベルに適応するように曲げられるチュービングと接続し得る。
【0048】
図5に関して、カートリッジ202および機器200の概略図の例を描き、そこでカートリッジ202はここで開示する態様に従いフローセル100を含む。この特定の例では、機器200はカートリッジベースのシークエンシング(配列決定とも言う)機器であり、そこでシークエンシング機器200のカートリッジ202は、フローセル100および様々な試薬ハンドリング構成要素を含む。追加的に、カートリッジ202は、機器200からモジュールとして取り外し可能であり得、およびフローセル100はカートリッジ202から取り外し可能であってもよく、またはそうでなくてもよい。
【0049】
しかしながら、フローセル100および試薬ハンドリング部分は、カートリッジ202を介して機器200とインターフェースしなくてよい。むしろ、それらは、機器200において別個に取り付けられるスタンドアロンの構成要素であることができる。追加的に、試薬ハンドリング構成要素は、機器から個別に取り外し可能ではないかもしれないが、その一方でフローセル100は機器から取り外し可能であってもよい。
【0050】
機器200のカートリッジ202は、複数の試薬ウェル204、206、208、210、212、214(ここでは、204-214)を含み、そこで各試薬ウェルはそこに位置付けられる複数の試薬146、148、150、152、154、156のある試薬を含むために動作可能である。複数のウェルチャネル216、218、220、222、224、226(ここでは、216-226)は、各個別の(each respective)試薬ウェル204-214からフローセル100のそれぞれの入口ポート120-130まで延び、そこで各入口ポートは単独の一つの試薬146-156と流体連通にある。
【0051】
試薬146-156は、フローセルにて実行される化学反応のタイプおよびシーケンスに応じて、試薬の任意のいくつかのタイプまたは組合せでもよい。例えば、試薬146-156は次のタイプのものであり得る:
・試薬146はインコーポレーションミックス(incorporation mix)であり得、それは蛍光を利用して標識された(fluorescently-labeled)ヌクレオチドをDNA鎖に組み込む化学物質の混合物である。
・試薬148はスキャンミックス(scan mix)であり得、それは検出プロセス中にDNA鎖を安定化する化学物質の混合物である。
・試薬150はクリーブミックス(cleave mix)であり得、それはDNA鎖から蛍光を利用して標識されたヌクレオチドを酵素的に開裂する化学物質の混合物である。
・試薬152は第一洗浄緩衝剤であり得、それはフローセルから活性試薬を除去するための洗浄試薬の混合物である。
・試薬154は第二洗浄緩衝剤であり得、それはフローセルから活性試薬を除去するための洗浄試薬の別の混合物である。
・試薬156は空気であり得る。
【0052】
カートリッジはまた、ウェルチャネル216-226において位置付けられる複数のバルブ228、230、232、234、236、238(ここでは、228-238)をも含む。各バルブ228-238は各試薬ウェル204-214の一つと流体連通にある。各バルブ228-238は、バルブ228-238が連絡する(in communication with)試薬ウェル204-214からの試薬のフローパス134、136、138、140、142、144をコントロールするために動作可能である。この図5において例示する特定の例では、バルブはピンチバルブである。しかしながら、他のタイプのバルブ、例えば、ソレノイドバルブ、ボールバルブまたはその種の他のものなども使用することができる。図5の特定の構成では、機器200はロータリーバルブを含まず、それは様々な試薬146-156を選定し、およびフローセル100に入るのに先立ち試薬のフローパス134-144を共通ライン中に合流させる(merge)であろう。
【0053】
フローセル100は、機器200内に位置付けられ、およびカートリッジ202から取り外し可能でよく、またはそうでなくてもよい。さらに、カートリッジ202を利用しなかった場合、フローセル100はまた機器200から取り外し可能であり得る。
【0054】
フローセル100は、複数の入口ポート120、122、124、126、128、130および出口ポート132を含む。各入口ポート120-130は、それぞれのウェルチャネル216-226を介して対応するバルブ228-238と流体連通にある。各入口ポート120-130は、それぞれ、試薬の各フローパス134-144の一つを受け入れるためにサイズ設定される。ウェルチャネル216-226は様々な構成であってもよい。例えば、ウェルチャネル216-226は、試薬ウェル204-214を入口ポート120-130に堅固に接続する主として金属のチュービング(管系、配管材料などとも言う)であってもよい。あるいはまた、ウェルチャネル216-226は、試薬ウェル204-214を入口ポート120-130に接続するプラスチックチュービングであってもよい。フローセル100の出口ポート132は、フローセル100中から試薬の各フローパス134-144を通すためにサイズ設定される。
【0055】
フローセル100はフローチャネル102を含み、それは各入口ポート120-130と出口ポート132との間に位置付けられ、およびそれらと流体連通する。フローチャネル102はマニホルドセクション104および検出セクション106を含む。
【0056】
マニホルドセクション104は、共通ライン172と流体連通する複数のマニホルドブランチ160、162、164、166、168、170を有する。各マニホルドブランチ160-170は入口ポート120-130と接続する。
【0057】
検出セクション106は、共通ライン172および出口ポート132と流体連通する。検出セクション106は、検出セクションにおいて位置付けられる複数の試薬146-156と分析対象との間で複数の異なる化学反応を実行するために動作可能である。
【0058】
試薬フローパス134-144は、それらがフローセル100に入るまで互いに分離されたままである。そのようなものとして、フローチャネル102のマニホルドセクション106は、機器200において唯一の共通エリアを含み、そこでは異なる試薬146-156の異なるフローパス134-144が、フローチャネル102の検出セクション106中に流入するのに先立ち一緒に経路指定される。したがって、化学反応間で試薬の相互汚染を最小にし、および場合によってはさらに完全に排除するために、フローチャネル102だけがフラッシュされる必要がある。このことは、フラッシュ係数、および従ってフローチャネル102においてフラッシュされる試薬の予め定める濃度(フラッシュ効率)を達成するために使用されるフラッシング試薬の合計フラッシュ容量を減らすのに役立つ。
【0059】
追加的に、試薬フローパス134-144が分離を維持されるところのフローセル100の外部では、試薬フローパスは一よりも多くのレベルにわたって流れ得る。例えば、試薬ウェル146-156は、フローセル100のレベルよりも高いレベルで機器200内に配置し得る。しかしながら、試薬フローパス134-144が混合され得るところのフローセル100の内部では、マニホルドセクション104およびフローチャネル102の検出セクション106は、実質同じ平面上にあるか、または平担である。このことは、フローチャネル102内の潜在的なデッドエリアを減らすのに役立ち、および従ってまた、予め定めるフラッシュ効率を達成するために使用するフラッシュ係数を減らすのにも役立つ。
【0060】
フローセル100の出口ポート132は第一のポンプピンチバルブ240と流体連通する。第一ポンプピンチバルブ240は第二のポンプピンチバルブ242と流体連通する。
【0061】
カートリッジ202上には、オンボードポンプ(搭載ポンプとも言う)244(例えば、シリンジポンプ、または似たものなどのようなもの)も配列される。オンボードポンプ244は他のタイプのポンプであり得るが、それはここではシリンジポンプ244と称されるだろう。シリンジポンプ244は、第一のポンプピンチバルブ240と第二のポンプピンチバルブ242との間にT字状(tee formation)に接続される。第一のポンプピンチバルブ240と第二のポンプピンチバルブ242の双方は、機器200によって開閉され、係合し、またはシリンジポンプ244をフローセル100から解放する。
【0062】
シリンジポンプ244は、シリンダ248において配列された往復動プランジャ(reciprocating plunger)246を含み、それはシリンダボア(気筒内径とも言う)250を有する。プランジャ246は、シリンダボア250内に収容されて、プランジャシリンダボアシールを形成する。プランジャ246は、シリンダボア250内で往復運動するために、および試薬を試薬ウェル204-214から廃物タンク252にポンプで送る(ポンピングする、圧送するとも言う)ために機器200によって駆動される。
【0063】
図6に関して、図5の取り外し可能なカートリッジ202を含む機器200の概略ブロック図の一例をここで開示する態様に従って描く。機器200はカートリッジ202を受け入れるためにドッキングステーション260を含む。機器200内の様々な電気的および機械的アセンブリは、機器200によって実行されるシークエンシング操作中にカートリッジ202を動作するためにカートリッジ202と相互作用する。
【0064】
機器200は、とりわけ、シークエンシング操作を実行するためにメモリ264において貯蔵されたプログラム命令を遂行する一以上のプロセッサ262を含み得る。プロセッサ262は、数ある中で、検出モジュール266、シリンジポンプ駆動アセンブリ268およびピンチバルブ駆動アセンブリ270と電子通信する。
【0065】
ユーザが機器200の操作を制御および監視するためにユーザインターフェース272が提供される。通信インターフェース274は、機器200とリモートコンピュータ、ネットワークおよびその他同種類のものなどとの間でデータおよび他の情報を伝達する。
【0066】
シリンジポンプ駆動アセンブリ268は、伸長可能なシャフト278に接合されるシリンジポンプモータ276を含む。伸長可能なシャフト278は、シリンジポンプ244上のシリンダ248のシリンダボア250内でプランジャ246を往復運動させるために伸長位置と収縮位置との間でシリンジポンプモータ276によって駆動される。
【0067】
ピンチバルブ駆動アセンブリ270は、8つの空気圧で駆動するピンチバルブ駆動モータ280のセットを含む。ピンチバルブ駆動モータ280の6つは、ピンチバルブ228-238に機械的に接合される。ピンチバルブ駆動モータの2つは、第一および第二のポンプピンチバルブ240、242に機械的に接合される。ピンチバルブ駆動モータ280は、ピンチバルブ228-238、240、242の弾力的な中央部分をピンチオフまたは離してピンチバルブを空気圧で開閉するために空気圧を利用する。あるいはまた、ピンチバルブ駆動モータ280は電気的に駆動されてもよい。
【0068】
検出モジュール266は、フローセル100において分析対象から放出される放射性光量子(emissive light photon)の検出を可能にするカメラおよび光検出センサのすべてを含む。次いで、機器200内のデバイス回路構成(示さない)は、それらの検出された光子から導き出されるデータ信号を処理および送信し得る。次に、分析対象の特性を明らかにするためにデータ信号を分析し得る。
【0069】
図7に関して、フローセル100を利用する一連の実験を実行する方法の例が、ここで開示する態様に従って描かれる。本方法は、フローセル100を有する機器200を利用する。機器200は、複数の試薬146-156を含む複数の試薬ウェル204-214を含む。各試薬ウェル204-214は、試薬のフローパス134-144がフローセル100に入るまで混合されないようにフローセル100上の複数の入口ポート120-130の単一入口ポートと流体連通する。フローセル100はフローチャネル(流路とも言う)102を含み、それは検出セクション106に一体的に接続されたマニホルドセクション104を有する。マニホルドセクション104は、試薬146-156を受け入れ、およびそれらは共通ライン172を通して検出セクション106に経路指定される。分析対象(被分析物、検体などとも言う)は検出セクション106において位置付けられ、そこで多様な化学反応を分析対象と試薬146-156との間で実行する。機器200およびフローセル100のジオメトリーのゆえに、フラッシュ係数(flush factor、フラッシュファクターなどとも言う)(掃引容量(swept volume、スウェプトボリュームなどとも言う)のユニットにおいて)、および従って、フローセル100をフラッシュしおよびフローセル100のフローチャネル102において試薬濃度の予め定めるレベル(即ち、フラッシュ効率)を達成するために使用される試薬フローの量(即ち、合計フラッシュ容量)は、先行技術のフローセルと比較して減少する。
【0070】
本方法はフローセル100を機器200に接続することによって(ステップ300にて)始まる。フローセル100には、複数の入口ポート120-130、出口ポート132、およびそれらの間に流体連通するフローチャネル102が含まれる。フローチャネル102には、マニホルドセクション104および検出セクション106が含まれる。フラッシュ係数を減少させ、およびフラッシュ効率(flush efficiency、フラッシュエフィシェンシーなどとも言う)を増加させるフローセル100および機器200のジオメトリーおよびアーキテクチャ(設計とも言う)のいくらかの特長は以下の通りである:
・マニホルドセクション104および検出セクションは同一平面上にあり得る。
・マニホルドセクション104の掃引容量は検出セクション106の掃引容量より少なくとも約10倍小さくてもよい。
・マニホルドセクション104内のマニホルドブランチ160-170は、ジャンクション174にて鋭角を形成し得る。
・各入口ポート120-130は、一つの試薬フローパス134-144を通して流れる一つの試薬146-156を受け入れ得る。
【0071】
フローチャネル102のマニホルドセクション104は機器200において唯一の共通エリアを含み得、そこで異なる試薬146-156の異なるフローパス134-144がフローチャネル102の検出セクション106中に流入するのに先立ち一緒に経路指定される。
【0072】
本方法は、複数の試薬146-156の第一の試薬を選ぶために機器200の複数のバルブ228-238の第一のバルブを操作することによって(ステップ302にて)継続する。各試薬は機器200の試薬ウェル204-214において位置付けられる。
【0073】
本方法は、複数の入口ポート120-130の第一の入口ポートを通して、およびフローセル100のフローチャネル102を通して、第一の試薬をポンピングする(ポンプで送る)ことによって(ステップ304にて)継続する。ポンピングは様々な適切なポンプにより達成し得る。図5において例示する例において、ポンプはシリンジポンプ244である。
【0074】
本方法は、フローチャネル102の検出セクション106において位置付けられる第一の試薬と分析対象との間で第一の化学反応を実行することによって(ステップ306にて)継続する。第一の化学反応が完了した後、第一の試薬の一部分は残りの試薬としてフローチャネルに残るであろう。その残りの試薬は、化学反応の予め定めるシーケンスにおいて用いる複数の試薬146-156の他の試薬との交差汚染を最小にし、および場合によっては完全に排除するためでさえ、フローチャネル102の少なくとも検出セクション104中から流し出される必要があり得る。
【0075】
本方法は、複数の試薬146-156の後続の試薬を選ぶために複数のバルブ228-238の後続のバルブを操作することによって(ステップ308にて)継続する。
【0076】
本方法は、検出セクション104において位置付けられる後続の試薬の少なくとも約99.95パーセントの濃度(即ち、少なくとも約99.95パーセントのフラッシュ効率)が、フローチャネル102の掃引容量の約2.5倍に等しいか、またはそれよりも低い後続の試薬の合計フラッシュ容量(即ち、約2.5のフラッシュ係数)において達成されるように、フローチャネル102から残りの試薬を流し出すために、複数の入口ポート120-130の後続の入口ポートを通して、およびフローチャネル102を通して後続の試薬をポンピングすることによって(ステップ310にて)継続する。この2.5の低いフラッシュ係数および99.95パーセントの高いフラッシュ効率は、少なくとも部分的には前に(300)にて議論した特長に起因して達成可能である。あるいはまた、(ステップ310にて)、いくらかの後続の試薬について、本方法は、後続の試薬の少なくとも約99パーセントの濃度(即ち、少なくとも約99%のフラッシュ効率)が達成されるように、フローチャネル102から残りの試薬を流し出すために約2.0以下のフラッシュ係数だけを使用し得る。
【0077】
次いで、本方法は、検出セクション106において位置付けられた後続の試薬の少なくとも約99.95パーセントの濃度(またはあるいはまた、いくらかの後続の試薬について、少なくとも約99パーセント)が達成された後、後続の試薬と検出セクション106において位置付けられた分析対象との間の後続の化学反応を実行することによって(ステップ312にて)継続する。後続の化学反応が完了した後、後続の試薬の一部分は残りの試薬としてフローチャネルにおいて残るであろう。その残りの試薬は、化学反応の予め定めるシーケンスにおいて用いる複数の試薬146-156の他の試薬との交差汚染を最小にし、および場合によっては完全に排除するためでさえ、フローチャネル102の少なくとも検出セクション104中から流し出される必要があり得る。
【0078】
次いで、本方法は、後続のバルブの操作(ステップ308)、後続の試薬のポンピング(ステップ310)および化学反応の予め定めるシーケンスにおいて複数の試薬146-156の予め定めるシーケンスの試薬について後続の化学反応の実行(ステップ312)をリピートするために戻す(ステップ308に)ことによって(ステップ314によって例示されるように)イテレートする(反復する)。
【0079】
各イテレーション(反復)(ステップ314)により、本方法は、選定した試薬の種類に応じて、様々な方法で継続し得る。より一層具体的には、本方法は、分析対象と様々な試薬との間の化学反応によって引き起こされる機能的効果に基づいて継続し得る。
【0080】
例えば、本方法は、DNA鎖が含まれる分析対象(即ち、DNA鎖分析対象)中に蛍光を利用して標識した(fluorescently-labeled)ヌクレオチドを組み込むことによって継続し得る。このことは、インコーポレーションミックス(取込みミックスなどとも言う)、例えば、試薬146または似たものなどのようなものを用いて実現することができる。
【0081】
また、一例として、本方法は、検出プロセス中にDNA鎖分析対象を安定化することによって継続してよい。このことは、スキャンミックス、例えば、試薬148または似たものなどのようなものを用いて実現することができる。
【0082】
また、例として、本方法は、DNA鎖分析対象から蛍光を利用して標識したヌクレオチドを酵素的に開裂することによって継続し得る。このことは、クリーブミックス、例えば、試薬150または似たものなどのようなものにより実現することができる。
【0083】
あらゆるフラッシング試薬が、その試薬とフローチャネル102において位置付けられる分析対象との間の化学反応を実行する前に、約99.95パーセント以上のフラッシュ効率(またはあるいはまた、いくらかの後続の試薬について、約99パーセント以上のフラッシュ効率)を必要とするわけではない。例えば、二つの洗浄緩衝剤試薬が連続して使用された場合、第二の洗浄緩衝剤は約96パーセント以上のフラッシュ効率だけを必要とする場合がある。また、例えば、試薬が空気である場合、それがスケジュールされたその場での(in-situ)テスティング(検査とも言う)を実行するために使用され得、フラッシュ効率は約96%にすぎないかもしれない。しかしながら、試薬の任意のシーケンスでは、後続の試薬の大部分は十中八九、99.95パーセント以上のフラッシュ効率(またはあるいはまた、いくらかの後続の試薬については、約99パーセント以上のフラッシュ効率)を必要とし得る。このことは特に、後続の試薬が洗浄緩衝剤または空気でないときの場合かもしれない。より一層具体的には、このことは、後続の試薬がインコーポレーションミックス、クリーブミックスおよびスキャンミックスの一つであるときに当てはまるかもしれない。
【0084】
約2.5以下のフラッシュ係数と共に少なくとも約99.95パーセントのフラッシュ効率(またはあるいはまた、いくらかの後続の試薬について、約2.0以下のフラッシュ係数と共に少なくとも約99パーセントの)の達成を可能にすることによって(特に、非洗浄緩衝剤試薬または非空気試薬について)、高価な試薬の消費が削減され、および一連の制御された化学反応を完了するのに経過する時間が先行技術に比べて大幅に短縮される。約2.5以下のフラッシュ係数と共に約99.95%以上のフラッシュ効率の達成を可能にすることによって(再度特に、非洗浄緩衝剤試薬または非空気試薬により)、そのような高価な試薬の消費はもっとさらに削減され、および制御された反応のシーケンスを完了するのに経過する時間がもっとさらに短縮される。
【0085】
前述の概念および以下により一層詳細に議論する追加的概念のすべての組合せは(そのような概念が相互に矛盾しないという条件で)、ここに開示する本発明の主題の一部であると考えられることが認められるべきである。特に、この開示の最後に現れるクレームされた主題のすべての組合せは、ここに開示する本発明の主題の一部分であると考えられる。
【0086】
前述の開示は特定の例を参照して説明したが、説明した本発明の概念の精神および範囲内できわめて多くの変化がなされ得ることが理解されるべきである。したがって、本開示が、説明した例に制限されるものではないこと、しかしそれが次の請求の範囲の文言によって規定される十分な範囲を有することを意図する。
図1A
図1B
図2
図3
図4
図5
図6
図7