(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-01-14
(45)【発行日】2022-01-25
(54)【発明の名称】ロボット充電ステーション用保護部材
(51)【国際特許分類】
H02J 7/00 20060101AFI20220118BHJP
B60L 53/16 20190101ALI20220118BHJP
B60L 53/30 20190101ALI20220118BHJP
【FI】
H02J7/00 301A
H02J7/00 P
B60L53/16
B60L53/30
(21)【出願番号】P 2020516741
(86)(22)【出願日】2018-09-21
(86)【国際出願番号】 US2018052249
(87)【国際公開番号】W WO2019060747
(87)【国際公開日】2019-03-28
【審査請求日】2020-05-14
(32)【優先日】2017-09-22
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】519067275
【氏名又は名称】ローカス ロボティクス コーポレイション
(74)【代理人】
【識別番号】110000855
【氏名又は名称】特許業務法人浅村特許事務所
(72)【発明者】
【氏名】クワ、ヒアン、カイ
(72)【発明者】
【氏名】フォン、クリスティーナ、ニコール
【審査官】早川 卓哉
(56)【参考文献】
【文献】米国特許第09559461(US,B1)
【文献】特開2004-237075(JP,A)
【文献】特表昭60-501089(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02J7/00-7/12
H02J7/34-7/36
B60L1/00-3/12
B60L7/00-13/00
B60L15/00-58/40
H01R13/56-13/72
H01R41/00-41/02
H05K5/00-5/06
(57)【特許請求の範囲】
【請求項1】
自律型ロボットを充電する充電ステーションであって、
前記充電ステーションは、
前記充電ステーションが位置することになる床に固定されるよう構成された、複数の相互連結されたフレーム要素を具備するフレーム基部を備える、充電ステーションのフレームであって、前記フレーム基部の前記フレーム要素の1つは
、フランジ部材を有する前側フレーム要素である充電ステーションのフレームと、
前記充電ステーションのフレームに装着された充電ステーションのカバーであって、前記充電ステーションのカバーには、前記自律型ロボットが充電のために前記充電ステーションにドッキングされたときに、前記自律型ロボットの第2の充電部材を受容するよう構成された第1の充電部材を備えた前面を有する、前側カバーが含まれる充電ステーションのカバーと、
前記前側カバーの前記前面を横切って延在し、前記前側カバーの前記前面から外向きに突出した前面を有する保護部材であって、前記保護部材は、前記前側カバーの複数の開口部を通して前記前側フレーム要素
の前記フランジ部材と相互連結され、前記前側フレーム要素
の前記フランジ部材は、前記前側カバーの、
前記前側カバーの前記前面とは反対側の、後面に隣接して位置する保護部材と
を備える充電ステーション。
【請求項2】
前記第1の充電部材は、雄型の充電部材又は雌型の充電部材の一方を備え、前記第2の充電部材は、前記雄型又は雌型の充電部材の他方を備える、請求項1に記載の充電ステーション。
【請求項3】
前記前側フレーム要素には、前記充電ステーションの幅の端から端まで延在し、その各端部に少なくとも1つの、前記前側フレーム要素を前記床に固定するための留め具を受容するよう構成された開口部を有するC字形部材が含まれる、請求項1に記載の充電ステーション。
【請求項4】
前記前側フレーム要素
の前記フランジ部材は、前記C字形部材と一体であり、
前記フランジ部材は、前記充電ステーションの幅の端から端まで延在し、前記C字形部材の上面から突出する、請求項3に記載の充電ステーション。
【請求項5】
前記フランジ部材は、前記保護部材
に平行
であり、前記保護部材は、前記前側カバーの複数の開口部を通して、留め具を使って前記前側フレーム要素の前記フランジ部材に固定される、請求項4に記載の充電ステーション。
【請求項6】
前記複数の相互連結されたフレーム要素には、前記前側フレーム要素の第1の端部に相互連結された右側フレーム要素と、前記前側フレーム要素の第2の端部に相互連結された左側フレーム要素とがさらに含まれる、請求項5に記載の充電ステーション。
【請求項7】
前記複数の相互連結されたフレーム要素には、前記右側フレーム要素と前記左側フレーム要素との間に相互連結された後ろ側フレーム要素がさらに含まれ、前記後ろ側フレーム要素は、その各端部に少なくとも1つの、前記後ろ側フレーム要素を前記床に固定するための留め具を受容するよう構成された開口部を有する、請求項6に記載の充電ステーション。
【発明の詳細な説明】
【技術分野】
【0001】
この出願は、2017年9月22日に出願された米国特許出願第15/712,463号の優先権の利益を主張し、参照により本明細書に組み入れられる。
【0002】
この発明は、充電ステーションに関し、より詳細には、保護部材を備える、かかる充電ステーションに関する。
【背景技術】
【0003】
ロボットは、多くの用途において、人間の代わりに機能を実行するか、又は生産性及び効率を高めるために人間を補助するように使用される。かかる用途の1つが注文の履行であり、これは、通常、インターネットを介して注文した顧客に、宅配便で出荷されるべき製品で満たされた大規模な倉庫で実行される。
【0004】
かかる注文を適時正確且つ効率的なやり方で履行することは、控え目に言っても、物流上困難である。仮想ショッピング・カートの「チェック・アウト」釦をクリックすると、「注文」が作成される。注文には、特定の住所に出荷されるべき品目のリストが含まれる。「履行」のプロセスには、こうした物品を大規模倉庫から物理的に取り出すこと、すなわち「ピッキング」、物品を梱包すること、及び指定された住所に物品を出荷することが含まれる。したがって、注文履行プロセスの重要な目標は、できるだけ多くの物品をできるだけ短時間で出荷することである。加えて、最終的に出荷されることになる製品は、まず倉庫で受け取り、倉庫全体にわたって整然としたやり方で保管箱に保管又は「配置」し、それにより製品を出荷のために簡単に取り出せる必要がある。
【0005】
ロボットを使用してピッキング及び配置機能を果たすことは、ロボットだけで、又は人間の操作者の助けを借りて行うことができる。ロボットは、ロボットに搭載されたバッテリに蓄えた電気で駆動される。ロボットが倉庫のあちこちに移動することにより、定期的に再充電する必要がある。したがって、作業を円滑に実行するために、ロボットを充電する効率的で効果的なやり方が必要である。
【先行技術文献】
【特許文献】
【0006】
【文献】米国特許出願第15/712,222号、名称「MULTI-RESOLUTION SCAN MATCHING WITH EXCLUSION ZONES」、2017年9月22日出願
【文献】米国特許出願第15/712,256号、名称「DYNAMIC WINDOW APPROACH USING OPTIMAL RECIPROCAL COLLISION AVOIDANCE COST-CRITIC」、2017年9月22日出願
【発明の概要】
【発明が解決しようとする課題】
【0007】
既存のシステムに対する本発明の恩恵及び利点は、以下の発明の簡単な概要及び詳細な説明から容易に明らかとなろう。当業者は、本教示が、以下に要約又は開示されたもの以外の実施例を用いて実施できることを理解されよう。
【課題を解決するための手段】
【0008】
一態様では、本発明は、充電ステーションが位置することになる床に固定されるよう構成された、複数の相互連結されたフレーム要素を具備するフレーム基部を備える、充電ステーションのフレームを備える、自律型ロボットを充電する充電ステーションを含む。フレーム基部のフレーム要素の1つは、前側フレーム要素である。充電ステーションのフレームに装着された充電ステーションのカバーがあり、充電ステーションのカバーには、自律型ロボットが充電のために充電ステーションにドッキングされたときに、自律型ロボットの第2の充電部材を受容するよう構成された充電部材を備えた前面を有する、前側カバーが含まれる。前側カバーの前面を横切って延在し、前側カバーの前面から外向きに突出した前面を有する、保護部材がある。保護部材は、前側カバーの複数の開口部を通して前側フレーム要素と相互連結され、前側フレーム要素は、前側カバーの、前面とは反対側の、後面に隣接して位置する。
【0009】
本発明の他の態様では、1つ又は複数の以下の特徴が含まれ得る。第1の充電要素は、雄型の充電部材又は雌型の充電部材の一方を備えることができ、第2の充電部材は、雄型又は雌型の充電部材の他方を備えることができる。前側要素には、充電ステーションの幅の端から端まで延在し、その各端部に少なくとも1つの、前側要素を床に固定するための留め具を受容するよう構成された開口部を有するC字形部材が含まれ得る。前側要素には、C字形部材と一体であり、充電ステーションの幅の端から端まで延在し、C字形部材の上面から突出するフランジ部材がさらに含まれ得る。フランジ部材は、保護部材の前面に平行な前面を有することができ、フランジ部材の前面は、前側カバーの後面に隣接して位置することができる。保護部材は、前側カバーの複数の開口部を通して、留め具を使って前側フレーム要素のフランジ部材に固定することができる。複数の相互連結されたフレーム要素には、前側フレーム要素の第1の端部に相互連結された右側フレーム要素と、前側フレーム要素の第2の端部に相互連結された左側フレーム要素とがさらに含まれ得る。複数の相互連結されたフレーム要素には、右側フレーム要素と左側フレーム要素との間に相互連結された後ろ側フレーム要素がさらに含まれ得る。後ろ側要素は、その各端部に少なくとも1つの、後ろ側要素を床に固定するための留め具を受容するよう構成された開口部を有することができる。
【0010】
本発明のこうした特徴及び他の特徴は、以下の詳細な説明及び添付図面から明らかになろう。
【0011】
次に、本発明の実施例を、以下の添付図面を参照して、ただ単に実例として説明することにする。
【図面の簡単な説明】
【0012】
【
図2A】
図1に示す倉庫内で使用されるロボットのうちの1台の、基部の正面図である。
【
図2B】
図1に示す倉庫内で使用されるロボットのうちの1台の、基部の斜視図である。
【
図4】ロボットのレーザ・レーダを使用して作成された
図1の倉庫の部分的マップの図である。
【
図5】倉庫全体にわたって分散された基準マーカの場所を突き止めて、基準マーカのポーズを記憶するプロセスを示す流れ図である。
【
図6】基準識別表示をポーズにマッピングした表である。
【
図7】大箱の場所を基準識別表示にマッピングした表である。
【
図8】製品のSKUをポーズにマッピングするプロセスを示す流れ図である。
【
図9】この発明による、充電組立体の正面図である。
【
図12】充電ポートと嵌合された充電組立体の断面図である。
【
図13A】この発明による、充電器ドッキング・ステーションの斜視図である。
【
図13B】外側のカバーが取り外された状態で、充電器ドッキング・ステーションの内部を示す、
図14Aの充電器ドッキング・ステーションの斜視図である。
【
図14B】外側のカバーが取り外された状態で、充電器ドッキング・ステーションの内部を示す、
図14Aの充電器ドッキング・ステーションの正面図である。
【
図15B】外側のカバーが取り外された状態で、充電器ドッキング・ステーションの内部を示す、
図15Aの充電器ドッキング・ステーションの左側面図である。
【
図16B】外側のカバーが取り外された状態で、充電器ドッキング・ステーションの内部を示す、
図16Aの充電器ドッキング・ステーションの後面斜視図である。
【
図17】
図13Aの充電器ドッキング・ステーションを、ドッキングされたロボットと共に示す上面図である。
【
図18】この発明の態様による、充電ステーションとドッキングするロボットの略図である。
【
図19】充電ステーションの電気構成要素の概略図である。
【
図20】ロボット充電プロセスで利用される、ロボットの一部の電気構成要素の概略図である。
【
図21】様々な温度での、ロボットのバッテリの放電プロファイルのグラフである。
【
図22】本発明の態様による、ロボットの充電プロセスを示す流れ図である。
【
図23】この発明の態様による、充電ステーションの動作を示す状態図である。
【発明を実施するための形態】
【0013】
本開示並びにその様々な特徴及び利点の詳細を、添付図面に記載及び/又は例示され、以下の説明で詳述される非限定的な実施例及び実例を参照して、より完全に説明する。図面に示した特徴は、必ずしも原寸に比例して描かれているわけではなく、一実施例の特徴は、本明細書で明示的に述べられていない場合でも、当業者が認識するはずである他の実施例と共に使用され得ることに留意されたい。よく知られている構成要素及び処理技法の説明は、本開示の実施例を不必要に不明瞭にしないために、省略される場合がある。本明細書で使用される実例は、本開示が実施され得るやり方を容易に理解させること、及び当業者が本開示の実施例を実施するのをより一層可能にすることを、単に意図している。したがって、本明細書の実例及び実施例は、本開示の範囲を限定するものと解釈されるべきではない。さらに、同様の参照番号は、図面のいくつかの図を通して同様の部分を表すことに留意されたい。
【0014】
本発明は、ロボットの充電に使用する充電システムに関する。どんな特定のロボットの用途にも限定されるものではないが、本発明が使用され得る1つの好適な用途は、注文の履行である。充電システムについての観点を提供するために、この用途でのロボットの使用について説明することにする。
【0015】
本明細書で提供する説明は、顧客への出荷のために注文を履行するように、倉庫内の大箱の場所から物品をピッキングすることに焦点を当てているが、システムは、後で取り出して顧客に出荷するための、倉庫全体にわたる倉庫内の大箱の場所への受け取った物品の保管又は配置にも、同様に適用可能である。本発明はまた、製品の統合、カウント、検証、検査、及び整頓などの、かかる倉庫システムに関連する在庫管理タスクにも適用可能である。
【0016】
図1を参照すると、典型的な注文履行倉庫10は、注文16に含まれる可能性がある様々な物品で満たされた棚12を備える。運用に際して、倉庫管理サーバ15からの注文16が、注文サーバ14に到着する。注文サーバ14は、注文16を、倉庫10をうろうろする複数のロボットから選択されたロボット18に伝達する。また、本発明の一態様による1つ又は複数の充電ステーションが位置することができる、充電エリア19も示されている。
【0017】
好ましい実施例では、
図2A及び
図2Bに示すロボット18は、レーザ・レーダ22を具備する自律型車輪付き基部20を備える。基部20は、ロボット18が注文サーバ14からの命令を受信するのを可能にするトランシーバ(図示せず)、及び1対のデジタル光学カメラ24a及び24bも特徴とする。ロボットの基部はまた、自律型車輪付き基部20に給電する、バッテリを再充電するための充電ポート26(
図10及び
図11により詳細に示す)も備える。基部20はさらに、ロボットの環境を表す情報を取り込むために、レーザ・レーダ及びカメラ24a及び24bからデータを受信するプロセッサ(図示せず)を特徴とする。
図3に示すように、倉庫10内の誘導に関連する様々なタスクを実行するばかりでなく、棚12上に配置された基準マーカ30へ移動するための、プロセッサと共に動作するメモリ(図示せず)がある。基準マーカ30(たとえば、2次元バー・コード)は、注文された物品の大箱/場所に対応する。本発明の誘導手法については、
図4~
図8に関連して以下で詳細に説明する。基準マーカはまた、この発明の態様にしたがって充電ステーションを識別するために使用され、かかる充電ステーションの基準マーカへの誘導は、注文された物品の大箱/場所への誘導と同じである。ロボットが充電ステーションに移動すると、より正確な誘導手法を使用してロボットを充電ステーションにドッキングする。かかる誘導手法については、以下で説明する。
【0018】
再び
図2Bを参照すると、基部20は、物品を運ぶためにトート又は大箱が格納され得る上面32を備える。その1つを
図3に示す、複数の交換可能なアーマチュア40のいずれか1つと係合する、連結部34も示している。
図3の特定のアーマチュア40は、物品を収容するトート44を運ぶためのトート保持器42(この場合は棚)、及びタブレット48を支持するためのタブレット保持器46(又はラップトップ/他のユーザ入力デバイス)を特徴とする。いくつかの実施例では、アーマチュア40は、物品を運ぶための1つ又は複数のトートを支持する。他の実施例では、基部20は、収容された物品を運ぶための1つ又は複数のトートを支持する。本明細書で使用する用語「トート」は、貨物保持器、大箱、籠、棚、そこから物品を吊るすことができる竿、缶、木枠、置き棚、台、架台、コンテナ、箱、キャニスタ、容器、及び収納庫を含むが、これらに限定されるものではない。
【0019】
ロボット18は、現在のロボット技術では、倉庫10内を動き回るのには優れているが、ロボットが対象物を操作することに関連する技術的な難しさのため、棚から物品を迅速且つ効率的にピッキングして、物品をトート44内に配置することはあまり得意ではない。物品をピッキングするより効率的なやり方は、注文された物品を棚12から物理的に取り外し、ロボット18の上、たとえばトート44内に物品を置くというタスクを実行する、通常は人間である構内操作者50を使用することである。ロボット18は、構内操作者50が読み取ることができるタブレット48(又はラップトップ/他のユーザ入力デバイス)を介して、又は構内操作者50が使用する携帯用デバイスに注文を送信することによって、構内操作者50に注文を伝達する。
【0020】
ロボット18は、注文サーバ14から注文16を受信すると、たとえば
図3に示す、倉庫の最初の場所に進む。ロボットは、メモリに記憶され、プロセッサによって実行される誘導ソフトウェアに基づいて進む。誘導ソフトウェアは、レーザ・レーダ22、特定の物品を見つけることができる、倉庫10内の場所に対応する基準マーカ30の基準識別表示(「ID」)を識別するメモリ内の内部テーブル、並びに誘導するためのカメラ24a及び24bによって収集される、環境に関するデータに依存する。
【0021】
正しい場所に到着すると、ロボット18は、物品が保管されている棚12の前にロボット自体を停車させ、構内操作者50が物品を棚12から取り出してトート44の中に入れるのを待つ。ロボット18が他に取り出す物品を有する場合は、その場所に進む。次いで、ロボット18によって取り出された物品は、
図1の梱包ステーション100に送られ、そこで梱包され出荷される。
【0022】
当業者は、各ロボットが1つ又は複数の注文を履行している場合があり、各注文が1つ又は複数の物品で構成される場合があることを理解されよう。通常、効率を高めるために何らかの形のルート最適化ソフトウェアが含まれることになるが、これはこの発明の範囲を超えるものであり、したがって本明細書では説明しない。
【0023】
本発明の説明を簡略化するために、単一のロボット18及び操作者50で説明する。しかし、
図1から明らかなように、典型的な履行操作には、連続した注文の流れを履行するために、倉庫内で互いに作業する多くのロボット及び操作者が含まれる。
【0024】
この発明の誘導手法、並びに物品が位置する倉庫内の基準マーカに関連付けられる基準ID/ポーズへの、取り出されるべき物品のSKUのセマンティック・マッピングについて、
図4~
図8に関連して以下で詳細に説明する。上記のように、同じ誘導手法を使用して、ロボットが、ロボットのバッテリを再充電するために充電ステーションに移動することを可能にし得る。
【0025】
1つ又は複数のロボット18を使用して、静的及び動的の両方の対象物の場所、並びに倉庫全体にわたって分散される様々な基準マーカの場所を判断するために、倉庫10のマップを作成して動的に更新する必要がある。これを行うには、ロボット18の1つが、ロボットのレーザ・レーダ22、及び未知の環境の仮想マップを構築又は更新する演算方法である、自己位置推定と環境地図作成との同時実行(SLAM:simultaneous localization and mapping)を利用して、倉庫を移動し
図4のマップ10aを構築/更新する。一般的なSLAMの近似解法には、粒子フィルタ及び拡張カルマン・フィルタが含まれる。SLAM GMapping手法が好適な手法であるが、任意の好適なSLAM手法を使用できる。
【0026】
ロボット18は、ロボットのレーザ・レーダ22を利用して、スペース全体にわたって移動し、レーザ・レーダが環境をスキャンするときに受信する反射に基づいて、オープン・スペース112、壁114、物体116、及びスペース内の棚12aなどの、他の静的障害物を識別して、倉庫10のマップ10aを作成/更新する。
【0027】
マップ10aを構築しながら、又はその後に、1つ又は複数のロボット18は、カメラ24a及び24bを使用して倉庫10全体にわたって移動し、環境をスキャンし、倉庫全体に分散され、物品が保管される
図3の32及び34などの大箱の近位にある棚の上の基準マーカ(2次元バー・コード)の場所を探し出す。ロボット18は、原点110などの既知の基準点又は原点を、基準として使用する。ロボット18が、
図3及び
図4の基準マーカ30などの基準マーカの場所を、ロボットのカメラ24a及び24bを使用して探し出すと、倉庫内の原点110に対する場所が決定される。
図2Aに示すように、ロボットの基部のどちらの側部にも1つある、2つのカメラを使用することにより、ロボット18は、ロボットの両側から広がる比較的広い視野(たとえば、120度)を有することができる。広い視野により、ロボットは、たとえば、棚の通路を上下に移動するときに、ロボットの両側にある基準マーカを見ることができる。
【0028】
ホイール・エンコーダ及び方位センサを使用することにより、ベクトル120及び倉庫10内のロボットの位置を判断できる。ロボット18は、基準マーカ/2次元バー・コードの取り込まれた画像及びその既知のサイズを使用して、基準マーカ/2次元バー・コードの、ロボットに対する向き及びロボットからの距離、つまりベクトル130を判断することができる。ベクトル120及び130が既知であれば、原点110と基準マーカ30との間のベクトル140を判断することができる。ベクトル140、及びロボット18に対する基準マーカ/2次元バー・コードの判断された向きから、基準マーカ30の4元数(x、y、z、ω)で定義されるポーズ(位置と向き)を判断することができる。
【0029】
基準マーカ位置特定プロセスを説明する、
図5の流れ
図200について説明する。これは、初期のマッピング・モードで、ロボット18がピッキング、配置、及び/又は他のタスクを実行中に、倉庫内の新しい基準マーカに遭遇すると実行される。ステップ202で、カメラ24a及び24bを使用するロボット18が画像を取り込み、ステップ204で、取り込まれた画像内の基準マーカを探索する。基準マーカが画像内で発見された場合(ステップ204)、ステップ206で、基準マーカが、ロボット18のメモリ34にある
図6の基準テーブル300に既に記憶されているかどうかを判断する。基準情報が既にメモリに記憶されている場合、流れ図はステップ202に戻り、別の画像を取り込む。基準情報がメモリ内にない場合、ポーズが、上記のプロセスにしたがって判断され、ステップ208で、基準対ポーズのルックアップ・テーブル300に追加される。
【0030】
各ロボットのメモリに記憶され得るルックアップ・テーブル300には、基準マーカごとに基準識別表示1、2、3など、及び各基準識別表示に関連付けられた基準マーカ/バー・コードのポーズが含まれる。ポーズは、向きを含む倉庫内のx、y、z座標、又は4元数(x、y、z、ω)で構成される。
【0031】
各ロボットのメモリにも記憶され得る
図7の別のルックアップ・テーブル400は、倉庫10内の大箱の場所(たとえば、402a~f)を列挙したものであり、大箱の場所は、特定の基準ID404、たとえば番号「11」と関連付けられている。この実例では、大箱の場所は7つの英数字で構成されている。最初の6文字(たとえばL01001)は、倉庫内の棚の場所に関連し、最後の文字(たとえばA~F)は、棚の場所にある個々の大箱を特定する。この実例では、基準ID「11」に関連付けられた6つの相異なる大箱の場所がある。各基準ID/マーカに関連付けられた、1つ又は複数の大箱があり得る。
図1の充電エリア19に位置する充電ステーションも、テーブル400に記憶され、基準IDに関連付けられ得る。充電ステーションのポーズは、基準IDから、
図6の表300内で見つけることができる。
【0032】
英数字の大箱の場所は、物品が保管される倉庫10内の物理的場所に一致するので、人間、たとえば
図3の操作者50には理解可能である。ただし、ロボット18には無意味である。場所を基準IDにマッピングすることにより、ロボット18は、
図6の表300の情報を使用して基準IDのポーズを判断し、次いで、本明細書で説明するようにポーズに移動できる。
【0033】
この発明による注文履行プロセスを、
図8の流れ
図500に示す。ステップ502で、
図1の倉庫管理システム15は、取り出されるべき1つ又は複数の物品で構成され得る注文を取得する。ステップ504で、物品のSKU番号が倉庫管理システム15によって判断され、ステップ506で、SKU番号から大箱の場所が判断される。次いで、注文の大箱の場所のリストがロボット18に送信される。ステップ508で、ロボット18は、大箱の場所を基準IDと関連付け、ステップ510で、基準IDから各基準IDのポーズを取得する。ステップ512で、ロボット18は、
図3に示すようなポーズに移動し、そこで操作者は、適切な大箱から取り出されるべき物品をピッキングして、ロボット上に置くことができる。
【0034】
倉庫管理システム15によって取得されたSKU番号及び大箱の場所など、物品固有の情報が、ロボット18のタブレット48に送信されてもよく、それにより操作者50は、ロボットが各基準マーカの場所に到着したときに、取り出されるべき特定の物品について知ることができる。
【0035】
SLAMのマップ及び既知の基準IDのポーズを用いて、ロボット18は、様々なロボット誘導技法を使用して、基準IDのいずれか1つに容易に移動できる。好ましい手法は、倉庫10内のオープン・スペース112、並びに壁114、棚(棚12など)、及び他の障害物116の知識を前提として、基準マーカのポーズへの初期ルートを設定することを含む。ロボットは、ロボットのレーザ・レーダ22を使用して倉庫を移動し始めると、他のロボット18及び/又は操作者50などの固定の又は動的な任意の障害物がロボットの経路にあるかどうかを判断し、基準マーカのポーズへのロボットの経路を繰り返し更新する。ロボットは、約50ミリ秒ごとに1回、ロボットのルートを再計画し、障害物を回避しながらも最も効率的で効果的な経路を常に探索する。
【0036】
一般に、倉庫10a内のロボットの自己位置推定は、SLAMの仮想マップ上で動作する多対多の多分解能スキャン・マッチング(M3RSM:many-to-many multiresolution scan matching)によって実現する。総当たりの方法と比較して、M3RSMは、ロボットが、ロボットのポーズ及び位置を判断する2つの重要なステップである、SLAMのループの閉じこみ(loop closure)及びスキャン・マッチングを実行する演算時間を劇的に削減する。ロボットの自己位置推定は、関連する米国特許出願第15/712,222号、名称「MULTI-RESOLUTION SCAN MATCHING WITH EXCLUSION ZONES」、2017年9月22日出願に開示された方法によって、M3RSMの探索空間を最小限に抑えることでさらに改善される。該特許出願は、参照によりその全体が本明細書に組み入れられる。
【0037】
その両方を本明細書で説明する、SLAM誘導技法と組み合わせた製品のSKU/基準IDから基準ポーズへのマッピング技法を用いて、ロボット18は、通常使用される、倉庫内の場所を判断するためのグリッド線及び中間基準マーカを必要とする、より複雑な誘導手法を使用する必要なく、非常に効率的且つ効果的に倉庫の空間を移動できる。
【0038】
一般に、他のロボット及び倉庫内を移動する障害物が存在する中での誘導は、動的ウィンドウ手法(DWA:dynamic window approach)及び最適相互衝突回避(ORCA:optimal reciprocal collision avoidance)を含む衝突回避方法によって実現される。DWAは、実現可能なロボットの移動軌跡の中から、障害物との衝突を回避し、ターゲットの基準マーカへの望ましい経路を優先する増分移動について演算する。ORCAは、他のロボットとの通信を必要とせずに、他の移動するロボットとの衝突を最適に回避する。誘導は、約50msの更新間隔で演算された軌跡に沿った、一連の増分移動として進む。衝突回避は、関連する米国特許出願第15,7712,256号、名称「DYNAMIC WINDOW APPROACH USING OPTIMAL RECIPROCAL COLLISION AVOIDANCE COST-CRITIC」、2017年9月22日出願で説明される技法によって、さらに改善される可能性がある。該特許出願は、参照によりその全体が本明細書に組み入れられる。
【0039】
上述のように、ロボット50は定期的に再充電する必要がある。物品が保管されている倉庫内の場所にマーク付けすることに加えて、基準マーカを、倉庫内の1つ又は複数の充電ステーションに配置できる。ロボット18の電力が低下すると、ロボット18は、充電ステーションに位置する基準マーカに移動することができ、それにより再充電され得る。充電ステーションの場所にくると、ロボットは、操作者にロボットを充電システムに接続させて手動で再充電されてもよく、又はロボットがロボットの誘導手法を使用して、ロボット自体を充電ステーションにドッキングさせてもよい。
【0040】
図9及び
図10に示すように、充電組立体200は、充電ステーションで使用され得る。充電組立体200は、第1の雄型端子部材204及び第2の雄型端子部材206が配設される充電器基部202を備える。この図には示していないが、倉庫の電気設備からの正の電気入力が、充電器基部202に取り付けられ、第1の雄型端子部材204又は第2の雄型端子部材206の一方に電気的に接続されることになる。また、負の電気入力が、充電器基部202に基部に取り付けられ、第1の雄型端子部材204又は第2の雄型端子部材206の他方に電気的に接続されることになる。
【0041】
第1の雄型端子部材204は、充電器基部202に取り付けられ、充電器基部202の表面214から第1の軸212に沿って垂直に延出する第1の基部210を備え、第1の電気接点216で終端をなす。第1の電気接点216は、正又は負の電気接続の一方が取り付けられることになる、充電器基部202内に延出する銅バス・バーの形態であり得る。第2の雄型端子部材206は、充電器基部202に取り付けられ、充電器基部202の表面214から第2の軸222に沿って垂直に延出する第2の基部220を備え、第2の電気接点226で終端をなす。第2の電気接点226はやはり、正又は負の電気接続の他方が取り付けられることになる、充電器基部202内に延出する銅バス・バーの形態であり得る。
【0042】
第1の雄型端子部材204は、複数の外面を備え、そのうちの少なくとも2つは、第1の基部210から第1の電気接点216まで湾曲した形状を有し、凹面を形成する。
図9及び
図10に示す実施例では、3つの湾曲面がある。すなわち、上部湾曲面230並びに対向する側部湾曲面232及び234であり、その3つは、特定の曲率半径で第1の基部210から第1の電気接点216まで湾曲し、凹面を形成する。この実施例では、対向する側部湾曲面232及び234の曲率半径は、約63.9mmである。上部湾曲面230の曲率半径は、約218.7mmである。これらは、最適な位置合わせ補正を実現するために、経験的に決定された。垂直方向と比較して、水平方向により多くの位置ずれが予想される。したがって、対向する側部湾曲面には、より小さい曲率半径が設けられる。もちろん、湾曲面の曲率半径は用途に応じて変えることができる。
【0043】
加えて、第1の雄型端子部材204は、第1の軸212に実質的に平行で充電器基部202の表面214に垂直な平面236を備える。平面236は、第1の電気接点216に近接するへこんだ表面部分238を備える。
【0044】
第2の雄型端子部材206は、複数の外面を備え、そのうちの少なくとも2つは、第2の基部220から第2の電気接点226まで湾曲した形状を有し、凹面を形成する。
図9及び
図10に示す実施例では、3つの湾曲面がある。すなわち、底部湾曲面240並びに対向する側部湾曲面242及び244であり、その3つは、特定の曲率半径で第1の基部220から第1の電気接点226まで湾曲し、凹面を形成する。この実施例では、対向する側部湾曲面242及び244の曲率半径は、約63.9mmである。底部湾曲面240の曲率半径は、約218.7mmである。これらは、最適な位置合わせ補正を実現するために、経験的に決定された。垂直方向と比較して、水平方向により多くの位置ずれが予想される。したがって、対向する側部湾曲面には、より小さい曲率半径が設けられる。もちろん、湾曲面の曲率半径は用途に応じて変えることができる。
【0045】
加えて、第2の雄型端子部材206は、第2の軸222に実質的に平行で充電器基部202の表面214に垂直な平面246を備える。平面246は、第2の電気接点226に近接する裾が広がった表面部分248を備える。
【0046】
第1の雄型端子部材204の少なくとも1つの平面236、及び第2の雄型端子部材206の少なくとも1つの平面246によって画定される、第1の雄型端子部材204と第2の雄型端子部材206との間の空隙250が形成される。空隙250は、第1の電気接点216と第2の電気接点226との間に開口部252を有する。開口部252には、平面236のへこんだ表面部分238及び平面246の裾の広がった表面部分248がある。
【0047】
再び
図9及び10を参照すると、金属接点260a~eが充電器基部202上に配置されている。これらの金属接点は、後述する充電ポート300上の対応する磁石と係合し、充電中に充電組立体200及び充電ポート300を所定の場所に固定する。或いは、磁石は、充電ポート300上の金属接点を備えた充電器基部202上に配設され得る。
【0048】
ロボットが、固定された充電ステーションにドッキングしようとする場合、カメラ24a及び24bを使用してロボットを所定の位置にうまく移動させ、それにより充電ポート300は、充電組立体200と嵌合できる。カメラは、充電ステーションに関連付けられた基準マーカを、以下でより詳細に説明する、精細な自己位置推定のための基準点として使用することができる。ロボットが所定の位置に移動するとき、電気組立体200の電気接点216及び226をそれぞれ充電ポート300の電気接点304及び306と嵌合させるための、完全な位置合わせを達成することは困難な場合がある。したがって、充電組立体200及び充電ポート300は、ロボットがより迅速に再充電できるように、より容易に、より効率的に、より問題なく確実に嵌合するために、特別に設計されている。
【0049】
図11及び
図12を見てわかるように、充電ポート300は、ロボットの基部20aがドッキングしようとしているときに、充電組立体200の第1の雄型端子部材204及び第2の雄型端子部材206をそれぞれ受容し、それらと係合するよう構成される、第1の空隙308及び第2の空隙310を有する。空隙308は、第1の雄型端子部材204の湾曲面230、232及び234と相補的な凹状湾曲面312を備える。言い換えると、第1の空隙308は、第1の雄型端子部材204の湾曲した外面(230、232、及び234)の曲率半径と実質的に等しい曲率半径を有する湾曲面312を備えることができる。この場合、実質的に等しいとは、空隙308への第1の雄型端子部材204の挿入及び取外しを可能にするように、ほんのわずかにより大きいことを意味する。空隙310も、第2の雄型端子部材206の湾曲面240、242及び244と相補的な凹状湾曲面314を備える。言い換えると、第2の空隙310は、第2の雄型端子部材206の湾曲した外面(240、242、及び244)の曲率半径と実質的に等しい曲率半径を有する湾曲面314を備えることができる。この場合、実質的に等しいとは、空隙310への第2の雄型端子部材206の挿入及び取外しを可能にするように、ほんのわずかにより大きいことを意味する。
【0050】
空隙308及び310の開口部は、第1の雄型端子部材204、第2の雄型端子部材206の電気接点216/226の、幅/長さより広く、より長い。余分の幅/長さにより、嵌合プロセス中に水平/垂直方向に多少位置ずれがある場合でも、第1の雄型端子部材204、第2の雄型端子部材206を空隙308及び310内に、より容易に受容できる。ロボットが充電組立体200に向かって移動すると、相補的に湾曲した面の係合により、第1雄型端子部材204及び第2雄型端子部材206が、位置が合うよう誘導され、それにより充電組立体の電気接点216/226と充電ポート300の電気接点304/306との間の係合が生じることになる。
【0051】
したがって、嵌合部品(雄型端子部材及び空隙)の半径は、雄型端子部材が空隙に最初に挿入されるときに粗い位置合わせを、そして完全な挿入に近づくにつれて微調整を可能にするよう設計されている。
【0052】
充電システムは、より簡単な垂直方向位置合わせのためのさらなる特徴を提供する。該特徴は、充電組立体200の空隙350の開口部352と組み合わせる、空隙308と310との間にある仕切り320との相互作用によって達成される。裾が広がった表面部分248は、より広い開口部をもたらすので、ドッキングのプロセスが行われるときに、垂直方向に位置ずれがある場合、裾が広がった表面部分により、仕切り320が空隙350内の所定の位置へ垂直方向にずり上がる。
【0053】
第1及び第2の雄型端子204及び206が空隙308及び310に完全に挿入されると、充電組立体200は、充電組立体200上の金属接点260a~eと係合する磁石360a~eによって、充電ポート300に所定の位置で固定される。磁石は、充電ポート300の外面の内側に配設され得るので、したがって、架空の線で示している。
【0054】
充電システムには、操作者が手動で充電する場合に有用な、さらなる特徴がある。充電組立体200が不適切に充電ポート300に挿入された場合、すなわち、充電組立体200の電気接点216が充電ポート300の電気接点306に接続され、充電組立体の電気接点226が充電ポート300の電気接点304に接続される上下逆の場合、極性が逆になり、その結果ロボット基部20aに重大な損傷が生じるであろう。
【0055】
重大な損傷が生じないようにするために、ストッパ330(
図11及び
図12参照)が、充電ポート300の仕切り320の表面に備えられる。ストッパ330は、傾斜面部分332及び平面部分334を備える。
図10に示すように、充電組立体200の空隙250内には、充電組立体200を充電ポート300に完全に挿入することを可能にする、へこんだ表面部分238がある。へこみ238によって、ストッパ330の傾斜面部分332及び平面部分334が、パズルのピースのごとく、へこんだ表面部分238の傾斜部分及び平坦な部分と係合するように、第1雄型端子部材204によるストッパ330との隙間ができる。充電組立体200が上下逆になっていた場合、充電ポート300に挿入されると、第2の雄型端子部材206の表面246がストッパ330に接触し、完全な挿入及び電気接点304との接触が防止されることになる。
【0056】
図12に示すように、雄型端子部材204及び206の電気接点216及び226がそれぞれ電気接点304及び306と係合すると、電気接点304及び306は、ばね荷重ピンの形態をとり得るので、圧縮される。電気接点304及び306は、線400における電気接点の完全に延出した位置から、線402における電気接点の圧縮された位置(図示せず)まで、圧縮することができる。電気接点304及び306のそれぞれは、5つのばね荷重ピンを備えるよう示している。使用されるピンの数は、充電プロセスの際に流すべき予想される電流及び個々のピンの容量に依存する。電気接点に複数のばね荷重ピンを使用することは、製造のばらつき及び部品の摩耗がある場合でさえも、雄型端子部材204及び206の電気接点216及び226との適切な接触を確保するのに有益である。
【0057】
電気接点304及び306が圧縮された位置にあるとき、充電ポート300の磁石360a~eは、充電組立体200の金属接点260a~eに近接し、それらは磁気的に係合して、充電組立体200及び充電ポート300を所定の位置で固定する。この位置では、雄型端子部材204及び206の上側及び下側湾曲面230及び240がそれぞれ、空隙308及び310の表面312及び314のそれぞれと、相補的に係合していることがわかる。
【0058】
また、第1の雄型端子部材204のバス・バー410及び第2の雄型端子部材206のバス・バー412も
図12に示す。バス・バーは取付台414に接続され、充電組立体200内に、電気接点216及び226の反対側の端部で、バス・バーを固定する。
【0059】
この発明の一態様による充電器ドッキング・ステーション500を、
図13~
図16及び
図17に示す。特に
図13及び14を参照すると、充電器ドッキング・ステーション500は、上記のように、充電器ドッキング・ステーション500の前面カバー502から突出する充電組立体200を備える。充電組立体200は、再充電が必要なときにロボットが容易に円滑なドッキング・プロセスを進めるように、充電組立体200が(以下で説明するように)6自由度で動くことを可能にしながらも、前面カバー502の開口部506を密封するために、充電器ドッキング・ステーション500のU字型ゴム蛇腹取付台504上に装着される。
【0060】
ロボットが円滑にドッキングしない場合に、充電器ドッキング・ステーション500が損傷しないよう保護するために、前面カバー502の底部を横切って水平に装着される、金属製であり得る保護バンパ508も示す。充電器ドッキング・ステーション500は、右側面カバー510及び左側面カバー512(
図13Aでは見えない)をさらに備える。
図15Aに示すように、右側面カバー開口部514aには、充電器ドッキング・ステーション500をより容易に持ち上げるために手を挿入することができる、把持エリア516aがある。この図では見えないが、同様の開口部及び把持エリアが左側面カバー512に設けられ、開口部514b及び把持エリア516bとして
図16Aに示している。右側面カバー510の後部の開口部には、充電器ドッキング・ステーション500内の電気部品を冷却する通気孔518aも示す。同様の通気孔518bは、
図16Aに見える左側面カバー512に設けられる。
【0061】
前部フレーム部材520a、右側フレーム部材520b、左側フレーム部材520c、及び後ろ側フレーム部材520dを備える金属フレームは、充電器ドッキング・ステーション500の基本構造を形成するために相互に連結される。
図13Bを参照すると、フレーム部材のそれぞれは、ボルト521a~dによって倉庫の床に固定され、保護バンパ508は、前部フレーム部材520aを介して金属フレーム520に固定される。保護バンパ508は、前面カバー502の外側にあり、前面カバーから突き出ているので、ロボットが充電器ドッキング・ステーション500とドッキングするときに、ロボットとの最初の衝撃点となる。ロボットによる不注意での強い力の衝撃を受けるとき、かかる大きな力は、前面カバー502ではなく保護バンパに加えられるであろう。前面カバー502並びに右側面カバー510及び左側面カバー512は、典型的には、硬質プラスチック材料で作られ、ロボットから衝撃を受けた場合に亀裂/破壊を受けやすい。保護バンパ508に加えられた力は、前部フレーム部材520aを介して、さらに金属フレーム520に散逸される。前部フレーム部材520aは、充電ステーション500の幅の端から端まで延在するC字形部材と、C字形部材と一体であり、C字形部材の上面から延出するフランジとを備える。保護バンパ508は、前面カバー502の複数の開口を介してフランジと相互に連結する。バンパ508からの力は、フランジ及びC字形部材を介して前部フレーム部材に伝わり、さらに右側、左側、及び後ろ側フレーム部材520b~dに伝わる。最終的に、力は、ボルト521a~dを介して倉庫の床に伝わる。したがって、この保護バンパ・システムは、ロボットから与えられた力を吸収して硬質プラスチック製前面カバー502から散逸させ、前面カバーを損傷から保護する。
【0062】
やはり硬質プラスチック材料でできている上部カバー524は、上部カバー524の表面の空隙内に配設された、ユーザが充電器ドッキング・ステーションを操作するためのいくつかのインジケータ及び制御部を具備することができる、ユーザ・インタフェース・パネル526を備える。たとえば、「準備完了」、「充電中」、「電源オン」、「回復モード」、及び「故障」又は「非常停止」などの様々な状態を示す点灯式の信号が含まれ得る。「電源オン/オフ」、「手動充電開始」、「ドッキング解除」、「リセット」、及び「非常停止」などの釦が備えられ得る。
【0063】
上部カバー524の後縁に沿って後部パネル528があり、後部パネル528は、中央パネル部530と、中央パネル530の右側及び左側にそれぞれ側部パネル部532及び534とを備える。中央パネル530は、前面カバー502に実質的に平行な長方形の前面536を備える。右側部パネル532は、長方形の前面538を備え、左側面パネル534は長方形の前面540を備える。
【0064】
右及び左の側部パネル532及び534は、それぞれ一方の側部に広い側壁542及び544を備え、他方の側部で、中央パネル部530と相互に連結する、より狭い幅に収束する。したがって、右及び左の側部パネル532及び534は、くさび型である。その結果、側部パネルの前面538及び540は、中央パネル530とも前面カバー502の前面536とも平行ではない。側部パネルの前面はそれぞれ、表面536に対して角度θで配設される。前面538及び540にそれぞれ配設された基準マーカ546及び548(たとえば、2次元バー・コード)も、前面536及び前面カバー502に対して角度θで配設される。
【0065】
以下で詳細に説明するように、ロボットは、内蔵されたカメラを使って基準マーカを見ることにより、充電器ドッキング・ステーションとドッキングするプロセスの際に、精密な誘導のために角度の付いた基準マーカを使用する。概して、充電が必要なときに充電器ドッキング・ステーションに誘導するために、ロボットは、上記のように、製品の大箱に誘導するときと同じように誘導する。充電ステーション500は、前面カバー502に近接して位置し、ロボットの搭載カメラが後部パネル528の方を向くように、一般に(回転して)位置合わせされるポーズに関連付けられ得る。
【0066】
図13B及び
図14Bを参照すると、ばねを含み得る柔軟な部材550a~dは、充電組立体200上の脚部551a~d(脚部551c及び551dは見えない)にそれぞれ接続され、6自由度すべての一定量の動きを可能にし、ロボットを充電器ドッキング・ステーションに誘導する際の小さな誤差の原因となるが、一方でたとえば
図12に示すように、充電組立体200と充電ポート300との間の適切な機械的及び電気的接続を依然として可能にする。
【0067】
加えて、
図15Bを見てわかるように、ガス・スプリング552は、矢印554及び555によって示すように、充電組立体200がガス・スプリング552の軸に沿って移動するときに充電組立体200を安定させるために、充電組立体200に連結される。ガス・スプリング552は、充電器ドッキング・ステーション500の床パネル558に取り付けられたフレーム556上に装着される。嵌合プロセスの際に、ロボットが、充電器ドッキング・ステーション500に向かって移動すると、充電ポート300(上記)が充電組立体200に接触し、矢印554の方向に力を加える。ガス・スプリング552は、充電ポート300と充電組立体200との嵌合中に、ある程度の移動を可能にするのに十分な矢印555の方向への抵抗力をもたらすが、矢印554の方向への過度の移動を防止して、ストッパとして作用し、確実に適切に嵌合させる。
【0068】
加えて、充電組立体200と充電ポート300との間の磁気連結(上述)により、嵌合解除プロセスの間に、充電ポート300が充電組立体200から後退しているとき、充電組立体200は、磁力に打ち勝つまで矢印555の方向に引っ張られることになる。ガス・スプリング552はまた、矢印554の方向へ力を与えることにより、移動が確実に制限される。
【0069】
充電ポート300(コネクタの雌型部分である)は、本明細書ではロボットに装着されるものと説明し、充電組立体200(コネクタの雄型部分である)は、本明細書では充電ステーションに装着されるものとして説明しているが、もちろん、これらの構成要素は逆にすることが可能である。逆の場合、充電ポート300は充電ステーションに装着されることになり、充電組立体200はロボットに装着されることになる。さらに、当業者には明らかであるように、他の充電器ポート及び設計が、本明細書で説明する実施例に関連して使用されてもよい。
【0070】
再び
図13Bを参照すると、床パネル558上に装着されたフレーム脚部562及び564によって部分的に支持されている上部パネル560は、制御基板572及び赤外線(IR:infrared)トランシーバ基板574が収容される空隙を有する。制御基板572は、充電プロトコルのアクティブ化、充電パラメータ及びプロファイルの選択、充電条件及び状態(たとえば、充電状態及びバッテリ温度)の監視、並びにロボットとの通信を含む、充電器ドッキング・ステーション500の全体的な制御を可能にする。これらのすべてを、より詳細に後述する。IRトランシーバ基板574は、ドッキング及び充電プロセスの際のロボットとの通信に使用され、IrDA(赤外線データ協会:infrared Data Association)通信プロトコルを利用することができる。
【0071】
図13B並びに
図15Bを引き続き参照すると、後壁パネル580を示しており、これは、倉庫の電力によって給電される電源582を支持する。後壁パネル580は、電源582のためのヒート・シンクとして機能することもでき、熱をよりよく伝導するために他のパネルとは異なる金属で作られてもよい。後部パネル580はさらに、フレーム脚部562及び564と共に上部パネル560を支持する。倉庫の電力は、たとえばIECコネクタであり得るコネクタ584を介して充電器ドッキング・ステーション500に供給される。床パネル558に連結され、コネクタ584に隣接する位置にある壁586を使用することで、充電器ドッキング・ステーションへの、電源のさらなる保護が可能となり得る。
【0072】
図16A及び
図16Bは、それぞれカバーが付いた状態及び外れた状態での、充電器ドッキング・ステーション500の背面からの斜視図を提示する。これらの図では、充電器ドッキング・ステーションの右側面を見ることもできる。
図16Aでは、それを通って電気コネクタ584に接続するための、家庭からの電源が供給されるポート592を備える後壁580を示している。電気コネクタ584の後部が、
図16Bの後壁580の穴を通って突出していることがわかる。
【0073】
ロボットのドッキング
再充電のための充電ステーション500へのロボットのドッキングについて、
図17及び
図18に関して説明する。
図17では、充電ステーション500の充電組立体200に嵌合されている、充電ポート300を備えるロボット18を示す。ロボット18は、たとえば、充電ステーションについて記憶されたポーズによって定義される場所600に移動することができる。ポーズ600への誘導は、倉庫全体にわたる様々な大箱の場所にロボットを誘導するために、上記のやり方で行われる。ポーズ600に達すると、ロボット18を場所602に位置決めするために精密誘導プロセスが行われ、その場所で、充電ポート300が充電組立体200と嵌合し、再充電のためにロボット18が充電ステーション500にドッキングされる。
【0074】
カメラ24a及び24に対する表面538及び540(及びそれぞれの基準546及び548)の向きは、
図18に関連して説明する。
図18に示すように、ロボット18は、位置602に位置し、したがって、ロボット18は充電ステーション500にドッキングされる。この位置では、カメラ24aの視野φ(約79.4度)は、表面536及び538にわたって広がることを示している。カメラ24aの光軸610(すなわち、視野の中心線又はφ/2)は、実質的に垂直な角度で表面38及び基準46と交差する。加えて、この位置では、カメラ24bの視野φ(約79.4度)は、表面536及び540にわたって広がり、カメラ24aの視野とわずかに重なっていることを示している。カメラの組み合わされた視野は、ロボット18に約120度の有効視野をもたらす。組み合わされた視野は、重なり合った部分がロボットの死角を作るため、カメラの視野の合計よりも小さくなる。
【0075】
カメラ24bの光軸612(すなわち、視野の中心線又はφ/2)は、垂直な角度で表面40及び基準48と交差する。ドッキング時に、カメラの光軸が表面538及び540に対して確実に垂直に位置合わせされるようにするためには、表面536に対する表面538及び540の向きである角度θを正確に設定する必要がある。この実例では、角度θは約150度である。このように基準を位置決めすることにより、カメラ24a及び24bによる基準の視認性が向上する。
【0076】
上記のように、カメラはロボットの中心からずれているので、カメラは組み合わされて広い視野をもたらす。ただし、カメラの向きによっては、充電ステーションの基準を見るのが困難になる。この問題に対処するために、基準を、カメラとよりよく位置合わせした角度に向けることができ、これにより、基準をより正確に読み取ることがより容易になる。これは、
図18に示すように、ロボットがドッキングされた位置にあるときに、カメラの光軸を、基準に対して実質的に垂直な角度になり、基準の中心に合うように向きを合わせることにより、達成することができる。
【0077】
ロボットが充電ステーション500と嵌合するようにロボット18を制御することは、ロボットをポーズ600に誘導するために使用される手法よりも正確な誘導手法を必要とする場合がある。ロボットは、ポーズ600に達すると、ロボットのカメラのフレーム内の、表面538及び540のそれぞれの基準546と548の認識された位置及び向きを使用することができる。ポーズ600では、ロボット18は、基準546及び548を認識するのに十分近く、充電ステーション500のほぼ中心に位置する。この初期ポーズ位置へのロボットの誘導における誤差を許容する、ドッキング制御アルゴリズムを使用することができる。言い換えると、ポーズ600に到達するために使用される、5cmの分解能のマップを使用する場合がある誘導手法は、ポーズの場所に正確に位置しない可能性がある。ロボット18は、名目上はポーズ600の位置にある間に、ロボットのカメラ24a及び24bを使用して、基準546及び548の位置及び向きに関する情報を取得する。ロボットは、充電ステーション500に向かって移動するとき、以下の2つの誤差量を最小限に抑えようとする。
【0078】
(1)各カメラが、1つの基準を検出することにする。左のカメラ及び右のカメラが、それぞれ左の基準及び右の基準を検出することにする。基準は、検出されると、基準がロボットには、ロボットの経路に対して完全に垂直に見えるように(すなわち、歪んで見えるのではなく、「平坦に」カメラから認識されるように)、内部で変換され得る。次いで、各基準マーカの相対的なサイズを検出し、それを使用して、ロボットが一方の基準に、他方の基準より近いかどうかを判断できる。一方の基準に近いことは、ロボットが、完全にはロボットの進入路の中心に位置しておらず、中心線に向かって移動する必要があることを示している。補正された左の基準の画素領域をSLと呼び、補正された右の基準の画素領域をSRと呼ぶ場合、ロボットは、|SR-SL|を最小化する必要がある。
【0079】
(2)左のカメラ画像内で、左のドッキング基準は、画像の右側からある画素数のところにあろう。この数をDLと呼ぶこととする。同様に、右のカメラ画像の場合、右のドッキング基準は、画像の左側からある画素数DRのところにあることとする。したがって、ロボットは、|DR-DL|を最小化する必要がある。
【0080】
ロボットは最初に(1)の誤差を修正する必要があるので、一定の線速度をロボットに発行し、且つkS(SR-SL)の回転速度を、この値がある閾値TSを下回るまでロボットに発行する。項kSは、値が(0,1)の範囲にある比例制御の定数である。閾値TSが満たされると、ロボットは、回転速度kD(DR-DL)をロボットに発行して(2)の誤差を最小化しようとする。ここでkDも、(0,1)の範囲にある比例制御の定数である。(a)ロボットがドックに到着するか、又は(b)誤差|SL-SR|が閾値TSを超えて大きくなるまでこれを継続し、(b)の時点で(1)の誤差を最小化するように切り替えて戻す。
【0081】
上記の精密誘導手法は、ロボット18を充電ステーション500にドッキングするために使用され得る様々な手法の一実例である。
【0082】
ロボット充電ハードウェア
好ましい実施例において説明するロボットは、通常の「ライブ」動作中に、充電ステーションと自動的に嵌合するよう構成される。すなわち、ロボットは、充電中も電力がある状態で保持され、嵌合されながらも光通信又は他の方法を介して充電ステーションと情報交換できる。たとえば、充電ステーションは、充電中にロボットのバッテリの温度を取得し、一方ロボットは、充電ステーションからバッテリに運ばれた電荷量を取得する。
【0083】
図19を参照すると、制御基板572は、充電プロトコルのアクティブ化、充電パラメータ及びプロファイルの選択(バッテリ/ロボットの種類に基づく)、充電条件及びステータスの監視(たとえば、充電状態及びバッテリ温度)、並びにロボットとの通信を含む、充電ステーション500の全体的な制御を行う。IRトランシーバ基板574は、ドッキング及び充電プロセスの際のロボットとの通信に使用することができ、IrDA(赤外線データ協会)通信プロトコルを利用することができる。ロボットと充電ステーションとの間の通信は、有線接続を介することを含む様々な既知のやり方で実施することができる。充電ステーションはまた、ロボットがドッキングされたときにロボットの雌型充電ポート300と嵌合する、雄型充電組立体200も備える。絶縁表面上に配設されたジェンダレス平板(gender-less flat plate)を含む、他の形態の電気コネクタを使用してもよいことは、当業者には理解されよう。
【0084】
電圧がプログラム可能な電源であり得る電源582、及びロボットの雌型充電ポート300と嵌合したときに、雄型充電組立体200を介して電源582からロボットに出力される電荷量を検知するための電流センサ基板650がある。IRトランシーバ基板574、電源582、及び電流センサ基板650は、それぞれ、制御基板572のマイクロプロセッサ700に相互接続される。マイクロプロセッサ700は、ST MicrosystemsのCortex M4派生品又は他のCortex若しくは相当する種類のプロセッサであり得る。
【0085】
一実施例では、充電ステーション500は、3相充電プロファイルを使用してLiFePO4(リン酸鉄リチウム)バッテリの充電要件に適応させることができ得る。LiFePO4は、本明細書で説明する種類のロボットで使用される典型的なバッテリであり得る。この種類のバッテリでは、1.5Cの充電率を可能にする1kW電源が、こうした制約を満たすであろう。しかし、充電ステーション500は、相異なる充電要件で、様々な種類のバッテリを充電でき得ることが理解されよう。
【0086】
図19を参照し続けると、制御基板572は、低ドロップアウト(LDO:low drop-out)レギュレータ702を備え、電源582の補助5V出力によって給電される、よく調節された+3.3V及び1.8V(又は必要に応じて)の内部供給電圧を供給することができる。制御基板はまた、電源オン、電源遮断、ウォッチドッグのタイムアウト、又は手動釦が押下された場合に、マイクロプロセッサ700をリセットすることができる電力監視回路704を備えることができる。マイクロプロセッサ700のI/O機能に関して、電源582の主出力をオン状態にして充電を可能にする、マイクロプロセッサ700からの出力706、及び電源582の主出力710が機能していることを検知する、電源582からの入力708がある。
【0087】
マイクロプロセッサ700は、バッファ付きアナログ出力712によって供給される電圧入力を介して、電源582の出力を制御する。電源582の出力710から取得される、スケーリングされたバッファ付きアナログ電圧入力714は、電圧基準回路716からの精密な基準電圧と共にマイクロプロセッサ700に入力され、充電中にロボットに供給されている充電電圧を監視する。加えて、電流センサ基板650から取得されるバッファ付きアナログ電流入力718は、ロボットに出力されている充電電流を監視するために、マイクロプロセッサ700によって使用される。
【0088】
制御基板572は、マイクロプロセッサ700とIrDA基板574との間のRS485シリアル通信を可能にする通信インタフェース720を含む、複数のポート及び入力/出力を備える。通信インタフェースにより、さらに、充電ステーション500とロボットとの間の赤外線通信が可能になる。端末シェル及びマイクロUSBコネクタを介したデバッグ/診断を可能にするイーサネット・ポート722、及びデバイスのファームウェア更新(DFU:device firmware update)ブートローダへのアクセスを可能にする押し釦724がある。また、ユーザ・インタフェース・パネル526のディスプレイ上に準備完了/充電中/故障表示するための、4つの高輝度LEDを駆動する出力726もある。
【0089】
一実施例では、電源582は、37Aの出力電流を供給することができるMeanwell RSP-1000-27電源であり得る。電源582への入力電力730は、倉庫の内部電力からの120VACであり得る。主電源出力電圧/電流710は、バッファ付きアナログ出力712によって、2.5Vから4.5ボルトの範囲の電圧を使用して入力ピンをアクティブに駆動し、充電供給電流(定電流段階)又は電圧(定電圧段階)を制御することで、マイクロプロセッサ700により制御され得る。供給出力電圧/電流710は、たとえば、バッファ付きアナログ出力712から送出される4.5V入力によって、30V開路を出力するよう調整され得る。S-及びS+検知ピン732は、電流/電圧出力710を検知し、電源582へのフィードバックとして使用され得る。
【0090】
充電組立体200を介して充電ステーション500からロボットに電流が供給されているとき、電源582の正の出力に接続された電流センサ基板650のホール・センサを使用して、充電電流を測定することができる。センサ基板650の測定範囲は、0~50Aの範囲にわたる正側だけであり得る。マイクロプロセッサ700は、電流センサ基板650から取得されたバッファ付きアナログ電流入力718を使用して、ロボットに出力されている充電電流(及び総電荷)を監視することができる。そして、ロボットに電流が供給されているとき、充電組立体200にある電圧は、714によってスケーリングされ、バッファされ、供給され得る、電源582の正側出力からの電圧信号をマイクロプロセッサ700に提供することにより、検知され得る。公称電圧範囲は通常、フル・スケールで最大32Vであり得る。充電組立体200の負側は、コントローラ700の接地面に接続され得る。
【0091】
図20を参照すると、この開示の充電システムに関する、
図17/
図18のロボット18などのロボットのハードウェア構成要素を示している。たとえば、各々が13.5Vの開路電圧及び32Ahの容量を有する2つのLiFePO4(リン酸鉄リチウム)バッテリを備えることができるバッテリ・パック800は、正の端子のヒューズ801を介して充電ポート300に接続される。バッテリ・パック800はまた、バッテリからの正のライン上のヒューズ803を介してモータ・コントローラ802にも接続され、またライン804を介してDC-DCコンバータ(図示せず)にも接続され、ロボット・コントローラ、光学カメラ、及びライダなどの、他の様々な構成要素に給電する。
【0092】
本明細書のシステムは、バッテリの充電状態を監視する回路を具備する、完全なバッテリ管理システムを備えたバッテリ・パックを必要としないことに留意されたい。本明細書のシステムを使ったバッテリの充電状態は、以下で詳細に説明する、ロボットと充電ステーションとの間で共有される分散型監視手法を使用して監視される。その結果、電圧、温度、及び電流などの安全関連パラメータだけを監視する、より安価なバッテリ管理システムが必要である。
【0093】
モータ・コントローラ802は、バッテリ800の正の接続をもつラインにあるホール・センサなどの電流センサ806と、ロボットを推進するために電気モータ810及び812を駆動するモータ駆動回路808とを備えることができる。バッテリ800の出力電圧を測定するための電圧センサ807も、備えることができる。とりわけ、ロボット・コントローラ(図示せず)全体から受信された制御信号に基づいてモータ駆動回路808を制御し、且つバッテリがモータ・コントローラ802を介して電気モータ810及び812に給電するために使用する、電流センサ806によって検出される電流量を追跡する、モータ・コントローラ802のプロセッサ814がある。プロセッサ814はまた、検知された電流を使用して、経時的に測定された電流による総電荷使用量を判断する。
【0094】
充電ステーション500による充電中にロボットに供給される電荷量は、上記のように、電流センサ基板650によって判断される。また、上記のように、充電ステーション500のIrDA基板574は、充電ステーション500とロボット18との間の赤外線通信を可能にし、ロボット自体が、モータ・コントローラ802内のRS485インタフェースに接続されたIrDA基板816を備える。充電ステーションからロボットに運ばれる電荷量は、定期的(たとえば、1秒に1回)に、赤外線通信を介してロボット18に伝達され、モータ・コントローラ802上にあり得るメモリに保存される。充電が完了すると、以下に説明するように、ロボットは、開始時の、すなわち最初のクーロン量(coulomb count)を知ることになる。
【0095】
ロボットが充電ドックを離れると、上記のように、電気モータ及び制御基板に給電するために使用される電荷量が定期的に判断され(たとえば、1秒に1回)、次いで残りの電荷(現在のクーロン量)を判断するために、充電の際に供給された電荷量(最初のクーロン量)から差し引かれ得る。これは、充電状態(「SOC:state of charge」)と呼ばれ得る。ロボットは、上記のように、SOCを所定の閾値レベルと比較することにより、再充電が必要な時期を判断する。
【0096】
電気モータ810及び812並びに制御基板802が使用する電荷量は、ロボットの他の構成要素に給電するために使用される電荷量よりも大幅に多く、したがって、ロボットの全体的な現在の使用量として使用してもよい。又は、より高い精度が望まれる場合は、電気モータ810及び812以外の構成要素による現在の使用量が測定され、クーロン量の中に考慮されてもよい。
【0097】
充電のためのソフトウェアの動作及びプロトコルについて、以下の段落で説明する。
【0098】
ロボット充電ソフトウェア/プロトコル
本明細書に記載するロボットに使用されるバッテリは、通常、比較的平坦な電流放電対電圧曲線を有するであろう。そして、バッテリは、温度依存性が高い可能性がある。こうした特性を、
図21のグラフに示す、-20C、0C、23C、45C、及び60Cに対して示す5つの曲線によって証明する。グラフは、16Aだけ放電される、13.5Vの開放電圧を持つ、あるLiFePO4(リン酸鉄リチウム)バッテリの曲線を示す。バッテリが放電すると、バッテリ電圧は約13.5Vから約10Vに低下する。グラフの右側で、バッテリが所定の容量を放電した場合、曲線は「X」軸と交差し、バッテリに10Vの電位が残っていることを示す。23C及び45Cの曲線は、約16Aを放電する。60Cの曲線では、バッテリ管理システムの過熱保護機能が作動し、約14.4Aが放電された後にバッテリをシャット・ダウンする。より低い温度、すなわち0C及び-20Cでは、使用可能なエネルギーをすべてバッテリから取り出すことができず、それぞれ約14.4A及び12.24Aだけ放電した後、バッテリは機能を停止する。
【0099】
図示のように、バッテリ電圧は、広範囲の電荷レベルにわたってかなり一定のままである。たとえば、23Cでは、完全に充電されたわずかに下から14.4Aが放電された箇所近くまで、電圧は、12.8Vから12.5Vのわずかに下までしか変化しない。そのため、電圧だけではSOCを確実に推定することはできない。したがって、本明細書で説明するロボット用バッテリ・パックでのSOC推定には、信頼性が高く正確な2部構成のアルゴリズムが使用され得る。
【0100】
SOCアルゴリズムの第1の態様は、バッテリの充電(
図19の電流センサ650を使用した充電ステーション500によって)と放電(
図20の電流センサ806を使用したロボットによって)との両方の際に、電流を正確に測定し、測定された電流を経時的に積分して、ある期間にわたる充電又は放電されたクーロンの総量を判断する、クーロン・カウント法(1クーロン=1アンペア×1秒)を利用する。充電中、積分された電荷レベルは、制御基板572の不揮発性記憶部に維持され、電源が切れている期間を通して追跡を継続する。また、充電中、電荷レベルは定期的にロボットに伝達され、たとえばモータ・コントローラ802のメモリに保存される。ロボットが充電ステーションを離れる(すなわち、ロボットがドッキング解除される)と、放電されている電流量が監視され、元の電荷レベルから現在のSOCを判断できる。
【0101】
ただし、クーロン量の計算だけを使用すると、時間の経過と共に積分される測定誤差により結果がドリフトする傾向がある。これを克服するために、完全充電/完全放電の閾値を使用するアルゴリズムの第2の態様がある。言い換えると、ロボットが、電圧レベルの閾値を使用して完全放電及び完全充電の状態を確実に検出することができ、次いでこれらの状態を積分器のリセットに使用して、推定される電荷のドリフトを補正できる。ロボットは、SOC推定値の維持、放電クーロン量計算、並びに完全充電及び完全放電の状態の検出を担当することになる。充電器は、充電中のクーロン量計算を担当することになる。
【0102】
再び
図21を参照すると、バッテリが充電されると(所与の温度でグラフに沿って右から左に移動する)、最終的に電圧は、この場合(バッテリ当たり)約14.3Vであり得る、所定の上限電圧閾値まで上昇するであろう。ロボットは、バッテリが完全に充電されていることを判断するやり方として、この上限閾値を使用する。ロボットは、閾値電圧レベルに達したときに、メモリに最後に記憶されたクーロン量を判断することで、バッテリのSOCを知る。次いで、ロボットは、充電ステーションを離れ、クーロン量計算プロセスを開始して、使用されている電荷量を判断することができる。
【0103】
本明細書で説明するロボットは、バッテリ・パック容量の正確な推定値を維持するプロセスを使用し、バッテリが完全に放電された状態に達する前に自律的に充電ステーションに到着するようになることを意図しているが、システムは、充電ステーションにドッキングする前にかかる完全に放電されたバッテリ状態に達したロボットを、回復させるよう設計される。バッテリが放電しているときに(グラフに沿って左から右に移動する)、電圧が下限閾値電圧レベル、たとえば9V(バッテリ当たり)まで降下する場合、この下限閾値を使用して、バッテリが完全に放電していることを示すことができる。この下限閾値電圧レベルでは、ロボットの電源が自動的に切れて、バッテリの損傷を回避する。以下に説明するように、ロボットがドッキング・ステーションに移動され、回復充電が行われた後、ロボットを手動で再起動する必要があろう。バッテリ・パックが特定の低電圧レベル(たとえば、バッテリ当たり8V)まで降下すると、バッテリ・パックは通常、内部保護シャット・ダウン機能をトリガし、バッテリはもはや充電されなくなるであろう。この最終状態がトリガされるのを防ぐために、ロボットは、最終電圧レベルより高い所定の低電圧閾値(たとえば、各バッテリで9V)で電源を切るよう構成できる。
【0104】
完全放電状態は、たまにしか起き得ないことに留意されたい。というのは、完全放電レベルを超えることがわかるはずである所定のSOCで、再充電するために充電ステーションに戻るように、ロボットをプログラムすることができるからである。言い換えると、通常、完全放電のポイントより高いSOCレベルが設定されることになる(たとえば、完全放電レベルより10~20%高く)。かかるレベルに達すると、ロボットは、再充電のために充電ステーションに移動するであろう。ロボットは、再充電が必要であることがわかると、最も近い利用可能な充電ステーションを判断することができる。スペース及び/又は倉庫の管理システムで動作するロボット群は、より高いレベルで協調し、確実に、一度に1台のロボットしか特定の充電ステーションにドッキングしようとしない。上記のように、各充電ステーションは、各充電ステーションに関連付けられた固有の識別子及びポーズを有するであろう。ロボットは、選択された充電ステーションのポーズに移動し、ドッキング・プロセスを開始するであろう。両方のプロセスを、上記で詳細に説明している。
【0105】
ロボットは、完全充電/放電回数を使用して、システム操作者にパックの寿命についての警告を提供することができる。こうした統計は、電源を切っているときに不揮発性記憶部(フラッシュ)に書き込まれ、電源投入時に不揮発性記憶部(フラッシュ)から読み取られる。たとえば、特定の回数の完全充電及び/又は放電状態に達した場合、ロボットは、バッテリの、工場でのサービスが必要であることを示すことができる。また、所与の電圧レベルでのSOCを監視して、バッテリがもはや電荷を十分に保持していないことを判断することもでき、その場合ロボットはやはり、バッテリの、工場でのサービスが必要であることを示すことができる。
【0106】
ロボットが充電ステーションに到着してドッキングされると、ロボットと充電ステーションとの間で、それぞれIrDA基板574と816とによって通信が確立され、充電プロセスが開始されるであろう。
図19の充電ステーションのコントローラ572によって、バッテリ電圧が、充電組立体200の両端間の(ヒステリシスをもつ)閾値よりも大きいと検知されたときに、ドッキングに成功したと確認され、表示され得る。本明細書で説明した
図20のバッテリ・パック800の場合、閾値電圧レベルは18Vであり、1Vのヒステリシスをもつことができる(2つのバッテリ×9V)。検出された電圧レベルは、IrDA通信を介してロボットに伝達することができ、ロボットは、受信した電圧読取値がロボットの内部電圧測定値と、ある許容レベルの範囲内で一致していることを確認できる。
【0107】
通信が確立され、閾値電圧レベルが確認された後、短絡状態が検出されるか、又はバッテリ温度(ロボットによって検出され、IrDAを介して充電ステーションに供給される)が許容範囲内にない場合は、充電プロセスは起動しないであろう。バッテリ・パック800では、温度範囲は、0度Cを超え45度C未満になり得る。ロボットのバッテリ種類の表示(ロボット種類、バッテリ種類、又は何らかの他の指標)は、IrDA通信を介して充電ステーションに伝達され、バッテリ種類から、特定の充電プロファイルが選択され得る。充電の開始時に、クーロン量の計算が初期化され、選択された充電プロファイルにしたがって充電プロセスが開始される。
【0108】
ある特定のバッテリ種類の充電プロファイルによる充電プロセスを、以下の表1及び
図22の流れ
図850に関して説明する。また、表1には、完全に放電されたバッテリの一般的なバッテリ回復パラメータも示している。表1に示すように、所与のバッテリの充電プロファイルには、様々な状況で使用される様々なパラメータがある。通常充電又は急速充電については、極端な温度(特定の範囲外の高温又は低温)に対するパラメータとは異なる1組の充電パラメータがある。
【0109】
回復モードのパラメータは、ロボットが、完全に放電された後に手動でドッキングされ、充電を開始するために手動回復スイッチが押された場合に使用される。言い換えると、回復パラメータは、ロボットを再起動でき、IrDA通信を再確立できるようになるまで、どんな種類のロボットのバッテリをも最初に十分に充電するために使用されることになる。
【0110】
完全放電されたバッテリを回復させる場合、ロボットは、もはやオン状態にならないので、IrDA通信を確立できず、充電ステーションはロボットのバッテリ種類を知らないであろう。操作者が手作業でロボットを充電ステーションにドッキングすると、充電ステーションの手動開始押し釦が押されて保持されるであろう。一般的な最初の充電プロファイルは、閾値のバッテリ電圧に達するまで低充電電流を出力することによって開始され、閾値に達したとき、ロボットをオン状態にするように、操作者に指示が与えられる。オン状態になると、IrDA通信が確立され、通常の自律充電プロセスが開始される。
【0111】
【0112】
図22の流れ
図850を参照すると、ステップ851で、充電器は、充電器で検知された電圧をチェックすることにより、ロボットがドッキングされているかどうかを判断する。ロボットがドッキングされている場合、ステップ852で、充電ステーションは、ドッキングされたロボットとのIrDA通信が確立されているかどうかを判断する。IrDA通信が確立されていない場合、ステップ854において、完全に放電されたバッテリを備えるロボットの手動充電プロセスを開始するために、手動開始釦が押されたかどうかを判断する。手動開始釦が押された場合、回復充電プロファイルが取得され、システムはステップ862に進む。ステップ852において、ロボットとの通信が確立されている場合、システムはステップ858に進み、ドッキングされたロボットのバッテリの種類又はロボットの種類及びバッテリの状態(すなわち温度)が充電ステーションに伝達される。ステップ860で、バッテリ/ロボットの種類及びバッテリの状態から、バッテリの特定の充電プロファイルがメモリから取り出され、次いでシステムはステップ862に進む。
【0113】
ステップ862で、バッテリ電圧が閾値電圧よりも低いかどうかが判断され、該閾値電圧は、表1の充電プロファイル(急速、極端な温度、及び回復)では25.5Vである。バッテリ電圧が閾値電圧を下回っていない場合、システムはステップ868に進む。電圧が閾値電圧を下回っている場合、ステップ864で、表1に示すように、一定の電流で予備充電が行われる。特定の予備充電電流は、使用されている充電プロファイルに依存することになる。すなわち、表1の実例では、急速充電の予備充電電流は5.0Aであり、極端な温度の場合、予備充電電流は3.0Aであり、回復の場合、予備充電電流は2.0Aである。ステップ866で、予備充電中、充電器端子における電圧が、閾値電圧に達したかどうかを判断するためにチェックされている。該電圧が達した場合、システムはステップ868に進み、達していない場合、閾値電圧に達するまで予備充電が継続される。
【0114】
ステップ868で、主充電プロセスは、使用されている特定の充電プロファイルから選択された電流を使用する、定電流充電段階で始まる。表1の実例では、急速充電の場合、充電電流は34Aに設定され、一方極端な温度での充電の場合並びに回復充電の場合、充電電流は20Aに設定される。いずれの場合も、定電流充電段階は、ステップ870で所定の電圧レベルが達成されるまで続く。表1の実例では、急速、極端な温度、及び回復充電での所定の電圧レベルは28.6Vである。この電圧レベルに到達すると、ステップ872で、固定電圧充電段階が行われ、充電電圧は28.6Vに維持され、ステップ874で判断される、終了電流に達するまで充電が継続される。表1の急速及び極端な温度での充電プロファイルの終了電流は1.25Aであり、回復充電プロファイルでは0.5Aである。定電圧で供給されている、かかる低レベルの充電電流は、ロボットがほぼ完全に充電されていることを示しているため、充電器ステーションは主充電プロセスを終了する。
【0115】
システムは、SOCがロボットに伝達されるステップ876に進む。流れ
図850には具体的に示していないが、予備充電及び主充電プロセスの間、SOCは、定期的に、たとえば1秒に1回、ロボットに伝達され得る。この時点で、ロボットは、充電ステーションからドッキング解除できるが、それはロボットの制御下にある。上記のように、充電中、バッテリ電圧は監視され、最終的には所定の上限電圧閾値、たとえば(バッテリ当たり)14.3Vまで上昇するであろう。ロボットは、いつバッテリが完全に充電されるかを判断するやり方として、この上限閾値を使用する。上限電圧閾値に達したときに、ロボットは、その時点でドッキング解除すると決定した場合、メモリに最後に記憶されたSOCをバッテリの最初のクーロン量として使用する。特定の状況では、ロボットは、完全に充電されているのにも関わらず、ドッキングされた状態で保持されることがある。ロボットが充電ステーションに留まる理由の1つは、ロボットが、フロアで必要がない場合に充電ステーションに留まるよう、倉庫管理システムからのコマンドを受信するためであり得る。主充電プロセスが完了した後、ロボットが充電ステーションに留まるべきである場合、時間の経過と共にロボットの充電は失われることになる。したがって、ロボットの電荷を維持するために、フロート充電プロセスが開始され得る。
【0116】
ステップ878で、充電プロファイルにフロート充電段階が含まれるかどうかを判断する。含まれない場合、システムはステップ880に進み、ロボットがドッキング解除されたかどうかを判断する。解除されていない場合、システムは、ロボットがドッキング解除されるまでステップ880に繰り返して戻り、次いでシステムはステップ881に進み、充電ステーションによる充電が終了する。次いで、システムはステップ851に進み、次のロボットが充電のためにドッキングされるのを待つ。ロボットが充電ステーションを離れると、ロボットは、クーロン量計算プロセスを開始して、使用されている電荷量を判断する。
【0117】
ステップ878で、充電プロファイルがフロート充電段階を含むと判断された場合、ステップ882で、フロート段階が開始される。フロート段階では、「トリクル充電」がロボットに入力されている間、充電ステーションの充電電圧は、フロート段階電圧レベルに固定される。表1の実例では、急速及び極端な温度プロファイルでは、フロート段階電圧は27.7Vであり得る。結果として生じるトリクル充電は、約0.2Aであり得る。フロート段階の間、充電器は、ロボットによって消費されるスタンバイ電流を供給している(ロボットがオン状態になっていると仮定して)。ロボットのスタンバイ時の消費電流は、約0.2A(200mA)であるが、充電器によって調節はされない。トリクル充電は、ステップ884で判断される、ロボットがドッキング解除されるまで続く。ロボットがドッキング解除されると、システムはステップ881に進み、充電ステーションによる充電が終了する。次いで、システムはステップ851に進み、次のロボットが充電のためにドッキングされるのを待つ。そして、ロボットが充電ステーションを離れると、ロボットは、クーロン量計算プロセスを開始して、使用されている電荷量を判断する。
【0118】
流れ
図850には示していないが、プロセスを終了させる必要がある、充電プロセス中に発生する可能性のあるいくつかのイベントがある。イベントには、電圧に対する電流の比率に基づいて負荷抵抗値を推定することによって検出できる短絡状態が含まれる。負荷抵抗値が閾値、たとえば50Mオームを下回っている場合、充電ステーションは、短絡が検出されたと判断し、充電プロセスを終了することができる。さらに、開路又は抵抗回路(たとえば1オームの閾値を超える)が検出された場合、過熱を防止するために、やはり充電プロセスを終了することができる。IrDA通信が失わるか、又は他の重要な状態が検出される場合、充電プロセスを終了することができる。上記のように、積分された電荷レベルは、制御基板572の不揮発性記憶部に維持され、電源が切れている期間に、確実に正確に電荷を追跡する。
【0119】
充電ステーション500のより高いレベルの動作を、
図23のステート・マシン900に示す。充電ステーション500は、状態902で電源投入され、初期化される。初期化が完了すると、充電ステーションは状態904でアイドル・モードに入り、バッテリが検出される(ロボットが自動充電の準備を完了している)か、又は手動オーバライド入力が検出される(操作者が、「上がった」バッテリを備えるロボットのための手動充電モードに入るよう、釦を押す)のを待つ。バッテリが検出されると、システムは状態906に進み、ロボットと充電ステーションとの間の通信が確立される。手動オーバライド入力が検出された場合、システムは回復開始状態908に進む。
【0120】
自動充電プロセスにおいて、状態906でロボットとの通信が確立されない場合、状態910で通信エラーが判断され、システムはアイドル状態904に戻る。状態906で通信が確立された場合、充電プロセスは、上記のように、状態912で開始される。充電完了時に、ロボットが充電サイクルのログ(CCLOG:charge cycle log)を要求した場合、ステップ914で、充電ステーションはロボットにCCLOGを送信し、状態916で充電プロセスを終了する。ロボットがCCLOGを要求しない場合、システムは単に充電状態912から完了状態916に進む。どちらの場合も、ロボットは、次いでアイドル状態904に戻る。
【0121】
そうではなくて、手動オーバライド入力が検出された場合、状態908で、手動回復プロセスが開始される。バッテリが検出されないか、又はバッテリが保護シャットダウン・モードにある場合、システムは回復失敗状態918に入り、次いでアイドル状態904に戻る。回復開始状態908において、バッテリが検出され、且つバッテリが保護シャットダウン状態にない場合、状態920で上記の回復プロセスが行われる。状態922で回復プロセスが完了すると、システムは、状態906に進んでロボットとの通信を確立し、自動充電プロセスを始める。
【0122】
ステート・マシン900には示していないが、プロセスを終了する必要がある、充電プロセス中に発生する可能性があるいくつかのイベントがある。たとえば短絡若しくは開路、又は充電が完了する前にロボットが充電ステーションを離れた場合である。
【0123】
本発明の前述の説明により、当業者は、現在その最良の形態であると考えられるものを作成及び使用することができるが、当業者は、本明細書での具体的な実施例及び実例の変形、組合せ、及び同等物の存在を、理解及び認識するであろう。上記の本発明の実施例は、実例にすぎないことを意図している。当業者は、ここに添付される特許請求の範囲によってのみ定義される本発明の範囲から逸脱することなく、特定の実施例に対して変更、修正、及び変形を行うことができる。したがって、本発明は、上述の実施例及び実例によって限定されない。
【0124】
本発明及びその好ましい実施例を説明してきたが、新規であるとして特許請求され、特許証によって保護されるものは、以下である。