IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社NejiLawの特許一覧

<>
  • 特許-雄体 図1
  • 特許-雄体 図2
  • 特許-雄体 図3
  • 特許-雄体 図4
  • 特許-雄体 図5
  • 特許-雄体 図6
  • 特許-雄体 図7
  • 特許-雄体 図8
  • 特許-雄体 図9
  • 特許-雄体 図10
  • 特許-雄体 図11
  • 特許-雄体 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-01-12
(45)【発行日】2022-01-24
(54)【発明の名称】雄体
(51)【国際特許分類】
   F16B 35/00 20060101AFI20220117BHJP
   F16B 37/00 20060101ALI20220117BHJP
【FI】
F16B35/00 T
F16B37/00 Z
【請求項の数】 1
(21)【出願番号】P 2020146432
(22)【出願日】2020-08-31
(62)【分割の表示】P 2019144116の分割
【原出願日】2016-04-18
(65)【公開番号】P2020190334
(43)【公開日】2020-11-26
【審査請求日】2020-09-28
(73)【特許権者】
【識別番号】511025411
【氏名又は名称】株式会社NejiLaw
(72)【発明者】
【氏名】道脇 裕
【審査官】後藤 健志
(56)【参考文献】
【文献】国際公開第2009/104767(WO,A1)
【文献】米国特許第05624219(US,A)
【文献】特開昭48-050156(JP,A)
【文献】特開昭51-035846(JP,A)
【文献】特開2016-098910(JP,A)
【文献】特開昭60-084415(JP,A)
【文献】特開2015-052367(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F16B 35/00
F16B 37/00
(57)【特許請求の範囲】
【請求項1】
軸部と、
上記軸部の周面に形成され、適宜のリード角及び/又はリード方向に設定される第一螺旋溝と、
上記軸部の周面に形成され、上記リード角及び/又はリード方向に対して相異なるリード角及び/又はリード方向に設定される第二螺旋溝と、を備え、
上記第一螺旋溝と上記第二螺旋溝とが、上記軸部の軸方向における同一領域上に重畳形成されることで、周方向に延びる略三日月状を成し、周方向中央部が高くなり、周方向両端が次第に低くなるように高さが変化する条部を有し、
上記条部は、該条部の頂部から谷に向かって延在する一対の斜面の成す角度が、70°±3°の範囲に設定されることを特徴とする雄体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特殊な形状の条を有する雄体に関する。
【背景技術】
【0002】
締結構造の一つとして、ボルト等の所謂雄ねじ体と、ナット等の所謂雌ねじ体を用いるものが存在する。このねじ体による締結構造に関して、一つの雄ねじ体に対して、リード角及び/又はリード方向が相異なる二種類の螺旋溝(例えば右螺旋溝による雄ねじ部と左螺旋溝による雄ねじ部)を形成し、この二種類の螺旋溝に対して、ダブルナットの如く、二種類の雌ねじ体(例えば右雌ねじ体と左雌ねじ体)を別々に螺合させるものがある。何らかの係合手段により、二種類の雌ねじ体の相対回転を抑止すれば、リード角及び/又はリード方向が相異なることによる軸方向干渉作用又は軸方向離反作用により、雄ねじとの間で機械的な緩み止め効果を提供できる(特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特許5406168号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
一般的にねじ山の角度は、メートル並目ねじ・メートル細目ねじの場合は60°、ユニファイ並目ねじ・ユニファイ細目ねじの場合は60°、ウィット並目ねじの場合は55°、ミニチュアねじの場合は60°となっているが、その角度に関する理論的な根拠は必ずしも明確ではない。
【0005】
本発明者による本出願時点で未公知の膨大な量の実験による知見では、例えば、メートル並目の雄ねじ及び雌ねじを螺合させて、両者を軸方向に離反させると、軸部は破断せずに、雄ねじのねじ山が変形若しくは剪断することで締結が解除されてしまう(ここでは「ねじ山崩れ形態」と定義する)結果となることが少なくない。つまり、雄ねじの軸部自体が破断する状態(これを「軸破断形態」と定義する)が得られないことが有るのである。換言すると、従来の設計思想の場合、雄ねじの軸部の引張強度が過剰となっているか、又は、雄ねじの軸部と比較してねじ山の強度が低いと考え得る。このように、従来のねじ体の規格やねじ設計思想では、高い締結力を確保するという要求が満たされていない。
【0006】
特に、特許5406168号公報に開示されるような、二種類の螺旋溝が軸方向に重なるように形成される雄ねじ体の場合、この雄ねじのねじ山に負荷を印加した際に発生する荷重密度が大きくなり易く、従って、ねじ山側の強度が不足気味の従来のねじ設計思想をそのまま適用したのでは、ねじ山側の強度不足が生じ得るという問題がある。
【0007】
本発明は、上記問題点に鑑みて本発明者の鋭意研究により成されたものであり、例えば、リード角及び/又はリード方向が相異なる二種類の螺旋溝を有する雄体において、締結力を高度に維持する為の技術思想を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記目的を達成する本発明は、軸部と、上記軸部の周面に形成され、適宜のリード角及び/又はリード方向に設定される第一螺旋溝と、上記軸部の周面に形成され、上記リード角及び/又はリード方向に対して相異なるリード角及び/又はリード方向に設定される第二螺旋溝と、を備え、上記第一螺旋溝と上記第二螺旋溝とが、上記軸部の軸方向における同一領域上に重畳形成されることで、周方向に延びる略三日月状を成し、周方向中央部が高くなり、周方向両端が次第に低くなるように高さが変化する条部を有し、上記条部は、該条部の頂部から谷に向かって延在する一対の斜面の成す角度が、70°±3°の範囲に設定されることを特徴とする雄体である。
【発明の効果】
【0019】
本発明によれば、例えば、リード角及び/又はリード方向が相異なる二種類の螺旋溝から成る構造を有する単一の雄体において、この雄体と対応する雌ねじ体との締結強度を向上させ、締結力を長期間に亘って高度に維持することが可能となる。
【図面の簡単な説明】
【0020】
図1】本発明の実施形態に係る雄ねじ体及び雌ねじ体の締結構造の(A)正面図であり、(B)平面図である。
図2】同締結構造の(A)正面断面図であり、(B)側面断面図である。
図3】(A)は同雌ねじ体の正面断面図であり、(B)は同雌ねじ体と螺旋方向が逆となる雌ねじ体の正面断面図である。
図4】同雄ねじ体の(A)正面図、(B)ねじ山のみの断面図、(C)平面図である。
図5】同雄ねじ体の(A)側面図、(B)ねじ山のみの断面図、(C)平面図である。
図6】(A)は同雄ねじ体のねじ山の断面形状を拡大して示す断面図であり、(B)は同雌ねじ体のねじ山の断面形状を拡大して示す断面図である。
図7】(A)は本発明の実施形態に係るねじ設計方法で用いられる検証用雄ねじ体群を示すマトリックスであり、(B)は本発明の実施形態に係るねじ設計方法で用いられる検証用雌ねじ体群を示すマトリックスである。
図8】同検証用雄ねじ体と同検証用雌ねじ体の締結強度試験の態様を示す図である。
図9】呼び径N16の同検証用雄ねじ体と同検証用雌ねじ体の締結強度試験の結果を示すグラフである。
図10】呼び径N24の同検証用雄ねじ体と同検証用雌ねじ体の締結強度試験の結果を示すグラフである。
図11】呼び径N30の同検証用雄ねじ体と同検証用雌ねじ体の締結強度試験の結果を示すグラフである。
図12】本実施形態の他の例に係る雄ねじ体及び雌ねじ体の締結構造の正面図断面図である。
【発明を実施するための形態】
【0021】
以下、本発明の実施の形態を、添付図面を参照して説明する。
【0022】
<雄ねじ体及び雌ねじ体>
図1及び図2に示すように、本実施形態に係る雄ねじ体10及び雌ねじ体100の締結構造1は、雌ねじ体100を雄ねじ体10に螺合させることによって構成される。
【0023】
図4及び図5に示すように、雄ねじ体10は、軸部12における基部側から軸端に向かって、雄ねじ螺旋溝が形成された雄ねじ部13が設けられる。本実施形態では、この雄ねじ部13に、対応した右ねじとして成る雌ねじ状の螺旋条を螺合可能に構成される右ねじと成る第一螺旋溝14と、対応した左ねじとして成る雌ねじ状の螺旋条を螺合可能に構成される左ねじと成る第二螺旋溝15との二種類の雄ねじ螺旋溝が、雄ねじ体10の軸方向における同一領域上に重複して形成される。なお、当該重複部分以外に、一方の向きの螺旋溝が形成されて成る片螺旋溝領域を設けてもよい。
【0024】
第一螺旋溝14は、これに対応する雌ねじ体100の右ねじとして成る雌ねじ状の螺旋条と螺合可能であり、第二螺旋溝15は、これに対応する雌ねじ体100(これは、上記右ねじを有する雌ねじ体と別体の場合を含む)の左ねじとして成る雌ねじ状の螺旋条と螺合可能となる。
【0025】
雄ねじ部13には、図4(C)及び図5(C)に示すように、軸心(ねじ軸)Cに垂直となる面方向において周方向に延びる略三日月状の条状を成すねじ山Gが、雄ねじ部13の直径方向における一方側(図の左側)及び他方側(図の右側)に交互に設けられる。即ち、このねじ山Gは、その稜線が軸に対して垂直に延びており、ねじ山Gの高さは、周方向中央が高くなり、周方向両端が次第に低くなるように変化する。ねじ山Gをこのように構成することで、右回りに旋回する仮想的な螺旋溝構造(図4(A)の矢印14参照)及び左回りに旋回する仮想的な螺旋溝構造(図4(A)の矢印15参照)の二種類の螺旋溝を、ねじ山Gの間に形成することが出来る。
【0026】
本実施形態では、このようにすることで、第一螺旋溝14及び第二螺旋溝15の二種類の雄ねじ螺旋溝を、雄ねじ部13に重畳形成している。従って、雄ねじ部13は、右ねじ及び左ねじの何れの雌ねじ体とも螺合することが可能となる。なお、二種類の雄ねじ螺旋溝が形成された雄ねじ部13の詳細については、本願の発明者に係る特許第4663813号公報を参照されたい。
【0027】
図3(A)に示すように、雌ねじ体100は、筒状部材106で構成される。筒状部材106は、所謂六角ナット状を成しており、中心に貫通孔部106aを有する。勿論、雌ねじ体100の概形は、六角ナット状に限らず、円筒状、周面にローレットを有する形状、四角形状、星型形状など任意に適宜設定可能である。貫通孔部106aには、右ねじとしての第一雌ねじ螺旋条114が形成される。即ち、筒状部材106の第一雌ねじ螺旋条114は、雄ねじ体10の雄ねじ部13における第一螺旋溝14と螺合する。
【0028】
なお、図3(B)に示すように、雌ねじ体101として、貫通孔部106aに左ねじとしての第二雌ねじ螺旋条115が形成されるようにしても良い。この場合は、第二雌ねじ螺旋条115は、雄ねじ体10の雄ねじ部13における第二螺旋溝15と螺合する。
【0029】
次に、図6(A)を参照して、雄ねじ体10における雄ねじ部13に形成されるねじ山Gの軸方向に沿う断面を軸直交方向視する際の形状について説明する。
【0030】
また、図6(B)に示す、雌ねじ体100の第一雌ねじ螺旋条114及び/又は雌ねじ体101の第二雌ねじ螺旋条115のねじ山Pの形状は、雄ねじ体10のねじ山Gの形状に基づいて相対設定されるものであることから、ここでの詳細な説明を省略する。
【0031】
更にまた、本実施形態の雄ねじ体10の呼び径については、頭文字にNを付けて呼ぶことにする。例えば、N16の雄ねじ体10の場合は、ねじ山Gの頂点Gtにおける直径Fが16mmであることを意味し、N16の雌ねじ体100の場合は、ねじ山の谷の径が16mmであることを意味する。
【0032】
ねじ山Gの山角度T(山角度は、ねじ山Gの頂部から谷に向かって延在する一対の斜面の成す角度を意味する)は、61°以上且つ75°以下の範囲に設定され、より好ましくは63°以上且つ73°以下の範囲に設定され、更に好ましくは、65°以上且つ73°以下に設定され、より具体的には70°に設定される。また、ねじ山Gの谷径D(即ち、雄ねじ体10の軸部12においてねじ山Gを省略する場合の外径)は、N16の場合は13.5mm以上且つ14.3mm以下に設定されることが好ましい。N16の場合の谷径Dは13.5mm以上且つ14.3mm以下に設定されることが好ましい。N24の場合の谷径Dは19.6mm以上且つ20.5mm以下に設定されることが好ましい。N30の場合の谷径Dは25.8mm以上且つ26.7mm以下に設定されることが好ましい。なお、ここで言う谷径とは従来のメートルねじでいうところの有効径ではなく、谷底部分の直径に相当する。
【0033】
従って、図6(B)に示すように、雌ねじ体100に関しても、ねじ山Pの山角度Qは、61°以上且つ75°以下の範囲に設定され、より好ましくは63°以上且つ73°以下の範囲に設定され、更に好ましくは、65°以上且つ73°以下に設定され、より具体的には70°に設定される。また、ねじ山Pの頂点Ptの山径Eは、N16の場合は13.5mm以上且つ14.3mm以下に設定されることが好ましい。N16の場合の山径Eは13.5mm以上且つ14.3mm以下に設定されることが好ましい。N24の場合の山径Eは19.6mm以上且つ20.5mm以下に設定されることが好ましい。N30の場合の山径Eは25.8mm以上且つ26.7mm以下に設定されることが好ましい。勿論、雌ねじの山径の設定は、雄ねじ体の谷径に比して、同等以上に設定する必要があることは言うまでもない。
【0034】
<設計手法及び設計根拠>
次に、雄ねじ体10及び雌ねじ体100の設計手法及び設計根拠について以下に説明する。なお、ここでは呼び径N16の雄ねじ体10を設計する際の事例を紹介する。
【0035】
<雄ねじ体10及び雌ねじ体100のシリーズの準備>
先ず、呼び径N16と成る雄ねじ体10に関して、図7(A)に示すように、相異なる複数の谷径D1,D2,・・・,Dnと、相異なる複数の山角度T1,T2,・・・,Tnから構成されるマトリクス条件の一部又は全部を埋めるように、複数の検証用雄ねじ体10(Tn,Dn)を準備する。
【0036】
また、この複数の検証用雄ねじ体10(Tn,Dn)のそれぞれに対応させて、それと螺合可能な検証用雌ねじ体100を同じ数だけ準備する。即ち、図7(B)に示すように、相異なる複数の山径E1,E2,・・・,Enと、互いの相複数の山角度Q1,Q2,・・・,Qnから構成されるマトリクス条件の全部又は一部を埋めるように、複数の検証用雌ねじ体100(Qn,En)を準備する。具体的には、検証用雌ねじ体100(Qn,En)の山径Enは、検証用雄ねじ体10(Tn,Dn)の谷径Dnに略一致し、山角度Qnは、検証用雄ねじ体10(Tn,Dn)の山角度Tnと略一致する。結果、図7(A)と図7(B)のマトリクス上の同じ位置に存在する検証用雄ねじ体10(Tn,Dn)と、検証用雌ねじ体100(Qn,En)が対となる検証用セットが多数用意される。
【0037】
なお、検証用雌ねじ体100(Qn,En)の軸方向長さW(これを、軸方向かかり長Wとも呼ぶ。図1参照。)は、呼び径N16における締結強度試験では、全ての試験体に共通して呼び径N16に対する素材固有の所定の比率γ(0<γ<1)としている。即ち、N16の本事例の場合、検証用雌ねじ体100(Qn,En)の軸方向長さWは、16mm×γに設定される。勿論、Wの値は、材料固有値である所定比率のγを呼び径毎にそれぞれ乗じて算出される。
【0038】
この軸方向かかり長Wは、図8に示すように、概ね、雄ねじ体10の軸部12の軸直角断面12Aが耐え得る引張強度Hと、軸方向かかり長Wにおける、雄ねじ体10のねじ山Gの基底面GL(図6(A)参照)から構成される周面Jのせん断強度Sが近似し易い値を選定している。引張強度Hは、谷径Dnにおける断面積に係数a1を乗算した値となり、H=π×Dn2×a1で表現できる。せん断強度Sは、谷径Dnにおける軸方向かかり長W相当の円筒面積に係数a2を乗算した値となり、S=π×Dn×W×a2で表現できる。
【0039】
係数a1やa2は、母材の材料等によってそれぞれ異なるが、本発明者の検討によれば、本実施形態では母材にS45CやSCM435等のような汎用の鋼材を選定し、Wを上述の通り設定すると、引張強度Hとせん断強度Sがかなり近い値となることが分かっている。この結果、検証用雌ねじ体100(Qn,En)と検証用雄ねじ体10(Tn,Dn)の締結強度は、山角Tや谷径Dが変化することから、実際には、せん断強度S側が微妙に大きくなったり、引張強度H側が微妙に大きくなったりする。どちらが優位になるかは、締結強度試験によって検証すれば良く、せん断強度S優位状態と引張強度H優位状態の境界を、実験によって見出すことが可能となる。
【0040】
なお、ここでは説明の便宜上、図7に示すマトリクスを利用して、谷径Dや山角度T等を変量させる場合を例示したが、実際には、マトリクスの全ての場所を埋めるように検証用雄ねじ体10(Tn,Dn)と検証用雌ねじ体100(Qn,En)を用意する必要はなく、また、マトリクス化する必要もない。後述するように、谷径Dと山角Tがある程度の範囲で変動する検証用雄ねじ体と検証用雌ねじ体の組み合わせで、最適値を抽出できる態様であれば良い。
【0041】
<境界谷径抽出工程>
次に、対となる検証用雄ねじ体10(Tn,Dn)と、検証用雌ねじ体100(Qn,En)(以下、検証用ボルトナットセットという)をそれぞれ螺合させて締結強度試験を行う。ここでの締結強度試験は、図8に示すように、検証用雄ねじ体10(Tn,Dn)と検証用雌ねじ体100(Qn,En)を、軸方向に離れる方向(矢印A参照)に相対移動させて、締結状態(螺合状態)を強制的に解除させる引張試験を意味するが、特にこれに限定されず、繰り返し雄ねじ体100(Tn,Dn)と雌ねじ体100(Qn,En)とを相対離反させる疲労試験の他、ねじ体のトルク・軸力・回転角を検証するための所謂ねじ締付試験等であってもよく、これらの試験結果と引張試験の結果との間に相関性があることが確認されている。全ての検証用ボルトナットセットについて締結強度試験を行い、その結果が、雄ねじ体100の軸部12で破断することで締結が解除される軸破断形態となるか、ねじ山Gが変形又は崩れることで締結が解除されるねじ山崩れ形態となるかを判定する。
【0042】
この判定結果のグラフ例を図9に示す。本グラフでは、横軸を山角度Tn、縦軸を谷径Dnに設定し、軸破断形態となった検証用ボルトナットセットを○、ねじ山崩れ形態となった検証用ボルトナットセットを△で表示している。この結果から判るように、グラフ上は、ねじ山崩れ形態が生じる領域X(ねじ山崩れ領域X)と、軸破断形態が生じる領域Y(軸破断領域Y)に二分され、その境界線Kを明らかにすることができる。この境界線Kは、或る特定の山角度Tkに対応して軸破断形態を生じさせることが可能な最大谷径の値を境界谷径Dkと定義した場合、山角度Tkの変化と境界谷径Dkの変化の相関関係を意味することになる。
【0043】
例えば、山角度Tを68°に設定し、軸部の谷径Dを14.1mm以上にする設計思想は、ねじ山崩れ領域Xに属するので、引張試験による締結解除時に軸破断形態は得られ難く、ねじ山崩れ形態が生じる可能性が高いことを意味し、それだけ軸部の強度が無駄になっている設計と考えることができる。一方、山角度Tを68°に設定し、軸部の谷径Dを13.6mmに設定する設計思想は、締結解除時に軸破断形態が得られ易いが、境界谷径Dkは約14.05mmとなることから、その範囲内であれば軸部の谷径Dをもっと大きく設定することができて引張強度を高めることができる点で、非効率な設計であることを意味する。
【0044】
逆説すると、この境界線Kからは、境界谷径Dkの変化に対応して、その雄ねじ体を軸破断形態にさせることが可能な境界山角度Tkの許容範囲(これを境界山角度領域Tsと呼ぶ)を決定できることになる。
【0045】
<軸破断優位ねじ山角選定工程>
境界谷径抽出工程が終了した後、境界線Kの中で、前記境界谷径Dkが最大値と成り得る山角度(以下、軸破断優位山角度Tp)を選定する。図9のグラフでは、境界線Kのピーク値から、軸破断優位山角度Tpは70.5°となる。この軸破断優位山角度Tpは、軸部を極力太くして引張強度を高めたとしても、締結解除に関しては軸破断形態に導き易い山角度、即ち、山G側の剪断強度Sが最も高く成り易い山角度、と説明できる。
【0046】
<ねじ山角決定工程>
最後に、決定される軸破断優位山角度Tpと近似する山角度を、呼び径N16における実際の雄ねじ体10及び/又は雌ねじ体100に適用して設計を行う。例えば、実際の山角度Tを70°に設定すれば、谷径Dを大きく設定することが可能になる。具体的な谷径Dとしては、例えば14.25mm程度が好ましいことになる。
【0047】
なお、図9では、呼び径N16の場合の設計手法について説明したが、本発明はこれに限定されず、他の呼び径であっても良い。例えば図10には、呼び径N24の場合の検証結果のグラフを示し、図11には、呼び径N30の場合の検証結果のグラフを示す。これらのグラフに共通して言えることは、軸破断優位山角度Tpは61°以上且つ75°以下の範囲内であり、より好ましくは65°以上且つ73°以下の範囲内であり、概ね70°前後となる。つまり、本実施形態の構造を有する雄ねじ体10の場合、ねじ山の山角度は、従来の常識である60°ではなく、それよりも大きな値が適しており、70°近傍が最適値であることが分かる。
【0048】
なお、上記実施形態の雄ねじ体10及び雌ねじ体100では、第一螺旋溝14及び雌ねじ螺旋条114の対と、第二螺旋溝15及び雌ねじ螺旋条115の対とが、互いに逆ねじの関係(リード角が同じでリード方向が反対)となっている場合を例示したが、本発明はこれに限定されない。例えば図12に示すように、リード方向(L1、L2)が同じで、リード角が異なる第一螺旋溝14及び雌ねじ螺旋条114と、第二螺旋溝15及び雌ねじ螺旋条115を採用することもできる。この場合、第一螺旋溝14に対して、更にリード角の異なる螺旋溝を重畳形成することにより、リードがL1(リード角α1)の第一螺旋溝14及びリードがL2(リード角がα2)の第二螺旋溝15が、ねじ方向を揃えて形成される。この場合は、第一螺旋溝14の第一ねじ山G1と、第二螺旋溝15の第二ねじ山G2は、共有されずに別々となることから、そのねじ山G1、G2の少なくとも一方に本発明を適用すれば良く、また、双方に適用しても良い。勿論、第一ねじ山G1の山角度と第二ねじ山G2の山角度は、互いに異なっても良い。
【0049】
なお、上記実施形態では、二重らせん構造の雄ねじ体10の場合を例示したが、本発明はこれに限定されず、一重らせん構造の雄ねじ体10においても、上記設計手順を適用すれば、最適な山角度を理論的及び/又は実験的に明らかにすることが可能である。
【0050】
また、本発明の実施例は、上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【符号の説明】
【0051】
1 締結構造
10 雄ねじ体
12 軸部
13 雄ねじ部
100 雌ねじ体
106 筒状部材
G、P ねじ山

図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12