IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ オーエスジー株式会社の特許一覧

<>
  • 特許-ドリル 図1
  • 特許-ドリル 図2
  • 特許-ドリル 図3
  • 特許-ドリル 図4
  • 特許-ドリル 図5
  • 特許-ドリル 図6
  • 特許-ドリル 図7
  • 特許-ドリル 図8
  • 特許-ドリル 図9
  • 特許-ドリル 図10
  • 特許-ドリル 図11
  • 特許-ドリル 図12
  • 特許-ドリル 図13
  • 特許-ドリル 図14
  • 特許-ドリル 図15
  • 特許-ドリル 図16
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2021-12-28
(45)【発行日】2022-01-20
(54)【発明の名称】ドリル
(51)【国際特許分類】
   B23B 51/00 20060101AFI20220113BHJP
【FI】
B23B51/00 S
【請求項の数】 4
(21)【出願番号】P 2020562786
(86)(22)【出願日】2019-08-30
(86)【国際出願番号】 JP2019034179
(87)【国際公開番号】W WO2021038841
(87)【国際公開日】2021-03-04
【審査請求日】2020-11-10
【早期審査対象出願】
(73)【特許権者】
【識別番号】000103367
【氏名又は名称】オーエスジー株式会社
(74)【代理人】
【識別番号】100104178
【弁理士】
【氏名又は名称】山本 尚
(74)【代理人】
【識別番号】100213687
【弁理士】
【氏名又は名称】平松 大輝
(72)【発明者】
【氏名】山本 剛広
(72)【発明者】
【氏名】牧野 裕泰
【審査官】中川 康文
(56)【参考文献】
【文献】国際公開第2019/049257(WO,A1)
【文献】特開2015-131384(JP,A)
【文献】特開平07-308814(JP,A)
【文献】特開平10-058291(JP,A)
【文献】特開2016-059999(JP,A)
【文献】特開2017-042879(JP,A)
【文献】特開2017-164836(JP,A)
【文献】国際公開第2013/065201(WO,A1)
【文献】国際公開第2014/208421(WO,A1)
【文献】特開2009-148865(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23B 51/00-51/14
(57)【特許請求の範囲】
【請求項1】
軸心を中心に延びるボディと、
前記ボディの先端部から基端部へ向けて前記ボディの外周面に螺旋状に設けられた複数の排出溝と、
前記ボディの回転方向側を向く前記排出溝の内面と、前記先端部における前記ボディの逃げ面との稜線部分に設けられた切れ刃と、
前記切れ刃の前記ボディの径方向内側の端から前記径方向内側に延びるシンニング刃と、
前記逃げ面との第一稜線が、前記シンニング刃の径方向内側の端から前記径方向外側に向かって、前記回転方向に向けて湾曲して延びるR部と、前記逃げ面との第二稜線が、前記第一稜線の前記径方向外側の端から前記径方向外側に向かって直線状に延び、前記ボディの前記外周面よりも前記径方向内側で前記排出溝に接続するストレート部とを有するギャッシュ部と
を備え
前記ストレート部は、前記第二稜線から前記ボディの前記基端部側に向かって前記軸心 から離れるように延びる
ことを特徴とするドリル。
【請求項3】
軸心を中心に延びるボディと、
前記ボディの先端部から基端部へ向けて前記ボディの外周面に螺旋状に設けられた複数の排出溝と、
前記ボディの回転方向側を向く前記排出溝の内面と、前記先端部における前記ボディの逃げ面との稜線部分に設けられた切れ刃と、
前記切れ刃の前記ボディの径方向内側の端から前記径方向内側に延びるシンニング刃と、
前記逃げ面との第一稜線が、前記シンニング刃の径方向内側の端から前記径方向外側に向かって、前記回転方向に向けて湾曲して延びるR部と、前記逃げ面との第二稜線が、前記第一稜線の前記径方向外側の端から前記径方向外側に向かって直線状に延び、前記ボディの前記外周面よりも前記径方向内側で前記排出溝に接続するストレート部とを有するギャッシュ部と
を備え
前記軸心が延びる方向から見て、前記第一稜線の前記径方向外側の端における接線と、 前記第二稜線との間の角度は、20°以下である
ことを特徴とするドリル。
【請求項4】
前記軸心から前記第二稜線が前記排出溝に接続する位置までの距離は、前記ボディの外径の30%以上45%以下である
ことを特徴とする請求項1から3のいずれかに記載のドリル。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ドリルに関する。
【背景技術】
【0002】
特許文献1に記載のドリルでは、ボディの先端部にシンニング刃とRギャッシュとが設けられる。シンニング刃は、ドリル中心のチゼルの残し幅を薄くするためのシンニング処理が施されることで、切れ刃の内端からチゼルに向かって形成される。Rギャッシュは、シンニング刃の内端側からボディの外周面へ向けて、円弧状に延びるように形成される。ボディには、加工時にワークの切りくずを排出するための排出溝が設けられる。Rギャッシュの径方向外側の端部は、加工時にワークの切りくずがボディの外周側に流れないように、ボディの外周面よりも径方向内側で排出溝に接続される。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2016-59999号公報
【発明の概要】
【0004】
上記ドリルでは、加工時にワークの切りくずがRギャッシュの曲面に沿ってボディの外周側に流れることにより、依然として、切りくずの排出性が低下する可能性がある。ボディの外周側に切りくずが流れると、切りくずのカールが弱くなり、切りくずが細かく分断されない場合がある。この場合、切りくずがスムーズに排出溝に排出されず、切りくず詰まり、加工中の振動、切削抵抗の増加等が発生し得る。よって、上記ドリルは、安定した寿命を得ることができない可能性があった。
【0005】
本発明の目的は、加工時の切りくずの排出性を高め、切削抵抗を低く安定させることができるドリルを提供することである。
【課題を解決するための手段】
【0006】
本発明の第一態様に係るドリルは、軸心を中心に延びるボディと、前記ボディの先端部から基端部へ向けて前記ボディの外周面に螺旋状に設けられた複数の排出溝と、前記ボディの回転方向側を向く前記排出溝の内面と、前記先端部における前記ボディの逃げ面との稜線部分に設けられた切れ刃と、前記切れ刃の前記ボディの径方向内側の端から前記径方向内側に延びるシンニング刃と、前記逃げ面との第一稜線が、前記シンニング刃の径方向内側の端から前記径方向外側に向かって、前記回転方向に向けて湾曲して延びるR部と、前記逃げ面との第二稜線が、前記第一稜線の前記径方向外側の端から前記径方向外側に向かって直線状に延び、前記ボディの前記外周面よりも前記径方向内側で前記排出溝に接続するストレート部とを有するギャッシュ部とを備え、前記ストレート部は、前記第二稜線 から前記ボディの前記基端部側に向かって前記軸心から離れるように延びることを特徴とする。
【0007】
上記第一態様によれば、ギャッシュ部のうちR部によって切りくずのカールが強くなる。この結果、切りくずが細かく分断され、切りくず形状が安定する。さらに、ストレート部がボディの外周面よりも径方向内側で排出溝に接続するので、ストレート部によって切りくずはボディの外周面に向かう方向ではなく、排出溝に向かう方向にスムーズに排出される。よって、ドリルは加工時の切りくずの排出性を高め、切削抵抗を低く安定させることができる。
【0008】
本発明の第一態様に係るドリルにおいて、前記軸心が延びる方向から見て、前記第一稜 線の前記径方向外側の端における接線と、前記第二稜線との間の角度は、20°以下であ ってもよい。この場合、カールした切りくずが、ストレート部によって排出溝に安定的に 排出される。よって、ドリルは加工時のワークの切りくずの排出性を安定化させることが できる。
本発明の第二態様にかかるドリルは、軸心を中心に延びるボディと、前記ボディの先端 部から基端部へ向けて前記ボディの外周面に螺旋状に設けられた複数の排出溝と、前記ボ ディの回転方向側を向く前記排出溝の内面と、前記先端部における前記ボディの逃げ面と の稜線部分に設けられた切れ刃と、前記切れ刃の前記ボディの径方向内側の端から前記径 方向内側に延びるシンニング刃と、前記逃げ面との第一稜線が、前記シンニング刃の径方 向内側の端から前記径方向外側に向かって、前記回転方向に向けて湾曲して延びるR部と 、前記逃げ面との第二稜線が、前記第一稜線の前記径方向外側の端から前記径方向外側に 向かって直線状に延び、前記ボディの前記外周面よりも前記径方向内側で前記排出溝に接 続するストレート部とを有するギャッシュ部とを備え、前記軸心が延びる方向から見て、 前記第一稜線の前記径方向外側の端における接線と、前記第二稜線との間の角度は、20 °以下であることを特徴とする。
上記第二態様は、第一態様と同様の効果を奏することができる。
本発明の第一態様または第二態様に係るドリルにおいて、前記軸心から前記第二稜線が前記排出溝に接続する位置までの距離は、前記ボディの外径の30%以上45%以下であってもよい。この場合、発生した切りくずがR部によって安定したカール形状となることで、切りくずの形状が安定する。よって、ドリルは加工時のワークの切りくずの排出性を安定化させることができる。
【0009】
【図面の簡単な説明】
【0010】
図1】第一実施形態の三枚刃ドリル1の側面図である。
図2図1の領域Wの拡大斜視図である。
図3】第一実施形態の三枚刃ドリル1の正面図である。
図4】第二実施形態の二枚刃ドリル101における領域Wに相当する部分の拡大斜視図である。
図5】第二実施形態の二枚刃ドリル101の正面図である。
図6】変形例の二枚刃ドリル102の正面図である。
図7】三枚刃ドリルによる第一試験結果を示す図である。
図8】二枚刃ドリルによる第一試験結果を示す図である。
図9】第二試験結果であり、各三枚刃ドリルの耐久穴数を示すグラフである。
図10】第三試験結果であり、各二枚刃ドリルの最大スラスト荷重および最大トルクを示すグラフである。
図11】送り量が0.27mm/revのときの第四試験結果であり、各二枚刃ドリルのスラスト荷重およびトルクの経時変化を示すグラフである。
図12】送り量が0.35mm/revのときの第四試験結果であり、各二枚刃ドリルのスラスト荷重およびトルクの経時変化を示すグラフである。
図13】送り量が0.40mm/revのときの第四試験結果であり、各二枚刃ドリルのスラスト荷重およびトルクの経時変化を示すグラフである。
図14】送り量が0.27mm/revのときの第四試験結果であり、各二枚刃ドリルの最大スラスト荷重および最大トルクを示すグラフである。
図15】送り量が0.35mm/revのときの第四試験結果であり、各二枚刃ドリルの最大スラスト荷重および最大トルクを示すグラフである。
図16】送り量が0.40mm/revのときの第四試験結果であり、各二枚刃ドリルの最大スラスト荷重および最大トルクを示すグラフである。
【発明を実施するための形態】
【0011】
<第一実施形態>
図1図3を参照して、本発明の第一実施形態に係る三枚刃ドリル1の構成について説明する。図1に示すように、三枚刃ドリル1は略円柱状であり、シャンク2とボディ3とを備える。シャンク2は工作機械(図示略)の主軸に保持される。ボディ3は、シャンク2から軸心AXを中心として延びる。以下では、ボディ3のうちシャンク2側(図1の右側)の端部を「ボディ3の基端部」といい、ボディ3のうちシャンク2とは反対側(図1の左側)の端部を「ボディ3の先端部」という。ボディ3の径方向を単に「径方向」という。軸心AXは径方向に直交する。
【0012】
三枚刃ドリル1は、軸心AXを中心として回転することによってワークを切削し、加工穴を形成する。加工時の三枚刃ドリル1の回転方向Rは、ボディ3の先端部側から見て(以下、「正面視」という。)反時計回り方向である。
【0013】
ボディ3の外周面31には、3つの排出溝4が設けられる。3つの排出溝4は、それぞれボディ3の先端部において開口する。3つの排出溝4は、それぞれボディ3の先端部からボディ3の基端部に向けて、正面視時計回り方向に螺旋状に形成される。排出溝4は、加工時に切りくずを加工穴から排出する。
【0014】
図2図3に示すように、排出溝4は、回転方向R側を向く内面41と、回転方向Rとは反対側を向く内面42とで構成される。内面41と外周面31とが交差する稜線部分は、リーディングエッジ33である。内面42と外周面31とが交差する稜線部分は、ヒール34である。
【0015】
ボディ3の先端部には逃げ面6が形成される。逃げ面6は、各内面41のうちボディ3の先端部側の端から回転方向Rとは反対側に、ボディ3の基端部側に傾斜するように延びる。内面41と逃げ面6とが交差する稜線部分には、切れ刃5が設けられる。第一実施形態では内面41および逃げ面6がそれぞれ3つずつあるので、切れ刃5は3つある。切れ刃5は正面視略S字形状を有し、ワークを切削する。切れ刃5付近の内面41は、切れ刃5によって切削された切りくずをすくい取る、所謂すくい面である。
【0016】
ボディ3の先端部中心にはチゼル9が形成される。チゼル9近傍にはシンニング刃7が形成される。シンニング刃7は、切れ刃5の径方向内側の端51から径方向内側へ向けて(つまり、チゼル9に向けて)、正面視回転方向Rに向かって湾曲した円弧状に延びる。シンニング刃7はシンニング面71と逃げ面6との稜線部分に設けられる。シンニング面71は、シンニング刃7からボディ3の基端部側に延び、回転方向R側を向く。シンニング面71は所謂すくい面である。
【0017】
ボディ3の先端部にはギャッシュ部8が形成される。ギャッシュ部8は、内面42のうちボディ3の先端部側に設けられ、回転方向Rとは反対側を向く面状に形成される。ギャッシュ部8は、加工時にすくい面によってすくい取られた切りくずをカールさせると共に排出溝4に排出する。詳細には、ギャッシュ部8はR部81とストレート部82とを有する。以下では、R部81と逃げ面6との稜線を「第一稜線811」といい、ストレート部82と逃げ面6との稜線を「第二稜線821」という。
【0018】
第一稜線811は、シンニング刃7の径方向内側の端72から径方向外側に向かって、正面視回転方向Rに向けて湾曲して延びる。なお、図3は第一稜線811を径方向外側の端812から径方向外側に延長した部分を、破線で示す(図5図6も同様)。R部81は、第一稜線811からボディ3の基端部側に延び、正面視回転方向R側に湾曲した曲面状に形成される。シンニング刃7によって切削された切りくずのカールはR部81によって強くなる。
【0019】
第二稜線821は、第一稜線811の径方向外側の端812から径方向外側に向かって直線状に延びる。第二稜線821の径方向外側の端822は、外周面31よりも径方向内側で排出溝4に接続する。詳細には、第一稜線811を径方向外側の端812から径方向外側に延長した部分が排出溝4に接続する位置よりも径方向内側で、第二稜線821は排出溝4に接続する。
【0020】
ストレート部82は、第二稜線821からボディ3の基端部側に向かって軸心AXから離れるように延び、内面42に沿って形成される。なお、図3はR部81とストレート部82の境界線を便宜的に直線の実線で示しているが(図5図6も同様)、実際にはストレート部82と螺旋状に捻じれる排出溝4の干渉により境界線ができるので、境界線は正面視で直線にはならない。つまり、境界線は排出溝4に沿ってカーブするように形成される。R部81によってカールされた切りくずは、ストレート部82によって排出溝4をボディ3の基端部側に流れるように案内される。
【0021】
R部81の径方向内側の端とシンニング面71の径方向内側の端との接続部分には、円弧溝10が形成される。円弧溝10は、チゼル9から排出溝4へ向けて延び、正面視径方向内側に湾曲した円弧状に形成される。円弧溝10は、シンニング面71ですくい取られた切りくずをギャッシュ部8へ円滑に流す。
【0022】
三枚刃ドリル1による加工時に発生する切りくずの動きについて説明する。シンニング刃7がワークに食い込んだ後、切れ刃5がワークを切削すると、切りくずが発生する。発生した切りくずは、すくい面によってすくい取られ、円弧溝10によってギャッシュ部8に押し出される。押し出された切りくずは、R部81で丸められてカールする。ストレート部82がボディ3の外周面31よりも径方向内側で排出溝4に接続するので、ストレート部82によって、切りくずはボディ3の外周面31に向かう方向ではなく、排出溝4に向かう方向にスムーズに排出される。
【0023】
切りくずは、排出溝4の中を通ってボディ3の基端部側に押し出される。このとき、R部81のヒール34側には壁としてストレート部82があるので、切りくずは、ギャッシュ部8の壁により拘束される。これにより、切りくずのカールがさらに強くなることで、切りくずは細かくせん断される。三枚刃ドリル1では、ギャッシュ部8のうちR部81によって切りくずのカールが強くなる。この結果、切りくずが細かく分断され、切りくず形状が安定する。せん断された切りくずは、排出溝4の中をボディ3の基端部側に流れて加工穴から外に排出される。以上のように、三枚刃ドリル1は加工時の切りくずの排出性を高め、切削抵抗を低く安定させることができる。
【0024】
<第二実施形態>
図4図5を参照して、本発明の第二実施形態に係る二枚刃ドリル101について説明する。二枚刃ドリル101の基本的な構成および二枚刃ドリル101による加工時に発生する切りくずの動きは三枚刃ドリル1と略同じである。二枚刃ドリル101は三枚刃ドリル1と刃数が異なる。以下では、第一実施形態と同一の機能を有する構成には第一実施形態と同一の符号を付して二枚刃ドリル101について簡略化して説明する。
【0025】
二枚刃ドリル101では、ボディ3の外周面31に2つの排出溝4が設けられる。ボディ3の先端部には逃げ面6が形成される。内面41と逃げ面6とが交差する稜線部分には、切れ刃5が設けられる。第二実施形態では内面41および逃げ面6がそれぞれ2つずつあるので、切れ刃5は2つある。
【0026】
ギャッシュ部8は第一実施形態と同様にR部81とストレート部82とを有する。第一稜線811は、シンニング刃7の径方向内側の端72から径方向外側に向かって、正面視回転方向Rに向けて湾曲して延びる。R部81は、第一稜線811からボディ3の基端部側に延び、正面視回転方向R側に湾曲した曲面状に形成される。
【0027】
第二稜線821は、第一稜線811の径方向外側の端812から径方向外側に向かって直線状に延びる。第二稜線821の径方向外側の端822は、外周面31よりも径方向内側で排出溝4に接続する。ストレート部82は、第二稜線821からボディ3の基端部側に向かって軸心AXから離れるように延び、内面42に沿って形成される。
【0028】
<変形例>
本発明は上記の各実施形態に限定されず、種々の変更が可能である。回転方向Rは正面視時計回り方向でもよい。円弧溝10はなくてもよい。つまり、シンニング刃7とR部81との接続部分は角ばっていてもよい。刃数は上記実施形態に限定されない。上記実施形態は、リーディングエッジ33とヒール34との間の中間部分に背抜きを設けた、所謂ダブルマージンのドリルでもよいし、背抜きがヒール34に達する、所謂シングルマージンのドリルであってもよいし、背抜きはなくてもよい。第一稜線811を径方向外側の端812から径方向外側に延長した部分が排出溝4に接続する位置と同じ位置または径方向外側で、第二稜線821は排出溝4に接続してもよい。
【0029】
上記実施形態では、第二稜線821は第一稜線811の径方向外側の端812から径方向外側に向かって直線状に延びる。これに対し、図6に示すように、変形例の二枚刃ドリル102では、第二稜線821は、第一稜線811の径方向外側の端812から径方向外側に向かって、正面視回転方向Rに向けて湾曲して延びる。第二稜線821の曲率半径は第一稜線811の曲率半径よりも大きければよい。第一稜線811を端812から径方向外側に延長した部分が排出溝4に接続する位置よりも径方向内側で、第二稜線821は排出溝4に接続する。二枚刃ドリル102は、上記実施形態と同様に、加工時の切りくずの排出性を高め、切削抵抗を低く安定させることができる。なお、三枚刃ドリル1でも同様に変形可能である。
【0030】
<評価試験の概要>
以下説明する各種評価試験は、第一実施形態および第二実施形態において、R部81およびストレート部82の両方がギャッシュ部8に設けられたことによる効果を確認するために行われた。以下では、ギャッシュ部8にストレート部82が設けられておらず、R部81のみが設けられている三枚刃ドリル、またはギャッシュ部8にR部81が設けられておらず、ストレート部82のみが設けられている三枚刃ドリルを「従来の三枚刃ドリル」という(図示略)。ギャッシュ部8にストレート部82が設けられておらず、R部81のみが設けられている二枚刃ドリル、またはギャッシュ部8にR部81が設けられておらず、ストレート部82のみが設けられている二枚刃ドリルを「従来の二枚刃ドリル」という(図示略)。
【0031】
<第一試験>
図3図5に示すように、ボディ3の外径を「外径D」とする。正面視で第一稜線811の径方向外側の端812における接線Tと第二稜線821との間の角度を「接線角度θ」とする。正面視で軸心AXから第二稜線821の径方向外側の端822(つまり、第二稜線821が排出溝4に接続する位置)までの距離を「距離L」とする。第一実施形態の三枚刃ドリル1と第二実施形態の二枚刃ドリル101のそれぞれについて、接線角度θおよび距離Lの違いによるドリル寿命と、従来の三枚刃ドリルおよび従来の二枚刃ドリルとのドリル寿命の差異を確認するため第一試験が行われた。
【0032】
接線角度θは4°刻みで4°から24°まで変化させた。距離Lは0.03D(つまり外径Dの3%、以下同様に表記する。)刻みで0.27Dから0.48Dまで変化させた(図7図8参照)。なお、従来のドリルについては、ストレート部82がないので、接線角度θの概念は存在しない。従来のドリルにおける距離Lは、軸心AXから第一稜線811の径方向外側の端812までの距離に相当する。
【0033】
第一試験結果の判定基準は以下の通りである。
○:切削長さの積算が50mの時点でドリルに折損および欠損がなく、かつ逃げ面6の摩耗幅が0.2mm以下の場合。
△:切削長さの積算が50mに到達する前にドリルが折損または欠損した場合、または切削した長さの積算が50mの時点で逃げ面6の摩耗幅が0.2mmを超える場合。
×:初期の時点(加工穴数が10穴に到達するまで)にドリルが折損または欠損した場合。
【0034】
三枚刃ドリル1および従来の三枚刃ドリルによる第一試験の条件は以下の通りである。外径D:5mm
ワーク:SCM440(生材)
加工深さ:25mm
切削速度:100m/min
送り量:0.25mm/rev
【0035】
図7の「R部+ストレート部(本願ドリル)」の欄に示すように、三枚刃ドリル1では、距離Lが0.27D以上0.48D以下、かつ接線角度θが24°以下のときに判定結果が「×」となることはなかった。一方、図7の「R部のみ(従来ドリル)」の欄に示すように、従来の三枚刃ドリルでは、距離Lが0.27D以上0.48D以下のときに判定結果が「○」となることはなかった。
【0036】
詳細には、三枚刃ドリル1では、接線角度θが20°以下のときに判定結果がおおむね「○」となった。距離Lが0.30D以上0.45D以下のときに判定結果がおおむね「○」となった。接線角度θが20°以下であり、かつ距離Lが0.30D以上0.45D以下のときにすべての判定結果が「○」となった。
【0037】
二枚刃ドリル101および従来の二枚刃ドリルによる第一試験の条件は以下の通りである。
外径D:8.5mm
ワーク:SCM440(生材)
加工深さ:42.5mm
切削速度:100m/min
送り量:0.34mm/rev
【0038】
図8の「R部+ストレート部(本願ドリル)」の欄に示すように、二枚刃ドリル101では、距離Lが0.27D以上0.48D以下、かつ接線角度θが24°以下のときに判定結果が「×」となることはなかった。一方、図7の「R部のみ(従来ドリル)」の欄に示すように、従来の二枚刃ドリルでは、距離Lが0.27D以上0.48D以下のときに判定結果が「○」となることはなかった。
【0039】
詳細には、二枚刃ドリル101では、接線角度θが20°以下のときに判定結果がおおむね「○」となった。距離Lが0.30D以上0.45D以下のときに判定結果がおおむね「○」となった。接線角度θが20°以下であり、かつ距離Lが0.30D以上0.45D以下のときにすべての判定結果が「○」となった。
【0040】
以上のように、三枚刃ドリル1、二枚刃ドリル101では、接線角度θが20°以下のとき、長くかつ安定したドリル寿命が得られるという結果が確認された。接線角度θが20°以下では、発生した切りくずがR部81によって安定したカール形状となることで、切りくずの形状が安定する。このため、三枚刃ドリル1、二枚刃ドリル101は加工時のワークの切りくずの排出性をより安定化させることができる。
【0041】
距離Lが0.30D以上0.45D以下のとき、長くかつ安定したドリル寿命が得られるという結果が確認された。距離Lが0.30D以上0.45D以下では、カールした切りくずが、ストレート部82によって排出溝4に安定的に排出される。このため、三枚刃ドリル1、二枚刃ドリル101は加工時のワークの切りくずの排出性を安定化させることができる。
【0042】
第一試験の結果によれば、接線角度θは20°以下であることが好ましく、距離Lは0.30D以上0.45D以下であることが好ましい。なお、接線角度θは20°よりも大きくてもよい。距離Lは0.30Dよりも小さくてもよいし、0.45Dよりも大きくてもよい。例えば三枚刃ドリル1の場合、接線角度θが4°であり、かつ距離Lが0.27Dのとき、判定結果が「○」となる(図7参照)。二枚刃ドリル101の場合、接線角度θが8°以下であり、かつ距離Lが0.27Dのとき、判定結果が「○」となる(図8参照)。
【0043】
<第二試験>
第一実施形態の三枚刃ドリル1について、ギャッシュ部8の形状の違いによる従来の三枚刃ドリルとのドリル寿命の差異を確認するため第二試験が行われた。詳細には、ギャッシュ部8がR部81とストレート部82からなる第一実施形態の三枚刃ドリル1A(N1~N3)、ギャッシュ部8がR部81のみの従来の三枚刃ドリル1B(N1~N3)、ギャッシュ部8がストレート部82のみの従来の三枚刃ドリル1C(N1~N3)のそれぞれについて、1200穴を上限として耐久穴数が計数された。耐久穴数は、三枚刃ドリル1が欠損または折損せずに加工可能な加工穴の数である。なお、「N」は試験本数を示す。
【0044】
第二試験の条件は以下の通りである。
外径D:8.4mm
ワーク:S50C相当材
加工深さ:40mm
切削速度:80m/min
送り量:0.38mm/rev
【0045】
図9のグラフでは、横軸が耐久穴数に対応し、縦軸が各三枚刃ドリル1A(N1~N3)、1B(N1~N3)、1C(N1~N3)に対応する。図9に示すように、三枚刃ドリル1A(N1~N3)の耐久穴数はいずれも1200穴(第二試験の上限)となった。つまり、三枚刃ドリル1Aの耐久穴数は1200穴以上となることが確認された。
【0046】
従来の三枚刃ドリル1B(N1)の耐久穴数は1200穴(第二試験の上限)、従来の三枚刃ドリル1B(N2)の耐久穴数は960穴、従来の三枚刃ドリル1B(N3)の耐久穴数は1060穴となった。詳細には、従来の三枚刃ドリル1B(N2)は960穴で欠損し、従来の三枚刃ドリル1B(N3)は1060穴で欠損した。
【0047】
従来の三枚刃ドリル1C(N1)の耐久穴数は800穴、従来の三枚刃ドリル1C(N2)の耐久穴数は102穴、従来の三枚刃ドリル1C(N3)の耐久穴数は48穴となった。詳細には、従来の三枚刃ドリル1C(N1)は800穴で折損し、従来の三枚刃ドリル1C(N2)は102穴で折損し、従来の三枚刃ドリル1B(N3)は48穴で折損した。
【0048】
以上のように、三枚刃ドリル1A(N1~N3)の方が従来の三枚刃ドリル1B(N1~N3)、1C(N1~N3)よりも長く且つ安定したドリル寿命が得られた。
【0049】
<第三試験>
第二実施形態の二枚刃ドリル101について、ギャッシュ部8の形状の違いによる従来の二枚刃ドリルとの切削抵抗の差異を確認するため第三試験が行われた。詳細には、ギャッシュ部8がR部81とストレート部82からなる第二実施形態の二枚刃ドリル101A、ギャッシュ部8がR部81のみの従来の二枚刃ドリル101B、ギャッシュ部8がストレート部82のみの従来の二枚刃ドリル101Cのそれぞれについて、ワーク加工時の最大スラスト荷重と最大トルクが測定された。
【0050】
第三試験の条件は以下の通りである。
外径D:4.95mm
ワーク:38Mn
加工深さ:91mm
切削速度:80m/min
送り量:0.4mm/rev
その他:ガイド穴あり(内径5.03mm、加工深さ15mm)
【0051】
図10(A)のグラフでは、横軸が上記第三試験の条件でのワーク加工時の最大スラスト荷重に対応し、縦軸が各二枚刃ドリル101A、101B、101Cに対応する。図10(B)のグラフでは、横軸が上記第三試験の条件でのワーク加工時の最大トルクに対応し、縦軸が各二枚刃ドリル101A、101B、101Cに対応する。
【0052】
図10(A)、図10(B)に示すように、最大スラスト荷重および最大トルクは、いずれも二枚刃ドリル101Aの方が従来の二枚刃ドリル101B、101Cよりも小さかった。つまり、二枚刃ドリル101Aの方が従来の二枚刃ドリル101B、101Cよりも加工時にドリルに作用する切削抵抗が小さい。よって、二枚刃ドリル101Aは、従来の二枚刃ドリル101B、101Cよりも切削抵抗を低く安定させることができるという結果が得られた。
【0053】
<第四試験>
第二実施形態の二枚刃ドリル101について、ギャッシュ部8の形状の違いによる従来の二枚刃ドリルとの送り量に応じた切削抵抗の差異を確認するため第四試験が行われた。詳細には、ギャッシュ部8がR部81とストレート部82からなる第二実施形態の二枚刃ドリル101D、101G、101J、ギャッシュ部8がR部81のみの従来の二枚刃ドリル101E、101H、101K、ギャッシュ部8がストレート部82のみの従来の二枚刃ドリル101F、101I、101Lのそれぞれについて、ワーク加工時のスラスト荷重とトルクの経時変化が測定された。
【0054】
第四試験の条件は以下の通りである。
外径D:10mm
ワーク:SCM440
加工深さ:200mm
切削速度:100m/min
送り量:0.27mm/rev、0.35mm/rev、0.4mm/rev
その他:ガイド穴あり(内径10.03mm、加工深さ10mm)
【0055】
図11(A)、図12(A)、図13(A)のグラフは、それぞれ、第二実施形態の二枚刃ドリル101D、101G、101Jによる第四試験結果を示す。図11(B)、図11(C)、図12(B)、図13(B)のグラフは、それぞれ、従来の二枚刃ドリル101E、101F、101H、101Kによる第四試験結果を示す。図11図13のグラフでは、横軸が時間、縦軸が上記第四試験の条件でのワーク加工時のスラスト荷重またはトルクに対応する。詳細には、破線で示したグラフでは、縦軸はスラスト荷重に対応する。実線で示したグラグでは、縦軸はトルクに対応する。
【0056】
図11図13に示すように、スラスト荷重およびトルクのそれぞれの振れ幅は送り量に関わらず、二枚刃ドリル101D、101G、101Jの方が、それぞれ、従来の二枚刃ドリル101E、101F、101H、101Kよりも小さかった。つまり、スラスト荷重およびトルク(切削抵抗)の経時的な変化量は、送り量に関わらず、二枚刃ドリル101D、101G、101Jの方が、従来の二枚刃ドリル101E、101F、101H、101Kよりも安定していた。
【0057】
図14(A)、図14(B)のグラフでは、縦軸が各二枚刃ドリル101D、101E、101Fに対応する。図15(A)、図15(B)のグラフでは、縦軸が各二枚刃ドリル101G、101H、101Iに対応する。図16(A)、図16(B)のグラフでは、縦軸が各二枚刃ドリル101J、101K、101Lに対応する。図14(A)、図15(A)、図16(A)のグラフでは、横軸が上記第四試験の条件でのワーク加工時の最大スラスト荷重に対応する。図14(B)、図15(B)、図16(B)のグラフでは、横軸が上記第四試験の条件でのワーク加工時の最大トルクに対応する。
【0058】
図14図16に示すように、最大スラスト荷重および最大トルクは、送り量に関わらず、二枚刃ドリル101D、101G、101Jの方が、それぞれ従来の二枚刃ドリル101E、101F、101H、101Kよりも小さかった。つまり、二枚刃ドリル101D、101G、101Jの方がそれぞれ従来の二枚刃ドリル101E、101F、101H、101Kよりも加工時にドリルに作用する切削抵抗が小さい。よって、二枚刃ドリル101D、101G、101Jは、それぞれ送り量に関わらず、従来の二枚刃ドリル101E、101F、101H、101Kよりも切削抵抗を低く安定させることができるという結果が得られた。
【0059】
なお、従来の二枚刃ドリル101I、101Lについては、それぞれ、スラスト荷重およびトルクの経時的な変化量が二枚刃ドリル101G、101Jよりも大きくなることが明らかであり、且つ最大スラスト荷重および最大トルクも二枚刃ドリル101G、101Jよりも大きくなることが明らかであるので、第四試験は実施されなかった。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16