IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社エスユーエスの特許一覧

特許7005219適性テストの判定装置、更新装置、プログラムおよび記録媒体
<>
  • 特許-適性テストの判定装置、更新装置、プログラムおよび記録媒体 図1
  • 特許-適性テストの判定装置、更新装置、プログラムおよび記録媒体 図2
  • 特許-適性テストの判定装置、更新装置、プログラムおよび記録媒体 図3
  • 特許-適性テストの判定装置、更新装置、プログラムおよび記録媒体 図4
  • 特許-適性テストの判定装置、更新装置、プログラムおよび記録媒体 図5
  • 特許-適性テストの判定装置、更新装置、プログラムおよび記録媒体 図6
  • 特許-適性テストの判定装置、更新装置、プログラムおよび記録媒体 図7
  • 特許-適性テストの判定装置、更新装置、プログラムおよび記録媒体 図8
  • 特許-適性テストの判定装置、更新装置、プログラムおよび記録媒体 図9
  • 特許-適性テストの判定装置、更新装置、プログラムおよび記録媒体 図10
  • 特許-適性テストの判定装置、更新装置、プログラムおよび記録媒体 図11
  • 特許-適性テストの判定装置、更新装置、プログラムおよび記録媒体 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-01-07
(45)【発行日】2022-01-21
(54)【発明の名称】適性テストの判定装置、更新装置、プログラムおよび記録媒体
(51)【国際特許分類】
   G06Q 10/10 20120101AFI20220114BHJP
【FI】
G06Q10/10 320
【請求項の数】 4
(21)【出願番号】P 2017155777
(22)【出願日】2017-08-10
(65)【公開番号】P2019036042
(43)【公開日】2019-03-07
【審査請求日】2020-07-15
(73)【特許権者】
【識別番号】717005073
【氏名又は名称】株式会社エスユーエス
(74)【代理人】
【識別番号】110000796
【氏名又は名称】特許業務法人三枝国際特許事務所
(72)【発明者】
【氏名】西田 豊昭
【審査官】田上 隆一
(56)【参考文献】
【文献】特開2010-015289(JP,A)
【文献】特開2016-062322(JP,A)
【文献】特開2006-127387(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00-99/00
(57)【特許請求の範囲】
【請求項1】
求職者の適性を評価するための適性テストが、特定の団体への応募者の選考に適合しているかを判定する判定装置であって、
前記適性テストに基づいて、前記団体に所属する一人の注目人物の評価結果である注目評価結果を作成する注目評価結果作成部と、
前記適性テストに基づいて、前記団体に所属する前記注目人物以外の複数の比較用人物の評価結果である比較用評価結果を、前記比較用人物毎に作成する比較用評価結果作成部と、
前記比較用評価結果の各々と前記注目評価結果との類似度を算出する類似度算出部と、
前記比較用人物を、前記類似度が高い順に順位付けするランキング部と、
前記比較用人物のうち、前記順位が所定以上高い上位者を、前記団体における人事評価について前記注目人物と比較する比較部と、
前記比較結果に基づいて、前記適性テストが前記団体への応募者の選考に適合しているかを判定する判定部と、
を有することを特徴とする判定装置。
【請求項2】
求職者の適性を評価するための適性テストを更新する更新装置であって、
請求項に記載の判定装置の各部と、
前記判定部による判定結果に基づいて、前記適性テストを更新する更新部と、
を有することを特徴とする更新装置。
【請求項3】
請求項に記載の判定装置の各部、または、請求項に記載の更新装置の各部として、コンピュータを機能させるプログラム。
【請求項4】
請求項に記載のプログラムを記録した、コンピュータ読み取り可能な記録媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、求職者と求人者とをマッチングさせる人材マッチングシステムに関し、特に、求職者の適性を評価するためのコンピテンシーテスト等の適正テストに関する。
【背景技術】
【0002】
(一般的な人材マッチングの課題)
一般的に、人材マッチングは以下の4つのステップ(1)~(4)により構成される。(1)人材紹介業者が求職者および求人者のプロファイルを作成する(Model)。
(2)求人者が明示的な基準もしくは暗黙的に、良いと思われる求職者の組み合わせを見つける(Match)。
(3)求職者および求人者がインタラクションを行えるように出会わせる(Introduce)。
(4)求職者および求人者でインタラクションが行われる(Interact)。その結果、両者のプロファイルも更新される(Model)。
【0003】
ここで、人材マッチングにおいては、人材紹介を専門とする第三者が介在することによる求職者(または求人者)の信頼性の担保が重要な要素となる。しかしながら、既存の人材マッチングシステムでは、次のような課題がある。
・求職者および求人者のプロファイルをどのようにして作成するのか。
・これらのプロファイルからどのようにマッチング計算を行うのか。
・求職者を求人者に(または求人者を求職者に)どのように紹介するか。
・求職者および求人者のインタラクションをどのように支援するか。
・求職者および求人者からどのようにフィードバックを得るか。
【0004】
これらの課題を、コンサルタント等の第三者が解決しようとすると、結局のところ「経験」や「勘」といった属人的な要素に頼らざるを得なくなってしまう。また、現在の人材マッチングでは紹介希望者である求職者(または求人者)が主導的となる紹介を想定しているものが多く、このような紹介では、コンサルタント等の介入する余地は必然的に制限がかけられてしまうため、「信頼性の担保」が維持できない。
【0005】
(人間的な能力への注目不足)
また、従来の人材マッチングにおいては、たとえば簿記の能力、英語の能力等については、検定試験や資格の有無といった客観的な情報によって能力を把握し、適切な人材を選定していた。しかしながら、就職後、業務遂行に最も重要と考えられる人間的な能力について客観的に評価することは困難であり、結果として求人者の求めている人材と実際の就職者との間でミスマッチが生じることが多かった。
【0006】
このような人材マッチングの問題点を克服すべく、「コンピテンシーテスト」等と称される適性テストを用いて、人材の個々の特性をできる限り客観的に把握し、求人者の要求している人材を的確に供給しようと試みたものも存在する(例えば、下記の特許文献1および2)。
【0007】
しかしながら、これらの文献に開示された適性テストは、想定されているテスト形式について、全く同じ項目からなるテストに回答し、その得点を合計するというような方法を取っており、古典的なテスト理論の範疇を超えるものではない。このため、個々の項目にどのように点を割り振るのかについて必然的に人の恣意を介在させることになってしまう。つまり、「どの項目にどのように解答すればどの能力がどの程度あると判断される」という最も根本的であるはずの論理的基盤が存在しない。その結果、これらの従来技術は、人材の個々の特性をできる限り客観的に把握するという課題を解決するに至っていない。
【0008】
また、入社後に能力を発揮できる人物像は、人材を求める団体ごとに異なるため、全ての団体における応募者の選考に精度よく対応した適性テストは存在しない。
【先行技術文献】
【特許文献】
【0009】
【文献】特開2001-184392号公報
【文献】特開2005-18274号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明は、上記したような一般的な人材マッチングの課題を解決しつつ、従来技術の欠点を克服することを目的とする。
【0011】
すなわち、人材紹介において人の恣意が介入する余地を排除するとともに、求人者に対しては真に求めている人材を供給し、また求職者に対しては自分の能力を発揮することができる職場を提供できる、精度の高い人材マッチングシステムを実現することを課題とする。
【課題を解決するための手段】
【0012】
上記課題を解決するために、本発明に係る判定方法は、求職者の適性を評価するための適性テストが、特定の団体への応募者の選考に適合しているかを判定する判定方法であって、前記適性テストに基づいて、前記団体に所属する一人の注目人物の評価結果である注目評価結果を作成する注目評価結果作成ステップと、前記適性テストに基づいて、前記団体に所属する前記注目人物以外の複数の比較用人物の評価結果である比較用評価結果を、前記比較用人物毎に作成する比較用評価結果作成ステップと、前記比較用評価結果の各々と前記注目評価結果との類似度を算出する類似度算出ステップと、前記比較用人物を、前記類似度が高い順に順位付けするランキングステップと、前記比較用人物のうち、前記順位が所定以上高い上位者を、前記団体における人事評価について前記注目人物と比較する比較ステップと、前記比較結果に基づいて、前記適性テストが前記団体への応募者の選考に適合しているかを判定する判定ステップと、を有することを特徴とする。
【0013】
前記判定方法では、前記団体に所属する前記比較用人物を変えながら、前記比較用評価結果作成ステップ、前記類似度算出ステップ、前記ランキングステップ、前記比較ステップおよび前記判定ステップを繰り返すことが好ましい。
【0014】
上記課題を解決するために、本発明に係る判定方法は、求職者の適性を評価するための適性テストが、特定の団体への応募者の選考に適しているかを判定する判定方法であって、前記適性テストに基づいて、前記団体への応募者の評価結果を作成する評価結果作成ステップと、前記応募者が前記団体へ就職した場合に、就職後の前記応募者の前記団体における人事評価を前記評価結果と比較する比較ステップと、前記比較結果に基づいて、前記適性テストが前記団体への応募者の選考に適合しているかを判定する判定ステップと、を有することを特徴とする。
【0015】
本発明に係る更新方法は、求職者の適性を評価するための適性テストを更新する更新方法であって、本発明に係る判定方法を用いて、前記適性テストが前記特定の団体への応募者の選考に適合しているかを判定する適合度判定ステップと、前記適合度判定ステップにおける判定結果に基づいて、前記適性テストを更新する更新ステップと、を有することを特徴とする。
【0016】
本発明に係る更新方法は、求職者の適性を評価するための適性テストを更新する更新方法であって、特定の団体への応募者の前記適性テストに対する回答を取得し、前記応募者が前記団体へ就職した場合に、就職後の前記応募者の前記団体における人事評価を前記回答と対応付けて教師データとしてデータベースに記憶させる教師データ記憶ステップと、複数の応募者について、前記教師データ記憶ステップを繰り返し、蓄積された教師データに基づいて機械学習を行うことにより、前記適性テストを更新する更新ステップと、を有することを特徴とする。
【0017】
本発明に係る判定装置は、求職者の適性を評価するための適性テストが、特定の団体への応募者の選考に適合しているかを判定する判定装置であって、前記適性テストに基づいて、前記団体に所属する一人の注目人物の評価結果である注目評価結果を作成する注目評価結果作成部と、前記適性テストに基づいて、前記団体に所属する前記注目人物以外の複数の比較用人物の評価結果である比較用評価結果を、前記比較用人物毎に作成する比較用評価結果作成部と、前記比較用評価結果の各々と前記注目評価結果との類似度を算出する類似度算出部と、前記比較用人物を、前記類似度が高い順に順位付けするランキング部と、前記比較用人物のうち、前記順位が所定以上高い上位者を、前記団体における人事評価について前記注目人物と比較する比較部と、前記比較結果に基づいて、前記適性テストが前記団体への応募者の選考に適合しているかを判定する判定部と、を有することを特徴とする。
【0018】
本発明に係る判定装置は、求職者の適性を評価するための適性テストが、特定の団体への応募者の選考に適しているかを判定する判定装置であって、前記適性テストに基づいて、前記団体への応募者の評価結果を作成する評価結果作成部と、前記応募者が前記団体へ就職した場合に、就職後の前記応募者の前記団体における人事評価を前記評価結果と比較する比較部と、前記比較結果に基づいて、前記適性テストが前記団体への応募者の選考に適合しているかを判定する判定部と、を有することを特徴とする。
【0019】
本発明に係る更新装置は、求職者の適性を評価するための適性テストを更新する更新装置であって、本発明に係る判定装置の各部と、前記判定部による判定結果に基づいて、前記適性テストを更新する更新部と、を有することを特徴とする。
【0020】
本発明に係る更新装置は、求職者の適性を評価するための適性テストを更新する更新装置であって、特定の団体への応募者の前記適性テストに対する回答を取得する回答取得部と、前記応募者が前記団体へ就職した場合に、就職後の前記応募者の前記団体における人事評価を取得する人事評価取得部と、前記人事評価を前記回答と対応付けて教師データを作成する教師データ作成部と、複数の応募者について作成された前記教師データに基づいて機械学習を行うことにより、前記適性テストを更新する機械学習部と、を有することを特徴とする。
【0021】
本発明に係るプログラムは、本発明に係る判定装置の各部、または本発明に係る更新装置の各部として、コンピュータを機能させるプログラムである。
【0022】
本発明に係る記録媒体は、本発明に係るプログラムを記録した、コンピュータ読み取り可能な記録媒体である。
【発明の効果】
【0023】
本発明によれば、適性テストが特定の団体への応募者の選考に適合しているかを客観的に判定することができる。よって、判定結果が良好である適性テスト、あるいは、判定結果に基づいて更新された適性テストを用いて人材マッチングを行うことにより、人材紹介において人の恣意が介入する余地を排除するとともに、求人者に対しては真に求めている人材を供給し、また求職者に対しては自分の能力を発揮することができる職場を提供できるマッチングシステムを実現できる。
【図面の簡単な説明】
【0024】
図1】第1の実施形態に係る判定・更新システムの概略構成を示すブロック図である。
図2】第1の実施形態に係る判定・更新装置による判定方法および更新方法の全体的な流れを示すフローチャートである。
図3】第1の実施形態に係る適合度判定のフローチャートである。
図4】コンピテンシーテストの画面の一例である。
図5】コンピテンシーテストの設問の内容と重み係数の具体例の一部を示す表である。
図6】第1の実施形態に係る判定・更新装置による処理手順の変形例を示すフローチャートである。
図7】第2の実施形態に係る判定・更新システムの概略構成を示すブロック図である。
図8】第2の実施形態に係る判定・更新装置による判定方法および更新方法の全体的な流れを示すフローチャートである。
図9】第2の実施形態に係る適合度判定のフローチャートである。
図10】第3の実施形態に係る更新システムの概略構成を示すブロック図である。
図11】第3の実施形態に係る更新装置による更新方法の全体的な流れを示すフローチャートである。
図12】第3の実施形態に係る教師データ取得のフローチャートである。
【発明を実施するための形態】
【0025】
以下、本発明の実施形態について添付図面を参照して説明する。
【0026】
〔第1の実施形態〕
(システムの全体構成)
図1は、本発明の第1の実施形態に係る判定・更新システムの概略構成を示すブロック図である。この判定・更新システムは、判定・更新装置1および複数のクライアント端末C0~Cxを備えている。判定・更新装置1およびクライアント端末C0~Cxは、ある特定の団体が所有する装置であり、各クライアント端末C0~Cxは、ローカルエリアネットワークLN等を介して判定・更新装置1に接続されている。本実施形態において、「団体」とは、主に、企業などの営利行為を目的とする法人を想定しているが、これに限定されず、公的機関や非営利団体などを含んでもよい。以下では、判定・更新装置1によって判定・更新された適性テストを、応募者の選考に用いることを想定している団体を、「対象企業」と称することもある。
【0027】
判定・更新装置1は、特許請求の範囲に記載の判定装置および更新装置の両方の機能を兼ね備えており、例えば汎用のパーソナルコンピュータやサーバ装置で構成することができる。判定・更新装置1は、ハードウェア構成として、CPU(図示せず)、メモリ(図示せず)、補助記憶装置10などを備えており、CPUが各種プログラムをメモリに読み出して実行することにより、各種演算処理を実行する。判定・更新装置1が汎用のパーソナルコンピュータで構成される場合、判定・更新装置1には、液晶ディスプレイ等の表示装置(図示せず)、および、キーボードまたはタッチパネル等の入力装置(図示せず)が接続されてもよい。また、補助記憶装置10は、例えばハードディスクドライブ(HDD)やソリッドステートドライブ(SSD)で構成することができる。補助記憶装置10は、判定・更新装置1に内蔵されてもよいし、判定・更新装置1とは別体の外部記憶装置として設けてもよい。
【0028】
各クライアント端末C0~Cxは、例えば汎用のパーソナルコンピュータやタブレットなどの携帯型のコンピュータで構成することができる。クライアント端末C0~Cxのうちクライアント端末C0は、対象企業に所属する一人の注目人物が使用する端末である。注目人物は、対象企業に所属する人間であれば特に限定されないが、対象企業における高業績者(ハイパフォーマー)であることが好ましい。これに対し、クライアント端末C1~Cxは、対象企業に所属する前記注目人物以外の複数の比較用人物が使用する端末である。比較用人物は、注目人物と同じ対象企業に所属する人物から無作為で抽出され、その人数は特に制限されない。
【0029】
判定・更新装置1は、求職者の適性を評価するための適性テストが、特定の団体への応募者の選考に適合しているかを判定し、さらに、その判定結果に基づいて適性テストを更新する機能を有している。このような機能を実現するために、判定・更新装置1は、図1に示すように、機能ブロックとして、テスト実施部11、注目評価結果作成部12、比較用評価結果作成部13、類似度算出部14、ランキング部15、比較部16、判定部17および更新修正部18を有している。これらの機能ブロックは、判定・更新装置1のCPUが本実施形態に係るプログラムを実行することによって実現される。本実施形態に係るプログラムは、CD-ROMなどの非一時的なコンピュータ読み取り可能な記録媒体に記録されてもよく、当該記録媒体を判定・更新装置1に読み取らせることにより、プログラムを判定・更新装置1にインストールしてもよい。あるいは、通信ネットワークを介してプログラムのプログラムコードを判定・更新装置1にダウンロードしてもよい。
【0030】
補助記憶装置10には、テストデータTおよび人事評価データBが記憶されている。テストデータTは、求職者の適性を評価するための適性テストの電子データであり、本実施形態では、適性テストはコンピテンシーテストである。初期状態において、補助記憶装置10に記憶されているコンピテンシーテストは、一般的に用いられている既存のコンピテンシーテストである。以下では、コンピテンシーテストデータを単に「テストデータ」と称することもある。
【0031】
人事評価データBは、対象企業に所属する社員の人事評価に関するデータである。人事評価データBには、各社員の所属部門、年齢、役職、年収、勤続年数などが含まれる。
【0032】
ここで、既存のコンピテンシーテストは、特定の団体ごとに特化したものではない。一方、業務遂行において重要視される能力や人間性は、団体ごとに異なるため、既存のコンピテンシーテストが、特定の団体における応募者の選考に必ずしも適合しているとは限らない。
【0033】
そこで、判定・更新装置1は、コンピテンシーテストが特定の団体に適合するように更新する。具体的には、判定・更新装置1は、図2および図3に示されるフローチャートに従って、コンピテンシーテストが、対象企業への応募者の選考に適合しているかを判定し、その判定結果に基づいてコンピテンシーテストを更新する。
【0034】
(判定・更新方法の全体フロー)
図2は、判定・更新装置1による判定方法および更新方法の全体的な流れを示すフローチャートである。まず、ステップS1において、既存のテストデータが補助記憶装置10に記憶される。続いて、ステップS2において、判定・更新装置1は、コンピテンシーテストが対象企業への応募者の選考に適合しているかを判定する適合度判定を行う(適合度判定ステップ)。このステップS2は、本実施形態に係る判定方法によって実施され、その具体的な手順は図3のフローチャートに示されている。図3のフローチャートについては、後述する。
【0035】
再び図2を参照すると、前記適合度判定の判定結果が良好でなかった場合は(ステップS3においてNO)、ステップS4に移行し、判定・更新装置1は、判定結果に基づいて適性テストを更新する(更新ステップ)。前記適合度判定の判定結果が良好であった場合は(ステップS3においてYES)、判定・更新装置1は、判定結果に基づいて適性テストを更新することなく、処理を終了する。このように、判定・更新装置1は、全体的な処理手順として、既存のコンピテンシーテストが特定の団体への応募者の選考に適合しているかを判定し、判定結果が良好でなかった場合にコンピテンシーテストを更新する。これにより、コンピテンシーテストを特定の団体への応募者の選考に適合するように修正して、特定の団体と求職者とのマッチングの精度を向上させることができる。
【0036】
(適合度の判定方法)
続いて、図3に示す適合度判定のフローチャートについて、図1を併せて参照しながら説明する。
【0037】
まず、ステップS20において、図1に示すテスト実施部11が、クライアント端末C0~Cxを使用する社員に対しコンピテンシーテストを実施する。具体的には、テスト実施部11は、補助記憶装置10からテストデータTを読み出し、テストデータTからテスト画面Dを抽出してクライアント端末C0~Cxに送信する。これにより、各クライアント端末C0~Cxでは、コンピテンシーテストの画面が表示され、各クライアント端末C0~Cxの使用者は表示された画面に従って、コンピテンシーテストを受診する。
【0038】
図4は、各クライアント端末C0~Cxに表示されるコンピテンシーテストの画面の一例である。受診者は、設問ごとに設定された6つの選択肢の中から回答を選択する。画面のレイアウト、設問の内容、設問数などは、特に限定されない。また、図4における「戻る」および「次へ」のボタンは省略可能であり、受診者が画面下側の設問に回答した時点で、次の設問の画面に切り替わる構成としてもよい。
【0039】
各クライアント端末C0~Cxの使用者のコンピテンシーテストに対する回答のデータは、それぞれ回答A0~Axとして図1に示す判定・更新装置1に送信される。クライアント端末C0からの回答A0(すなわち、注目人物による回答)は、判定・更新装置1の注目評価結果作成部12に入力される。一方、クライアント端末C1~Cxからの回答A1~Ax(すなわち、比較用人物による回答)は、判定・更新装置1の比較用評価結果作成部13に入力される。
【0040】
続いて、図3に示すステップS21において、注目評価結果作成部12が、回答A0から注目人物の評価結果(潜在尺度値)である注目評価結果R0を作成する(注目評価結果作成ステップ)。具体的には、注目評価結果作成部12は、回答A0を解析し、各設問の回答番号に対応する素得点に所定の重み係数を乗じた値を合計した尺度得点を、注目評価結果R0として算出する。
【0041】
図5は、コンピテンシーテストの設問の内容と重み係数の具体例の一部を示す表である。本実施形態におけるコンピテンシーテストの設問は、「指導・決定力」、「支援・協働力」といった9次元の大分類に区分され、さらに、各大文類は、3次元の小分類に区分される。例えば、「指導・決定力」の大分類は、「リーダーシップスキル」、「ビジョン設定」、「判断力」の3次元の小分類に区分され、各小分類に4項目の設問が割り当てられている。コンピテンシーテストには、上述の9×3×4=108項目の設問に、IM(インプレッションマネジメント)の5項目を加えた計113項目の設問が含まれる。
各設問において、回答した番号に対する素得点は、例えば表1のように設定されている。
【0042】
【表1】
【0043】
さらに、各設問には重み係数が設定されており、初期状態(すなわち更新前)では、全ての設問の重み係数は1.0である。注目評価結果作成部12は、各設問における回答番号に対応する素得点に重み係数を乗じた値を合計して、注目評価結果R0を算出する。
【0044】
また、図3に示すステップS22において、比較用評価結果作成部13が、回答A1~Axの各々から比較用人物の評価結果である比較用評価結果R1~Rxを作成する(注目評価結果作成ステップ)。比較用評価結果作成部13が比較用評価結果R1~Rxを算出する方法は、注目評価結果作成部12が注目評価結果R0を算出する方法と同様である。注目評価結果作成部12が作成した注目評価結果R0および比較用評価結果作成部13が作成した比較用評価結果R1~Rxは、類似度算出部14に入力される。
【0045】
続いて、ステップS23において、類似度算出部14は、比較用評価結果R1~Rxの各々と注目評価結果R0との類似度M1~Mxを算出する(類似度算出ステップ)。類似度M1~Mxの算出方法は特に限定されないが、例えば、特開2005-44280号公報の段落[0025]~[0030]に記載のマッチング値の算出方法と同様の方法で、類似度M1~Mxを算出することができる。
あるいは、注目評価結果R0と比較用評価結果R1~Rxの各々との差分に基づいて類似度を算出してもよい。この場合、例えば比較用評価結果R1と注目評価結果R0との類似度M1は、R0/(R0-R1)の絶対値とすることができ、R0-R1の絶対値が小さいほど、類似度が高くなる。類似度算出部14が算出した類似度M1~Mxは、ランキング部15に入力される。
【0046】
続いて、ステップS24において、ランキング部15は、類似度M1~Mxに基づいて、比較用人物(すなわち、クライアント端末C1~Cxの使用者)を、類似度が高い順に順位付けする(ランキングステップ)。そして、ランキング部15は、比較用人物のうち順位が所定以上高い上位者(例えば、上位10人、上位10%など)および注目人物を示すデータを比較部16に入力する。上位者および注目人物を示すデータとしては、社員番号などが挙げられる。
【0047】
続いて、ステップS25において、比較部16は、前記上位者を、対象企業における人事評価について注目人物と比較する(比較ステップ)。具体的には、比較部16は、補助記憶装置10に記憶されている人事評価データBから、上位者および注目人物の人事評価に関するデータを読み出し、各上位者の人事評価と注目人物の人事評価とを比較する。比較対象に用いられる人事評価は、社内における人物評価を数値等で客観的に表わされるものであることが好ましく、例えば、平均昇給額が挙げられる。平均昇給額は、
(現在の年収-入社時の年収)/勤続年数
で算出することができ、ハイパフォーマーであるほど、平均昇給額は高くなる傾向にある。この場合、比較部16は、平均昇給額について注目人物の数値との比率を上位者のそれぞれについて算出し、算出した比率を比較結果として判定部17に出力する。なお、人事評価の他の指標としては、昇給の変化率が挙げられる。昇給の変化率は、
[年収(基礎賃金のみ)/勤続年数]の変化率
として表わすことができ、ハイパフォーマーであるほど、昇給の変化率は大きくなる傾向にある。
【0048】
続いて、ステップS26において、判定部17は、前記比較結果に基づいて、コンピテンシーテストが対象企業への応募者の選考に適合しているかを判定する(判定ステップ)。具体的には、判定部17は、各上位者の人事評価が注目人物と類似している傾向が大きいほど、コンピテンシーテストの対象企業への応募者の選考の適合度が高いと判定する。より具体的には、前記上位者のうち、前記比率が所定範囲(例えば、90%~110%)内の者の割合が8割以上である場合に、適合度が高いと判定する(判定結果が良好)。
【0049】
判定部17による判定結果が良好でない場合(ステップS27においてNO)、図3に示す一連の処理は終了する。この場合、図2に示すステップS2(適合度判定ステップ)の判定結果は不良となる。
【0050】
判定部17による判定結果が良好である場合(ステップS27においてYES)、ステップS28に移行する。ステップS28では、テスト実施部11が、比較用評価結果を得るための比較用人物が他に存在するか判定する。他の比較用人物が社内に存在する場合(ステップS28においてYES)、ステップS29に移行し、テスト実施部11は、比較用人物を変えてコンピテンシーテストを実施する。具体的には、クライアント端末C0~Cx以外の複数のクライアント端末を無作為で選択し、選択したクライアント端末にテスト画面Dを送信する。その後、ステップS27またはステップS28においてNOとなるまで、ステップS22~ステップS26を繰り返す。その結果、一度でもステップS27においてNOとなることにより処理が終了した場合、図2に示すステップS2の判定結果は不良となる。これに対し、ステップS28においてNOとなることにより処理が終了した場合(すなわち、一度もステップS27においてNOとなることなく処理が終了した場合)、図2に示すステップS2の判定結果は良好となる。
【0051】
以上のフローにより、コンピテンシーテストが対象企業への応募者の選考に適合しているかを判定する適合度判定(図2のステップS2)が行われる。なお、適合度判定では、図3のフローチャートにおいて、ステップS28およびS29を省略し、ステップS20~S26を一度のみ行う構成としてもよい。ただし、コンピテンシーテストの適合度を正確に判定するためには、ステップS28およびS29を省略せず、対象企業に所属する比較用人物を変えながら、ステップS22~ステップS26を繰り返すことが望ましい。
【0052】
再び、図2を参照する。ステップS2における適合度判定の結果が良好である場合(ステップS3においてYES)、判定・更新装置1による処理を終了する。適合度判定の結果が良好であると判定されたコンピテンシーテストを、実際の対象企業への応募者の選考に用いることにより、高い精度で、注目人物と能力や人間性が類似した人物を応募者から選考することができる。
【0053】
特に、注目人物がハイパフォーマーであった場合、適合度判定の結果が良好であると判定されたコンピテンシーテストを用いることにより、対象企業において高い実績を残すことが期待できる人物を、高い精度で応募者から選考することができる。具体的には、応募社のうち、コンピテンシーテストの評価結果(潜在尺度値)が、ハイパフォーマーの注目評価結果に近似している応募者は、入社後に活躍が期待できると判断される。
【0054】
一方、ステップS2における適合度判定の結果が不良である場合(ステップS3においてNO)、ステップS4に移行する。ステップS4では、図1に示す更新修正部18がテストデータTを更新する(更新ステップ)。具体的には、図3に示すステップS25において算出された比較結果において、人事評価が注目人物と類似していない上位者のコンピテンシーテストの評価結果の注目評価結果R0との類似度が低下するように、かつ、人事評価が注目人物と類似している上位者のコンピテンシーテストの評価結果の注目評価結果R0との類似度が低下しないように、更新部18がテストデータTの各設問の重み係数を修正する。これにより、人事評価が注目人物と類似していない者が、コンピテンシーテストの評価結果においても注目人物と類似しない可能性が低下するため、その結果、コンピテンシーテストの適合度が向上する。
【0055】
さらに、ステップS2に移行し、更新したコンピテンシーテストについて、再度、適合度判定を行い、ステップS3において、YESとなるまで、テストデータの更新を行う。これにより、実際の対象企業への応募者の選考に適した適性テストを開発することができる。
【0056】
そして、開発された適性テストを用いて対象企業への応募者の選考や対象企業への就職希望者の人材マッチングを行うことにより、対象企業への就職後に能力を十分に発揮できる人材を効率よくマッチングさせることができ、求人者の求めている人材と実際の就職者とのミスマッチを減らすことができる。よって、人材紹介において人の恣意が介入する余地を排除するとともに、求人者に対しては真に求めている人材を供給し、また求職者に対しては自分の能力を発揮することができる職場を提供できるマッチングシステムを実現できる。
【0057】
(変形例)
なお、本実施形態において適性テストの更新は必須ではない。本変形例では、適性テストの更新を行わない形態について説明する。
【0058】
図6は、判定・更新装置1による処理手順の変形例を示すフローチャートである。このフローチャートは、図2に示すフローチャートにおいて、ステップS4をステップS4’に置き換えたものである。
【0059】
図6においては、ステップS2における適合度判定の結果が不良である場合(ステップS3においてNO)、ステップS4’に移行する。ステップS4’では、図1に示す補助記憶装置10に、他のテストデータが記憶される。他のテストデータとは、それまでの適合度判定に用いられたコンピテンシーテスト以外の適性テストのデータである。そして、ステップS2に移行し、について、再度、適合度判定を行う。このように、ステップS3においてYESとなるまで、テストデータを変えながら適合度判定を行うことにより、実際の対象企業への応募者の選考に適した適性テストを見出すことができる。
【0060】
このように、適合度判定において良好であると判定された適性テストを用いて対象企業への応募者の選考や対象企業への就職希望者の人材マッチングを行うことにより、対象企業への就職後に能力を十分に発揮できる人材を効率よくマッチングさせることができる。
【0061】
〔第2の実施形態〕
続いて、本発明の第2の実施形態について説明する。前述の第1の実施形態では、同一団体内から注目人物と比較用人物を抽出し、それらを適性テストの評価結果および人事評価について比較することにより、適性テストが特定の団体への応募者の選考に適合しているかを判定していた。しかし、一つの人材紹介業者がこの方法によって適性テストを開発する場合、多数の社員の協力、あるいは人事評価といった個人情報の提供が必要となる。そのため、第1の実施形態に係る判定・更新方法を多数の団体に適用することは、現実的ではない。
【0062】
そこで、第2の実施形態では、特定の団体へ就職した者の追跡調査を繰り返すことにより、適性テストが当該団体への応募者の選考に適合しているかを判定する。なお、第2の実施形態おいては、第1の実施形態におけるものと同じ機能を有する構成要素については、同じ符号を付し、その詳細な説明を省略する。
【0063】
(システムの全体構成)
図7は、第2の実施形態に係る判定・更新システムの概略構成を示すブロック図である。この判定・更新システムは、判定・更新装置2、応募者端末Eおよび求人者端末Fを備えている。判定・更新装置2は、人材紹介業者が所有する装置であり、応募者端末Eは、応募者が所有する端末であり、求人者端末Fは、求人者が所有する端末である。
【0064】
求人者は、本発明に係る判定方法および更新方法によって判定・更新された適性テストを、応募者の選考に用いることを想定している特定の団体であり、本実施形態において、「対象企業」と称することもある。また、応募者は、対象企業への就職を希望している者である。
【0065】
判定・更新装置2は、特許請求の範囲に記載の判定装置および更新装置の両方の機能を兼ね備えており、例えば汎用のパーソナルコンピュータやサーバ装置で構成することができる。判定・更新装置2のハードウェア構成は、第1の実施形態において説明した判定・更新装置1と同様である。応募者端末Eおよび求人者端末Fは、例えば汎用のパーソナルコンピュータやタブレットなどの携帯型のコンピュータで構成することができる。判定・更新装置2、応募者端末Eおよび求人者端末Fは、インターネット等の通信ネットワークによって互いに接続されている。
【0066】
判定・更新装置2は、求職者の適性を評価するための適性テストが、特定の団体への応募者の選考に適合しているかを判定し、さらに、その判定結果に基づいて適性テストを更新する機能を有している。このような機能を実現するために、判定・更新装置2は、図7に示すように、機能ブロックとして、テスト実施部11、評価結果作成部20、人事評価取得部21、比較部22、判定部17および更新部18を有している。これらの機能ブロックは、判定・更新装置2のCPUが本実施形態に係るプログラムを実行することによって実現される。本実施形態に係るプログラムは、CD-ROMなどの非一時的なコンピュータ読み取り可能な記録媒体に記録されてもよく、当該記録媒体を判定・更新装置2に読み取らせることにより、プログラムを判定・更新装置2にインストールしてもよい。あるいは、通信ネットワークを介してプログラムのプログラムコードを判定・更新装置2にダウンロードしてもよい。
【0067】
補助記憶装置10には、テストデータTが記憶されている。テストデータTは、求職者の適性を評価するための適性テストの電子データであり、本実施形態では、適性テストはコンピテンシーテストである。初期状態において、補助記憶装置10に記憶されているコンピテンシーテストは、一般的に用いられている既存のコンピテンシーテストであってもよいし、第1の実施形態における判定・更新方法によって更新されたコンピテンシーテストであってもよい。以下では、コンピテンシーテストデータを単に「テストデータ」と称することもある。
【0068】
判定・更新装置2は、第1の実施形態に係る判定・更新装置1と同様、コンピテンシーテストが特定の団体に適合するように更新する。具体的には、判定・更新装置2は、図8および図9に示されるフローチャートに従って、コンピテンシーテストが、特定の団体への応募者の選考に適合しているかを判定し、その判定結果に基づいてコンピテンシーテストを更新する。
【0069】
(判定・更新方法の全体フロー)
図8は、判定・更新装置2による判定方法および更新方法の全体的な流れを示すフローチャートである。まず、ステップS5において、対象企業への応募者が有る場合(YES)、ステップS6において、判定・更新装置2は、コンピテンシーテストが対象企業への応募者の選考に適合しているかを判定する適合度判定を行う(適合度判定ステップ)。このステップS6は、本実施形態に係る判定方法によって実施され、その具体的な手順は図9のフローチャートに示されている。図9のフローチャートについては、後述する。
【0070】
再び図8を参照すると、前記適合度判定の判定結果が良好でなかった場合は(ステップS7においてNO)、ステップS8に移行し、判定・更新装置2は、判定結果に基づいて適性テストを更新する(更新ステップ)。前記適合度判定の判定結果が良好であった場合は(ステップS7においてYES)、ステップS5に戻り、対象企業への応募者が現れた場合(YES)、再度、ステップS6~S8を繰り返す。このように、判定・更新装置2は、全体的な処理手順として、既存のコンピテンシーテストが特定の団体への応募者の選考に適合しているかを判定し、判定結果が良好でなかった場合にコンピテンシーテストを更新する。これにより、コンピテンシーテストを特定の団体への応募者の選考に適合するように修正して、特定の団体と求職者とのマッチングの精度を継続的に向上させることができる。
【0071】
(適合度の判定方法)
続いて、図9に示す適合度判定のフローチャートについて、図7を併せて参照しながら説明する。
【0072】
まず、ステップS60において、図7に示すテスト実施部11が応募者に対しコンピテンシーテストを実施する。具体的には、テスト実施部11は、補助記憶装置10からテストデータTを読み出し、テスト画面Dを抽出して応募者端末Eに送信する。これにより、応募者端末Eでは、コンピテンシーテストの画面が表示され、応募者は表示された画面に従って、コンピテンシーテストを受診する。
【0073】
コンピテンシーテストの内容は、第1の実施形態におけるものと同様である。応募者のコンピテンシーテストに対する回答のデータは、回答Aとして判定・更新装置2に送信され、評価結果作成部20に入力される。
【0074】
続いて、ステップS61において、評価結果作成部20が回答Aから応募者の評価結果Rを作成する(評価結果作成ステップ)。評価結果Rの具体的な算出方法は、第1の実施形態におけるものと同様であり、評価結果作成部20は、回答Aを解析し、各設問の回答番号に対応する素得点に所定の重み係数を乗じた値を合計した尺度得点を、評価結果Rとして算出する。
【0075】
その後、応募者が対象企業へ就職した場合(ステップS62においてYES)、ステップS63に移行する。ステップS63では、人事評価取得部21が、対象企業から応募者の人事評価を取得する。具体的には、応募者が就職してから所定期間後(例えば1年後)に、人事評価取得部21が、求人者端末FにアンケートデータQを自動送信する。アンケートデータQの内容は、就職した応募者の人事評価に関するものであれば特に限定されず、所定の選択肢を選択させるものであってもよいし、自由な記述形式としてもよい。これに対し、対象企業の人事担当者がアンケートデータQに回答することにより、回答Lが求人者端末Fから判定・更新装置2の人事評価取得部21に送信され、人事評価取得部21は、回答Lから人事評価Pを作成する。
【0076】
後述するように、人事評価Pは評価結果Rと比較されるデータであり、数値などの客観的な指標であることが望ましい。例えば、人事評価Pは、
(応募者の入社1年目の昇給額)/(対象企業の全職員の入社1年目の平均昇給額)
とすることができる。この場合、人事評価Pが1に等しければ、応募者に対する人事評価は平均的であり、人事評価Pが1から大きくなるほど、応募者に対する人事評価は良好であると判断できる。
【0077】
続いて、ステップS64において、比較部22が人事評価Pを評価結果Rと比較する(比較ステップ)。具体的には、比較部22は、人事評価Pと評価結果Rとが近似しているかを判断する。
【0078】
続いて、ステップS65において、判定部17が比較結果に基づいて、コンピテンシーテストが対象企業への応募者の選考に適合しているかを判定する(判定ステップ)。具体的には、人事評価Pが良好であり評価結果Rが良好である場合や、人事評価Pが不良であり評価結果Rが不良である場合、判定部17は、適合度判定が良好であると判定する。逆に、人事評価Pが良好であり評価結果Rが不良である場合や、人事評価Pが不良であり評価結果Rが良好である場合、判定部17は、適合度判定が不良であると判定する。なお、人事評価Pおよび評価結果Rの良否度合いの段階数や、両者の整合度と適合度判定の結果との関係は、特に限定されない。
【0079】
以上のフローにより、コンピテンシーテストが対象企業への応募者の選考に適合しているかを判定する適合度判定(図8のステップS6)が行われる。ステップS6における適合度判定の結果が良好である場合(ステップS7においてYES)、ステップS5に戻る。一方、ステップS6における適合度判定の結果が不良である場合(ステップS7においてNO)、ステップS8に移行する。ステップS8では、図7に示す更新部18がテストデータTを更新する(更新ステップ)。具体的には、図9に示すステップS61において、回答Aから作成される評価結果Rが人事評価Pと近似するように、更新部18がテストデータTの各設問の重み係数を修正する。これにより、応募者のコンピテンシーテストによる評価結果と、実際の就職後の人事評価とが整合しない可能性が低下するため、その結果、コンピテンシーテストの適合度(精度)が向上する。
【0080】
なお、図8に示すステップS5は、対象企業が存在している限り実施される。すなわち、判定・更新装置2によるコンピテンシーテストの判定および更新処理は、対象企業への応募者が現れる度に実施され、対象企業が存在している限り継続される。よって、判定および更新処理を繰り返すことにより、コンピテンシーテストの適合度を継続的に向上させることができる。また、対象企業の業態や社風の変化などにより、求める人材が変化した場合であっても、変化に対応するようにコンピテンシーテストを更新し続けることができる。
【0081】
なお、ステップS6は、対象企業への応募者全員に実施してもよいし、対象企業から内定を得た者のみに実施してもよい。これにより、判定・更新処理の効率を上げることができる。
【0082】
以上のように、本実施形態では、適性テストの評価結果を、実際の就職者の人事評価と照らし合わせることで、適性テストの精度を向上させている。すなわち、人の恣意を介入させることなく、適性テストの内容を各団体の環境に合わせて開発することができる。このように開発された適性テストを用いて対象企業への応募者の選考や対象企業への就職希望者の人材マッチングを行うことにより、対象企業への就職後に能力を十分に発揮できる人材を効率よくマッチングさせることができ、求人者の求めている人材と実際の就職者とのミスマッチを減らすことができる。
【0083】
〔第3の実施形態〕
続いて、本発明の第3の実施形態について説明する。第3の実施形態では、第2の実施形態と同様に、就職者の追跡調査を繰り返すことにより、適性テストが団体への応募者の選考に適合しているかを判定する。なお、第3の実施形態おいては、第1および第2の実施形態におけるものと同じ機能を有する構成要素については、同じ符号を付し、その詳細な説明を省略する。
【0084】
(システムの全体構成)
図10は、第3の実施形態に係る更新システムの概略構成を示すブロック図である。この更新システムは、更新装置3、データサーバ4、応募者端末Eおよび求人者端末F1~Fyを備えている。更新装置3およびデータサーバ4は、人材紹介業者が所有する装置である。応募者端末Eの各々は、互いに異なる不特定多数の応募者が所有する端末であり、応募者端末Eの台数は特に限定されない。求人者端末F1~Fyは、互いに異なる求人者が所有する端末である。求人者は、人材紹介業者と提携する団体であり、その個数はyである。以下では、求人者端末F1~Fyのうち求人者端末Fm(以下、mは1~yの整数とする)を所有する団体を、対象企業Gmとする。
【0085】
更新装置3は、例えば汎用のパーソナルコンピュータやサーバ装置で構成することができ、そのハードウェア構成は、第1および第2の実施形態において説明した判定・更新装置1および2と同様である。なお、図10では、補助記憶装置10の図示を省略している。
【0086】
応募者端末Eおよび求人者端末F1~Fyは、例えば汎用のパーソナルコンピュータやタブレットなどの携帯型のコンピュータで構成することができる。更新装置3と応募者端末Eおよび求人者端末F1~Fyとは、インターネット等の通信ネットワークによって互いに接続されている。
【0087】
更新装置3は、求職者の適性を評価するための適性テストを機械学習によって更新する機能を有している。このような機能を実現するために、更新装置3は、機能ブロックとして、テスト実施部11、人事評価取得部21、回答取得部30、教師データ作成部31および機械学習部32を有している。これらの機能ブロックは、更新装置3のCPUが本実施形態に係るプログラムを実行することによって実現される。本実施形態に係るプログラムは、CD-ROMなどの非一時的なコンピュータ読み取り可能な記録媒体に記録されてもよく、当該記録媒体を更新装置3に読み取らせることにより、プログラムを更新装置3にインストールしてもよい。あるいは、通信ネットワークを介してプログラムのプログラムコードを更新装置3にダウンロードしてもよい。
【0088】
データサーバ4は、ビッグデータを蓄積可能なサーバ装置であり、更新装置3に接続されている。データサーバ4は、テストデータT1~Tyを記憶するテストデータ記憶部40と、データベースDB1~DByとを備えている。図10では、データサーバ4は、1台の更新装置3に接続されているが、更新装置3と同様の複数の装置と接続されてもよい。
【0089】
テストデータT1~Tyは、求職者の適性を評価するための適性テストの電子データであり、本実施形態では、適性テストはコンピテンシーテストである。テストデータT1~Tyは、対象企業G1~Gyにそれぞれ対応して用意されている。テストデータT1~Tyは、重み係数が互いに同一のデータであってもよいが、テストデータT1~Tyがそれぞれ対象企業G1~Gyへの応募者の選考に適合するように、第1の実施形態および/または第2の実施形態に係る判定・更新方法によって更新されていることが望ましい。
【0090】
データベースDB1~DByは、後述する機械学習のための教師データを記憶するための記憶装置である。本実施形態に係る判定・更新システムの稼働に伴い、データベースDB1~DByには教師データが蓄積されていく。以下では、コンピテンシーテストデータを単に「テストデータ」と称することもある。
【0091】
更新装置3は、テストデータTmが特定の対象企業Gmに適合するように更新する。更新装置3による処理手順を図11および図12に示す。
【0092】
(更新方法の全体フロー)
図11は、更新装置3による更新方法の全体的な流れを示すフローチャートである。まず、ステップS9において、後述する機械学習のための教師データを取得する(教師データ取得ステップ)。具体的には、回答取得部30が、対象企業Gmへの応募者のテストデータTmに対する回答Amを取得し、前記応募者が対象企業Gmへ就職した場合に、就職後の前記応募者の対象企業Gmにおける人事評価(人事評価Pmとする)を回答Amと対応付けて教師データPAmとしてデータベースDBmに記憶させる。これを他の応募者について継続的に繰り返すことにより、対象企業G1~Gyに対応した教師データPA1~PAyが、それぞれデータベースDB1~DByに蓄積されていく。ステップS9のさらに具体的な手順は図12のフローチャートに示されている。図12のフローチャートについては、後述する。
【0093】
再び図11を参照すると、ステップS9を繰り返すことにより、対象企業Gmおよび対象企業Gm以外の団体について、教師データが蓄積される。そして、教師データが十分に蓄積した場合(ステップS10においてYES)、ステップS11に移行する。ステップS11では、図10に示す機械学習部32が、蓄積された多数の教師データに基づいて機械学習を行い、テストデータを更新する(更新ステップ)。
【0094】
(教師データの取得方法)
続いて、図12に示す教師データ取得のフローチャートについて、図10を併せて参照しながら説明する。
【0095】
まず、ステップS90において、図10に示すテスト実施部11が応募者に対しコンピテンシーテストを実施する。具体的には、テスト実施部11は、対象企業Gmへの応募者が現れた場合、対象企業Gmに対応するテストデータTmをデータサーバ4から読み出し、テスト画面Dmを抽出して、応募者が使用する応募者端末Eに送信する。これにより、応募者端末Eでは、コンピテンシーテストの画面が表示され、応募者は表示された画面に従って、コンピテンシーテストを受診する。
【0096】
コンピテンシーテストの内容は、第1および第2の実施形態におけるものと同様である。応募者のコンピテンシーテストに対する回答のデータは、回答Amとして更新装置3に送信され、ステップS91において、回答取得部30が回答Amを取得する。
【0097】
その後、応募者が対象企業へ就職した場合(ステップS92においてYES)、ステップS93に移行する。ステップS93では、人事評価取得部21が、対象企業Gmから応募者の人事評価Pmを取得する。人事評価Pmの取得方法および内容は、第2の実施形態におけるものと同様である。具体的には、応募者が就職してから所定期間後(例えば1年後)に、人事評価取得部21が、求人者端末FmにアンケートデータQを送信する。これに対し、対象企業Gmの人事担当者が回答することにより、回答Lmが求人者端末Fmから更新装置3の人事評価取得部21に送信され、人事評価取得部21は、回答Lmから人事評価Pmを作成する。
【0098】
続いて、ステップS94において、教師データ作成部31が人事評価Pmを、回答取得部30が取得した回答Amと対応付けて教師データPAmを作成する。続いてステップS95において、教師データ作成部31は、教師データPAmを対象企業Gmに対応するデータベースDBmに記憶させる。
【0099】
以上のフローにより、教師データを取得する教師データ取得ステップ(図11のステップS9)が行われる。このステップS9を繰り返すことにより、対象企業Gmおよび対象企業Gm以外の団体について、教師データが蓄積される。そして、少なくとも1つの団体に対応する教師データが十分に蓄積した場合(ステップS10においてYES)、ステップS11に移行する。ステップS11に移行するか否かの基準となる教師データの数は、機械学習を行うのに十分な数であれば、特に限定されない。以下では、対象企業Gn(以下、nは1~yの整数)に対応する教師データPAnが十分に蓄積されたものとする。
【0100】
ステップS11では、図10に示す機械学習部32が、対象企業Gnに対応するデータベースDBnに蓄積された多数の教師データPAnに基づいて機械学習を行い、回答Anから算出される評価結果と、回答Anに対応づけられた人事評価Pnとが整合するように、テストデータTnの各設問の重み係数を修正する。すなわち、応募者の人事評価Pnが良好であった場合、当該応募者の回答Anから算出される評価結果も高確率で良好となるように、重み係数を修正する。これにより、機械学習部32は、対象企業Gnに対応するテストデータTnを更新する(更新ステップ)。本実施形態における機械学習法は特に限定されないが、例えば、ニューラルネットワークを用いることができる。
【0101】
ステップS9~S11を継続的に繰り返すことにより、各対象企業G1~Gyに対応するテストデータT1~Tyを更新することができる。これにより、テストデータT1~Tyを対象企業G1~Gyへの応募者の選考に適合するように修正して、対象企業G1~Gyと求職者とのマッチングの精度を継続的に向上させることができる。
【0102】
(付記事項)
本発明は上記の実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態に開示された技術的手段を適宜組み合わせて得られる形態も本発明の技術的範囲に含まれる。
【符号の説明】
【0103】
1 判定・更新装置
2 判定・更新装置
3 更新装置
4 データサーバ
10 補助記憶装置
11 テスト実施部
12 注目評価結果作成部
13 比較用評価結果作成部
14 類似度算出部
15 ランキング部
16 比較部
17 判定部
18 更新部
20 評価結果作成部
21 人事評価取得部
22 比較部
30 回答取得部
31 教師データ作成部
32 機械学習部
40 テストデータ記憶部
A、A0~Ax、Am、An 回答
B 人事評価データ
C0~Cx クライアント端末
D、Dm テスト画面
DB1~DBy、DBm、DBn データベース
E 応募者端末
F、F1~Fy、Fm 求人者端末
G1~Gy、Gm、Gn 対象企業(団体)
L、Lm 回答
M1~Mx 類似度
P、Pm、Pn 人事評価
PA1~PAy 教師データ
PAm、PAn 教師データ
Q アンケートデータ
R 評価結果
R0 注目評価結果
R1~Rx 比較用評価結果
T、T1~Ty、Tm、Tn テストデータ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12