(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2022-01-04
(45)【発行日】2022-01-20
(54)【発明の名称】旋削加工方法、加工システム及び加工プログラム
(51)【国際特許分類】
B23B 1/00 20060101AFI20220113BHJP
B23B 25/06 20060101ALI20220113BHJP
B23Q 17/20 20060101ALI20220113BHJP
B23B 5/00 20060101ALI20220113BHJP
B23B 21/00 20060101ALI20220113BHJP
【FI】
B23B1/00 Z
B23B25/06
B23Q17/20 A
B23B5/00 A
B23B21/00 C
(21)【出願番号】P 2021534192
(86)(22)【出願日】2021-01-25
(86)【国際出願番号】 JP2021002450
【審査請求日】2021-06-14
【早期審査対象出願】
(73)【特許権者】
【識別番号】000114787
【氏名又は名称】ヤマザキマザック株式会社
(74)【代理人】
【識別番号】110001184
【氏名又は名称】特許業務法人むつきパートナーズ
(72)【発明者】
【氏名】長尾 亮
(72)【発明者】
【氏名】安井 健
(72)【発明者】
【氏名】田村 洋二
【審査官】小川 真
(56)【参考文献】
【文献】特開2020-144729(JP,A)
【文献】特開昭50-154892(JP,A)
【文献】特開昭51-055080(JP,A)
【文献】特開2002-307202(JP,A)
【文献】米国特許第5917726(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23B 1/00
B23B 5/00、5/12
B23B 21/00
B23B 25/06
B23Q 17/20
(57)【特許請求の範囲】
【請求項1】
回転軸の周りで回転するワークを旋削加工する方法であって、
旋削工具を前記回転軸の径方向に移動させる第1移動装置を駆動させて、前記径方向における第1径方向位置に前記旋削工具の刃先を配置させ、
前記旋削工具を前記回転軸と平行に移動させる第2移動装置を駆動させて、前記ワークを旋削加工した後に、
前記第1移動装置に対して前記旋削工具を前記回転軸の前記径方向に相対移動させる第3移動装置を駆動させて前記刃先を前記ワークの表面から離してから、前記第2移動装置を駆動させて前記旋削工具を逆方向へ移動させて前記ワークから前記旋削工具を待避させ、
前記ワークの加工寸法を測定して目標寸法との誤差を算出し、
前記第3移動装置を駆動させ、前記誤差を補正するように第2径方向位置に前記旋削工具の前記刃先を配置させ、
前記第2移動装置を駆動させて、前記回転軸と平行に前記旋削工具を移動させて前記ワークを旋削加工する、ワークの旋削加工方法。
【請求項2】
前記第1径方向位置に前記旋削工具の前記刃先を配置させ前記第1移動装置の駆動を固定させる、請求項1記載の旋削加工方法。
【請求項3】
前記第3移動装置は、前記誤差に対応した量だけ前記第1移動装置に対して前記旋削工具を相対移動させる、請求項1または2に記載の旋削加工方法。
【請求項4】
前記第3移動装置は、1mm以内で前記第1移動装置に対して前記旋削工具を相対移動させる、請求項1から3のいずれか1項に記載の旋削加工方法。
【請求項5】
前記ワーク
の凹部内を旋削加工する、
請求項1から4のいずれか1項に記載の旋削加工方法。
【請求項6】
回転軸の周りで回転するワークを旋削加工する方法であって、
旋削工具を前記回転軸と平行に移動させる第2移動装置を駆動させて、前記回転軸と平行な方向における第1軸方向位置に前記旋削工具の刃先を配置させ、
前記旋削工具を前記回転軸の径方向に移動させる第1移動装置を駆動させて、前記ワークを旋削加工した後に、
前記第2移動装置に対して前記旋削工具を前記回転軸と平行に相対移動させる第4移動装置を駆動させて前記刃先を前記ワークの表面から離してから、前記第1移動装置を駆動させて前記旋削工具を逆方向へ移動させて前記ワークから前記旋削工具を待避させ、
前記ワークの加工寸法を測定して目標寸法との誤差を算出し、
前記第4移動装置を駆動させ、前記誤差を補正するように第2軸方向位置に前記旋削工具の前記刃先を配置させ、
前記第1移動装置を駆動させて、前記径方向に前記旋削工具を移動させて前記ワークを旋削加工する、ワークの旋削加工方法。
【請求項7】
前記第1軸方向位置に前記旋削工具の前記刃先を配置させ前記第2移動装置の駆動を固定させる、請求項6記載の旋削加工方法。
【請求項8】
前記第4移動装置は、前記誤差に対応した量だけ前記第2移動装置に対して前記旋削工具を相対移動させる、請求項6または7に記載の旋削加工方法。
【請求項9】
前記第4移動装置は、1mm以内で前記第2移動装置に対して前記旋削工具を相対移動させる、請求項6から8のいずれか1項に記載の旋削加工方法。
【請求項10】
ワークを旋削加工する加工装置と、
ワークの加工寸法を測定する測定装置と、
前記加工装置と前記測定装置の駆動を制御する制御装置と、を備え、
前記加工装置は、
前記ワークを回転軸周りで回転させる主軸装置と、
旋削工具を前記回転軸の径方向に移動させる第1移動装置と、
前記旋削工具を前記回転軸と平行に移動させる第2移動装置と、
前記回転軸の径方向で前記第1移動装置よりも小さい可動範囲を有し、前記第1移動装置に対して前記旋削工具を前記回転軸の径方向に相対移動させる第3移動装置と、を含み、
前記制御装置は、
前記加工装置および前記測定装置の駆動を制御して、請求項1から5のいずれかの方法を実行させる、
ワークの加工システム。
【請求項11】
前記第3移動装置の前記可動範囲は、前記第1移動装置の可動範囲の1/100以下である、請求項10記載の加工システム。
【請求項12】
ワークを旋削加工する加工装置と、
前記ワークの加工寸法を測定する測定装置と、
前記加工装置と前記測定装置の駆動を制御する制御装置と、を備え、
前記加工装置は、
前記ワークを回転軸周りで回転させる主軸装置と、
旋削工具を前記回転軸の径方向に移動させる第1移動装置と、
前記旋削工具を前記回転軸と平行に移動させる第2移動装置と、
前記回転軸と平行な方向で前記第2移動装置よりも小さい可動範囲を有し、前記第2移動装置に対して前記旋削工具を前記回転軸と平行に相対移動させる第4移動装置と、を含み、
前記制御装置は、
前記加工装置および前記測定装置の駆動を制御して、請求項6から9のいずれかの方法を実行させる、
ワークの加工システム。
【請求項13】
前記第4移動装置の前記可動範囲は、前記第2移動装置の可動範囲の1/100以下である、請求項12記載の加工システム。
【請求項14】
旋削工具をワークの回転軸の径方向に移動させる第1移動装置と、
前記旋削工具を前記回転軸と平行に移動させる第2移動装置と、
前記第1移動装置に対して前記旋削工具を前記回転軸の径方向に相対移動させる第3移動装置と、を含む加工装置に対して、
請求項1から5のいずれかの方法を実行させる指示を備える、加工プログラム。
【請求項15】
旋削工具をワークの回転軸の径方向に移動させる第1移動装置と、
前記旋削工具を前記回転軸と平行に移動させる第2移動装置と、
前記第2移動装置に対して前記旋削工具を前記回転軸と平行に相対移動させる第4移動装置と、を含む加工装置に対して、
請求項6から9のいずれかの方法を実行させる指示を備える、加工プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、主軸装置に把持されて回転軸の周りで回転するワークを旋削加工する方法、その加工システム及び加工プログラムに関する。
【背景技術】
【0002】
径方向の機械加工において、狭い寸法公差、例えば、10μm以下といった寸法公差を要求される場合、予め目標寸法に対して研削代を残して旋削加工した後に、研削加工と寸法測定とを繰り返し、仕上げ寸法を目標寸法に対する公差内に収めることが一般的に行われている。一方、旋削加工だけで高精度に径方向の機械加工を行うには、主軸装置と旋削工具との相対運動誤差を補正する制御を行う必要がある。
【0003】
例えば、特許文献1では、キー溝の加工において、摩耗した工具(バイト)を交換することなく摩耗分を補正できるように、主軸の回転軸に対する刃物台の距離を微調整する機構を組み込んだ加工装置(複合旋盤)を開示している。主軸の回転軸方向にスライド可能なクロススライドの上に、該回転軸方向に対して垂直且つ水平に摺動自在に装着された機台を設け、この機台上に取り付けられた刃物台に棒状の工具が該回転軸に対して垂直方向に伸びるように配置されて固定されている。かかる装置によれば、棒状の工具をその長手方向に静的又は動的に進退させて、ワークの外径寸法や真円度の微調整を行うことができるとしている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記したような狭い寸法公差を要求される機械加工において、特許文献1に記載の方法では、加工後に測定した寸法が公差内に収まっていない場合、次に加工するワークのために主軸の回転軸に対する刃物台の距離を微調整する。しかしながら、加工のための動作に起因する温度上昇に伴って回転軸と刃物台との位置関係が変化する熱変位を生じるため、次の加工の際に同様の調整量で適切な距離が取れるとは限らない。さらに、加工後に測定した寸法から距離を微調整するため、最初に加工するワークを寸法公差内に収めることは難しい。これを解消するため、上記したような旋削加工のあとに研削加工が行われるものの、旋削加工に合わせて研削加工を行うには長い加工時間を必要とすることから、旋削加工のみで短時間に機械加工できることが望まれる。
【0006】
本発明の目的は、狭い寸法公差を要求される機械加工を与え得る旋削加工方法、旋削加工プログラム及び旋削加工システムを提供することにある。
【課題を解決するための手段】
【0007】
本発明による旋削加工方法は、回転軸の周りで回転するワークを旋削加工する方法であって、旋削工具を回転軸の径方向に移動させる第1移動装置を駆動させて、径方向における第1径方向位置に旋削工具の刃先を配置させ、旋削工具を回転軸と平行に移動させる第2移動装置を駆動させて、ワークを旋削加工した後に、逆方向へ移動させてワークから旋削工具を待避させ、ワークの加工寸法を測定して目標寸法との誤差を算出し、第1移動装置に対して旋削工具を回転軸の径方向に相対移動させる第3移動装置を駆動させ、誤差を補正するように第2径方向位置に旋削工具の刃先を配置させ、第2移動装置を駆動させて回転軸と平行に旋削工具を移動させてワークを旋削加工する、ワークの旋削加工方法である。
【0008】
また、本発明による加工システムは、ワークを旋削加工する加工装置と、ワークの加工寸法を測定する測定装置と、加工装置と測定装置の駆動を制御する制御装置と、を備え、加工装置は、ワークを回転軸周りで回転させる主軸装置と、旋削工具を回転軸の径方向に移動させる第1移動装置と、旋削工具を回転軸と平行に移動させる第2移動装置と、回転軸の径方向で第1移動装置よりも小さい可動範囲を有し、第1移動装置に対して旋削工具を回転軸の径方向に相対移動させる第3移動装置と、を含み、制御装置は、加工装置および測定装置の駆動を制御して、上記したワークの旋削加工方法を実行させる、ワークの加工システムである。
【0009】
また、本発明による加工プログラムは、旋削工具をワークの回転軸の径方向に移動させる第1移動装置と、旋削工具を回転軸と平行に移動させる第2移動装置と、第1移動装置に対して旋削工具を回転軸の径方向に相対移動させる第3移動装置と、を含む加工装置に対して、上記した加工方法を実行させる指示を備える、加工プログラムである。
【0010】
また、本発明による他の旋削加工方法は、回転軸の周りで回転するワークを旋削加工する方法であって、旋削工具を回転軸と平行に移動させる第2移動装置を駆動させて、回転軸と平行な方向における第1軸方向位置に旋削工具の刃先を配置させ、旋削工具を回転軸の径方向に移動させる第1移動装置を駆動させて、ワークを旋削加工した後に、逆方向へ移動させてワークから旋削工具を待避させ、ワークの加工寸法を測定して目標寸法との誤差を算出し、第2移動装置に対して旋削工具を回転軸と平行に相対移動させる第4移動装置を駆動させ、誤差を補正するように第2切軸方向位置に旋削工具の刃先を配置させ、第1移動装置を駆動させて径方向に旋削工具を移動させてワークを旋削加工する、ワークの旋削加工方法である。
【0011】
また、本発明による他の加工システムは、ワークを旋削加工する加工装置と、ワークの加工寸法を測定する測定装置と、加工装置と測定装置の駆動を制御する制御装置と、を備え、加工装置は、ワークを回転軸周りで回転させる主軸装置と、旋削工具を回転軸の径方向に移動させる第1移動装置と、旋削工具を回転軸と平行に移動させる第2移動装置と、回転軸と平行な方向で第2移動 装置よりも小さい可動範囲を有し、第2移動装置に対して旋削工具を回転軸と平行に相対移動させる第4移動装置と、を含み、制御装置は、加工装置および測定装置の駆動を制御して、上記した他の旋削加工方法を実行させる、ワークの加工システムである。
【0012】
また、本発明による他の加工プログラムは、旋削工具をワークの回転軸の径方向に移動させる第1移動装置と、旋削工具を回転軸と平行に移動させる第2移動装置と、第2移動装置に対して旋削工具を回転軸と平行に相対移動させる第4移動装置と、を含む加工装置に対して、上記した他の旋削加工方法を実行させる指示を備える、加工プログラムである。
【0013】
これら発明によれば、研削加工によらず旋削加工のみで狭い寸法公差を要求される機械加工を与え得るのである。
【図面の簡単な説明】
【0014】
【
図1】本発明による旋削加工システムの1つの実施例の要部の側面図(一部ブロック図)である。
【
図3A】旋削加工方法のうち、切り込み位置への刃先の配置を示す側面図である。
【
図3B】旋削加工方法のうち、中仕上げ加工を示す側面図である。
【
図3C】旋削加工方法のうち、刃先のワーク表面からの離間を示す側面図である。
【
図3D】旋削加工方法のうち、旋削工具の待避を示す側面図である。
【
図4A】旋削加工方法のうち、寸法測定を示す側面図である。
【
図4B】旋削加工方法のうち、仕上げ加工を示す側面図である。
【
図4C】旋削加工方法のうち、仕上げ加工の終了を示す側面図である。
【
図5】ワーク及び旋削工具の配置例を示す断面図である。
【
図6】長いワークにおいて振れ止めを配置した状態を示す側面図である。
【
図7】本発明による旋削加工システムの他の実施例の要部の側面図である。
【
図8A】旋削加工方法のうち、切り込み位置への刃先の配置を示す側面図である。
【
図8B】旋削加工方法のうち、中仕上げ加工を示す側面図である。
【
図8C】旋削加工方法のうち、刃先のワーク表面からの離間を示す側面図である。
【
図8D】旋削加工方法のうち、旋削工具の待避を示す側面図である。
【
図9A】旋削加工方法のうち、寸法測定を示す側面図である。
【
図9B】旋削加工方法のうち、仕上げ加工を示す側面図である。
【
図9C】旋削加工方法のうち、仕上げ加工の終了を示す側面図である。
【発明を実施するための形態】
【0015】
以下、本発明によるワークの旋削加工方法、加工システム及び加工プログラムについて
図1乃至
図6を用いて詳細に説明する。
【0016】
まず、加工システムの構成について
図1を用いて説明する。
【0017】
図1に示すように、加工システム1は、加工機械10とその動作を制御する制御装置2とを含む。制御装置2は、予め格納された加工プログラム3に従って加工機械10を駆動させ、ワークWの旋削加工を自動的に行わせることができる。また、加工機械10の外部には、ワークWの加工寸法を測定するための測定装置としてのロボット20が備えられ、同様に制御装置2によってその駆動を制御される。ここで、制御装置2は複数の場所に設置され、通信手段により接続された制御回路により構成されてもよい。たとえば、ロボット20の駆動の一部または全部の制御が、加工機械10の駆動を制御する制御回路とは別の場所に設置された制御回路によって行われてもよい。
【0018】
加工機械10は、ワークWを把持して回転軸Aの周りで回転させる主軸装置11と、旋削工具12を固定されるタレットなどの刃物台13と、刃物台13とともに旋削工具12を回転軸Aの径方向に移動させて旋削工具12の刃先12aの位置を調整する第1移動装置14と、第1移動装置14及び刃物台13とともに旋削工具12を回転軸Aと平行に移動させて旋削工具12の刃先12aの位置を調整する第2移動装置16と、を含む。また、刃物台13と旋削工具12との間には刃物台13に対して旋削工具12を相対的に移動させることのできる第3移動装置15を備える。なお、旋削工具12は、回転軸Aと略平行に伸びるように配置されている。
【0019】
ここで、第2移動装置16は、キャレッジ8と、リニアガイド7と、ボールねじ6と、サーボモータ5とを備える。キャレッジ8は、加工機械10のベース4上に回転軸Aと平行に延びるように設けられた2本のリニアガイド7に取り付けられて、リニアガイド7に沿って摺動自在とされており、さらに回転軸Aと平行に延びるボールねじ6に螺合されている。ボールねじ6は、サーボモータ5に接続されており、サーボモータ5を駆動させることで回転してキャレッジ8を回転軸Aと平行に移動させることができる。
【0020】
さらに、第1移動装置14は、刃物台13に接続された刃物台ベース9と、リニアガイド19と、ボールねじ18と、サーボモータ17とを備える。刃物台ベース9は、第2移動装置16のキャレッジ8上に回転軸Aの径方向に延びるように設けられた2本のリニアガイド19に取り付けられ、リニアガイド19に沿って摺動自在とされており、さらにリニアガイド19と平行に延びるボールねじ18に螺合されている。ボールねじ18は、サーボモータ17に接続されており、サーボモータ17を駆動させることで回転して第1移動装置14の刃物台ベース9を第2移動装置16のキャレッジ8に対して相対的に回転軸Aの径方向に移動させることができる。
【0021】
第1移動装置14によって、旋削工具12は、旋削するワークWに対して回転軸Aの径方向への移動を可能とされ、その刃先12aの径方向位置を調整される。また、第2移動装置16によって、旋削工具12は、旋削するワークWに対して回転軸Aに平行な方向への移動を可能とされ、その刃先12aの軸方向位置を調整される。これによって、旋削工具12の刃先12aを切り込み位置へ調整し、旋削加工における送りを付与することができる。第1移動装置14及び第2移動装置16は、このような旋削加工に伴う送りや後述する待避など、ワークWの大きさに対応する十分な移動量を確保する必要があり、例えば、それぞれ100mm以上の可動範囲を有することとし得る。
【0022】
また、第3移動装置15は、第1移動装置14に対して相対的に回転軸Aの径方向に旋削工具12を移動させることができる。第3移動装置15は、第1移動装置14よりも位置精度が高く、第1移動装置14よりも小さい可動範囲を有することが好ましい。第3移動装置15は、第1移動装置14の位置精度に基づくワークWの中仕上げ加工による加工寸法の誤差を、仕上げ加工において補正し得る可動範囲を有するものであり、刃先12aの位置を高精度に定め得る。なお、第3移動装置15の可動範囲は、例えば1mm以下とし得る。つまり、第3移動装置15の可動範囲は、第1移動装置14の可動範囲の1/100以下とし得る。これによって、第1移動装置14で調整された刃先12aの位置を回転軸Aの径方向にさらに微調整し得る。第3移動装置15の駆動方式としては、例えば、油圧を用いた工具ホルダの弾性変形によるもの、リニアモータによるもの、サーボモータによって回転するボールねじに螺合したスライダーによるもの等を用いることができる。
【0023】
測定装置としてのロボット20は、ロボットアーム21の先端に測定器22を備えており、制御装置2からの駆動指令によって機外から加工機械10の内部にその先端を差し入れて、主軸装置11に把持されたワークWの加工寸法を測定することができる。測定器22には、例えば、空気式のエアマイクロメータを用いたエアゲージを好適に用いることができる。
【0024】
次に、加工システム1の動作として、ワークWの外周面又は内周面の旋削加工の方法について
図2に沿って
図3及び
図4を併せて参照しつつ説明する。なお、ワークWは粗加工を終えた状態で主軸装置11に把持されているものとする。
【0025】
図2に
図3Aを併せて参照すると、主軸装置11に把持されたワークWを、回転軸Aの周りに回転させる。そして、第1移動装置14(
図1参照)を駆動させて、刃物台13に取り付けられた旋削工具12の刃先12aをワークWの中仕上げ加工における切り込み位置に配置させ、位置決めを行う(S1)。ここで、中仕上げ加工における切り込み位置は、径方向において第1移動装置14の位置精度を加味して仕上げの目標寸法に対して仕上げ代を残した径方向位置と、回転軸Aに平行な軸方向において旋削加工での送りを開始するための軸方向位置とで定められる。この軸方向位置は、第2移動装置16を用いて調整される。
【0026】
そして、
図3Bに示すように、第2移動装置16を駆動させて第1移動装置14とともに刃物台13に取り付けられた旋削工具12を回転軸Aと平行な移動軸A’に沿って主軸装置11に向かう第1方向DR1に移動させて、中仕上げ加工としてワークWを旋削加工する(S2)。
【0027】
ここで、
図3Cに示すように、所定の位置までの旋削加工の後、好ましくは、第3移動装置15を駆動させて、刃先12aをワークWの表面から離す。
【0028】
次いで
図3Dに示すように、第2移動装置16を駆動させて回転軸Aと平行な移動軸A’に沿う第1方向DR1の逆方向である第2方向DR2に刃物台13を移動させ、旋削工具12をワークWの近傍から待避させる(S3)。このとき、第1移動装置14は、その駆動を固定され、刃物台13の径方向への移動はない。このような待避において、上記したように第3移動装置15を駆動させて、刃先12aをワークWの表面から離しておくことで、リターンマークの発生を防止できる。なお、リターンマークの発生については必ずしも防止せずともよく、刃先12aをワークWの表面から離すための第3移動装置15の駆動は省略し得る。
【0029】
次いで、
図4Aに示すように、ワークWの加工寸法を測定する(S4)。ここでは、測定装置としてのロボット20を駆動させて、ロボットアーム21を加工機械10の外部から差し入れてワークWに測定器22を近接させることで測定を行う。上記したように旋削工具12を待避させたことで、測定器22をワークWに近接させることができる。なお、ロボット20の代わりに、機内に備えられた測定器を用いてもよく、作業者によって手作業で測定を行うこととしてもよい。測定された加工寸法は制御装置2に測定結果として入力される。
【0030】
制御装置2では、ワークWの加工寸法の測定結果を基に、次の仕上げ加工での切り込み位置のうち、径方向位置を算出する(S5)。詳細には、仕上げ寸法の目標値と測定した加工寸法との誤差を補正するように径方向位置を定める。そして、第3移動装置15を駆動させて、定めた径方向位置に刃先12aを配置させるように旋削工具12の位置を調整する。
【0031】
次いで、
図4Bに示すように、仕上げ加工として、第2移動装置16を駆動させて刃物台13に取り付けられた旋削工具12を回転軸Aと平行な移動軸A’に沿う第1方向DR1に再び移動させて、ワークWを旋削加工する(S6)。
【0032】
そして、
図4Cに示すように、所定の位置までの旋削加工を行って、仕上げ加工を終了する。仕上げ加工の終了後、第3移動装置15を駆動させて、刃先12aをワークWの表面から離してもよい。
【0033】
さらに、旋削工具12の待避(S7)を行って、仕上げ寸法を測定する(S8)。ここで、仕上げ寸法が寸法公差内であった場合には、第1移動装置14及び第2移動装置16を原点に復帰させて旋削加工を終了する(S9;Yes)。このとき、第3移動装置15による仕上げ寸法の誤差を補正するような補正値を算出し、次回の仕上げ加工に用いてもよい。
【0034】
仕上げ寸法が寸法公差内でなかった場合には、切削代の残りを確認する(S9;No)。測定した仕上げ寸法が所定よりも小さく切削代が残っていない場合は(S10;Yes)、アラームを出して終了する。一方、仕上げ寸法が所定よりも大きく切削代が残っている場合は(S10;No)、仕上げ加工の切り込み位置の算出(S5)に戻ってやり直す。なお、以上の加工機械10及びロボット20の駆動は、加工プログラム3に従った制御装置2からの指令によるものである。
【0035】
以上のような方法で旋削加工を行うと、中仕上げ加工の位置決め(S1)以降、仕上げ加工(S6)まで第1移動装置14による旋削工具12の移動はない。換言すれば、第1移動装置14は、少なくとも仕上げ加工(S6)までその位置を固定したままとされる。これによって、仕上げ加工において、径方向の寸法精度は第1移動装置14の位置精度とは無関係になり、第3移動装置15の位置精度に依ることになる。上記したように第3移動装置15は第1移動装置14に比べて位置精度が高く、かかる高い位置精度によって旋削加工を行うことができる。このため、例えば、10μm以下といった狭い寸法公差の要求をも満たし得る。つまり、研削加工によらず旋削加工のみで狭い寸法公差を要求される機械加工を行い得る。
【0036】
なお、複数個のワークWを連続して旋削加工する場合において、第1移動装置14の移動を行わず、第2移動装置16による回転軸Aと平行な方向のみに移動を限定し、同じ補正値を用いて仕上げ加工を行うことで中仕上げ加工の後の寸法測定を省略することも検討し得る。しかし、繰り返しの加工による加工機械10の熱変位や、第2移動装置16の回転軸Aと平行な方向への多数回の繰り返しの移動によって径方向の寸法精度の低下をもたらすことも想定される。そのため、中仕上げ加工後の寸法測定(S4)は各ワークWにおいて毎回行うことが好ましい。
【0037】
また、複数個のワークWを連続して旋削加工することによる熱変位は、第3移動装置15にも生じ得る。一方、上記したように第3移動装置15は小さな可動範囲を有する。そのため、可動範囲の大きな第1移動装置14や第2移動装置16における熱変位に比べて、第3移動装置15に生じる熱変位は非常に小さなものとなる。よって、連続加工によって熱変位の生じるような場合であっても、上記した旋削加工方法によれば、狭い寸法公差を要求される機械加工を行い得る。
【0038】
また、
図5に示すように、旋削工具12を回転軸Aと略平行に伸びるように配置させることも好ましい。このような配置とすることで、ワークWにおいて回転軸Aを中心とする円周上に形成された凹部C内も上記した方法によって旋削加工することができる。つまり、凹部Cの内部に旋削工具12の刃先12aを差し入れ、その内周側及び外周側のそれぞれの壁面を旋削加工するのである。これにより、ワークの凹部内のような研削砥石を挿入させることが難しい場合や、挿入が可能であっても研削に手間を要する場合などであっても、狭い寸法公差を要求される機械加工を自動で連続して行い得る。
【0039】
図6に示すように、回転軸Aに沿った方向の寸法の長いワークWの旋削加工の場合、他の旋削加工と同様に、主軸装置11とワークWへの旋削工具12の切り込み位置との間にワークWを支持する振れ止め19を配置するとよい。このような配置であっても上記と同様な旋削加工を行うことができる。
【0040】
なお、中仕上げ加工を行わず、仕上げ加工のみを行う場合であっても、上記した加工寸法の測定(S4)から同じ方法とすることで、旋削加工のみで狭い寸法公差を要求される機械加工を行い得る。また、上記した旋削加工方法は、ワークの内周面、外周面の旋削加工に用い得る。加工機械10としては、上記したタレット旋盤や複合加工機など、他の形式の加工機械であってもよい。
【0041】
次に、ワークにおける回転軸Aに直交する面である端面の旋削加工方法について説明する。まず、加工機械の構成について説明する。
【0042】
図7に示すように、加工機械10’は上記した加工機械10と一部を除いて共通する。主として異なる点は、回転軸Aの径方向に旋削工具12を移動させる第3移動装置15の代わりに、回転軸Aと平行に旋削工具12’を移動させる第4移動装置15’を備えることである。具体的には、加工機械10’は、加工機械10に対して、刃物台13において移動装置ごと旋削工具を入れ換えており、刃物台13をタレットとした場合には、かかるタレットを回動させることでこの入れ換えを完了することができる。第1移動装置14及び第2移動装置16など、その他については加工機械10と同様である。
【0043】
第4移動装置15’についても、第3移動装置15の場合と同様に、第2移動装置16よりも高い位置精度を有している。そのため、第4移動装置15’は、第2移動装置16よりも小さい可動範囲を有することが好ましい。第4移動装置15’は、第2移動装置16の位置精度に基づくワークWの中仕上げ加工による加工寸法の誤差を、仕上げ加工において補正し得る可動範囲を有するものであり、刃先12’aの位置を高精度に定め得る。なお、第4移動装置15’の可動範囲は、例えば1mm以下とし得る。つまり、第4移動装置15’の可動範囲は、第2移動装置16の可動範囲の1/100以下とし得る。
【0044】
第4移動装置15’のその他詳細については、第3移動装置15と同様であるため、説明を省略する。
【0045】
次に、加工機械10’を用いてワークWの端面を旋削加工する方法について説明する。
【0046】
図2に
図8Aを併せて参照すると、主軸装置11に把持されたワークWを、回転軸Aの周りに回転させる。そして、第2移動装置16(
図7参照)を駆動させて、刃物台13に取り付けられた旋削工具12’の刃先12’aをワークWの中仕上げ加工における切り込み位置に配置させ、位置決めを行う(S1)。ここで、中仕上げ加工における切り込み位置は、回転軸Aと平行な軸方向において第2移動装置16の位置精度を加味して仕上げの目標寸法に対して仕上げ代を残した軸方向位置と、回転軸Aの径方向において旋削加工での送りを開始するための径方向位置とで定められる。この径方向位置は、第1移動装置14を用いて調整される。
【0047】
そして、
図8Bに示すように、第1移動装置14を駆動させて刃物台13に取り付けられた旋削工具12’を回転軸Aの径方向の移動軸Rに沿ってワークWにおける回転軸Aの回転中心に向かう第3方向DR3へ移動させて、中仕上げ加工としてワークWの端面を旋削加工する(S2)。
【0048】
ここで、
図8Cに示すように、所定の位置までの旋削加工の後、好ましくは、第4移動装置15’を駆動させて、刃先12’aをワークWの表面から離す。
【0049】
次いで
図8Dに示すように、第1移動装置14を駆動させて回転軸Aの径方向の移動軸Rに沿う第3方向DR3と逆方向の第4方向DR4に刃物台13に取り付けられた旋削工具12’を移動させ、旋削工具12’をワークWの近傍から待避させる(S3)。このとき、第2移動装置16は、その駆動を固定され、刃物台13の回転軸Aと平行な方向への移動はない。このような待避において、上記したように第4移動装置15’を駆動させて、刃先12’aをワークWの表面から離しておくことで、リターンマークの発生を防止できる。なお、リターンマークの発生については必ずしも防止しなくてもよく、刃先12’aをワークWの表面から離すための第4移動装置15’の駆動は省略し得る。
【0050】
次いで、
図9Aに示すように、ワークWの加工寸法を測定する(S4)。例えば、ノギス状の測定器22’で端面同士の距離を測定し加工寸法とすることができる。測定された加工寸法は制御装置2に測定結果として入力される。
【0051】
制御装置2では、ワークWの加工寸法の測定結果を基に、次の仕上げ加工での切り込み位置のうち、軸方向位置を算出する(S5)。詳細には、仕上げ寸法の目標値と測定した寸法との誤差を補正するように軸方向位置を定める。そして、第4移動装置15’を駆動させて、定めた軸方向位置に刃先12’aを配置させるように旋削工具12’の位置を調整する。
【0052】
次いで、
図9Bに示すように、仕上げ加工として、第1移動装置14を駆動させて刃物台13に取り付けられた旋削工具12’を回転軸Aの径方向の移動軸Rに沿う第3方向DR3に再び移動させて、ワークWの端面を旋削加工する(S6)。
【0053】
そして、
図9Cに示すように、所定の位置までの旋削加工を行って、仕上げ加工を終了する。その他は、上記した加工機械10による旋削加工方法と同様なので説明を省略する。
【0054】
以上のような方法で旋削加工を行うと、中仕上げ加工の位置決め(S1)以降、仕上げ加工(S6)まで第2移動装置16による旋削工具12’の移動はない。換言すれば、第2移動装置16は、少なくとも仕上げ加工(S6)までその駆動を固定したままとされる。これによって、仕上げ加工において、回転軸Aと平行な方向の寸法精度は第2移動装置16の位置精度とは無関係になり、第4移動装置15’の位置精度に依ることになる。上記したように、第4移動装置15’は第2移動装置16に比べて位置精度が高く、かかる高い位置精度によって旋削加工を行うことができる。このため、例えば、10μm以下といった狭い寸法公差の要求をも満たし得る。つまり、研削加工によらず旋削加工のみで狭い寸法公差を要求される機械加工を行い得る。
【0055】
以上、本発明による代表的な実施例及びこれに伴う変形例について述べたが、本発明は必ずしもこれに限定されるものではなく、適宜、当業者によって変更され得る。すなわち、当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。
【符号の説明】
【0056】
1 加工システム
2 制御装置
3 加工プログラム
10 加工機械
11 主軸装置
12 旋削工具
12a 刃先
13 刃物台
14 第1移動装置
15 第3移動装置
15’ 第4移動装置
16 第2移動装置
20 ロボット(測定装置)
A 回転軸
A’ 移動軸
W ワーク
【要約】
本発明は、回転軸の周りで回転するワークを旋削加工する方法である。旋削工具を回転軸の径方向に移動させる第1移動装置を駆動させて、径方向における第1径方向位置に旋削工具の刃先を配置させ、旋削工具を回転軸と平行に移動させる第2移動装置を駆動させて、ワークを旋削加工した後に、逆方向へ移動させてワークから旋削工具を待避させ、ワークの加工寸法を測定して目標寸法との誤差を算出し、第1移動装置に対して旋削工具を回転軸の径方向に相対移動させる第3移動装置を駆動させ、誤差を補正するように第2径方向位置に旋削工具の刃先を配置させ、第2移動装置を駆動させて、回転軸と平行に旋削工具を移動させてワークを旋削加工する。