IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本電気株式会社の特許一覧 ▶ 株式会社Kitahara Medical Strategies Internationalの特許一覧

<>
  • 特許-医療情報処理システム 図1
  • 特許-医療情報処理システム 図2
  • 特許-医療情報処理システム 図3
  • 特許-医療情報処理システム 図4
  • 特許-医療情報処理システム 図5
  • 特許-医療情報処理システム 図6
  • 特許-医療情報処理システム 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-01-18
(45)【発行日】2022-02-10
(54)【発明の名称】医療情報処理システム
(51)【国際特許分類】
   G16H 40/00 20180101AFI20220203BHJP
   G06Q 10/04 20120101ALI20220203BHJP
【FI】
G16H40/00
G06Q10/04
【請求項の数】 10
(21)【出願番号】P 2019540941
(86)(22)【出願日】2018-09-03
(86)【国際出願番号】 JP2018032565
(87)【国際公開番号】W WO2019049819
(87)【国際公開日】2019-03-14
【審査請求日】2020-02-28
(31)【優先権主張番号】P 2017172847
(32)【優先日】2017-09-08
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004237
【氏名又は名称】日本電気株式会社
(73)【特許権者】
【識別番号】517304691
【氏名又は名称】株式会社Kitahara Medical Strategies International
(74)【代理人】
【識別番号】100077838
【弁理士】
【氏名又は名称】池田 憲保
(74)【代理人】
【識別番号】100129023
【弁理士】
【氏名又は名称】佐々木 敬
(72)【発明者】
【氏名】久保 雅洋
(72)【発明者】
【氏名】林谷 昌洋
(72)【発明者】
【氏名】大野 友嗣
(72)【発明者】
【氏名】細井 利憲
(72)【発明者】
【氏名】北原 茂実
【審査官】加舎 理紅子
(56)【参考文献】
【文献】特開2013-109762(JP,A)
【文献】特表2016-532459(JP,A)
【文献】特表2015-533433(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G16H 10/00 - 80/00
G06Q 10/00 - 99/00
(57)【特許請求の範囲】
【請求項1】
病院全体が取り得る複数の運営方針を定めた運営方針の中から、何れかの選択を受け付ける運営方針入力手段と、
病院の環境に関するパラメータ及び電子カルテ情報を含む、病院でアクセス可能に管理されているデータベースを参照して機械学習を行い前記運営方針毎に、個々の患者に対する医療従事者の判断支援情報を出力する個々の運営方針の最大化モデルを生成するモデル学習手段と、
前記運営方針入力手段で選択された運営方針に対応する前記最大化モデルと、対象患者の電子カルテの情報を含む前記データベースとを用いて、前記対象患者に対する前記判断支援情報を生成する行動最適化手段と、
を具備し、
前記病院の環境に関するパラメータは、近隣医療機関の入院患者数、転院先医療機関の入院患者数、その地域の気候、その地域の人口の増減、来院患者数に関する情報の少なくともいずれかを含む
ことを特徴とする医療情報処理システム。
【請求項2】
前記モデル学習手段、前記データベースを参照して機械学習を行い前記運営方針毎に最大化モデルを生成する際に、個々の患者に対する治療計画からのズレを機械学習の項目に含めることを特徴とする請求項1に記載の医療情報処理システム。
【請求項3】
前記行動最適化手段は、選択された運営方針の最大化モデルを用いて、病院でアクセス可能に管理されている前記データベースの現在の状況に合わせて、判断支援情報として個々の患者に対する病室環境の変更方針を示す通知を生成することを特徴とする請求項2に記載の医療情報処理システム。
【請求項4】
前記行動最適化手段は、選択された運営方針の最大化モデルを用いて、病院でアクセス可能に管理されている前記データベースの現在の状況に合わせて、判断支援情報として個々の患者のオーダリング方針を示す通知を生成することを特徴とする請求項1から3の何れか一項に記載の医療情報処理システム。
【請求項5】
前記行動最適化手段は、選択された運営方針の最大化モデルを用いて、病院でアクセス可能に管理されている前記データベースの現在の状況に合わせて、判断支援情報として個々の患者の退院後ケア業務の方針を示す通知を生成することを特徴とする請求項1から4の何れか一項に記載の医療情報処理システム。
【請求項6】
病院の環境変化は、病院でアクセス可能に管理されている前記データベースで、病院の環境変化それぞれを個別の項目として管理することで、前記モデル学習手段によって、個々の運営方針の最大化モデルに反映されることを特徴とする請求項1から5の何れか一項に記載の医療情報処理システム。
【請求項7】
個々の患者に対する治療計画には、少なくとも検査日、インフォームドコンセント日、退院日のいずれかに関しての予定日と実行日とが含まれ、
個々の患者に対する治療計画は、病院でアクセス可能に管理されている前記データベースで、個々の患者に対する治療計画の予定日と実行日とをそれぞれを個別の項目として管理することで、前記モデル学習手段によって、個々の運営方針の最大化モデルに反映される
ことを特徴とする請求項2から6の何れか一項に記載の医療情報処理システム。
【請求項8】
個々の患者に対する治療計画からのズレには、少なくとも、救急患者の発生状況、患者の回復具合が含まれ、
個々の患者に対する治療計画からのズレは、病院でアクセス可能に管理されている前記データベースで、個々の患者に対する治療計画からのズレそれぞれを個別の項目として管理することで、前記モデル学習手段によって、個々の運営方針の最大化モデルに反映される
ことを特徴とする請求項2から7の何れか一項に記載の医療情報処理システム。
【請求項9】
モデル学習手段によって、予め、病院の環境に関するパラメータ及び電子カルテ情報を含む、病院でアクセス可能に管理されているデータベースを参照して機械学習を行い前記運営方針毎に、個々の患者に対する医療従事者の判断支援情報を出力する個々の運営方針の最大化モデルを生成し、
運営方針入力手段によって、病院全体が取り得る複数の運営方針を定めた運営方針の中から、何れかの選択を受け付け、
行動最適化手段によって、選択された運営方針に対応する前記最大化モデルと、対象患者の電子カルテの情報を含む前記データベースとを用いて、前記対象患者に対する前記判断支援情報を生成する、
ここで、前記病院の環境に関するパラメータには、近隣医療機関の入院患者数、転院先医療機関の入院患者数、その地域の気候、その地域の人口の増減、来院患者数に関する情報の少なくともいずれかが含まれる、
ことを特徴とする判断支援情報生成方法。
【請求項10】
情報処理システムを
病院全体が取り得る複数の運営方針を定めた運営方針の中から、何れかの選択を受け付ける運営方針入力手段と、
病院の環境に関するパラメータ及び電子カルテ情報を含む、病院でアクセス可能に管理されているデータベースを参照して機械学習を行い前記運営方針毎に、個々の患者に対する医療従事者の判断支援情報を出力する個々の運営方針の最大化モデルを生成するモデル学習手段と、
前記運営方針入力手段で選択された運営方針に対応する前記最大化モデルと、対象患者の電子カルテの情報を含む前記データベースとを用いて、前記対象患者に対する前記判断支援情報を生成する行動最適化手段
として動作させ
前記病院の環境に関するパラメータとしては、近隣医療機関の入院患者数、転院先医療機関の入院患者数、その地域の気候、その地域の人口の増減、来院患者数に関する情報の少なくともいずれかを使用する
ことを特徴とするプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、入院施設を含む医療機関で運用される医療情報処理システム、判断支援情報生成方法およびプログラムに関する。
【背景技術】
【0002】
昨今、医療機関内で情報処理システムが多く使用されている。また、医療機関専用の情報処理システムの開発も活発である。
【0003】
医療機関では多くの患者に対して手術や検査、リハビリなどの多岐に亘る業務を行っている。医療機関専用の情報処理システムは、従前の医療関係者の業務をサポートして、作業効率を高めている。
【0004】
医療機関専用の情報処理システムには、従前の紙のカルテを電子カルテとして情報化するシステムや、最初からカルテ情報を電子データとして受け付けるシステムなどがある。各患者の電子カルテ情報群は、情報処理システムのサーバ(ストレージ)に保存され、権限がある医療機関者によって呼び出され、必要に応じて従前の紙カルテのように使用される。電子カルテの収集/提示のみを扱う情報処理システムは、概ね電子カルテシステムと呼ばれている。
【0005】
医療機関で用いられている医療情報処理システムは、電子カルテシステム以外にも多岐に亘り、例えば特許文献1に一つのシステムが記載されている。
【0006】
特許文献1には、看者のための医療を決定する医療支援システムが記載されている。この医療支援システムは、プロセッサーに、看者データを取得し、この看者の臨床的必要性を評価し、臨床アウトカムを提案し、臨床的必要性及び提案された臨床アウトカムのために一人の患者に提供されるべきサービスを、サービス/アウトカム/必要性モデルに基づいて決定するステップを実行させる。
【0007】
この特許文献1に記載された医療支援システムによる方法は、病院内外で得られる様々な情報に関して機械学習によって複数のコンピュータモデルを得て、その複数のモデルに基づいて臨床的必要性と提案された臨床アウトカムを満たす、患者のためのサービスを決定できる。
【0008】
また、医療機関で用いられている医療情報処理システムは、特許文献1以外にも例えば特許文献2から6にも記載されている。
【0009】
特許文献2に記載された統合医療基幹業務システムは、患者の属性等を取得して総合電子カルテを生成する仕組みと、医師等の診療等を支援する仕組みと、個人の医療情報を記録する統合基幹データベースとを、ネットワークで接続し、病院や家庭等の医療環境を統合する。
【0010】
特許文献3に記載された診療支援システムは、患者に診療などを行うにあたり、その計画の作成や、過去や現在の状況の確認を、診療記録のインデックスを表示するインデックス画面と、その患者の診療計画表を表示する診療計画画面とを並べて配置することで、容易にする。
【0011】
特許文献4に記載された医療情報処理システムは、災害時において、刻々と変化する被災状況と診療機関による対処の経過を基礎として、近い将来の被災状況と診療機関が置かれる状況を予測し、患者転送を行うべきか否か、医療人員・機材をどこに配置すべきかを決定する。
【0012】
特許文献5に記載された医療マネジメント支援システムは、医療機関における各種業務の遂行支援と、医療の質向上と医療機関の経営改善とを、患者毎のプロジェクトネットワーク図を作成して表示することで助ける。
【0013】
特許文献6に記載された分析システムは、検査結果の変動から副作用の改善期間を算出し、処方されている薬剤のうち改善期間の開始後に継続して処方されている薬剤以外の薬剤が副作用と関係することを示す副作用原因薬剤情報を算出し、副作用と関係する薬剤の情報を出力する。
【先行技術文献】
【特許文献】
【0014】
【文献】特表2016-520941号公報
【文献】特開2002-056093号公報
【文献】特開2004-021380号公報
【文献】特開2005-346589号公報
【文献】特開2007-140607号公報
【文献】国際公開2016/103322号公報
【発明の概要】
【発明が解決しようとする課題】
【0015】
上記した特許文献1に記載の技術は、看者データを収集して機械学習によって作成されたサービス/アウトカム/必要性モデルを用いて、臨床的必要性及び提案された臨床アウトカムのために一人の患者に提供されるべきサービスを決定するステップを含んでいる。
【0016】
このため、この医療支援システムは、病院内外で得られる様々な情報に関して機械学習によって複数のコンピュータモデルを得て、その複数のモデルに基づいて臨床的必要性と提案された臨床アウトカムを満たす、1人の患者のためのサービスを決定できる。
【0017】
しかしながら、この特許文献1に記載された技術では、例えば複数の患者に跨る問題を最適化することに改善点を指摘できる。換言すれば、特許文献1の医療支援システムは、1人の患者に対する提供サービスを導出した結果、他の患者に最適なサービスを提供できない場合を生じさせかねない。
【0018】
一方、特許文献5には、複数の患者に対して、タスクの積み上げによりリソース最適化を図るシステムが開示されている。しかしタスクの積み上げによる手法は、今後入力される情報に弱く、例えば急患が生じることで、全体の予定が大きく狂う可能性を多大に含むこととなる。
【0019】
また、多くの病院では、日々様々な変化に対応する必要がある。この様々な変化の下で、院長や各管理部門担当者は、様々な運営方針に従って病院を運営している。これらの運営方針は、何らかのきっかけで変更されることがある。例えば、想定外の事象や、病院外の環境変化によって、運営方針が変えられることが想定できる。
【0020】
一方、特許文献1に記載された技術や、他の特許文献に記載された技術は、運営方針が変えられることについて対応できていない。
【0021】
本発明の目的は、上記課題を解決する、選択された病院全体の運営方針情報と現在の病院内および病院外の環境が反映されたデータベースとに基づいた個々の患者に対する医療従事者の判断支援を実施する医療情報処理システムを提供することである。
【課題を解決するための手段】
【0022】
本発明の一実施形態に係る医療情報処理システムは、病院全体が取り得る複数の運営方針を定めた運営方針の中から、何れかの選択を受け付ける運営方針入力手段と、病院の環境に関するパラメータ及び電子カルテ情報を含む、病院でアクセス可能に管理されているデータベースを参照して機械学習を行い前記運営方針毎に、個々の患者に対する医療従事者の判断支援情報を出力する個々の運営方針の最大化モデルを生成するモデル学習手段と、前記運営方針入力手段で選択された運営方針に対応する前記最大化モデルと、対象患者の電子カルテの情報を含む前記データベースとを用いて、前記対象患者に対する前記判断支援情報を生成する行動最適化手段と、を具備し、前記病院の環境に関するパラメータは、近隣医療機関の入院患者数、転院先医療機関の入院患者数、その地域の気候、その地域の人口の増減、来院患者数に関する情報の少なくともいずれかを含む
【0023】
本発明の一実施形態に係る医療情報処理システムによる判断支援情報生成方法は、モデル学習手段によって、予め、病院の環境に関するパラメータ及び電子カルテ情報を含む、病院でアクセス可能に管理されているデータベースを参照して機械学習を行い前記運営方針毎に、個々の患者に対する医療従事者の判断支援情報を出力する個々の運営方針の最大化モデルを生成し、運営方針入力手段によって、病院全体が取り得る複数の運営方針を定めた運営方針の中から、何れかの選択を受け付け、行動最適化手段によって、選択された運営方針に対応する前記最大化モデルと、対象患者の電子カルテの情報を含む前記データベースとを用いて、前記対象患者に対する前記判断支援情報を生成する、ここで、前記病院の環境に関するパラメータには、近隣医療機関の入院患者数、転院先医療機関の入院患者数、その地域の気候、その地域の人口の増減、来院患者数に関する情報の少なくともいずれかが含まれる
【0024】
本発明の一実施形態に係るプログラムは、情報処理システムを、病院全体が取り得る複数の運営方針を定めた運営方針の中から、何れかの選択を受け付ける運営方針入力手段と、病院の環境に関するパラメータ及び電子カルテ情報を含む、病院でアクセス可能に管理されているデータベースを参照して機械学習を行い前記運営方針毎に、個々の患者に対する医療従事者の判断支援情報を出力する個々の運営方針の最大化モデルを生成するモデル学習手段と、前記運営方針入力手段で選択された運営方針に対応する前記最大化モデルと、対象患者の電子カルテの情報を含む前記データベースとを用いて、前記対象患者に対する前記判断支援情報を生成する行動最適化手段、として動作させ、前記病院の環境に関するパラメータとしては、近隣医療機関の入院患者数、転院先医療機関の入院患者数、その地域の気候、その地域の人口の増減、来院患者数に関する情報の少なくともいずれかを使用する
【発明の効果】
【0025】
本発明によれば、選択された病院全体の運営方針情報と現在の病院内および病院外の環境が反映されたデータベースとに基づいた個々の患者に対する医療従事者の判断支援を実施する医療情報処理システムを提供できる。
【図面の簡単な説明】
【0026】
図1】本発明に係る実施形態の医療情報処理システム1を示すブロック図である。
図2】本発明に係る実施形態の医療情報処理システム1の基本フローを示すフローチャートである。
図3】本発明に係る実施形態の医療情報処理システム1の概略的な機械学習フローを示すフローチャートである。
図4】本発明に係る実施形態の医療情報処理システム1の判断支援情報生成ルーチンを示すフローチャートである。
図5】本発明に係る実施形態の医療情報処理システム1の動作を視覚的に示した説明図である。
図6】本発明に係る医療情報処理システムの構成例を示すブロック図である。
図7】本発明に係る医療情報処理システムの別の構成例を示すブロック図である。
【発明を実施するための形態】
【0027】
本発明の実施形態を図面を参照して説明する。
【0028】
[実施形態]
図1は、本発明の一実施形態に係る医療情報処理システム1を示すブロック図である。
医療情報処理システム1は、少なくとも、入出力部10、行動最適化部20、及びモデル学習部30を含み構成される。また医療情報処理システム1には、各構成要素が必要に応じて利用可能に構成された各種データベースと学習された学習モデルを記憶する学習モデル群記憶部とが構築されていることとする。なお各種データベースは、内部データベースとせずとも、外部データベースを用いることとしてもよい。同様に、学習モデル群記憶部は、内部メモリーや内部ストレージとせずとも、外部ストレージ等を用いることとしてもよい。医療情報処理システム1は、プロセッサー及びメモリーを内在して、各構成要素を以下のように動作させる。
【0029】
入出力部10は、入出力インタフェースであり、運営方針入力手段として動作し、病院全体が取り得る複数の運営方針(運営方針情報)を受け付ける。選択肢となる運営方針は、例えば、病院の運営において病院の経営の改善又は病院の業務効率化に寄与する指標である。特に限定しないものの、運営方針は、例えば、病院全体のコスト削減指標や病院全体の省電力強化指標、多数の患者全体の在院期間最少化指標、病院スタフの労働時間最小化指標が挙げられる。なお、この運営方針は、例えば院長や経営者などが設定すればよい。
【0030】
また、入出力部10は、各患者の電子カルテ情報や病院内外の各種情報を逐次受け付けてデータベースに逐次登録する。また、入出力部10は、外部データベースから病院内外の各種情報を取得したり登録したりする。
【0031】
行動最適化部20は、入出力部10を介して選択された運営方針の最大化モデルを学習モデル群記憶部から読み出すと共に、使用する各種情報について各種データベースを参照して、個々の患者に対する医療従事者の判断支援情報を生成する。この医療従事者の判断支援情報は、選択された病院の全体の運営方針を最大化するための個々の医療従事者の行動支援となる情報であり、最大化モデルによってその時点の病院の環境変化に合わせて自動で若しくは使用者の要求に応じて適宜生成される。換言すれば、判断支援情報は、最大化モデルによって各種データベースの現在の状況に合わせて自動で若しくは使用者の要求に応じて行動最適化部20が適宜生成すればよい。
【0032】
行動最適化部20は、判断支援情報として個々の患者に対する病室環境の変更方針を示す通知を生成することとすればよい。この病室環境の調整では、ナチュアルヒーリング効果の活性が計れる。病室環境の調整項目としては、入院患者であれば、病室の明るさ、室内の匂い、音(環境音楽、バックグラウンドミュージック、無音を含む)、室温、湿度を含めることが望ましい。判断支援情報を受けた医療従事者は、患者(群)に合わせて個々の病室環境を変更するか検討して、必要に応じて病室環境を変更する。
【0033】
同様に、行動最適化部20は、判断支援情報として個々の患者のオーダリング方針を示す通知を生成することとを含めてもよい。オーダリング方針は、患者毎に、処方、検査、治療計画を含めることが望ましい。判断支援情報を受けた医療従事者は、患者に合わせてオーダリング方針を検討して、必要に応じて示された方針の処方、検査、治療計画を実施する。なお、治療計画とは、ある患者に対してどのような手順や順序で、投薬やリハビリ指示などの治療をするかを示す計画である。具体的には、治療計画は、治療A→治療B(又は治療B’)→治療C、といった治療順序を示す情報である。
【0034】
同様に、行動最適化部20は、判断支援情報として個々の患者の退院後ケア業務の方針を示す通知を生成することとを含めてもよい。退院後ケア業務の方針は、患者毎に、転院先候補(回復期病院や、各種施設、自宅、等)を含めることが望ましい。判断支援情報を受けた医療従事者は、患者に合わせて転院先を検討して、必要に応じて示された方針の転院先候補に移るための業務を実施する。
【0035】
モデル学習部30は、回帰法、決定木学習、ベイズ法、カーネル法、ニューラルネットワーク、深層学習などの各種機械学習手法を用いて、病院でアクセス可能に管理されている各種データベースを参照して、選択可能な運営方針毎に個々の運営方針の病院の環境変化に対する最大化モデルをそれぞれ生成及び更新する。また、モデル学習部30は、病院でアクセス可能に管理されている各種データベースを参照して、選択可能な運営方針毎に個々の運営方針の病院の環境変化と共に個々の患者に対する治療計画からのズレを機械学習の項目に含めることとしてもよい。なお、治療計画からのズレとは、例えば、当初の治療計画に基づいた治療により、患者の病気やけがの回復具合が当初の治療計画と異なり、当初の治療計画における治療内容を変更すること(又はその変更の要因)である。
【0036】
このモデル学習部30は、モデル学習手段として動作する。機械学習に用いる項目(パラメータ群)は、例えば電子カルテデータベースを参照して、各患者の病名や症状を学習に用いる項目を含めることができる。同様に、レセプトデータベース、周辺環境データベース、勤務状況データベースなどを参照可能に構築して、機械学習に用いるパラメータ群を選定してもよい。学習項目に含めるパラメータは、数多く揃えることが望ましい。例えば天候に関係する環境を表すパラメータについて述べれば、例えば院外の天気、気温、湿度、院内の室温、湿度、今週/今月の平均気温、などを例示できる。データベースで適切に管理されている記録情報であれば利用すればよい。
【0037】
病院の環境変化に関するパラメータには、近隣医療機関の入院患者数、転院先医療機関の入院患者数、その地域の気候、その地域の人口の増減、来院患者数に関する情報のいずれかを少なくとも含めることとする。また、病院の環境変化には、競合病院ができたことや、患者数の季節変動、転院先病院のリソース状況、レセプトデータ、患者アンケート結果の変動なども適宜含められる。特にレセプトデータをそれぞれの運営方針毎の機械学習に含めることで、病院の経営的側面、医療の質、医療の効率、在院時間、患者満足度などで区分けできる運営方針毎の判断支援情報の内容の差異として有意な変動を生じさせ得る。
【0038】
また、個々の患者に対する治療計画に関するパラメータには、検査日、インフォームドコンセント日、退院日などに関しての予定日と実行日とを個別の項目として含めることが望ましい。また、個々の患者に対する治療計画からのズレには、急患の発生状況や、患者の回復具合、個別の患者の治療計画からのズレを学習のパラメータに含めることができる。これらのパラメータを加えることで、病院の経営的側面、医療の質、医療の効率、在院時間、患者満足度などで区分けできる運営方針毎の判断支援情報の内容の差異として有意な変動を生じさせ得る。
【0039】
機械学習手法は特に限定しないものの、期待値最大化法やEM法(expectation-maximization algorithm)、などを用いることとすればよい。また例えば強化学習のアルゴリズムとして、必要に応じてSVM(Support Vector Machine)等の回帰手法、k近傍法等のクラスタリング手法や、学習ベクトル量子化などのニューラルネットワーク手法、ランダムフォレスト等のアンサンブル法、などを組み合わせて用いることとしてもよい。
【0040】
このように、医療情報処理システム1は、病院でアクセス可能に管理されている各種データベースと個々の病院の運営方針の学習モデルとを用いて、現在の状況に逐次合わせて、医療従事者に病院の全体として最適であろう行動方針とできる判断支援情報を提供する。
【0041】
各種データベースには、入力や取得、センシングできる変化する病院の置かれた環境それぞれを個別の項目として数多く管理されることが望ましい。このことで、モデル学習部30及び行動最適化部20を介することで、個々の運営方針の最大化モデルと個別の判断支援情報とに、時々刻々と変化する病院の環境変化を反映させられる。
【0042】
同様に、各種データベースには、入力や取得、センシングできる個々の患者に対する治療計画からのズレを個別の項目として含めて管理されることが望ましい。このことで、モデル学習部30及び行動最適化部20を介することによって、個々の運営方針の最大化モデルと個別の判断支援情報とに、時々刻々と生じる個々の患者に対する治療計画からのズレを反映させられる。
【0043】
上記構成によって、医療情報処理システム1は、選択された病院全体の運営方針情報と現在の病院内および病院外の環境が反映されたデータベースとに基づいた個々の患者に対する医療従事者の判断支援を実施可能になる。
【0044】
[実施形態の動作説明]
次に、本実施形態に係る医療情報処理システム1の動作を説明する。
図2は、本実施形態の医療情報処理システム1の基本フローを示すフローチャートである。図3は、医療情報処理システム1の機械学習フローを示すフローチャート例である。また、図4は、医療情報処理システム1の判断支援情報生成ルーチンを示すフローチャート例である。
【0045】
まず、基本フローは、図2に示したように次のようになる。
医療情報処理システム1は、予め、モデル学習部30によって、運営方針毎に、病院でアクセス可能に管理されている各種データベースを参照して、指標最大化モデルを機械学習する(F101)。
医療情報処理システム1は、行動最適化部20によって、選択された運営方針の最大化モデルを用いて、個々の患者に対する医療従事者の判断支援情報を生成し、医療従事者に提案する(F102)。
このフローのように、医療情報処理システム1は、入出力部10を介して運営方針の選択若しくは変更を受け付け、院内の各部署に属する医療従事者に、最新の運営方針に基づいた病院の全体効率を最大にし得る個々の患者に対する行動支援を、実施する。
【0046】
これにより、各医療従事者は、判断支援情報を参考に個々の患者に対する業務を実施できる。結果、各医療従事者は、自身が知っている事柄と共に、自身が知り得ていない様々な情報に基づいて導出された運営方針に沿った行動支援情報の内容を踏まえて、個々の患者に対する行動を実施できるようになる。
【0047】
次に、図3は、医療情報処理システム1の機械学習フローを示すフローチャート例である。
【0048】
まず、医療情報処理システム1のとなる情報処理システムのプロセッサーは、学習対象となる多量のデータ(電子カルテデータ、周囲環境データ、レセプトデータ等)を逐次各種データベースに収集する(S101)。
【0049】
次に、プロセッサーは、各種データベースに蓄積されたデータ群から学習対象とする項目(特徴、パラメータ)のデータを抽出する(S102)。
【0050】
次に、プロセッサーは、運営方針の指標毎に、特徴(パラメータ)群の関係を学習する(S103)。
【0051】
最後に、プロセッサーは、指標毎の学習結果を学習モデル群記憶部に蓄積する(S104)。
【0052】
この機械学習は、定期的に実施して、最新の学習結果にアップデートすることが望ましい。
【0053】
図4は、医療情報処理システム1の判断支援情報生成ルーチンを示すフローチャート例である。この判断支援情報は、例えば医師が次に診察する患者について治療前に見ることを想定している。また、判断支援情報生成ルーチンは、院内で各医療従事者が患者に対する業務を行う各所で実施されることとする。
【0054】
まず、医療情報処理システム1となる情報処理システムのプロセッサーは、対象患者の患者情報を取得する(S201)。例えば、電子カルテデータベースから患者情報を取得すればよい。
【0055】
次に、プロセッサーは、入力された運営方針の学習モデル(最大化モデル)を呼出す(S202)。
【0056】
次に、プロセッサーは、選択指標の学習モデルに基づいた対象患者(患者属性)に対する行動最適化方針を導出処理する(S203)。
【0057】
最後に、プロセッサーは、導出した行動最適化方針を判断支援情報として医療従事者に通知する(S204)。
【0058】
この患者に対する医療従事者の判断支援情報の生成処理は、医療従事者からの要求に適宜応答して行われてもよいし、医療従事者が病室に近づいた際に自動的に判断支援情報の生成を行うこととしてもよい。
【0059】
このように情報処理システムを動作させることで、医療情報処理システム1は、選択された病院全体の運営方針情報と現在の病院内および病院外の環境が反映されたデータベースとに基づいた個々の患者に対する医療従事者の判断支援を実施することが可能になる。
【0060】
ここで、医療情報処理システム1の全体の動作を視覚的に示して説明する。
図5は、医療情報処理システム1の動作を視覚的に示した説明図である。
図示した個別患者の対応フローは入院患者に対する一般的な病院の対応フローを想定して“検査”→“診断”→“治療”→“退院判断”の順で退院までのフローをブロック化して示している。この個別患者の対応フローは、通院患者や緊急外来、病床などによって適宜組み直せばよい。
【0061】
医療情報処理システム1は、モデル学習部30によって、予め、病院でアクセス可能に管理されている各種データベースを参照して、病院全体が取り得る複数の運営方針毎に個々の運営方針の病院の環境変化に対する最大化モデル(学習モデル)を生成する。また、医療情報処理システム1は、適宜各学習モデルを強化学習する。
【0062】
医療情報処理システム1は、入出力部10によって、経営者等が定めた運営方針の選択を受け付け、行動最適化部20によって、選択された運営方針の最大化モデルを用いて、判断支援情報を各医療従事者の業務タイミングに合わせて各所で生成する。この判断支援情報は、各医療従事者にとって、病院の環境変化に合わせて、選定された運営方針に沿って病院の全体効率を最大化する個々の患者に対する行動支援になる。
【0063】
図5は、検査用判断支援情報を提供する行動最適化部20の処理フロー例を示している。本フローでは、選択された運営方針の学習モデルと患者属性、周囲環境等を用いて、運営方針指標が最大化される検査手法が、最適検査手法として医療従事者に通知される。この処理動作は、個別の機械学習によって、患者属性の類似した過去の患者検査記録に基づいて例えばコスト優先や効果優先等の指定された方針に最適とされた検査手法を導出すればよい。
【0064】
他の、診断用判断支援情報提供タイミング、治療用判断支援情報提供タイミング、退院判断用判断支援情報提供タイミングで行われる処理フローも同様に選択された運営方針の学習モデルに基づいて目的に則した判断支援情報の提供を実施すればよい。
【0065】
なお、図5は、入院患者に対する対応フローを示している。他の患者に対しては、病院内の業務フローを実施する医療従事者が、個別の患者に対する業務を行う前にその業務フローに合わせて適宜判断支援情報を提供するように行動最適化部20を動作させればよい。
【0066】
多くの既存の病院では、医療従事者が患者のために最適な業務(検査や治療など)を適宜判断して行っている。このことは検査計画や治療計画などの部分最適化と呼べる。医療従事者は自身の担当する業務範囲で患者にとって最適な対処を行うものと想定される。しかしながら、必ずしも、一部署での患者に対する部分最適化が病院内全体からして患者や病院に対して最適な結果とはならない。簡単な例では、健康診断で複数の検査を受ける患者は、個別の検査で短時間で済む高価な検査を受けたとしても、次の検査や診断を直ぐに受けられなければ、待ち時間が増え対価も増加するが帰宅時間は早まらない。人間は、個別事象の最適化に良好な判断を下せるものの、全体リソースに基づく個別事象の最適化判断に不向きな側面を有する。この観点に更に病院の運営方針を加味して個別事象の最適化を図ることは難しい。更に、病院の運営方針は、変更され得る。
【0067】
病院の運営方針は、多くの場合、経営インパクトを考慮して定める。一方、医療従事者にとって、自身の判断、選択が病院の運営方針に則しているかどうか判断が難しい。
【0068】
上記説明した本発明を適用した医療情報処理システムは、これらのことの解決を助ける。すなわち、病院経営のインパクトを鑑みた上で医療従事者が担当業務を実施することをサポートし、結果的に病院の運営方針に沿った運営に貢献する業務判断が可能になる。
【0069】
より部分的に事後的分析により説明すれば、本発明は以下の要因について行動支援が行える。
【0070】
部分最適の回避:
病院業務は1名の患者に関わる部門が多様である。ある部門の部分最適でなく全体最適の処置が何であるのか、をヒトが患者毎、状況毎、リソース状況毎に適切に判断することは困難である。複雑な状況や困難な状況では医療従事者は経験則に頼らざるを得ない。
【0071】
経営効率低下の回避:
目の前の患者にどのような処置をすべきか、と病院全体を鑑みた際にその処置が経営効率を最大化させるベストな処置かを患者毎、状況毎にヒトが判断することは困難である。
【0072】
オペレーション調整(経営方針変更)の混乱回避:
例えば、病院外の環境変化(天候、競合病院ができた、患者数の季節変動、転院先病院のリソース状況、レセプトデータ等)、治療計画からのブレ(急患、治療計画からのズレ等)を考慮した全体最適業務を行えない。重視すべき経営指標が変更された場合でも最適な処置の示唆を医療従事者に提示することが人間や従前のシステムでは困難である。
【0073】
医療は患者の急変等、予測誤差のリスクが大きく、工業製品の工場のような画一的オペレーションが困難であり、かつ低リスクを求められる。これに対して、経営者や管理者は、病院全体の経営方針(例えば、予定外再入院率、スタフ労働時間、患者満足度を維持した上で、在院時間最短化等)を最大化すべく、大まかな指示を出す。他方、病院内の医療従事者は、自身の業務にまで経営方針を落とし込んで業務を調整することは困難である。
【0074】
これらのことが、本医療情報処理システムでは、データベースに登録されている、その時の病院リソースや、患者毎のID、天気などの様々な情報に応じて、例えば費用対効果や総在院時間などを最適化する行動支援情報を、各患者に関わる各医療従事者に提示可能にある。
【0075】
このため、人間では困難な、リソース全体最適化(ベッド数、スタフ能力、空検査装置などの高効率運用)を、天候、競合病院ができた、患者数の季節変動、転院先病院のリソース状況、レセプトの変更などの多岐に亘る膨大なデータ、治療計画等からのブレ(急患、治療計画からのズレ等)と共に、入力された運営方針を反映した業務調整が行えるようになる。
【0076】
以上説明したように、本発明を適用した医療情報処理システムは、選択された病院全体の運営方針情報と現在の病院内および病院外の環境が反映されたデータベースとに基づいた個々の患者に対する医療従事者の判断支援を実施できる。
【0077】
尚、本システムの各部は、図6および図7に例示するようなコンピュータシステム(サーバシステム)のハードウェアとソフトウェア、仮想化技術の組み合わせを適宜用いて実現すればよい。このコンピュータシステムは、所望形態に合わせた、1ないし複数のプロセッサーとメモリーを含む。また、このコンピュータシステムの形態は、上記メモリーに行動支援システム用のプログラムが展開され、このプログラムに基づいて1ないし複数のプロセッサー等のハードウェアを実行命令群やコード群で動作させることによって、各部を実現すればよい。この際、必要に応じて、このプログラムは、オペーレティングシステムや、マイクロプログラム、ドライバなどのソフトウェアが提供する機能と協働して、各部を実現することとしてもよい。
【0078】
メモリーに展開されるプログラムデータは、プロセッサーを1ないし複数の上述した各部として動作させる実行命令群やコード群、テーブルファイル、コンテンツデータなどを適宜含む。
【0079】
また、このコンピュータシステムは、必ずしも一つの装置として構築される必要はなく、複数のサーバ/コンピュータ/仮想マシンなどが組み合わさって、所謂、シンクライアントや、分散コンピューティング、クラウドコンピューティングで構築されてもよい。
【0080】
また、コンピュータシステムの一部/全ての各部をハードウェアやファームウェア(例えば、一ないし複数のLSI:Large-Scale Integration、FPGA:Field Programmable Gate Array、電子素子の組み合わせ)で置換することとしてもよい。同様に、各部の一部のみをハードウェアやファームウェアで置換することとしてもよい。
【0081】
また、このプログラムは、記録媒体に非一時的に記録されて頒布されても良い。当該記録媒体に記録されたプログラムは、有線、無線、又は記録媒体そのものを介してメモリーに読込まれ、プロセッサー等を動作させる。
【0082】
尚、本明細書では、記録媒体には、類似するタームの記憶媒体やメモリー装置、ストレージ装置なども含むこととする。この記録媒体を例示すれば、オプティカルディスクや磁気ディスク、半導体メモリー装置、ハードディスク装置、テープメディアなどが挙げられる。また、記録媒体は、不揮発性であることが望ましい。また、記録媒体は、揮発性モジュール(例えばRAM:Random Access Memory)と不揮発性モジュール(例えばROM:Read Only Memory)の組み合わせを用いることとしてもよい。
【0083】
上記形態を別の表現で説明すれば、医療情報処理システムとして動作させる情報処理システムを、メモリーに展開された行動支援プログラムに基づき、入出力部、行動最適化部、モデル学習部として動作させることで、その結果、本発明に係る医療情報処理システムを実現できる。
【0084】
同様に、上記形態を更に別の表現で説明すれば、記録媒体は、メモリーに展開されて情報処理システムのプロセッサーで動作する行動支援プログラムを含み、情報処理リソースに学習工程、入力工程、行動支援工程を適時実行させることで、本発明に係る医療情報処理システムを構築できる。
【0085】
なお、実施形態を例示して本発明を説明した。しかし、本発明の具体的な構成は前述の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の変更があってもこの発明に含まれる。例えば、上述した実施形態のブロック構成の分離併合、手順の入れ替えなどの変更は本発明の趣旨および説明される機能を満たせば自由であり、上記説明が本発明を限定するものではない。
【0086】
この出願は、2017年9月8日に出願された日本出願特願2017-172847号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
【符号の説明】
【0087】
1 医療情報処理システム(コンピュータシステム)
10 入出力部
20 行動最適化部
30 モデル学習部

図1
図2
図3
図4
図5
図6
図7