IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本電子株式会社の特許一覧

特許7008650荷電粒子線システム及び走査電子顕微鏡を用いた試料測定方法
<>
  • 特許-荷電粒子線システム及び走査電子顕微鏡を用いた試料測定方法 図1
  • 特許-荷電粒子線システム及び走査電子顕微鏡を用いた試料測定方法 図2
  • 特許-荷電粒子線システム及び走査電子顕微鏡を用いた試料測定方法 図3
  • 特許-荷電粒子線システム及び走査電子顕微鏡を用いた試料測定方法 図4
  • 特許-荷電粒子線システム及び走査電子顕微鏡を用いた試料測定方法 図5
  • 特許-荷電粒子線システム及び走査電子顕微鏡を用いた試料測定方法 図6
  • 特許-荷電粒子線システム及び走査電子顕微鏡を用いた試料測定方法 図7
  • 特許-荷電粒子線システム及び走査電子顕微鏡を用いた試料測定方法 図8
  • 特許-荷電粒子線システム及び走査電子顕微鏡を用いた試料測定方法 図9
  • 特許-荷電粒子線システム及び走査電子顕微鏡を用いた試料測定方法 図10
  • 特許-荷電粒子線システム及び走査電子顕微鏡を用いた試料測定方法 図11
  • 特許-荷電粒子線システム及び走査電子顕微鏡を用いた試料測定方法 図12
  • 特許-荷電粒子線システム及び走査電子顕微鏡を用いた試料測定方法 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-01-13
(45)【発行日】2022-01-25
(54)【発明の名称】荷電粒子線システム及び走査電子顕微鏡を用いた試料測定方法
(51)【国際特許分類】
   H01J 37/20 20060101AFI20220118BHJP
   H01J 37/22 20060101ALI20220118BHJP
【FI】
H01J37/20 D
H01J37/22 502H
【請求項の数】 11
(21)【出願番号】P 2019017034
(22)【出願日】2019-02-01
(65)【公開番号】P2020126721
(43)【公開日】2020-08-20
【審査請求日】2020-01-31
(73)【特許権者】
【識別番号】000004271
【氏名又は名称】日本電子株式会社
(74)【代理人】
【識別番号】110001210
【氏名又は名称】特許業務法人YKI国際特許事務所
(72)【発明者】
【氏名】根本 佳和
(72)【発明者】
【氏名】村上 雄大
(72)【発明者】
【氏名】前多 崇邦
(72)【発明者】
【氏名】阿部 聖
(72)【発明者】
【氏名】川本 将嗣
(72)【発明者】
【氏名】目▲崎▼ 洋貴
【審査官】鳥居 祐樹
(56)【参考文献】
【文献】特開2008-270072(JP,A)
【文献】米国特許出願公開第2012/0074317(US,A1)
【文献】特開2019-145304(JP,A)
【文献】米国特許出願公開第2019/0103245(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/20
H01J 37/22
H01J 37/28
(57)【特許請求の範囲】
【請求項1】
試料に対する三次元形状計測の結果に基づいて、前記試料の三次元形状を表す第1形状データを生成する第1形状データ生成手段と、
ポート群が設けられ、荷電粒子線による測定のために前記試料を含む試料ユニットが内部に配置される試料室と、
前記ポート群から選択された1又は複数の使用ポートを管理し、及び、当該1又は複数の使用ポートに設置された1又は複数のオプション要素を管理するためのポート管理テーブルが格納されたポート管理テーブル記憶部と、
前記ポート管理テーブルを参照し、前記試料室内に存在する構造物であって前記1又は複数のオプション要素を含む構造物の三次元形状を表す第2形状データを生成する第2形状データ生成手段と、
前記第1形状データ及び前記第2形状データに基づいて、前記構造物に対して前記試料ユニットが衝突しないように前記試料室内での前記試料ユニットの移動を制御する制御手段と、
を有することを特徴とする荷電粒子線システム。
【請求項2】
請求項1記載のシステムにおいて、
前記ポート管理テーブルは、前記ポート群を構成する複数のポートに対応した複数のレコードを有し、
前記各レコードは、ポートの代表座標、及び、ポートが使用ポートである場合にそこに設置されたオプション要素を識別する情報、を含む、
ことを特徴とする荷電粒子線システム。
【請求項3】
請求項2記載のシステムにおいて、
前記制御手段は、
前記試料室内での前記試料ユニットの移動に先立って、前記試料ユニットの移動情報に基づいて前記試料ユニットの移動を仮想的に試行するシミュレーションを実行するシミュレーション手段と、
前記シミュレーションの実行結果に基づいて、前記構造物に対する前記試料ユニットの衝突を判定する判定手段と、
を含み、
前記衝突が判定された場合に前記試料ユニットの移動が禁止される、
ことを特徴とする荷電粒子線システム。
【請求項4】
請求項1記載のシステムにおいて、
前記第1形状データは、前記試料及びそれを保持したホルダからなる前記試料ユニットの三次元形状を表すデータである、
ことを特徴とする荷電粒子線システム。
【請求項5】
請求項1記載のシステムにおいて、
前記構造物には、前記試料室内に固定配置された少なくとも1つの標準要素が含まれ、
前記標準要素は、前記試料室内に常設されている要素である、
ことを特徴とする荷電粒子線システム。
【請求項6】
請求項5記載のシステムにおいて、
前記標準要素には常設の検出器が含まれる、
ことを特徴とする荷電粒子線システム。
【請求項7】
請求項5記載のシステムにおいて、
前記試料室内に固定配置された複数の標準要素の三次元形状を表す複数の形状データが格納された第1記憶部と、
前記ポート群に対して設置可能な複数のオプション要素の三次元形状を表す複数の形状データが格納された第2記憶部と、
を含み、
前記第2形状データ生成手段は、前記第1記憶部、前記第2記憶部及び前記ポート管理テーブル記憶部を参照することにより前記第2形状データを生成する、
ことを特徴とする荷電粒子線システム。
【請求項8】
請求項1記載のシステムにおいて、
前記試料ユニットの移動情報、前記第1形状データ及び前記第2形状データに基づいて、前記構造物及び前記試料ユニットの空間的な関係を表す模擬イメージを生成する模擬イメージ生成手段と、
前記模擬イメージを表示する表示手段と、
を含むことを特徴とする荷電粒子線システム。
【請求項9】
請求項8記載のシステムにおいて、
前記模擬イメージ生成手段は、前記試料ユニットの移動情報の更新に従って、前記模擬イメージを更新する、
ことを特徴とする荷電粒子線システム。
【請求項10】
請求項8記載のシステムにおいて、
前記模擬イメージには、前記試料ユニットに対応する試料ユニットオブジェクトと、前記構造物に対応する構造物オブジェクトと、が含まれ、
前記模擬イメージ生成手段は、前記試料ユニットの移動に先立って前記試料ユニットと前記構造物との衝突が判定された場合に、その判定結果を前記試料ユニットオブジェクト及び前記構造物オブジェクトの少なくとも一方に反映させる、
ことを特徴とする荷電粒子線システム。
【請求項11】
走査電子顕微鏡における試料室の内部へ試料を含む試料ユニットを配置する前又は後に、前記試料に対して三次元形状計測を行う工程と、
前記三次元形状計測の結果に基づいて、前記試料の三次元形状を表す第1形状データを生成する工程と、
ポート管理テーブル上において、前記試料室に設けられたポート群から選択された1又は複数の使用ポートを管理し、及び、当該1又は複数の使用ポートに設置された1又は複数のオプション要素を管理する工程と、
前記ポート管理テーブルの参照により、前記試料室内に存在する構造物の三次元形状を表す第2形状データを生成する工程と、
前記第1形状データ及び前記第2形状データに基づいて、前記構造物に対して前記試料ユニットが衝突しないように前記試料室内での前記試料ユニットの移動を制御する工程と、
前記試料室内での前記試料ユニットの移動後に、電子線を利用して前記試料を観察する工程と、
を含むことを特徴とする、走査電子顕微鏡を利用した試料測定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、荷電粒子線システム及び走査電子顕微鏡を用いた試料測定方法に関し、特に、試料室内での試料の移動の制御に関する。
【背景技術】
【0002】
荷電粒子線システムは、電子、イオン等の荷電粒子を利用して試料を測定するシステムである。その代表的なものとして、走査電子顕微鏡システムが知られている。走査電子顕微鏡システムは、走査電子顕微鏡装置それ単体として構成され、又は、走査電子顕微鏡装置及び他の装置の組合せとして構成される。
【0003】
走査電子顕微鏡装置においては、試料の観察に先立って、試料及びホルダからなる試料ユニットが試料室内のステージ上に配置される。ステージは、例えば、上下機構、チルト機構、第1水平移動機構、第2水平移動機構、回転機構、等を備える。一般に、試料の観察に際しては試料が対物レンズに近付けられる。
【0004】
特許文献1に記載された荷電粒子線装置においては、試料の光学像が試料台の疑似画像に合成され、これにより合成画像が生成されている。合成画像は試料の三次元形状を反映したものではない。特許文献2に記載された荷電粒子線装置においては、試料のサイズが演算されている。そのサイズは、試料それ全体を取り囲む円筒のサイズである。試料の実際の三次元形状は測定されていない。
【先行技術文献】
【特許文献】
【0005】
【文献】特許第5537737号明細書
【文献】特開2014-93283号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
荷電粒子線システムにおいて試料室内で試料ユニットを移動させる場合、試料室内に存在する構造物への試料ユニット(特に試料)の衝突を回避することが求められる。このため、従来においては、ユーザーにより入力された試料の最高高さに基づいて、衝突を生じさせない試料の移動条件が決定されている。しかし、それは、試料の実際の三次元形状を考慮したものではない。上記従来の技術によると、最高高さの入力ミスによる衝突の発生、最高高さの入力に伴うユーザー負担、対物レンズに対して試料を近付けられる状況にあるにもかかわらずそれを行えない、等の問題が生じる。
【0007】
本発明の目的は、荷電粒子線システムにおいて、試料の三次元形状が考慮された試料の移動の制御を実現することにある。
【課題を解決するための手段】
【0008】
実施形態に係る荷電粒子線システムは、試料に対する三次元形状計測の結果に基づいて、前記試料の三次元形状を表す第1形状データを生成する第1形状データ生成手段と、荷電粒子線による測定のために前記試料を含む試料ユニットが内部に配置される試料室と、前記試料室内に存在する構造物の三次元形状を表す第2形状データを生成する第2形状データ生成手段と、前記第1形状データ及び前記第2形状データに基づいて、前記試料室内での前記試料ユニットの移動を制御する制御手段と、を有することを特徴とする。
【0009】
上記構成によれば、試料の三次元形状及び構造物の三次元形状に基づいて試料ユニットの移動を制御できる。よって、例えば、構造物への試料ユニットの近接又は衝突が予想される場合に試料ユニットの移動を制限でき、あるいは、試料ユニットの位置決めを最適化できる。具体的には対物レンズに対して試料をより近付け易くなる。ユーザーによる試料の高さ入力が不要になれば、ユーザーの負担が軽減される。
【0010】
上記構成において、試料の三次元形状は、試料それ全体を包み込む立体図形の三次元形状を意味せず、試料の具体的な三次元形状、又は、試料の実際の三次元形状を意味する。例えば、試料が複数の試料要素により構成されている場合、最低でも、個々の試料要素の大まかな形態を個別的に識別できるように、試料の三次元形状が計測される。移動制御を高精度に行うためには、試料の三次元形状が高精度で計測される。
【0011】
実施形態において、前記制御手段は、前記構造物に対して前記試料ユニットが衝突しないように前記試料室内での前記試料ユニットの移動を制御する。この構成によれば、構造物への試料ユニットの衝突が回避される。移動の概念には、位置の変更、及び、姿勢の変更が含まれる。試料に対する三次元形状計測は、試料室の外部において、又は、試料室の内部において、実施され得る。試料室に隣接する空間内において試料に対する三次元形状計測が実施されてもよい。
【0012】
実施形態において、前記制御手段は、前記試料室内での前記試料ユニットの移動に先立って、前記試料ユニットの移動情報に基づいて前記試料ユニットの移動を仮想的に試行するシミュレーションを実行するシミュレーション手段と、前記シミュレーションの実行結果に基づいて、前記構造物に対する前記試料ユニットの衝突を判定する判定手段と、を含み、前記衝突が判定された場合に前記試料ユニットの移動が禁止される。この構成によれば、試料ユニット及び構造物が複雑な形態を有していても、あるいは、試料ユニットの移動が複雑であっても、比較的に容易に衝突を判定できる。マージンを考慮しつつ論理的な衝突が判定されてもよい。試料ユニットの移動情報の概念には、ステージの移動情報が含まれる。
【0013】
実施形態において、前記第1形状データは、前記試料及びそれを保持したホルダからなる前記試料ユニットの三次元形状を表すデータである。一般に、試料はそれを担持するホルダと共に取り扱われる。よって、試料ユニットを単位として形状データを取り扱うのが合理的である。通常、複数種類のホルダが用意されており、その中から選択されたホルダが使用される。これを考慮して、複数種類のホルダに対応する複数の形状データを用意しておき、その中から選択された形状データを用いて第1形状データが生成されてもよい。
【0014】
実施形態において、前記構造物には、前記試料室内に固定配置された少なくとも1つの標準要素が含まれる。例えば、走査電子顕微鏡システムにおいては、標準要素として、反射電子検出器、二次電子検出器、等があげられる。ステージ、試料室内壁、等が標準要素とされてもよい。
【0015】
実施形態において、前記試料室にはポート群が設けられ、オプション要素使用時において、前記ポート群の中から選択された1又は複数の使用ポートに対して1又は複数のオプション要素が設けられ、前記オプション要素使用時において、前記構造物には、前記1又は複数のオプション要素が含まれる。上記構成によれば、1又は複数のオプション要素が使用されている場合に、それらを考慮して第2形状データを生成でき、その上で、試料ユニットの移動を制御できる。すなわち、オプション要素が使用されている場合に、そのオプション要素への試料ユニットの衝突を防止できる。例えば、走査電子顕微鏡システムにおいては、オプション要素として、X線検出器、ノズル、等があげられる。
【0016】
実施形態に係る荷電粒子線システムは、前記試料室内に固定配置された複数の標準要素の三次元形状を表す複数の形状データが格納された第1記憶部と、前記ポート群に対して設置可能な複数のオプション要素の三次元形状を表す複数の形状データが格納された第2記憶部と、前記ポート群から選択された1又は複数の使用ポートを管理し、及び、当該1又は複数の使用ポートに設置された1又は複数のオプション要素を管理するためのポート管理テーブルが格納された第3記憶部と、を含み、前記第2形状データ生成手段は、前記第1記憶部、前記第2記憶部及び前記第3記憶部を参照することにより前記第2形状データを生成する。この構成によれば、複数の形状データの集合体として第2形状データが生成される。特に、この構成によれば、使用されているポート及び使用されているオプション要素を特定して、実態に合致した正確な第2形状データを生成できる。
【0017】
実施形態に係る荷電粒子線システムは、前記試料ユニットの移動情報、前記第1形状データ及び前記第2形状データに基づいて、前記構造物及び前記試料ユニットの空間的な関係を表す模擬イメージを生成する模擬イメージ生成手段と、前記模擬イメージを表示する表示手段と、を含む。この構成によれば、実際の試料室内を表した模擬イメージをユーザーに提供できる。
【0018】
実施形態において、前記模擬イメージ生成手段は、前記試料ユニットの移動情報の更新に従って、前記模擬イメージを更新する。移動情報の入力直後に、模擬イメージが更新されてもよいし、試料ユニットの移動後に模擬イメージが更新されてもよいし、又は、試料ユニットの移動中に模擬イメージがリアルタイムで更新されてもよい。
【0019】
実施形態において、前記模擬イメージには、前記試料ユニットに対応する試料ユニットオブジェクトと、前記構造物に対応する構造物オブジェクトと、が含まれ、前記模擬イメージ生成手段は、前記試料ユニットの移動に先立って前記試料ユニットと前記構造物との衝突が判定された場合に、その判定結果を前記試料ユニットオブジェクト及び前記構造物オブジェクトの少なくとも一方に反映させる。この構成によれば、予想される衝突を視覚的に事前に認識することが可能となるので、衝突に対して事前に対処し易くなる。例えば、衝突部分に基づいて試料が再加工されてもよいし、ホルダが交換されてもよいし、あるいは、オプション検出器が取り外されてもよい。
【0020】
実施形態に係る走査電子顕微鏡を利用した試料測定方法は、走査電子顕微鏡における試料室の内部へ試料を含む試料ユニットを配置する前又は後に、前記試料に対して三次元形状計測を行う工程と、前記三次元形状計測の結果に基づいて、前記試料の三次元形状を表す第1形状データを生成する工程と、前記試料室内に存在する構造物の三次元形状を表す第2形状データを生成する工程と、前記第1形状データ及び前記第2形状データに基づいて、前記試料室内での前記試料ユニットの移動を制御する工程と、前記試料室内での前記試料ユニットの移動後に、電子線を利用して前記試料を観察する工程と、を含むことを特徴とする。
【発明の効果】
【0021】
本発明によれば、荷電粒子線システムにおいて、試料の三次元形状に基づく試料の移動の制御を実現できる。
【図面の簡単な説明】
【0022】
図1】実施形態に係る荷電粒子線システムの構成例を示す模式図である。
図2】演算制御装置の構成例を示すブロック図である。
図3】ホルダ形状データベースの一例を示す図である。
図4】標準要素形状データベースの一例を示す図である。
図5】オプション要素形状データベースの一例を示す図である。
図6】ポート管理テーブルの一例を示す図である。
図7】画像管理テーブルの一例を示す図である。
図8】表示画像の一例を示す図である。
図9】第1動作例を示すフローチャートである。
図10】衝突表現方法の第1例を示す図である。
図11】衝突表現方法の第2例を示す図である。
図12】形状計測方法の変形例を示す図である。
図13】第2動作例を示すフローチャートである。
【発明を実施するための形態】
【0023】
以下、実施形態を図面に基づいて説明する。
【0024】
図1には、実施形態に係る荷電粒子線システムの構成例が示されている。荷電粒子線システムは、図示の例において、走査電子顕微鏡システムである。以下に説明する構成がイオン照射システム等に対して適用されてもよい。
【0025】
走査電子顕微鏡システムは、電子線を利用して試料の測定及び観察を行うシステムである。走査電子顕微鏡システムは、図示の例において、走査電子顕微鏡10、演算制御装置12及び形状計測装置14を有している。測定部としての走査電子顕微鏡10及び情報処理部としての演算制御装置12が走査電子顕微鏡装置に相当する。実施形態に係る演算制御装置12は、走査電子顕微鏡10及び形状計測装置14の動作を制御する機能を有する。後述するように、走査電子顕微鏡10の中に形状計測装置14が組み込まれてもよい。
【0026】
走査電子顕微鏡10は、上部をなす鏡筒部16及び下部をなす試料室18を有する。鏡筒部16と試料室18は物理的に一体化されている。試料室18はテーブル20上に載置されている。鏡筒部16の中には、電子銃、レンズ系、走査コイル等が配置されている。鏡筒部16の下端には対物レンズ22が設けられている。実際には、対物レンズ22の下端部分が試料室18の中まで進入している。電源部やポンプ等については図示省略されている。
【0027】
試料室18は、筐体としてのハウジング19を有する。ハウジング19の中が内部空間18Aである。試料室18内には、つまり内部空間18Aには、ステージ24及び試料ユニット26が配置されている。具体的には、ステージ24に対して試料ユニット26が取り付けられており、ステージ24によって試料ユニット26が保持されている。ステージ24は、例えば、上下機構、チルト機構、第1水平移動機構、第2水平移動機構、回転機構、等を備える。ステージ24は、試料ユニットの移動を行う機構であり、ステージ24により、試料ユニット26の位置及び姿勢が定められる。図1においては、ステージ24等の各機構が模式的又は簡略的に表現されている。
【0028】
試料ユニット26は、台座をなすホルダ28及びそれに保持された試料30により構成される。試料30が測定対象又は観察対象である。試料30は、一般に、複数の試料要素により構成される。それらの試料要素はホルダ28により保持され又はホルダに貼付されている。なお、個々の試料要素は、一般には、それ自体、試料と言い得るものである。そのような観点から見て、複数の試料要素により構成される試料30は試料群である。個々の試料要素の形状は区々である。例えば、図1に例示されているように、ホルダ28の上面からかなり突き出た試料要素が測定対象となることもある。
【0029】
試料室18内には、反射電子検出器36が設けられている。具体的には、対物レンズの底面に又はその付近に反射電子検出器36が設けられている。また、試料室18内には、二次電子検出器32が設けられている。各検出器32,36は固定設置されるものであり、後述する標準要素に該当する。試料室内壁、ステージ等が標準要素として取り扱われてもよい。
【0030】
ハウジング19には複数のポート40,41が設けられている。その個数は、例えば、6個である。必要に応じて、ポート群の中から1又は複数の使用ポートが選択された上で、それらに対して1又は複数のオプション要素が取り付けられる。オプション要素として、エネルギー分散型X線分析器(EDS)、波長分散型X線分析器(WDS)、後方散乱電子回折検出器(EBSD)等があげられる。図1においては、ポート40に対してオプション検出器38が設けられている。オプション検出器38の先端部(検出端部)は、試料室18内に位置している。図示の例においてポート41は不使用ポートである。
【0031】
ハウジング19には、必要に応じて、カメラ42が設けられる。図示の例では、カメラ42はその中心軸44を傾斜させた状態で配置されている。カメラ42は例えばCCDカメラである。試料30の撮影時には、中心軸44がホルダ28の上面中心を通過し、且つ、中心軸44に対してホルダ28の上面が直交するように、試料ユニット26の位置及び姿勢が調整される。例えば、測定前の測定準備の工程において、試料30が撮像される。ハウジング19には、測定中において試料ユニット26等を観察するための他のカメラも設けられているが、その図示は省略されている。
【0032】
試料30の観察又は測定に際しては、試料30が対物レンズ22に近付けられる。同時にその姿勢が観察又は測定に適したものとされる(例えば符号26Aを参照)。試料30のSEM画像を取得する場合、試料30の位置及び姿勢が維持された状態において、試料30に対して電子線が照射され且つそれが走査される。別の部分を観察する場合には、試料の位置及び姿勢が変更される。
【0033】
複数の検出器32,36,38等から出力された検出信号は演算制御装置12へ送られる。カメラ42からの映像信号も演算制御装置12へ送られる。演算制御装置12から走査電子顕微鏡10に対して複数の制御信号が与えられている。それらの制御信号には、ステージ24の移動のための制御信号が含まれる。
【0034】
次に、形状計測装置14について説明する。形状計測装置14は、試料ユニット26’を試料室18内に配置する前に、試料ユニット26’の三次元形状を計測するものである。試料ユニット26’はホルダ28’及び試料30’により構成され、それらの内で少なくとも試料30’の三次元形状が計測される。試料ユニット26’の全体の三次元形状が計測されてもよい。
【0035】
三次元形状の計測方式としては、各種の方式があげられる。例えば、公知の合焦法が利用される場合、図1に示されているように、試料ユニット26’が台座48上に配置され、一方、試料ユニット26’の直上にカメラ50が配置される。カメラ50と試料30’との間の距離を変更しながら各距離において試料30’が撮像される。これにより得られる画像群に基づいて試料30’の三次元形状が演算され、それを表す形状データが生成される。
【0036】
その計測に際して、台座48の高さを段階的に変更してもよいし、カメラ50の高さを段階的に変更してもよい。カメラ50は支持機構52によって支持されている。レーザー光走査により試料30’の三次元形状が計測されてもよい。その場合に、試料ユニット26’に対して水平方向からレーザー光が照射されてもよい。また、試料ユニット26’を回転させるターンテーブルが利用されてもよい。
【0037】
試料30’は、上記のように、一般に、複数の試料要素30a’,30b’により構成される。例えば、6個の試料要素により構成される。試料30’が1つの試料要素により構成されてもよい。少なくとも、個々の試料要素30a’,30b’が識別できるように、試料30’の三次元形状が計測される。高精度の移動制御のためには、試料30’の三次元形状が高精度に計測される。
【0038】
複雑な形状を有する試料に対しては複数の計測方式を用いて三次元形状が計測されてもよい。固定設置型の形状計測装置に代えて、可動型の形状計測装置が利用されてもよい。形状計測の結果を示す信号又はデータが演算制御装置12へ送られている。なお、実施形態においては、試料30’の三次元形状計測の結果に基づいて、演算制御装置12において試料30’の形状データが生成されている。形状計測装置14において試料30’の形状データが生成されてもよい。
【0039】
図2には、図1に示した演算制御装置12が有している複数の機能が複数のブロックとして表現されている。演算制御装置12は、コンピュータ等の情報処理装置により構成される。演算制御装置12が複数の情報処理装置によって構成されてもよい。その場合、複数の情報処理装置がネットワークを介して相互に接続されてもよい。
【0040】
演算制御装置12は、プログラムを実行するCPU、複数の記憶部68,73,78,80,84、入力器56、表示器66、等を有する。入力器56は、キーボード、ポインティングデバイス等を含む。表示器66は、例えば、液晶表示器、有機EL表示器、等により構成される。入力器56は入力手段として機能し、表示器66は表示手段として機能する。
【0041】
SEM動作制御部54は、走査電子顕微鏡の動作を制御する制御部である。ステージの動作の制御はSEM動作制御部54によって行われる。形状計測制御部58は、形状計測装置の動作を制御する制御部である。SEM画像形成部60は、電子線の走査によって得られた検出信号に基づいてSEM画像を形成するものである。形成されたSEM画像のデータが表示処理部64へ送られている。表示処理部64は、画像合成機能、表示画像形成機能、等を有する。SEM画像を含む表示画像が表示器66の画面上に表示される。SEM画像は、必要に応じて、記憶部68に記録される。
【0042】
試料画像形成部62は、カメラによって試料を撮像することにより生成された光学画像とホルダを模擬するグラフィック画像とを合成し、カラー画像としての試料画像を生成するものである。試料画像は正確には試料ユニット画像である。その画像データが表示処理部64に送られている。表示画像には、必要に応じて、試料画像が含まれる。この他、他のカメラにより取得された画像が表示器66に表示される。
【0043】
実施形態に係る演算制御装置12は、形状データ処理部70を有している。形状データ処理部70は、図示の構成例において、試料ユニット形状データ生成部71及び構造物形状データ生成部72を有している。
【0044】
試料ユニット形状データ生成部71は、第1形状データ生成手段として機能するものであり、試料ユニットの三次元形状を表す形状データ(第1形状データ)を生成する。試料ユニットは上記のように試料とホルダとにより構成される。実施形態においては、試料ユニット形状データ生成部71において、形状計測装置からの信号74に基づいて試料の三次元形状を表す形状データが生成されている。
【0045】
記憶部73はホルダ形状データベースとして機能する。記憶部73には、複数種類のホルダの三次元形状を表す複数の形状データが格納されている。選択信号76によって、現在使用しているホルダに対応する形状データが選択される。
【0046】
試料ユニット形状データ生成部71において、ホルダの形状データと試料の形状データとを合成することにより、試料ユニットの形状データが生成される。そのような合成によらずに、形状計測装置からの信号74に基づいて、試料ユニットの形状データが生成されてもよい。選択信号76はユーザー指定により生成され、あるいは、ホルダ登録情報等に基づいて自動的に生成される。試料ユニットの形状データは、シミュレーション部86及び模擬イメージ生成部88に送られている。
【0047】
一方、構造物形状データ生成部72は、構造物の三次元形状を表す形状データ(第2形状データ)を生成するものである。構造物形状データ生成部72は第2形状データ生成手段として機能する。実施形態においては、試料室内に配置されている複数の要素に対応する複数の形状データを合成することにより、構造物の形状データが生成されている。その形状データはシミュレーション部86及び模擬イメージ生成部88に送られている。
【0048】
構造物の形状データを構成する複数の形状データを生成するために、記憶部78,80,84が設けられている。記憶部78は標準要素形状データベースとして機能し、そこには複数の標準要素に対応する複数の形状データが格納されている。個々の標準要素は、試料室内に常設されている要素、すなわち固定配置されている要素である。記憶部80はオプション要素形状データベースとして機能し、そこには複数のオプション要素に対応する複数の形状データが格納されている。個々のオプション要素は試料室内に必要に応じて配置される要素である。選択信号82は、使用オプション要素を特定する信号であり、使用されるオプション要素に対応する形状データが記憶部80から読み出される。
【0049】
記憶部84にはポート管理テーブルが格納されている。ポート管理テーブルは、試料室に設けられた複数のポートの使用状態を管理するためのテーブルである。ポート管理テーブルの参照により、現在使用されている1又は複数のポート、及び、それらに取り付けられている1又は複数のオプション要素が特定される。ポート管理テーブルには、必要に応じて、入力器56からの情報が記録される。その記録が自動化されてもよい。
【0050】
構造物形状データ生成部72は、記憶部78,80,84の内容を参照することにより、構造物の形状データを生成する。具体的には、複数の標準要素に対応する複数の形状データと、1又は複数のオプション要素に対応する1又は複数の形状データと、を空間的に合成し、構造物の形状データを生成する。いずれのオプション要素も使用されない場合、複数の標準要素に対応する複数の形状データにより構造物の形状データが生成される。
【0051】
シミュレーション部86は、シミュレーション手段及び衝突判定手段として機能する。具体的には、シミュレーション部86は、構造物の形状データ、試料ユニットの形状データ、及び、試料ユニットの移動情報に基づいて、試料ユニットの実際の移動に先立って、試料室内で試料ユニットを仮想的に試行的に移動させて、これにより衝突の有無を判定する。例えば、それらの形状データが空間的に交わった場合に衝突が判定される。形状計測誤差及び演算誤差を考慮し、いずれかのデータに対してマージンを付加した上で、シミュレーションを実行し、これにより論理的な衝突が判定されてもよい。SEM動作制御部54からシミュレーション部86へ移動情報が送られている。シミュレーション部86からSEM動作制御部54へ衝突の有無を示す信号が送られている。
【0052】
試料ユニットの移動情報は、試料ユニットの移動先の座標を表す情報であり、具体的には、X座標,Y座標,Z座標、チルト角度、回転角度を表す情報である。その移動情報は、ステージの移動情報とも言い得る。衝突が判定された場合には、移動情報が無効化され、つまり、試料ユニットの移動が禁止される。衝突が判定されなかった場合には、移動情報が有効化され、その移動情報に従って試料ユニットが動かされ、試料ユニットの新たな位置及び新たな姿勢が定められる。なお、試料における観測位置、試料ユニット形状データ、及び、構造物形状データに基づいて、位置情報が最適化されてもよい。すなわち、試料を対物レンズに近接させることが可能な条件が自動的に演算されてもよい。
【0053】
模擬イメージ生成部88は、模擬イメージ生成手段として機能する。模擬イメージ生成手段は、試料ユニットの位置情報、試料ユニットの形状データ、及び、構造物の形状データに基づいて、試料室内の様子を模擬的に三次元的に表現した模擬イメージを生成する。実施形態においては、現在の試料室内の様子を表す模擬イメージが生成されるが、試料ユニット移動後の将来の試料室内の様子を表す模擬イメージが生成されてもよい。
【0054】
実施形態においては、試料ユニット形状データと構造物形状データとが合成され、それにより生成された合成形状データをレンダリング処理することにより各オブジェクトが三次元的に表現された模擬イメージが生成される。レンダリング方法としてはボリュームレンダリング法、サーフェイスレンダリング法があげられる。試料ユニット形状データと構造物形状データとが別々にレンダリング処理された上で、それにより生成された2つのレンダリング画像を合成することにより、模擬イメージが生成されてもよい。
【0055】
生成された模擬イメージが模擬イメージ生成部88から表示処理部64へ送られる。表示処理部64は、模擬イメージを含む表示画像を生成する。表示器66にはその表示画像が表示される。模擬イメージは必要に応じて記憶部68に格納される。例えば、SEM画像に対応付けて、それを取得した際の測定室内の様子を表す模擬イメージが格納される。
【0056】
図3には、ホルダ形状データベースの構成例が示されている。図示されたホルダ形状データベース73Aは複数のレコードからなり、各レコードはホルダ番号90に対応付けられた形状データ92を有している。ホルダ形状データベース73Aによれば、実際に使用されているホルダ種別を示すホルダ番号の指定により、ホルダの形状データを取得することが可能となる。
【0057】
図4には、標準要素形状データベースの構成例が示されている。図示された標準要素形状データベース78Aは複数のレコードからなり、各レコードは、標準要素を識別する情報94に対応付けられた代表座標96及び形状データ98を有している。代表座標96は、形状データ98を空間的に合成する際に、形状データ98をマッピングする位置を示すものである。代表座標に、向き又は姿勢を特定する情報が含まれてもよい。座標系としては、試料室座標系としての相対座標系が採用され得る。個々の標準要素は常設されるものであり、構造物形状データの生成時には、すべての標準要素の形状データが参照される。
【0058】
図5には、オプション要素形状データベースの構成例が示されている。図示されたオプション要素形状データベース80Aは複数のレコードからなり、各レコードはオプション要素を識別する情報100に対応付けられた形状データ102を含む。オプション要素が特定のポートに設置された際にその位置及び姿勢が定まるため、各レコードには代表座標が含まれていないが、必要に応じて、オプション要素形状データベース80A上において、ポートとの位置関係を示す情報が管理されてもよい。
【0059】
図6には、ポート管理テーブルの構成例が示されている。図示されたポート管理テーブル84Aは複数のレコードからなり、各レコードは、ポート番号106に対応付けられた代表座標108及びオプション要素を識別する情報110を含む。このポート管理テーブル84Aによれば、使用されているポート番号を指定すれば、その代表座標を特定でき、また、使用されているオプション要素を特定することが可能である。オプション要素の形状データは、図5に示したオプション要素形状データベースから取得される。
【0060】
図7には、図2に示した記憶部68上に構築される画像データベースの構成例が示されている。図示された画像データベース112は複数のレコードからなり、各レコードはSEM画像ID113に対応付けられた複数の情報を有する。複数の情報には、測定条件(加速電圧等)114、ステージ座標116、模擬イメージ識別子118が含まれる。これにより、SEM画像の再生時に、測定時における試料室内の様子を再現することが可能となる。また測定時のステージ位置を再現することも可能となる。
【0061】
図8には、表示器に表示される表示画像の一例が示されている。図示された表示画像120は、SEM画像122、模擬イメージ124、試料画像134、座標指定部140、等を含む。模擬イメージ124は、SEM画像122の取得時における試料室内を再現した三次元CGイメージである。なお、模擬イメージ124は図8において簡略的に表現されている。
【0062】
模擬イメージ124には、試料ユニットオブジェクト126及び構造物オブジェクト128が含まれる。また、模擬イメージ124には、観測点の座標を特定するマーカー130,132が含まれる。模擬イメージ124上において次の観察点が指定されてもよい。模擬イメージ124に電子線を示す表示要素が含まれてもよい。試料ユニットの位置情報が有効化されてそれが更新されると、模擬イメージ124の内容もリアルタイムで更新される。
【0063】
試料画像134は、試料の光学像とホルダのグラフィックイメージとからなる合成画像である。試料画像134上において、マーカー136,138により観測点の座標が指定されてもよい。座標指定部140を利用して観測点の座標がユーザーにより指定される。その場合、座標表示要素に対するクリック操作が行われてもよいし、座標が数値として入力されてもよい。
【0064】
試料ユニット(つまりステージ)の移動情報が与えられると、試料ユニットの移動のシミュレーションが実行される。その結果、衝突が判定されなければ、その移動情報が有効となり、その移動情報に従って実際に試料ユニットが動かされる。一方、衝突が判定されれば、移動情報が無効化され、試料ユニットの移動が禁止される。移動情報が直接的にユーザーにより指定されてもよいし、ユーザーによる観測点の座標の指定に基づいて移動情報が演算されてもよい。
【0065】
図9には、図1に示した走査電子顕微鏡システムの第1動作例が示されている。なお、細部の動作についてはその図示が省略されている。
【0066】
S10では、ユーザーにより形状計測装置に対して試料ユニットがセットされ、その後、形状計測装置により試料の三次元形状が計測される。その計測結果が形状計測装置から演算制御装置へ送られる。S12では、ユーザーにより試料ユニットが試料室内に配置される。具体的にはステージに対して試料ユニットが取り付けられる。S14は測定準備工程であり、その工程では試料室内のエアの排気が行われ、また、試料ユニットが初期位置に位置決めされる。S14では、演算制御装置において、CGイメージとしての模擬イメージが生成され、その表示が開始される。試料室内の様子が模擬イメージとして表示される。
【0067】
S16には、試料ユニットの移動先座標が指定される。通常、ユーザーによって移動先座標が指定されるが、自動的に移動先座標が演算されてもよい。S18では、シミュレーションが実行される。試料室内において試料ユニットが仮想的に動かされ、その際に構造物に対して試料ユニットが衝突するか否かが判定される。衝突が生じる場合、処理がS20からS22へ移行する。S22では、移動先座標がキャンセルされ、試料ユニットの移動が禁止される。また、エラー処理として、衝突が予測された旨のメッセージが画面上に表示される。その際にアラーム音が出力されてもよい。
【0068】
衝突が生じない場合、処理がS20からS24へ移行する。S24では、移動先座標に従って、試料ユニットが実際に動かされる。その際に、模擬イメージが更新される。その後、S26では試料に対する電子線の照射及び走査が実施され、これによりSEM画像が形成及び表示される。S28ではSEM画像及び模擬イメージが画像データベースに格納される。S30において、処理の続行が判断された場合、S16以降の各工程が繰り返し実行される。
【0069】
上記の動作例によれば、移動情報として移動先座標を指定すると、試料ユニットの実際の移動に先立って、シミュレーションが実行され、衝突の有無が判定される。衝突が予測される場合には試料ユニットの移動が制限されるので、衝突を未然に防止できる。従来においては、衝突の懸念から試料を対物レンズに近付けられない場合があったが、上記の動作例によれば、試料を対物レンズにより近付けることが可能となる。観測点の指定に基づいて最適な移動先座標が演算され、それに従って試料ユニットの移動が制御されてもよい。
【0070】
図10及び図11には、衝突判定結果の表示例が示されている。図10に示す第1表示例において、模擬イメージ124Aには、試料ユニットオブジェクト126A及び構造物オブジェクト128Aが含まれる。構造物オブジェクト128Aに検出器オブジェクト142が含まれる。シミュレーションの結果、試料が検出器の先端部へ衝突することが判定されており、その判定結果を反映して、検出器オブジェクト142の先端部142aが識別表現されている。例えば、識別表現として、着色処理、ハイライト処理等があげられる。色相によって危険度が表現されてもよい。そのような情報に基づいて、検出器が取り外されてもよいし、ホルダが交換されてもよい。
【0071】
図11に示す第2表示例において、模擬イメージ124Bには、試料ユニットオブジェクト126B及び構造物オブジェクト128Bが含まれる。試料ユニットオブジェクト126Bには試料要素を表現した試料要素オブジェクト144が含まれる。シミュレーションの結果、試料要素が検出器へ衝突することが判定されており、その判定結果を反映して、試料要素オブジェクト144の上端部144aが識別表現されている。そのような情報に基づいて、試料が再加工されてもよい。衝突関係にある2つの部分に識別処理が施されてもよい。
【0072】
図12には、形状計測の変形例が示されている。試料室18の内部空間18Aにおいて、ステージ24には試料ユニット26が取り付けられている。その内部空間18Aには形状計測装置150が設けられている。それは、例えば、レーザー光の走査によって、試料又は試料ユニットの三次元形状を計測する装置である。三次元形状の計測に際しては、試料ユニットがその中心軸周りにおいて回転される(符号26B及び符号152を参照)。その回転はステージが有する機能により行える。既存の又は専用の光学カメラにより三次元形状が計測されてもよい。
【0073】
図13には、図1に示した走査電子顕微鏡システムの第2動作例が示されている。なお、図9に示した工程と同様の工程には同一の工程番号を付し、その説明を省略する。
【0074】
この第2動作例では、S32において、S34での移動先座標の指定に先立って、シミュレーションが先行して実行される。すなわち、ステージの移動可能範囲に基づいて、衝突が生じるすべての座標範囲(衝突座標範囲)が事前に探索される。S34で移動先座標が指定されると、S36において、その移動先座標が事前に特定された衝突座標範囲に属するか否かが判断される。移動先座標が衝突座標範囲に属する場合、S22が実行される。移動先座標が衝突座標範囲に属しない場合、S24以降の工程が実行される。
【0075】
第2動作例において、S32でのシミュレーションには時間がかかるが、S36での衝突有無判定を迅速に行えるという利点が得られる。一方、第1動作例によれば、実際に指定される移動先座標についてシミュレーションを実行できるので、演算量を少なくできる。走査電子顕微鏡システム以外の荷電粒子線システムにおいて各図に示した構成が採用されてもよい。
【符号の説明】
【0076】
10 走査電子顕微鏡、12 演算制御装置、14 形状計測装置、18 試料室、24 ステージ、26 試料ユニット、32 二次電子検出器、36 反射電子検出器、38 オプション検出器、40,41 ポート、70 形状データ処理部、71 試料ユニット形状データ生成部、72 構造物形状データ生成部、73 記憶部(ホルダ形状データベース)、78 記憶部(標準要素形状データベース)、80 記憶部(オプション要素形状データベース)、84 記憶部(ポート管理テーブル)、86 シミュレーション部(衝突判定部)、88 模擬イメージ生成部。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13