(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-01-05
(45)【発行日】2022-01-20
(54)【発明の名称】光導波路、光電気混載基板、および光電気混載モジュール
(51)【国際特許分類】
G02B 6/122 20060101AFI20220113BHJP
G02B 6/42 20060101ALI20220113BHJP
G02B 6/13 20060101ALI20220113BHJP
【FI】
G02B6/122 311
G02B6/42
G02B6/13
(21)【出願番号】P 2017159296
(22)【出願日】2017-08-22
【審査請求日】2020-08-13
(73)【特許権者】
【識別番号】000003964
【氏名又は名称】日東電工株式会社
(74)【代理人】
【識別番号】100103517
【氏名又は名称】岡本 寛之
(74)【代理人】
【識別番号】100149607
【氏名又は名称】宇田 新一
(72)【発明者】
【氏名】古根川 直人
(72)【発明者】
【氏名】辻田 雄一
【審査官】山本 元彦
(56)【参考文献】
【文献】特開2011-039489(JP,A)
【文献】特開2009-103827(JP,A)
【文献】特開2012-163837(JP,A)
【文献】特開2012-181428(JP,A)
【文献】特開2005-208651(JP,A)
【文献】米国特許第05143577(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 6/12ー6/12、6/42
(57)【特許請求の範囲】
【請求項1】
光の伝送方向に延びるコアと、前記コアを前記伝送方向に沿って被覆するクラッドとを備え、
前記コアと前記クラッドとの界面において、前記コアの材料および前記クラッドの材料を含有する混合層を有し、
前記混合層は、前記伝送方向において厚みが異なる複数の領域を備えることを特徴とする、光導波路。
【請求項2】
前記混合層は、前記コアに含まれることを特徴とする、請求項1に記載の光導波路。
【請求項3】
前記混合層の全ての領域において、前記混合層の厚みが、前記コアと前記クラッドとの前記界面の最大谷深さZvを超過することを特徴とする、請求項1または2に記載の光導波路。
【請求項4】
前記複数の領域は、
第1の厚みT1を有する厚層領域と、前記第1の厚みT1に比べて薄い第2の厚みT2を有する薄層領域とを含み、
前記第1の厚みT1の、前記第2の厚みT2に対する比(T1/T2)が、1.5以上であることを特徴とする、請求項1~3のいずれか一項に記載の光導波路。
【請求項5】
前記複数の領域は、
前記伝送方向における前記コアの上流側端部に位置する第1領域と、
前記第1領域より下流側に位置する第2領域とを含み、
前記第2領域における前記混合層の厚みが、前記第1領域における前記混合層の厚みに対して、厚いことを特徴とする、請求項1~4のいずれか一項に記載の光導波路。
【請求項6】
前記複数の領域は、
前記伝送方向における前記コアの下流側端部に位置する第3領域と、
前記第3領域より上流側に位置する第2領域とを含み、
前記第2領域における前記混合層の厚みが、前記第3領域における前記混合層の厚みに対して、厚いことを特徴とする、請求項1~5のいずれか一項に記載の光導波路。
【請求項7】
請求項1~6のいずれか一項に記載の光導波路と、電気回路基板とを、前記厚み方向に順に備えることを特徴とする、光電気混載基板。
【請求項8】
前記電気回路基板は、金属支持層を備え、
前記光導波路は、
前記厚み方向に投影したときに、前記金属支持層と重複する重複領域と、
前記金属支持層と重複しない非重複領域とを有し、
前記非重複領域における前記混合層の厚みが、前記重複領域における前記混合層の厚みに対して厚いことを特徴とする、請求項7に記載の光電気混載基板。
【請求項9】
請求項5に記載の光導波路と、電気回路基板とを、前記厚み方向に順に備え、
前記コアにおける前記伝送方向の上流側端縁と光学的に結合する光素子をさらに備えることを特徴とする、光電気混載基板。
【請求項10】
請求項6に記載の光導波路と、電気回路基板とを前記厚み方向に順に備え、
前記
コアにおける前記伝送方向の下流側端縁と光学的に結合する外部光回路をさらに備えることを特徴とする、光電気混載モジュール。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光導波路、光電気混載基板、それらの製造方法および光電気混載モジュールに関し、詳しくは、光導波路、それを備える光電気混載基板、それを備える光電気混載モジュール、光導波路の製造方法、および、光電気混載基板の製造方法に関する。
【背景技術】
【0002】
従来、アンダークラッド層、コアおよびそれを被覆するオーバークラッド層を備える光導波路が知られている。光導波路は、情報処理部品や情報伝達部品などの部品同士を光学的に接続し、それらの間での光を伝送する。
【0003】
そのような光導波路として、例えば、コアの表層部に、オーバークラッド層形成用の樹脂成分が染み込み、コアの樹脂成分と、オーバークラッドの樹脂成分とが混在する混合層を設けたコネクタ用光導波路が提案されている(例えば、特許文献1参照。)。
【0004】
特許文献1に記載のコネクタ用光導波路では、混合層の屈折率が、コアの屈折率に比べて小さく、そのため、コア内の光が、混合層を通りにくくなるため、コアの表面における光の損失を低減、これによって、部品同士の光の損失を低減している。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
一方、コネクタ用光導波路を、具体的な用途および目的に応じて、光学的な設計をしたい場合がある。
【0007】
しかし、特許文献1に記載のコネクタ用光導波路は、混合層の厚みが伝送方向において同一であるので、種々の用途および目的に応じた光学的な設計をすることができないという不具合がある。
【0008】
本発明は、用途および目的に応じた光学的な設計をすることのできる光導波路、光電気混載基板、それらの製造方法および光電気混載モジュールを提供する。
【課題を解決するための手段】
【0009】
本発明(1)は、光の伝送方向に延びるコアと、前記コアを前記伝送方向に沿って被覆するクラッドとを備え、前記コアと前記クラッドとの界面において、前記コアの材料および前記クラッドの材料を含有する混合層を有し、前記混合層は、前記伝送方向において厚みが異なる複数の領域を備える、光導波路を含む。
【0010】
この光導波路では、混合層は、伝送方向において厚みが異なる複数の領域を備えるので、光導波路の用途および目的に応じた光学的に設計することができる。
【0011】
本発明(2)は、前記混合層は、前記コアに含まれる、(1)に記載の光導波路を含む。
【0012】
この光導波路では、混合層が、コアに含まれるので、コアの内部において伝送される光の損失を効率的に低減することができる。
【0013】
本発明(3)は、前記混合層の全ての領域において、前記混合層の厚みが、前記コアと前記クラッドとの前記界面の最大谷深さZvを超過する、(1)または(2)に記載の光導波路を含む。
【0014】
コアとクラッドとの界面は、最大谷深さZvに対応する谷、つまり、凹凸を有する。そうすると、界面において光の散乱し、光の損失が増大する場合がある。
【0015】
しかし、この光導波路では、混合層の全ての領域において、混合層の厚みが、上記した最大谷深さZvを超過するので、光が界面に至る前に、混合層において光を伝送方向に確実に向かわせることができる。そのため、界面における光の散乱に起因する光の損失の増大を抑制することができる。
【0016】
本発明(4)は、前記複数の領域は、第1の厚みT1を有する厚層領域と、前記第1の厚みT1に比べて薄い第2の厚みT2を有する薄層領域とを含み、前記第1の厚みT1の、前記第2の厚みT2に対する比(T1/T2)が、1.5以上である、(1)~(3)のいずれか一項に記載の光導波路を含む。
【0017】
この光導波路では、第1の厚みT1の、第2の厚みT2に対する比(T1/T2)が、1.5以上であるので、厚層領域および薄層領域によって、光導波路の用途および目的に応じたより光学的に設計することができる。
【0018】
本発明(5)は、前記複数の領域は、前記伝送方向における前記コアの上流側端部に位置する第1領域と、前記第1領域より下流側に位置する第2領域とを含み、前記第2領域における前記混合層の厚みが、前記第1領域における前記混合層の厚みに対して、厚い、(1)~(4)のいずれか一項に記載の光導波路を含む。
【0019】
この光導波路では、第1領域における混合層の厚みが、第2領域における混合層の厚みに対して、薄い。そのため、第1領域に対応するコアの上流側端部に、光の入射装置を対向配置すれば、入射装置から出射された光を、薄い第1領域の混合層に対応するコアによって、効率的に受光することができる。
【0020】
一方、第2領域における混合層の厚みが、第1領域における混合層の厚みに対して、厚い。そのため、第1領域から第2領域に至った光を、厚い第2領域に対応するコアによって、具体的には、第2領域の厚い混合層に基づく光の閉じ込め効果によって、光を伝送方向に伝送することができる。
【0021】
そのため、第1領域では、入射装置からの光を効率的に受光できつつ、第2領域では、光を閉じ込めながら伝送することができる。
【0022】
本発明(6)は、前記複数の領域は、前記伝送方向における前記コアの下流側端部に位置する第3領域と、前記第3領域より上流側に位置する第2領域とを含み、前記第2領域における前記混合層の厚みが、前記第3領域における前記混合層の厚みに対して、厚い、(1)~(5)のいずれか一項に記載の光導波路を含む。
【0023】
この光導波路では、第2領域における混合層の厚みが、第3領域における混合層の厚みに対して、厚い。そのため、光を、第2領域の厚い混合層に基づく光の閉じ込め効果によって、光を伝送方向に伝送することができる。
【0024】
一方、第3領域における混合層の厚みが、第2領域における混合層の厚みに対して、薄い。そのため、第3領域に対応するコアの下流側端部に、光の受光装置を対向配置すれば、薄い第3領域の混合層に対応するコアから、光を、受光装置に効率的に受光させることができる。
【0025】
その結果、第2領域では、光を閉じ込めながら伝送できつつ、第3領域では、光を受光装置に効率的に受光させることができる。
【0026】
本発明(7)は、(1)~(6)のいずれか一項に記載の光導波路と、電気回路基板とを、前記厚み方向に順に備える、光電気混載基板を含む。
【0027】
この光電気混載基板は、上記した光導波路を備えるので、用途および目的に応じた光学的に設計することができる。
【0028】
本発明(8)は、前記電気回路基板は、金属支持層を備え、前記光導波路は、前記厚み方向に投影したときに、前記金属支持層と重複する重複領域と、前記金属支持層と重複しない非重複領域とを有し、前記非重複領域における前記混合層の厚みが、前記重複領域における前記混合層の厚みに対して厚い、(7)に記載の光電気混載基板を含む。
【0029】
本発明(9)は、(5)に記載の光導波路と、電気回路基板とを、前記厚み方向に順に備え、前記コアにおける前記伝送方向の上流側端縁と光学的に結合する光素子をさらに備える、光電気混載基板を含む。
【0030】
光電気混載基板は、コアにおける伝送方向の上流側端縁と光学的に結合する光素子をさらに備えるので、第1領域では、光素子からの光を効率的に受光することができる。
【0031】
本発明(10)は、(6)に記載の光導波路と、電気回路基板とを前記厚み方向に順に備え、前記第コアにおける前記伝送方向の下流側端縁と光学的に結合する外部光回路をさらに備える、光電気混載モジュールを含む。
【0032】
光電気混載モジュールは、コアにおける伝送方向の下流側端縁と光学的に結合する外部光回路をさらに備えるので、第3領域に対応する厚いコアから、光を、外部光回路に効率的に受光させることができる。
【0033】
本発明(11)は、光の伝送方向に延びるコアと、前記コアを前記伝送方向に沿って被覆するクラッドとを備える光導波路を製造するための方法であり、前記コアを形成する第1工程、前記クラッドの材料が、前記コアの表面から内側に向かって染み込むように、前記クラッドの材料で前記コアを被覆する第2工程、および、前記クラッドの材料から前記クラッドを形成するとともに、前記コアにおける前記クラッドとの界面において、前記コアの材料および前記クラッドの材料を含有する前記混合層を形成する第3工程を備え、前記第2工程では、前記伝送方向における複数の領域において、前記クラッドの材料の染み込み深さを、異ならせる、光導波路の製造方法を含む。
【0034】
この光導波路の製造方法の第2工程では、伝送方向における複数の領域において、クラッドの材料の染み込み深さを、異ならせるので、混合層が、伝送方向において厚みが異なる複数の領域を備えることができる。
【0035】
本発明(12)は、前記複数の領域において、前記コアの反応率を、異ならせる、(11)に記載の光導波路の製造方法を含む。
【0036】
この光導波路の製造方法では、複数の領域において、コアの反応率を、異ならせるので、第2工程では、クラッドの材料でコアを被覆すれば、伝送方向における複数の領域において、クラッドの材料の染み込み深さを、容易かつ確実に異ならせることができる。
【0037】
本発明(13)は、金属支持層を備える電気回路基板と、アンダークラッド層と、光の伝送方向に延びるコア層と、前記コアを前記伝送方向に沿って被覆するオーバークラッド層とを厚み方向に順に備える光電気混載基板を製造するための方法であり、前記電気回路基板を準備する工程、前記アンダークラッドを前記電気回路基板の前記厚み方向一方面に形成する工程、前記コアの材料を前記アンダークラッドの前記厚み方向一方面に配置し、次いで、前記コアの材料を前記厚み方向一方側から他方側に向けて露光し、その後、現像することにより、前記コアを前記アンダークラッドの前記厚み方向一方面に形成する第1工程、および、前記オーバークラッドの材料が前記コアの表面から内側に向かって染み込むように、前記オーバークラッドを、前記アンダークラッドの前記厚み方向一方面に、前記コアを被覆するように形成する第3工程を順に備える、光電気混載基板の製造方法を含む。
【0038】
この光電気混載基板の製造方法の第1工程では、コアの材料を厚み方向一方側から他方側に向けて露光するので、コアの材料のうち、金属支持層と重複する重複領域は、金属支持層で反射した光によって、過剰に露光される。一方、金属支持層と重複しない非重複領域は、重複領域のような過剰の露光がなく、意図通りに、露光できる。
【0039】
そのため、重複領域に対応するコアの材料の反応率が、非重複領域に対応するコアの材料の反応率に比べて、低くなる。
【0040】
そのため、第3工程では、混合層における重複領域における厚みが、非重複領域における厚みに対して、薄くなる。
【0041】
従って、金属支持層による反射に基づいて、混合層の厚みを容易に異ならせることができる。
【発明の効果】
【0042】
本発明の光導波路、光電気混載基板、それらの製造方法および光電気混載モジュールは、用途および目的に応じた光学的な設計をすることができる。
【図面の簡単な説明】
【0043】
【
図1】
図1は、本発明の光導波路の一実施形態の側断面図を示す。
【
図2】
図2は、
図1に示す光導波路のX-X線に沿う平断面図を示す。
【
図5】
図5A~
図5Cは、
図4B~
図4Cに示す第1工程~第3工程を詳細に説明する工程図であり、
図5Aが、感光性膜を形成する工程、
図5Bが、感光性膜を、フォトマスクを介して露光する工程、
図5Cが、低反応率部分および高反応率部分を有するコアを形成する工程、
図5Dが、オーバークラッド樹脂をコアに染み込ませる工程を示す。
【
図6】
図6A~
図6Cは、
図3A~
図3Cに示す光導波路の変形例(混合層は、アンダークラッド層にも含まれ、これが、コアに対向する変形例)の正断面図であり、
図6Aが、他方側領域の断面図、
図6Bが、中間領域の断面図、
図6Cが、一方側領域の断面図を示す。
【
図7】
図7A~
図7Bは、
図3A~
図3Cに示す光導波路の変形例(混合層は、アンダークラッド層にも含まれ、これが、コアとその外側部分とに対向する変形例)の正断面図であり、
図7Aが、他方側領域の断面図、
図7Bが、中間領域の断面図、
図7Cが、一方側領域の断面図を示す。
【
図9】
図9A~
図9Cは、
図6A~
図6Cに示す光導波路の変形例(混合層は、コアのみに含まれ、それが、第1界面および第2界面に沿う変形例)の正断面図であり、
図9Aが、他方側領域の断面図、
図9Bが、中間領域の断面図、
図9Cが、一方側領域の断面図を示す。
【
図11】
図11は、
図1に示す光導波路の変形例(混合層の近傍領域での厚みが一定である変形例)の側断面図を示す。
【
図12】
図12が、
図1に示す光導波路の変形例(厚層領域が中間領域および他方側領域を含む変形例)の側断面図を示す。
【
図13】
図13は、
図1に示す光導波路の変形例(厚層領域が中間領域および一方側領域を含む変形例)の側断面図を示す。
【
図20】
図20は、
図18に示す光電気混載基板の製造方法を説明する工程図であり、
図20Aが、電気回路基板を準備する工程、
図20Bが、アンダークラッド層を形成する工程、
図20Cが、コアを形成する工程、
図20Dが、オーバークラッド層を形成する工程、
図20Eが、ミラー面を形成する工程を示す。を示す。
【発明を実施するための形態】
【0044】
(光導波路)
本発明の光導波路の一実施形態である光導波路1を、
図1~
図5Dを参照して説明する。
【0045】
図1および
図2において、紙面左右方向は、光導波路1の長手方向(光の伝送方向、第1方向)である。紙面右側は、長手方向一方側(伝送方向下流側の一例、第1方向一方側)であり、紙面左側は、長手方向他方側(伝送方向上流側の一例、第1方向他方側)である。
【0046】
図1において、紙面上下方向は、光導波路の上下方向(伝送方向に直交する方向、厚み方向の一例、第1方向に直交する第2方向)である。紙面上側は、上側(厚み方向一方側、第2方向一方側)であり、紙面下側は、下側(厚み方向他方側、第2方向他方側)である。
【0047】
図2において、紙面上下方向は、光導波路の幅方向(伝送方向および厚み方向に直交する方向、第1方向および第2方向に直交する第3方向)である。紙面上側は、幅方向一方側(第3方向一方側)であり、紙面下側は、幅方向他方側(第3方向他方側)である。
【0048】
具体的には、方向は、各図の方向矢印に準拠する。
【0049】
これらの方向の定義により、光導波路1の製造時および使用時の向きを限定する意図はない。
【0050】
図1および
図2に示すように、この光導波路1は、長手方向に延びる平面視(「厚み方向に投影したときに」と同義)略矩形平板形状を有する。光導波路1は、光を長手方向他方側から一方側に伝送する。
【0051】
光導波路1は、例えば、ストリップ型光導波路である。また、光導波路1は、クラッドの一例としてのアンダークラッド層2と、コア3と、クラッドの一例としてのオーバークラッド層4とを上側に向かって順に備える。詳しくは、光導波路1は、アンダークラッド層2と、アンダークラッド層2の上面(後述するアンダー側上面23)に配置されるコア3と、アンダークラッド層2の上面(アンダー側上面23)に、コア3を被覆するように配置されるオーバークラッド層4とを備える。光導波路1は、好ましくは、アンダークラッド層2と、コア3と、オーバークラッド層4とのみからなる。
【0052】
アンダークラッド層2は、長手方向に延びる略矩形板形状を有する。具体的には、アンダークラッド層2は、アンダー側長手方向一方面21と、アンダー側長手方向他方面22と、それらの上端縁を連結するアンダー側上面23とを有する。アンダー側長手方向他方面22は、アンダー側長手方向一方面21の長手方向他方側に対向配置される。アンダー側上面23は、アンダークラッド層2の上面であって、平面である。
【0053】
アンダークラッド層2の材料としては、例えば、透明性を有する樹脂、好ましくは、絶縁性および透明性を有する樹脂が挙げられ、具体的には、エポキシ樹脂、ポリアミック酸樹脂、ポリイミド樹脂、アクリル樹脂、ノルボルネン樹脂などが挙げられる。
【0054】
アンダークラッド層2の全光線透過率は、例えば、70%以上である。
【0055】
アンダークラッド層2の屈折率は、適宜設定される。
【0056】
アンダークラッド層2の厚みは、例えば、2μm以上、好ましくは、10μm以上であり、また、例えば、600μm以下、好ましくは、40μm以下である。
【0057】
コア3は、アンダー側上面23に接触している。
図3A~
図3Cに示すように、コア3は、正断面視(長手方向に直交する面(上下方向および幅方向に沿う面)で切断した断面視)略矩形状を有する。また、
図2に示すように、コア3は、長手方向に延びる平面視略直線(詳しくは、矩形)形状を有する。
【0058】
図1に示すように、コア3は、アンダークラッド層2との境界である第1界面5と、次に説明するオーバークラッド層4との境界である第2界面6と、長手方向一端面7と、長手方向他端面8とを有する。
【0059】
第1界面5は、コア3の下面であって、コア3とアンダークラッド層2との界面である。また、第1界面5は、アンダー側上面23に追従する平坦面を有する。つまり、第1界面5は、平面である。
図3A~
図3Cに示すように、アンダークラッド層2のアンダー側上面23のち、コア3に接触する部分が、第1界面5を形成している。
【0060】
第2界面6は、コア3の上面および側面である。また、第2界面6は、例えば、第1界面5に比べて、粗い面である。具体的には、コア上面11と、コア幅方向一方面12と、コア幅方向他方面13とを連続して有する。
【0061】
コア上面11は、コア3の上面である。コア上面11は、第1界面5に実質的に平行する。コア上面11は、微細な凹凸を有する。そのため、最大谷深さZvは、例えば、1nm以上、好ましくは、10nm以上であり、また、例えば、1000nm以下、好ましくは、500nm以下である。最大谷深さZvは、JIS B0601(2009年板)に基づいて測定される。以下の最大谷深さZvも、上記と同様の方法で測定される。
【0062】
コア幅方向一方面12は、コア3の幅方向一方側面であり、第1界面5およびコア上面11の幅方向一端縁を連結する側面(連結面)である。コア幅方向一方面12は、例えば、微細な凹凸を有しており、その最大谷深さZvは、コア上面11の最大谷深さZvと同一である。
【0063】
コア幅方向他方面13は、コア3の幅方向他方側面であり、第1界面5およびコア上面11の幅方向他端縁を連結する側面(連結面)である。コア幅方向他方面13は、コア幅方向一方面12に平行する。コア幅方向一方面13は、例えば、微細な凹凸を有しており、その最大谷深さZvは、コア上面11の最大谷深さZvと同一である。
【0064】
図1に示すように、長手方向一端面7は、第1界面5および第2界面6の長手方向一端縁を連結する端面(連結面)である。なお、長手方向一端面7は、アンダークラッド層2のアンダー側長手方向一方面21と面一である。長手方向一端面7は、平面である。長手方向一端面7は、外側(長手方向一方側)に露出する露出面である。
【0065】
長手方向他端面8は、第1界面5および第2界面6の長手方向他端縁を連結する端面(連結面)である。長手方向他端面8は、アンダークラッド層2のアンダー側長手方向他方面22と面一である。長手方向他端面8は、平面である。長手方向他端面8は、外側(長手方向他方側)に露出する露出面である。
【0066】
また、コア3は、第2界面6において、コア3の材料および次に説明するオーバークラッド層4の材料を含有する混合層15(後述)を含む。
【0067】
コア3の材料は、高い屈折率と、優れた絶縁性および透明性とを有する樹脂が選択され、具体的には、アンダークラッド層2で例示した樹脂から選択される。
【0068】
コア3の全光線透過率は、例えば、50%以上である。
【0069】
コア3の内部(後述する混合層15より内部、あるいは、コア実効部)53の屈折率は、アンダークラッド層2の屈折率より高く、具体的には、アンダークラッド層2の屈折率100%に対して、例えば、100.1%以上、好ましくは、101%以上である。なお、コア3の表層における屈折率は、後述する混合層15の屈折率であって、後述する。
【0070】
コア3の厚みは、例えば、5μm以上、好ましくは、30μm以上であり、また、例えば、100μm以下、好ましくは、70μm以下である。コア3の幅方向長さ(幅)は、例えば、1μm以上、好ましくは、3μm以上であり、また、例えば、20μm以下、好ましくは、10μm以下である。
【0071】
オーバークラッド層4は、コア3を長手方向に沿って被覆する。
図3A~
図3Cに示すように、具体的には、オーバークラッド層4は、コア3のコア上面11、コア幅方向一方面12およびコア幅方向他方面13と、アンダークラッド層2のアンダー側上面23のうち第1界面5の外側部分(平面視においてコア3と重複しない部分)とに接触する。
【0072】
図1に示すように、オーバークラッド層4は、平面視において、アンダークラッド層2の外形形状と同一の外形形状を有する。オーバークラッド層4は、先後方向に延びる略シート(平板)形状を有する。具体的には、オーバークラッド層4は、オーバー側長手方向一方面26と、オーバー側長手方向他方面27と、オーバー側下面28(
図3A~
図3C参照)とを有する。
【0073】
オーバー側長手方向一方面26は、アンダークラッド層2のアンダー側長手方向一方面21、および、コア3の長手方向一端面7と面一である。
【0074】
オーバー側長手方向他方面27は、オーバー側長手方向一方面26の長手方向他方側に間隔を隔てて対向配置されている。オーバー側長手方向他方面27は、アンダークラッド層2のアンダー側長手方向他方面22、および、コア3の長手方向他端面8と面一である。
【0075】
図3A~
図3Cに示すように、オーバー側下面28は、オーバークラッド層4の下面であって、コア3の形状に追従する形状を有する。具体的には、オーバー側下面28は、コア3の外側に位置する外側下面59と、その内側に位置する凹部29とを連続して有する。
【0076】
外側下面59は、アンダークラッド層2のアンダー側上面23に接触する。
【0077】
凹部29は、外側下面59の幅方向内端縁に連続しており、コア3と第2界面6を形成する。
【0078】
オーバークラッド層4の屈折率は、コア3の屈折率に対して低く設定されている。好ましくは、オーバークラッド層4の屈折率は、アンダークラッド層2の屈折率と同一である。
【0079】
オーバークラッド層4の材料は、上記した屈折率を満足する材料から選択され、具体的には低い屈折率と、優れた絶縁性および透明性とを有する樹脂が選択され、具体的には、アンダークラッド層2と同一の樹脂が選択される。オーバークラッド層4の厚みは、例えば、2μm以上、好ましくは、5μm以上であり、また、例えば、600μm以下、好ましくは、40μm以下である。
【0080】
そして、
図1および
図2に示すように、混合層15は、コア3において、長手方向に沿って設けられている。具体的には、
図3A~
図3Cに示すように、混合層15は、第2界面6と、その内側とに、存在する(含まれる)。
【0081】
混合層15は、長手方向において厚みが異なる複数の領域を備える。具体的には、
図1および
図2に示すように、混合層15は、厚層領域16と、薄層領域17とを含む。
【0082】
厚層領域16は、比較的厚い第1の厚みT1を有する。厚層領域16は、第2領域の一例としての中間領域18である。具体的には、中間領域18は、コア3において、長手方向一端部および両端部を除く領域であって、それらの中間に設けられる領域である。
【0083】
図3に示すように、中間領域18における第1の厚みT1は、中間領域18においてコア上面11に沿う混合層15の厚みT1、コア幅方向一方面12に沿う混合層15の厚みT1A、および、コア幅方向他方面13に沿う混合層15の厚みT1Bを含む。なお、上記したコア上面11に沿う混合層15の厚みT1は、好ましくは、コア幅方向一方面12に沿う混合層15の厚みT1A、および、コア幅方向他方面13に沿う混合層15の厚みT2Aと同一である。
【0084】
図1および
図2に示すように、また、第1の厚みT1は、中間領域18の長手方向にわたって、同一(均一)である。
【0085】
なお、混合層15(厚層領域16および薄層領域17)の存在および厚みは、ラマン分光分析によって、オーバークラッド層4の材料の、混合層15における割合が、例えば、50質量%となる領域を特定して算出される。
【0086】
具体的には、混合層15の厚みは、以下の通りにして測定される。まず、ラマン分光機(SNOM/AFM/Raman 複合機 WITec 製 alpha300RSA)を用いて、コア3の材料をラマン強度測定を実施し、コア3の材料に特徴的な最も強度の高いピーク波長をスキャン波長λ1(cm-1)に決定する。次に、混合層15が形成されたコア3の実効部53を横断するように、スキャン波長λ1において、コア3の幅方向一方側20μmに位置するオーバークラッド層4からコア幅方向一方面12およびコア幅方向他方面13を通過して、その幅方向他方側20μmに位置するオーバークラッド層4までの領域において、混合層15を横断的にラマン測定を実施する。その強度プロファイルを最小値が0%、最大値が100%になるように規格化する。そして、規格化したラマン強度プロファイルについて、コア幅方向一方面12からその幅方向一方側20μmまでの座標におけるラマン強度0~5%の平均値をもとに下限強度値k1を求める。同様にコア中心部から±10μmまでの座標におけるラマン強度95~100%の平均値をもとに上限強度値k2を求める。さらにk1およびk2の半分のラマン強度に相当する中間点座標Xmを、ラマンプロファイルと(k1+k2)/2の値が交わる交点から求める。そして、中間点座標Xmにおけるラマンプロファイルの接線を引き、前記の下限値k1および上限値k1との交点を下限座標X1および上限座標X2とする。そこから算出された上限座標と下限座標との差|X2-X1|を、混合層15の厚み(μm)と定義する。
【0087】
厚層領域16(中間領域18)における第1の厚みT1は、例えば、第2界面6の最大谷深さZvを超過する。より具体的には、厚層領域16における第1の厚みT1は、例えば、0.01μm以上、好ましくは、0.1μm以上であり、また、例えば、20μm以下である。
【0088】
薄層領域17は、比較的薄い第2の厚みT2を有する。具体的には、薄層領域17は、厚層領域16の第1の厚みT1に比べて薄い第2の厚みT2を有する。薄層領域17は、厚層領域16の長手方向一方側および他方側(長手方向両外側)のそれぞれに位置する領域(外側領域、あるいは、端部領域)である。具体的には、薄層領域17は、コア3の長手方向他端部に位置する第1領域の一例としての他方側領域19と、コア3の長手方向一端部に位置する第3領域の一例としての一方側領域20とを独立して有する。なお、他方側領域19、中間領域18および一方側領域20は、連続する。他方側領域19、中間領域18および一方側領域20は、この順で、長手方向一方側に向かって配置されている。
【0089】
図3Aに示すように、他方側領域19における第2の厚みT2は、他方側領域19においてコア上面11に沿う混合層15の厚みT2、コア幅方向一方面12に沿う混合層15の厚みT2A、および、コア幅方向他方面13に沿う混合層15の厚みT2Bを含む。上記したコア上面11に沿う混合層15の厚みT2は、好ましくは、コア幅方向一方面12に沿う混合層15の厚みT2A、および、コア幅方向他方面13に沿う混合層15の厚みT2Aと同一である。
【0090】
他方側領域19における第2の厚みT2に対する、中間領域18における第1の厚みT1の比(T1/T2)は、例えば、1.5以上であり、また、例えば、2000以下である。比T1/T2が上記した下限以上、あるいは、上限以下であれば、中間領域18(厚層領域16)において、光を長手方向に確実に伝送しつつ、他方側領域19の長手方向他端面8が入射装置49からの光を確実に受光することができる。
【0091】
なお、他方側領域19における第2の厚みT2は、その中間領域18に接続する領域(近傍領域)52において、連続的に変化することができる。具体的には、かかる近傍領域52において、第2の厚みT2は、長手方向一方側に進むに従って、次第に厚くなる。近傍領域52における第2の厚みT2の変化率は、適宜設定される。
【0092】
一方、他方側領域19の上記した近傍領域52以外の部分における第2の厚みT2は、長手方向にわたって同一である。
【0093】
他方側領域19の長手方向長さは、特に限定されず、1μm以上である。
【0094】
一方側領域20における第2の厚みT2は、
図3Aおよび
図3Cに示すように、上記した他方側領域19における第2の厚みT2と同様である。
【0095】
また、一方側領域20における第2の厚みT2は、その中間領域18に接続する領域(近傍領域)52において、連続的に変化することができる。具体的には、かかる近傍領域52において、第2の厚みT2は、長手方向他方側に進むに従って、次第に厚くなる。
【0096】
なお、一方側領域20における第2の厚みT2に対する、中間領域18における第1の厚みT1の比(T1/T2)は、例えば、1.5以上であり、また、例えば、2000以下である。比T1/T2が上記した下限以上、あるいは、上限以下であれば、中間領域18(厚層領域16)において、光を長手方向に確実に伝送しつつ、一方側領域20の長手方向一端面7から受光装置50に光を確実に出射することができる。
【0097】
従って、薄層領域17の第2の厚みT2は、厚層領域16の第1の厚みT1に対して薄い一方、例えば、第2界面6の最大谷深さZvを超過する。これにより、厚層領域16における第1の厚みT1、および、中間領域18における第2の厚みT2は、いずれも、例えば、第2界面6の最大谷深さZvを超過する。具体的には、薄層領域17の第2の厚みT2は、例えば、0.01μm以上、好ましくは、0.05μm以上であり、また、例えば、2μm以下である。
【0098】
混合層15におけるオーバークラッド層4の材料の割合は、コア3およびオーバークラッド層4の材料の総量に対して、例えば、50質量%以上であり、また、例えば、100質量%未満、好ましくは、90質量%以下である。オーバークラッド層4の材料の割合は、例えば、ラマン分光分析によって、上記と同様の手法によって算出される。
【0099】
なお、
図1~
図3Cでは、混合層15を、コア3における内部53と明確な境界を介して区別して描画しているが、例えば、図示しない(図示できない)が、混合層15の輪郭(混合層15と内部53との境界)が明確でなく、その場合には、オーバークラッド層4の材料の割合が、コア3およびオーバークラッド層4の材料の総量に対して、50質量%以上である領域が、混合層15である。
【0100】
次に、この光導波路1を製造する方法を、
図4A~
図5Dを参照して説明する。
【0101】
図4A~
図4Cに示すように、アンダークラッド層2を形成する工程(
図4A参照)、コア3を形成する第1工程(
図4B参照)、および、オーバークラッド層4を形成するとともに、混合層15を形成する第3工程(
図4C参照)を備える。
【0102】
図4Aに示すように、アンダークラッド層2を形成する工程では、例えば、公知の方法に従って、上記した樹脂から、アンダークラッド層2を形成する(あるいは準備する)。アンダークラッド層2は、アンダー側長手方向一方面21、アンダー側長手方向他方面22およびアンダー側上面23を有するシート形状に形成される(あるいは、予めシート形状に形成されたものを用意する)。
【0103】
図4Bに示すように、第1工程では、次いで、コア3を、アンダークラッド層2のアンダー側上面23に形成する。
【0104】
コア3を形成するには、
図5Aに示すように、例えば、上記した樹脂、光酸発生剤および溶剤を含むワニスをアンダー側上面23に塗布し、続いて、ワニスを乾燥して(溶剤を除去して)、感光性樹脂組成物からなる感光性膜24を形成する。感光性膜24は、アンダー側上面23の上面全面において、シート形状に形成される。あるいは、ドライフィルムレジストから予めシート形状に形成されて感光性膜24を、アンダー側上面23に載置する。
【0105】
その後、
図5B~
図5Dおよび
図4Bに示すように、その後、フォトリソグラフィ法によって、コア3を形成する。
【0106】
具体的には、まず、
図4Bに示すように、遮光部41と、透光部42とを有するフォトマスク25を、感光性膜24の上側に配置する。
【0107】
遮光部41は、コア3の逆パターン(反転パターン)を有しており、次の露光時に、感光性膜24に至る光を遮光するように構成されている。
【0108】
透光部42は、コア3と同一パターンを有しており、次の露光時に、感光性膜24に至る光が必要量通過(透過)するように構成されている。
【0109】
図5Bに示すように、透光部42は、フォトマスク25の露光時に階調露光できるように、階調パターンを有する。透光部42は、例えば、光透過率が異なる2種類の領域を有する。具体的には、透光部42は、第1透光領域43と、第1透光領域43の光透過率に比べて低い光透過率を有する第2透光領域44とを有する。
【0110】
第1透光領域43は、比較的高い光透過率を有する。第1透光領域43は、薄層領域17に対応するコア3と同一パターンを有する。つまり、第1透光領域43は、遮光部41において、長手方向両端部に位置する。
【0111】
第2透光領域44は、第1透光領域43の光透過率に比べて低い光透過率を有する。第2透光領域44は、厚層領域16に対応するコア3と同一パターンを有する。第2透光領域44は、2つの第1透光領域43の内側に連続して位置する。
【0112】
第1透光領域43および第2透光領域44の光透過率は、公知のハーフトーンマスクなどによって、適宜調整される。
【0113】
第1透光領域43における第2透光領域44に接続する領域(近傍領域52に対応する領域)には、第2透光領域44に近づくに従って、光の透過率が、第2透光領域44の光透過率に次第に近づく光透過率変化領域58が設けられる。
【0114】
次いで、
図5Bの矢印で示すように、感光性膜24を、フォトマスク25を介して露光する。具体的には、フォトマスク25の上側から、紫外線を、フォトマスク25を介して感光性膜24に対して照射する(露光する)。
【0115】
そうすると、
図4Bの中央図および右側図が参照されるように、遮光部41では、光が遮光され、遮光部41に対向する感光性膜24は、露光(受光)されない。
【0116】
一方、
図5Bに示すように、透光部42では、光が必要量透過し、透光部42に対向する感光性膜24は、露光される。詳しくは、第1透光領域43では、比較的多い光が透過する一方、第2透光領域44では、比較的少ない光が透過する。第2透光領域44における光の透過量は、第1透光領域43における光の透過量に比べて、少ない。なお、光透過率変化領域58における光の透過量は、第2透光領域44に近づくに従って、少なくなる。
【0117】
そのため、第1透光領域43に対応する感光性膜24の露光量(受光量)は、比較的多く、第2透光領域44に対応する感光性膜24の露光量(受光量)は、比較的少ない。つまり、第2透光領域44に対応する感光性膜24の露光量は、第1透光領域43に対応する感光性膜24の露光量に比べて、少ない。そのため、第2透光領域44に対応する感光性膜24の、光酸発生剤に由来する酸に基づく反応率は、第1透光領域43に対応する感光性膜24の反応率に比べて、低い。なお、光透過率変化領域58に対応する感光性膜24の反応率は、第2透光領域44に対応する感光性膜24に近づくに従って、低くなる。
【0118】
そのため、感光性膜24において第2透光領域44に対応する低反応率部分46と、第1透光領域43に対応する高反応率部分47とが、感光性膜24において、透光部42に対応する部分として、形成される。
【0119】
続いて、感光性膜24を現像する。これによって、
図4Bに示すように、透光部42に対応する部分(低反応率部分46および高反応率部分47)が残存し、遮光部41に対応する部分が除去される。また、この際、現像では、現像液が遮光部41に対応する部分を浸食することから、コア上面11と、コア幅方向一方面12と、コア幅方向他方面13とに、粗い面(凹凸面)が形成される。粗い面は、上記した最大谷深さZvを有する。
【0120】
これによって、低反応率部分46および高反応率部分47を有するコア3が形成される。
【0121】
図5Dに示すように、その後、オーバークラッド層4の材料で、コア3を被覆する。
【0122】
オーバークラッド層4の材料としては、上記した樹脂および光酸発生剤であって、これらは、溶剤をさらに含むワニス45として調製される。
【0123】
図5Dに示すように、具体的には、ワニス45を、アンダークラッド層2のアンダー側上面23に、コア3を被覆するように、塗布する。
【0124】
なお、この際、ワニス45の液面48が、コア3のコア上面11より高くなるように、ワニス45を塗布する。
【0125】
ワニス45が塗布されると、オーバークラッド層4の材料である樹脂(以下、単に「オーバークラッド樹脂」という)が、コア3の第2界面6から内部に染み込む。
【0126】
この際、高反応率部分47には、比較的少量のオーバークラッド樹脂が染み込む一方、低反応率部分46には、比較的多量のオーバークラッド樹脂が染み込む。つまり、低反応率部分46には、高反応率部分47に染み込むオーバークラッド樹脂の量よりも多量のオーバークラッド樹脂が、染み込む。
【0127】
さらに、高反応率部分47におけるオーバークラッド樹脂の染み込み深さD2は、比較的浅い一方、低反応率部分46におけるオーバークラッド樹脂の染み込み深さD1は、比較的深い。つまり、低反応率部分46におけるオーバークラッド樹脂の染み込み深さD1は、高反応率部分47におけるオーバークラッド樹脂の染み込み深さD2に比べて、深い。
【0128】
要するに、ワニス45を、低反応率部分46および高反応率部分47に対して塗布して、オーバークラッド樹脂の染み込み深さを、それらの間で、異ならせる。
【0129】
その後、ワニスを乾燥して(溶剤を除去して)、オーバークラッド樹脂からなる塗膜を形成し、続いて、現像し、必要により、加熱する(露光後加熱する)。なお、加熱によって、コア3に染み込んだオーバークラッド樹脂の反応が進行する。
【0130】
これによって、コア3の表層部分(第2界面6より内側に位置する内側層)に、オーバークラッド樹脂と、コア3の材料としての樹脂(以下、単に「コア樹脂」という)とを併有する混合層15が形成される。混合層15の材料は、オーバークラッド樹脂とコア樹脂との混合物である。混合層15の屈折率は、コア3の内部53における屈折率と、オーバークラッド層4の屈折率との間にある。
【0131】
図4Cに示すように、これにより、混合層15を形成するとともに、オーバークラッド層4を形成する第3工程を実施する。この際、混合層15の他方側領域19および一方側領域20のそれぞれの、中間領域18に接続する近傍領域には、厚みが変化する。
【0132】
これにより、オーバークラッド層4を形成する。
【0133】
これによって、アンダークラッド層2、コア3およびオーバークラッド層4を備える光導波路1を製造する。
【0134】
その後、
図1に示すように、コア3の長手方向他端面8に、光の入射装置49を対向配置して、コア3と入射装置49とを光学的に接続する。また、コア3の長手方向一端面7に、受光装置50を対向配置して、コア3と受光装置50とを光学的に接続する。
【0135】
これによって、光導波路1によって、入射装置49と受光装置50とが光学的に接続される。
【0136】
そして、この光導波路1では、混合層15は、長手方向において厚みが異なる複数の領域を備えるので、光導波路1の用途および目的に応じた光学的に設計することができる。
【0137】
また、この光導波路1では、混合層15が、コア3に含まれるので、コア3の内部において伝送される光の損失を効率的に低減することができる。
【0138】
また、第2界面6は、最大谷深さZvに対応する谷、つまり、凹凸を有する。そうすると、第2界面6において光の散乱し、光の損失が増大する場合がある。
【0139】
しかし、この光導波路1では、混合層15の全ての領域において、混合層15の厚みが、上記した最大谷深さZvを超過するので、光が第2界面6に至る前に、混合層15において光を伝送方向に確実に向かわせることができる。そのため、第2界面6における光の散乱に起因する光の損失の増大を抑制することができる。
【0140】
なお、混合層15の屈折率は、コア3における内部53の屈折率より低い。そのため、内部53から混合層15に向かう光は、混合層15において、反射して、混合層15に再び戻る。とりわけ、混合層15は、内部53から第2界面6に向かうに従って、オーバークラッド樹脂の割合が高くなるグラデーション(階調、濃度勾配)を有する場合がある。このオーバークラッド樹脂の割合のグラデーションによって、
図2の丸囲みの拡大図に示すように、混合層15において内部53から第2界面6に向かう光は、内部53に戻るような曲線軌道を描きながら、内部53に押し戻される。これは、上記した光の閉じ込め効果であり、この効果は、混合層15の厚みが厚いほど、高くなる。
【0141】
また、厚層領域16の第1の厚みT1の、薄層領域17の第2の厚みT2に対する比(T1/T2)が、1.5以上であれば、厚層領域16および薄層領域17によって、光導波路1の用途および目的に応じた光学的な設計を確実に実施することができる。
【0142】
具体的には、
図1に示すように、この光導波路1では、他方側領域19における混合層15の厚みT2が、中間領域18における混合層15の厚みT1に対して、薄い。換言すれば、中間領域18に対応するコア3の内部の厚み(コア実効厚み)は、他方側領域19に対応するコア3の内部の厚み(コア実効厚み)に対して、厚い。そのため、他方側領域19に対応するコア3の長手方向他端面8に、光の入射装置49を対向配置すれば、入射装置49から出射された光を、厚いコア実効部(コア3の内部53)によって、効率的に受光することができる。
【0143】
一方、中間領域18における混合層15の厚みT1が、他方側領域19における混合層15の厚みT2に対して、厚い。そのため、中間領域18に進入した光を、厚い厚みT1を有する中間領域18に基づく光の閉じ込め効果によって、光を長手方向に効率的に伝送することができる。
【0144】
そのため、他方側領域19では、入射装置49からの光を効率的に受光できつつ、中間領域18では、光を有効に閉じ込めながら伝送することができる。
【0145】
さらに、この光導波路1では、一方側領域20における混合層15の厚みT2が、中間領域18における混合層15の厚みT1に対して、薄い。換言すれば、中間領域18に対応するコア3の内部の厚み(コア実効厚み)は、一方側領域20に対応するコア3の内部の厚み(コア実効厚み)に対して、厚い。そのため、コア3の下流側端部に、光の受光装置50を対向配置すれば、厚いコア実効部(コア3の内部53)から、光を、受光装置50に効率的に受光させることができる。
【0146】
その結果、中間領域18では、光を閉じ込めながら伝送できつつ、一方側領域20では、光を受光装置50に効率的に受光させることができる。
【0147】
図5Dに示すように、この光導波路1の製造方法の第2工程では、長手方向における複数の領域において、クラッドの材料の染み込み深さを、異ならせるので、混合層15が、長手方向において厚みが異なる複数の領域を備えることができる。
【0148】
また、この光導波路1の製造方法では、複数の領域において、コア3の反応率を、異ならせるので、第2工程では、オーバークラッド層4の材料でコア3を被覆すれば、長手方向における複数の領域において、オーバークラッド層4の材料の染み込み深さD1およびD2を、容易かつ確実に異ならせることができる。
【0149】
(光導波路の変形例)
以下の各変形例において、上記した一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、各変形例を適宜組み合わせることができる。さらに、各変形例は、特記する以外、一実施形態と同様の作用効果を奏することができる。
【0150】
一実施形態では、
図3A~
図3Cに示すように、混合層15は、コア3のみに含まれる。
【0151】
しかし、この変形例では、
図6A~
図6Cに示すように、混合層15は、さらに、アンダークラッド層2に含まれることもできる。
【0152】
アンダークラッド層2に含まれる混合層15は、アンダー側上面23のうち、第1界面5に沿って形成される。アンダークラッド層2に含まれる混合層15の材料は、コア樹脂と、アンダークラッドの材料との混合物である。なお、アンダークラッド層2に含まれる混合層15の全ては、コア3の第1界面5のみに対向する。
【0153】
一方、
図7A~
図7Bに示すように、アンダークラッド層2に含まれる混合層15は、第1界面5に対向する部分と、外側下面59に対向する部分とに含まれることができる。つまり、アンダークラッド層2に含まれる混合層15は、アンダー側上面23の全てに沿って設けられる。
【0154】
図3A~
図3Cの一実施形態、
図6A~
図6Cの変形例、および、
図7A~
図7Cの変形例のうち、好ましくは、
図3A~
図3Cの一実施形態、
図6A~
図6Cの変形例が挙げられる。これらであれば、
図7A~
図7Bの矢印で示すように、光が、アンダークラッド層2に含まれる第1界面5の外側部分に対向する部分を介して、幅方向両外側に拡散することに起因する光の損失を防止することができる。
【0155】
【0156】
また、
図8A~
図8Cに示すように、混合層15は、コア3ではなく、オーバークラッド層4に含まれることもできる。この混合層15は、第2界面6に沿って、オーバークラッド層4に含まれる。
【0157】
さらに、
図9A~
図9Cに示すように、第1界面5に沿う混合層15は、コア3に含まれることもできる。つまり、第1界面5に沿う混合層15と、第2界面6に沿う厚層領域16とが、いずれも、コア3に含まれる。
【0158】
さらにまた、
図10A~
図10Cに示すように、第1界面5に沿う混合層15が、コア3に含まれる一方、第2界面6に沿う混合層15が、オーバークラッド層4に含まれることもできる。
【0159】
また、
図1に示すように、2つの薄層領域17(つまり、他方側領域19および一方側領域20)のそれぞれにおける近傍領域52では、厚みが連続的に変化しているが、例えば、
図11に示すように、薄層領域17の全てにおいて、厚みが変化せず、一定であってもよい。つまり、薄層領域17が、近傍領域52(
図1参照)を有しない。
【0160】
図11の変形例では、厚層領域16と薄層領域17との境界において、厚みが不連続となっている。つまり、この混合層15は、厚層領域16の第1の厚みT1と、薄層領域17の第2の厚みT2との、2つの厚みを有しており、第1の厚みT1および第2の厚みT2の間にある厚みを有しない。
【0161】
また、
図1に示す一実施形態では、薄層領域17は、他方側領域19および一方側領域20の両方を有する。
【0162】
一方、
図12に示すように、この変形例では、薄層領域17は、他方側領域19のみを有する。なお、一方側領域20は、厚層領域16に含まれる。つまり、厚層領域16は、中間領域18および一方側領域20を含む。
【0163】
他方、
図13に示すように、この変形例では、薄層領域17は、一方側領域20のみを有する。なお、他方側領域19は、厚層領域16に含まれる。つまり、厚層領域16は、中間領域18および他方側領域19を含む。
【0164】
また、
図3A~
図3Cに示す一実施形態では、第2界面6が、平面である第1界面5に比べて粗い面であるが、例えば、図示しないが、第2界面6が、平面であってもよい。
【0165】
ただし、一実施形態のように、第2界面6が粗い面であって、上記した光の散乱を発生し易い態様であっても、
図3A~
図3Cに示すように、混合層15の全ての領域において、混合層15の厚みが、上記した最大谷深さZvを超過するので、光が第2界面6に至る前に光を長手方向に確実に向かわせて、上記した光の散乱を抑制することができる。
【0166】
(光導波路の用途)
光導波路1の用途は、特に限定されず、種々の装置、好ましくは、各種光学装置に適用される。
【0167】
(光電気混載基板および光電気混載モジュール)
次に、上記した光導波路1を備える光電気混載基板30、および、光電気混載基板30を備える光電気混載モジュール40を順に、
図14~
図16を参照して説明する。
【0168】
光電気混載基板30は、先後方向に延びる略平板形状を有する。また、光電気混載基板30は、光を先後方向に伝送する。光電気混載基板30は、平面視において、略T字形状を有する。
【0169】
図16に示すように、光電気混載基板30は、電気回路基板31と、光導波路1とを上側に向かって順に備える。
【0170】
電気回路基板31は、光電気混載基板30の下層を形成する。電気回路基板31は、平面視において光電気混載基板30の全てに設けられている。
【0171】
電気回路基板31は、金属支持層35と、ベース絶縁層36と、導体層37と、カバー絶縁層38とを下側に向かって順に備える。具体的には、電気回路基板31は、金属支持層35と、金属支持層35の下面に配置されるベース絶縁層36と、ベース絶縁層36の下面に配置される導体層37と、ベース絶縁層36の下面に、導体層37の一部を被覆するように配置されるカバー絶縁層38とを備える。金属支持層35と、ベース絶縁層36と、導体層37と、カバー絶縁層38との材料、厚みなどは、例えば、特開2016-105160号公報、特開2015-87634号公報などに記載される。
【0172】
なお、金属支持層35の上面は、平面である。また、金属支持層35は、電気回路基板31の後端部のみに位置する。金属支持層35は、複数の開口部39を有する。複数のそれぞれの開口部39は、平面視において、後述するミラー面51を含む。
【0173】
光導波路1は、光電気混載基板30における上層を形成する。光導波路1は、電気回路基板31の上面全面に配置されている。光導波路1は、
図1における長手方向が、
図14に示す先後方向に沿うように、光電気混載基板30に設けられている。
【0174】
詳しくは、光導波路1は、その長手方向一方側が先側に向き、長手方向他方側が後側に向くように、光電気混載基板30に配置される。
図15に示すように、また、混合層15における他方側領域19は、後側領域69であり、一方側領域20は、先側領域70である。
【0175】
図16に示すように、光導波路1には、アンダークラッド層2、コア3およびオーバークラッド層4が、上側に向かって順に配置されている。
【0176】
アンダークラッド層2は、金属支持層35およびベース絶縁層36の上面を被覆する。アンダークラッド層2の下面は、金属支持層35およびベース絶縁層36の上面に追従する形状を有する。
【0177】
図14に示すように、コア3は、幅方向に複数(4つ)互いに間隔を隔てて整列配置されている。複数のコア3のそれぞれの後端面68(長手方向他端面8に相当)は、ミラー面51である。
【0178】
図16に示すように、ミラー面51は、アンダークラッド層31のアンダー側上面23に対して45度の角度を成す斜面である。また、ミラー面51は、光素子34から入射する光(光信号)の伝送方向を上下方向から先後方向に変更する光伝送方向変換部材(あるいは光路変換部材)である。つまり、ミラー面51は、仮想線で示す光素子34から上側に出射される光を受光する。
【0179】
この光電気混載基板30を製造するには、まず、電気回路基板31を作製し(準備し)、続いて、電気回路基板31の上に、例えば、上記した方法に従って、光導波路1を作り込む。
【0180】
その後、光素子34を実装する。これにより、光素子34と、コア3とを光学的に接続する。
【0181】
これにより、電気回路基板31と、光導波路1と、光素子34とを備える光電気混載基板30を製造する。
【0182】
そして、得られた光電気混載基板30に、外部光回路55(仮想線)を接続すれば、光電気混載モジュール40を構成することができる。
【0183】
光電気混載モジュール40は、光電気混載基板30と、外部光回路55とを備える。
【0184】
外部光回路55は、例えば、光ファイバなどを含む。外部光回路55は、コア3の先端面67(長手方向一端面7に相当)の先側に対向配置される。
【0185】
この光電気混載基板30は、上記した光導波路1を備えるので、用途および目的に応じた光学的に設計することができる。
【0186】
また、光電気混載基板30は、コア3の後端面68と光学的に結合する光素子34をさらに備えるので、他方側領域19では、光素子34からの光を効率的に受光することができる。
【0187】
光電気混載モジュール40は、コア3における先端面67と光学的に結合する外部光回路55をさらに備えるので、先側領域70に対応する厚いコア3(コア実効部)から、光を、外部光回路55に効率的に受光させることができる。
【0188】
(光電気混載基板の変形例)
図15および
図16に示す光電気混載基板30では、混合層15は、後側領域69および先側領域70における厚みが、中間領域18の厚みに対して薄くなっている。つまり、混合層15の厚みが、混合層15における長手向位置のみに基づいて設定されている。
【0189】
一方、
図17および
図18(さらには、
図19A~
図19C)に示すように、しかし、例えば、混合層15の厚みは、金属支持層35との重複の有無に基づいて設定することもできる。具体的には、混合層15において、厚み方向で、金属支持層35と重複する重複領域71の厚みT4を、金属支持層35と重複しない非重複領域72の厚みT3に対して、薄く設定することができる。
【0190】
図17および
図18に示すように、混合層15は、重複領域71と、非重複領域72とを有する。
【0191】
重複領域71は、金属支持層35に重複する領域(コア3の後端部を除く)である。重複領域71の厚みT4は、薄層領域17の第2の厚みT2(比較的薄い厚みT2)と同様である。
【0192】
非重複領域72は、電気回路基板31の先側部分に対応する領域と、コア3の後端部に対応する領域とを有する。非重複領域72において、コア3の後端部は、後端面68を含んでおり、平面視において、開口部39内に包含されている。つまり、コア3の後端部は、金属支持層35と厚み方向において重複しない。非重複領域72の厚みT3は、厚層領域16の第1の厚みT1(比較的厚い厚みT1)と同様である。
【0193】
次に、この光電気混載基板30の製造方法について、
図20A~
図21Dを参照して説明する。
【0194】
図20Aに示すように、まず、金属支持層35、ベース絶縁層36、導体層37およびカバー絶縁層38を下側に向かって順に備える電気回路基板31を作製する。
【0195】
図20Bに示すように、次いで、アンダークラッド層2を、電気回路基板31の下面に作り込む。アンダークラッド層2は、開口部39内に充填される。そのため、アンダークラッド層2の下面は、開口部39に対応する凸部を有する。一方、アンダークラッド層2は、平面であるアンダー側上面23を有する。
【0196】
図20Cに示すように、次いで、コア3を、アンダークラッド層2のアンダー側上面23に形成する。
【0197】
図21Aに示すように、具体的には、上記したワニス45をアンダー側上面23に塗布して、その後、ワニス45を乾燥して、感光性膜24を形成する。あるいは、ドライフィルムレジストから感光性膜24を形成する。
【0198】
図21Bに示すように、その後、遮光部41と透光部42とを有するフォトマスク25を、感光性膜24の上側に配置する。
【0199】
透光部42は、一実施形態のような階調パターン(
図5B参照)を有さず、光透過率が先後方向において同一(均一)である。透光部42は、コア3と同一パターンを有するパターンである。また、透光部42は、開口部39内のコア3にも対応するパターンである。
【0200】
図21Bに示すように、次いで、感光性膜24を、フォトマスク25を介して露光する。具体的には、フォトマスク25の上側(厚み方向一方側の一例)から下側(厚み方向他方側の一例)に向けて、活性エネルギー線を、フォトマスク25を介して感光性膜24に対して照射する(露光する)(第1工程)。
【0201】
そうすると、遮光部41では、光が遮光され、遮光部41に対向する感光性膜24は、露光(受光)されない。
【0202】
一方、透光部42では、光が透過し、透光部42に対向する感光性膜24は、露光される。詳しくは、非重複領域72に対応する感光性膜24には、透光部42を透過した光によって、上側から下側に向かって1回露光される。
【0203】
他方、重複領域71に対応する感光性膜24には、まず、透光部42を透過した光によって、上側から下側に向かって1回露光される。その後、光は、アンダークラッド層2を下側に向かって透過して、続いて、金属支持層35の上面において、上側に反射され、さらに、アンダークラッド層2を上側に向かって透過し、重複領域71に対応する感光性膜24を露光する。つまり、重複領域71に対応する感光性膜24は、合計2回露光される。
【0204】
要するに、重複領域71に対応する感光性膜24は、非重複領域72に対応する感光性膜24に対して、1回多く露光される。換言すれば、重複領域71に対応する感光性膜24に対する露光量は、非重複領域72に対応する感光性膜24に対する露光量に比べて、多い。
【0205】
続いて、感光性膜24を現像して、遮光部41に対応する部分を除去する。
【0206】
これによって、
図21Cに示すように、従って、重複領域71に対応する感光性膜24は、高反応率部分47となり、非重複領域72に対応する感光性膜24は、低反応率部分46となる。そして、高反応率部分47および低反応率部分46を有するコア3が形成される。
【0207】
図21Dに示すように、その後、オーバークラッド層4の材料で、コア3を被覆する。具体的には、ワニス45を、コア3を被覆するように、塗布する。
【0208】
続いて、高反応率部分47には、比較的少量のオーバークラッド樹脂が染み込む一方、低反応率部分46には、比較的多量のオーバークラッド樹脂が染み込む。
【0209】
また、高反応率部分47におけるオーバークラッド樹脂の染み込み深さD2は、比較的浅い一方、低反応率部分46におけるオーバークラッド樹脂の染み込み深さD1は、比較的深い。つまり、低反応率部分46および高反応率部分47の間で、オーバークラッド樹脂の染み込み深さを、異ならせる。
【0210】
そして、低反応率部分46に対応する、厚い混合層15(非重複領域72)と、 高反応率部分47に対応する、薄い混合層15(重複領域71)とが形成される。
【0211】
図20Dに示すように、これによって、オーバークラッド層4を形成する(第3工程)。
【0212】
その後、
図20Eに示すように、ミラー面51を、コア3の後端部に、例えば、レーザ加工または切削加工によって形成する。
【0213】
図18に示すように、その後、光素子34を、光素子34の出射口がミラー面51と上下方向で対向するように、電気回路基板31に実装する。これにより、光素子34とコア3とを光学的に接続する。
【0214】
これにより、光電気混載基板30を製造する。
【0215】
その後、光電気混載基板30おけるコア3の先端面67に、外部光回路55を対向配置する。これによって、光素子34と外部光回路55とを、光電気混載基板30の光導波路1を介して光学的に接続する。
【0216】
これにより、光電気混載基板30と、外部光回路55とを備える光電気混載モジュール40を製造する。
【0217】
上記した光電気混載基板30の製造方法の第1工程では、感光性膜24を上側から下側に向けて露光するので、感光性膜24のうち、重複領域71は、金属支持層35で反射した光によって、過剰に露光される。一方、非重複領域72は、重複領域71のような過剰の露光がなく、意図通りに、露光できる。
【0218】
そのため、重複領域71に対応する感光性膜24の反応率が、非重複領域72に対応する感光性膜24の反応率に比べて、低くなる。
【0219】
そのため、第3工程では、混合層15における重複領域71における厚みT4が、混合層15における非重複領域72における厚みT3に対して、薄くなる。
【0220】
従って、金属支持層35による反射に基づいて、混合層15の厚みT3およびT4を容易に異ならせることができる。
【0221】
(変形例)
上記では、オーバークラッド樹脂の染み込み深さD(ひいては、混合層15の厚みT)を、感光性膜24の反応率によって、異ならせている。つまり、
図5A~
図5Dに示す一実施形態では、フォトマスク25の階調に基づく感光性膜24の反応率の相違によって、あるいは、
図21A~
図21Dに示す変形例では、金属支持層35の反射の有無に基づく感光性膜24の反応率の相違によって、オーバークラッド樹脂の染み込み深さDを異ならせている。
【0222】
しかし、オーバークラッド樹脂の染み込み深さDを、例えば、露光後加熱の条件、オーバークラッド樹脂を含有するワニスの流動性、そのワニスの乾燥温度、さらには、コア3の材料とオーバークラッド層4の材料との分子設計(具体的には、分子の嵩高さなど)など、いずれかの工程における条件を変更して、異ならせることもできる。
【0223】
また、上記した各実施形態および各変形例は、適宜組合せることがでできる。
【符号の説明】
【0224】
1 光導波路
2 アンダークラッド層
3 コア
4 オーバークラッド層
15 混合層
16 厚層領域
17 薄層領域
18 中間領域
19 他方側領域
20 一方側領域
30 光電気混載基板
31 電気回路基板
34 光素子
35 金属支持層
40 光電気混載モジュール
49 入射装置
50 受光装置
55 外部光回路
T1 第1の厚み
T2 第2の厚み
Zv 最大谷深さ