IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パーキンエルマー・ヘルス・サイエンシーズ・カナダ・インコーポレイテッドの特許一覧

<>
  • 特許-複数ガス流のイオン化装置 図1
  • 特許-複数ガス流のイオン化装置 図2
  • 特許-複数ガス流のイオン化装置 図3
  • 特許-複数ガス流のイオン化装置 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-01-18
(45)【発行日】2022-01-27
(54)【発明の名称】複数ガス流のイオン化装置
(51)【国際特許分類】
   H01J 49/16 20060101AFI20220119BHJP
   H01J 49/04 20060101ALI20220119BHJP
   H01J 49/06 20060101ALI20220119BHJP
   G01N 27/62 20210101ALI20220119BHJP
【FI】
H01J49/16 700
H01J49/16 800
H01J49/04 500
H01J49/04
H01J49/04 860
H01J49/06 200
G01N27/62 G
【請求項の数】 19
(21)【出願番号】P 2020561733
(86)(22)【出願日】2019-05-02
(65)【公表番号】
(43)【公表日】2021-07-15
(86)【国際出願番号】 IB2019053594
(87)【国際公開番号】W WO2019211788
(87)【国際公開日】2019-11-07
【審査請求日】2021-01-08
(31)【優先権主張番号】15/970,517
(32)【優先日】2018-05-03
(33)【優先権主張国・地域又は機関】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】518410032
【氏名又は名称】パーキンエルマー・ヘルス・サイエンシーズ・カナダ・インコーポレイテッド
【氏名又は名称原語表記】PERKINELMER HEALTH SCIENCES CANADA, INC.
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【弁理士】
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100095898
【弁理士】
【氏名又は名称】松下 満
(74)【代理人】
【識別番号】100098475
【弁理士】
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【弁理士】
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100168871
【弁理士】
【氏名又は名称】岩上 健
(72)【発明者】
【氏名】コーシャル フレニー
(72)【発明者】
【氏名】ジャヴァヘリー ゴーラムレザ
(72)【発明者】
【氏名】カズンズ リサ
(72)【発明者】
【氏名】ジョリッフ チャールズ
【審査官】中尾 太郎
(56)【参考文献】
【文献】特開2001-135269(JP,A)
【文献】特開2002-015697(JP,A)
【文献】特開2005-116460(JP,A)
【文献】特開2005-211506(JP,A)
【文献】特開2012-089268(JP,A)
【文献】特表2016-534353(JP,A)
【文献】米国特許第05306412(US,A)
【文献】米国特許第05879949(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 49/16
H01J 49/04
H01J 49/06
G01N 27/62
(57)【特許請求の範囲】
【請求項1】
イオン化装置であって、
質量分析装置への流入口と流体連通している流出口を有する外側のガス移送チューブと、
前記外側のガス移送チューブ内に延びる内側のガス移送チューブと、
前記内側のガス移送チューブ内に延び、前記外側のガス移送チューブの前記流出口の上流にある最も内側の分析物供給チューブであって、分析物源から前記最も内側の分析物供給チューブにより受け取られた溶媒和された分析物の液滴を、前記最も内側の分析物供給チューブの先端から前記内側のガス移送チューブ内に供給するように構成された、前記最も内側の分析物供給チューブと、
前記外側のガス移送チューブ、前記内側のガス移送チューブ、及び前記最も内側の分析物供給チューブに相互接続された少なくとも1つの電圧源と、を備え、
前記電圧源は、前記最も内側の分析物供給チューブに電圧を供給して、溶媒和された分析物を前記最も内側の分析物供給チューブの先端に輸送して案内し、前記溶媒和された分析物を前記内側のガス移送チューブに供給するように構成され、
前記電圧源は、前記内側のガス移送チューブに電圧を供給して、前記最も内側の分析物供給チューブから受け取られた前記溶媒和された分析物を第1のガス中で前記外側のガス移送チューブに噴霧するように構成され、
前記電圧源は、前記外側のガス移送チューブに電圧を供給して、前記内側のガス移送チューブから受け取られた前記噴霧された分析物を第2のガス中でイオン化するように構成され、
前記少なくとも1つの電圧源が、前記外側のガス移送チューブを維持するように動作可能であり、前記内側のガス移送チューブ及び前記最も内側の分析物供給チューブが、前記質量分析装置への前記流入口の電位からオフセットしたほぼ等しい電位にあり、前記イオン化された分析物を前記イオン化装置から前記質量分析装置の前記流入口にガイドする、
前記イオン化装置。
【請求項2】
前記外側のガス移送チューブ、前記内側のガス移送チューブ、及び前記最も内側の分析物供給チューブの各々が、導電性である、請求項1に記載のイオン化装置。
【請求項3】
前記少なくとも1つの電圧源が、前記内側のガス移送チューブ、前記外側のガス移送チューブ、及び前記分析物供給チューブを、前記質量分析装置の前記流入口に対し、0Vから6000Vの間の電位に維持する、請求項2に記載のイオン化装置。
【請求項4】
前記質量分析装置の前記流入口が、接地に対し、0Vから500Vの間に維持されている、請求項3に記載のイオン化装置。
【請求項5】
前記外側のガス移送チューブの前記流出口と、前記質量分析装置への前記流入口との間において、前記外側のガス移送チューブの外部に電極をさらに備え、前記少なくとも1つの電圧源が、前記電極に電位をさらに印加する、請求項1に記載のイオン化装置。
【請求項6】
前記少なくとも1つの電圧源が、第2のモードにおいて、前記外側のガス移送チューブ、前記内側のガス移送チューブ、前記最も内側の分析物供給チューブ、及び前記電極に電位を印加して、コロナ放電を発生させ、大気圧化学イオン化を可能にする、請求項5に記載のイオン化装置。
【請求項7】
前記外側のガス移送チューブの前記流出口と、前記質量分析装置の前記流入口との間に、光子イオン化装置をさらに備えている、請求項1に記載のイオン化装置。
【請求項8】
前記最も内側の分析物供給チューブが、50ミクロンから250ミクロンの間の内径を有する、請求項1に記載のイオン化装置。
【請求項9】
前記内側のガス移送チューブが、前記第1のガスの流れを1SLPMから5SLPMの間でガイドする、請求項1に記載のイオン化装置。
【請求項10】
前記第1のガスが、約30℃から700℃の間の温度を有する、請求項1に記載のイオン化装置。
【請求項11】
前記外側のガス移送チューブが、前記第2のガスの流れを5SLPMから100SLPMの間でガイドする、請求項1に記載のイオン化装置。
【請求項12】
前記第2のガスが、約30℃から700℃の間の温度を有する、請求項1に記載のイオン化装置。
【請求項13】
前記外側のガス移送チューブが、前記最も内側の分析物供給チューブの前記先端を超えて規定の距離だけ延びる、請求項1に記載のイオン化装置。
【請求項14】
前記規定の距離が、約10mmから約1000mmの間である、請求項13に記載のイオン化装置。
【請求項15】
前記規定の距離が約30mmである、請求項14に記載のイオン化装置。
【請求項16】
第1の電圧を有する分析物供給チューブから第2の電圧を有する内側のガス移送チューブに溶媒和された分析物の液滴を提供するステップと、
前記内側のガス移送チューブ内の前記分析物供給チューブと同軸の第1のガスの流れを提供して、前記提供された液滴を剪断し、分析物の液滴と前記第1のガスとを含む噴霧を提供するステップと、
前記分析物の液滴と前記第1のガスとの噴霧を、第3の電圧を有する外側のガス移送チューブ内の第2のガスの流れ内に提供するステップであって、前記第1の電圧、前記第2の電圧及び前記第3の電圧が、前記外側のガス移送チューブ、前記内側のガス移送チューブ及び前記分析物供給チューブに相互接続された少なくとも1つの電圧源から提供されるステップと、
前記外側のガス移送チューブを用いて前記第2のガス中の前記提供された分析物の液滴の噴霧をイオン化し、前記外側のガス移送チューブから分析物のイオンを提供するステップと、
電界を用いて、前記提供された分析物のイオンを下流の質量分析装置の流入口にガイドするステップと、
を含む、分析物のイオンを生成する方法。
【請求項17】
イオン化装置であって、
絶縁材料で形成され、質量分析装置への流入口と流体連通している流出口を有する外側のガス移送チューブと、
導電材料で形成され、前記外側のガス移送チューブ内に延びる内側のガス移送チューブと、
前記外側のガス移送チューブの外部から前記内側のガス移送チューブ内に延びる最も内側の分析物供給チューブであって、前記最も内側の分析物供給チューブは、前記外側のガス移送チューブの前記流出口の上流にあり、分析物源から前記最も内側の分析物供給チューブにより受け取られた溶媒和された分析物の液滴を、前記最も内側の分析物供給チューブの先端から前記内側のガス移送チューブ内に供給するように構成された、前記最も内側の分析物供給チューブと、
前記外側のガス移送チューブの前記流出口の近位の導電性シースと、
前記導電性シース及び前記最も内側の分析物供給チューブ、ならびに、前記質量分析装置への前記流入口と相互接続された少なくとも1つの電圧源と、を備え、
前記電圧源は、前記最も内側の分析物供給チューブに電圧を供給して、溶媒和された分析物を前記最も内側の分析物供給チューブの先端に輸送して案内し、前記溶媒和された分析物を前記内側のガス移送チューブに供給するように構成され、
前記電圧源は、前記内側のガス移送チューブに電圧を供給して、前記最も内側の分析物供給チューブから受け取られた前記溶媒和された分析物を第1のガス中で前記外側のガス移送チューブに噴霧するように構成され、
前記電圧源は、前記導電性シースに電圧を供給して、前記内側のガス移送チューブから受け取られた前記噴霧された分析物をイオン化するように構成され、
前記少なくとも1つの電圧源が、前記内側のガス移送チューブと前記導電性シースとを、ある電位に維持して、前記外側のガス移送チューブの前記流出口から前記質量分析装置の前記流入口にイオンをガイドするように動作可能である、
前記イオン化装置。
【請求項18】
前記少なくとも1つの電圧源が、前記最も内側の分析物供給チューブの先端と、前記導電性シースとの間に、前記溶媒和された分析物の液滴をイオン化するために十分な電界を生成する、請求項17に記載のイオン化装置。
【請求項19】
前記外側のガス輸送管の前記流出口と前記質量分析装置の前記流入口との間に、光イオン化装置をさらに備える、請求項17に記載のイオン化装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、質量分析に関し、より詳細には、質量分析のためのイオンを提供するためのイオン化装置、及びそのようなイオンを提供する方法に関する。
【背景技術】
【0002】
近年の質量分析/分光測定法は、イオン化された分析物を下流の質量分析装置に供給することに依存している。イオン化された分析物は、しばしば溶媒内にある、イオン化されていない分析物を気相のイオンに変換するイオン化装置によって供給される場合がある。
【0003】
下流では、イオンが、通常はそれらイオンを加速し、電場または磁場に曝すことにより、その質量電荷比に基づいて分離される場合がある。これにより、様々な化学サンプルの検出及び分析が可能になる。質量分析には、様々な用途が見出されており、未知の合成物の検出、または既知の合成物の識別において使用される場合がある。
【0004】
既知のイオン化技術には、電子衝撃(EI)、大気圧化学イオン化(APCI)、電気スプレーイオン化(ESI)、大気圧光イオン化(APPI)、及びマトリックス支援レーザー脱離イオン化法(MALDI)が含まれる。
【0005】
既存のイオン化装置は、通常、これら技術の1つのみを使用する。これら技術の各々は、分析される分析物に応じて、感度等、いくつかの制限を受ける。
【0006】
したがって、新たなイオン化技術及びイオン化装置の要請が残ったままである。
【発明の概要】
【0007】
一態様によれば、溶媒和された分析物のイオン化を補助する、ガス流に依存するイオン化装置が提供される。そのようなガス流のイオン化は、APCIまたはAPPIと関連して使用される場合がある。単一のイオン発生源が、電気スプレー、APCI、及びAPPIのイオン化を使用するイオンの生成に適切な、効率的かつ安定した分析物のイオンの生成のために、各モード間で、そしてひいては、複数のイオン化技術の内での切替えを可能にするように、複数モードで動作可能である。動作モードは、分析物に応じて選択される場合がある。これにより、方法の開発及び手順の分析との両方に関し、感度が向上し、コストが低減され、使いやすさが向上する。
【0008】
別の態様によれば、イオン化装置であって質量分析装置への流入口と流体連通している流出口を有する外側のガス移送チューブと、外側のガス移送チューブ内に延びる内側のガス移送チューブと、内側のガス移送チューブ内に延び、流出口の上流にある最も内側の分析物供給チューブであって、分析物供給チューブの先端から内側のガス移送チューブ内に溶媒和された分析物の液滴を供給する、最も内側の分析物供給チューブと、内側のガス移送チューブ内の第1の供給ガスであって、溶媒和された分析物を霧状にすること、及び分析物内のイオンを剪断することを補助する、第1の供給ガスと、質量分析装置の流入口にイオンを移送するための、外側のガス移送チューブ内の第2の供給ガスと、外側のガス移送チューブ、内側のガス移送チューブ、及び分析物供給チューブに相互接続された少なくとも1つの電圧源であって、少なくとも1つの電圧源が、外側のガス移送チューブを維持するように動作可能であり、内側のガス移送チューブ及び分析物供給チューブが、流入口の電位からオフセットしたほぼ等しい電位にあり、イオン化装置から流入口にイオンをガイドする、少なくとも1つの電圧源と、を備えたイオン化装置が提供される。
【0009】
別の態様によれば、分析物供給チューブから内側のガス移送チューブに溶媒和された分析物の液滴を提供することと、液滴を剪断するために、内側のガスチューブ内の分析物供給チューブと同軸の第1のガスの流れを提供することと、第1のガス流を第2のガスの流れ内に提供することと、電界により、第2のガス内のイオンを下流の質量分析装置にガイドすることと、を含む、分析物のイオンを生成する方法が提供される。
【0010】
別の態様によれば、絶縁材料で形成され、質量分析装置への流入口と流体連通している流出口を有する外側のガス移送チューブと、導電材料で形成され、外側のチューブ内に延びる内側のガス移送チューブと、外側のガス移送チューブの外部から内側のガス移送チューブ内に延び、流出口の上流にある最も内側の分析物供給チューブであって、分析物供給チューブの先端から内側のガス移送チューブ内に溶媒和された分析物の液滴を供給する、最も内側の分析物供給チューブと、外側のガス移送チューブの流出口の近位の導電性シースと、内側のガス移送チューブ内の第1の供給ガスであって、溶媒和された分析物の液滴を霧状にすること、及び分析物からイオンを剪断することを補助する、第1の供給ガスと、質量分析装置の流入口にイオンを移送するための、外側のガス移送チューブ内の第2の供給ガスと、導電性のシース及び最も内側の分析物供給チューブ、ならびに、質量分析装置への入口と相互接続された少なくとも1つの電圧源であって、少なくとも1つの電圧源が、内側のガス移送チューブ、外側のガス移送チューブを、溶媒和されたイオンをイオン化し、流出口からイオン化装置の流入口にイオンをガイドするように、ある電位に維持するように動作可能である、少なくとも1つの電圧源と、を備えている、イオン化装置が提供される。
【0011】
他の特徴は、以下の詳細な説明に関連して図面から明らかとなる。
【0012】
図には、例示的実施形態が示されている。
【図面の簡単な説明】
【0013】
図1】下流の質量分析装置の構成要素と連通している例示的なイオン発生源の簡略化された概略ブロック図である。
図2図1の分析物供給チューブ及びガス移送チューブの断面概略図である。
図3】下流の質量分析装置の構成要素と連通しているさらなる例示的なイオン発生源の簡略化された概略ブロック図である。
図4】さらなる例示的なイオン発生源の簡略化された概略ブロック図である。
【発明を実施するための形態】
【0014】
各実施形態では、イオン化装置は、複数の同軸に整列された導管を有するプローブを含む。導管は、液体源からイオンを生成するために、液体、ならびに、霧状化ガス及び加熱ガスを様々な流量及び温度で搬送する場合がある。最も外側の導管は、導管の長さに沿う規定の距離に関し、ガス内でイオンを移送及び同伴させる同伴領域を規定する。各実施形態では、様々な電圧が、イオン化の補助をするため、及び、イオンをガイドするために、複数の導管に印加される場合がある。複数の導管及び電極に印加される電圧に応じて、イオン化装置は、電気スプレー、APPI(大気圧光イオン化)、またはAPCI(大気圧化学イオン化)発生源として作用することができ、イオン化装置は、光子イオン化の発生源またはコロナイオン化の発生源を含む場合がある。形成されたイオンは、下流の質量分析装置に提供される場合がある。
【0015】
図1は、イオン化された分析物を下流の質量分析装置12に提供するために適切なプローブ10を含む、例示的なイオン化装置14を示す。イオン化装置14は、質量分析装置12の一部を形成するか、この質量分析装置12とは分離されている場合がある。質量分析装置12は、従来型の質量分析装置の形態を取る場合があり、例えば、米国特許第7,569,811号及び米国特許第9,343,280号に開示されているクワドラポール質量分光計である場合がある。これら文献の内容は、参照することにより本明細書に組み込まれる。質量分析装置12への流入口34が図示されている。
【0016】
図1に示すように、プローブ10は、イオン化装置14の一部である。プローブ10は、3つの組重ね式のチューブ20、22、及び24を含む。これらチューブは、溶媒和された分析物の発生源(明確には図示されていない)から、移送ガスG2に同伴された、イオン化された分析物を形成する。組重ね式のチューブ20、22、及び24は、互いに同軸であり、概して筒状の形状である場合がある。チューブ20、22、及び24の各々は、導電性材料または絶縁材料で形成されている場合がある。図1の実施形態では、チューブ20、22、24は、例えば、アルミニウム、ステンレス鋼等の金属または合金で形成され、導電性である場合がある。他の幾何学形状及び材料が、当業者には明らかとなるであろう。
【0017】
イオン化装置14は、ハウジング26をさらに含み、プローブ10を下流の質量分析装置12に相互接続している。オプションの電極62と、オプションの光子イオン化装置60が、ハウジング26に含まれる場合があり、以下に詳細に記載される。
【0018】
図1に図示される実施形態では、チューブ20、22、及び24の各々は、導電材料で形成されている場合がある。最も内側の分析物供給チューブ20は、その先端30から、溶媒和された分析物の液滴を、第1の供給ガスG1を搬送する内側のガス移送チューブ22内に提供する。先端30は、チューブ22の出口と同一平面に配置されている場合がある。代替的実施形態では、先端30は、チューブ22の出口より数ミリメートル内側とすることができるか、チューブ22より外側とすることができる。しかし、チューブ24は、先端30を超えて規定の距離dだけ延びている。溶媒和された分析物は、イオン化装置14の外の溶媒和された分析物の供給源(図示せず)から、分析物供給チューブ20の先端30に向けて流れる場合がある。通常、分析物の供給源は、複数桁を超える所望の濃度で、溶媒和された分析物を提供する場合がある。
【0019】
チューブ22の流出口は、外側のガスチューブ24の流出口28から約1センチメートルから3センチメートルの距離dに配置されているが、この位置は、外側のチューブ24内の移送ガスがイオンを同伴することを可能にし、生成されたイオン供給源の感度及び安定性を向上させるように、流出口28の上流に1センチメートルから10センチメートルの範囲にわたって変化される場合がある。
【0020】
1つまたは複数の電圧源(複数可)50は、イオン化装置14が複数モードの内の1つで機能できるように、チューブ20、22、24に相対的な電位を印加する場合がある。説明の目的のために、電圧源50は、電位Vinnermostをチューブ20に印加し、Vinnerをチューブ22に印加し、Vouterをチューブ24に印加する。明らかになるように、Vinner及びVouterに対するVinnermostの関係により、プローブ10の動作モードが制御される。各実施形態では、チューブ20、22、24に印加される電圧は、同じである場合があるか、これら電圧が、異なる場合があり、どのように電界が形成されるか、または電界が形成される場合を規定する。
【0021】
プローブ10は、x軸、y軸、及びz軸に沿って調整可能であるために、内側の同軸チューブ22、サンプルの最も内側のチューブ20、またはプローブ10が、下流の質量分析装置12の流入口34に対して独立して調整され得るように、機械的に構成されている場合もある。さらに、内側の同軸チューブ22及びサンプルの最も内側のチューブ20は、外側のチューブ24に対し、z軸に沿って配置可能である場合がある。この方法で、チューブ20の先端30と、外側のチューブ24の端部/流出口との間の距離dが、感度及び信号の安定性を調整する/最適にするために、調整される場合がある。
【0022】
例えば、1フェムトグラム/μL未満の溶液から、1マイクログラム/μLを超える溶液までのレンジの、溶液内の分析物の濃度が、内側の同軸チューブ22を通して導入される場合がある。溶液は、イオンの形成及び遊離を促すように、水とアセトニトリルとの混合物(例えば、50:50または30:70)である場合がある。溶液は、0.1%の蟻酸及び2mMの酢酸アンモニウムでさらに調整される場合があるが、明確な量は変化する場合がある。
【0023】
内側のガス移送チューブ22は、第1のガスG1を、速度v1で搬送する。このことは、最も内側の(供給)チューブ20の先端30において液滴で放出される分析物の分子イオンを霧状にする助けになり、スプレー31を生成する。外側の(ガス移送)チューブ24は、速度v2の第2のガスG2を移送する。この第2のガスG2は、先端30において溶媒和された分析物と相互作用し、かつスプレー31と相互作用して、溶液から分析物のイオンを生成する。明らかとなるように、2つのガス流を使用することにより、分析物のイオンの放出及び移送が促進される。ガスG2は、ガス流の上流のヒータを使用することにより、イオンの放出をさらに補助するように、周囲の温度より高く加熱される場合がある。
【0024】
ガスG1は、例えば、容器(図示せず)等の加圧された供給源から提供されるゼロエアー/クリーンエアーの窒素である場合がある。
【0025】
ガスG2は、例えば、エアー/クリーンエアー、窒素等である場合がある。
【0026】
ガスG1及びG2は、約30℃から700℃の間の温度に維持されている場合があるが、より低い温度が可能である場合がある。通常の温度レンジは、250℃から700℃の間であるが、より高い温度が可能である場合がある。
【0027】
内側のガス移送チューブ22を出るガスG1は、外側のガス移送チューブ24に入る。外側のガス移送チューブ24は、ガスG2内に同伴された分析物のイオンをチューブ24の出口28に移送する。
【0028】
G2は、外側のガス移送チューブ24内で第1のガスG1と混合され、同伴された、イオン化された分析物をガス移送チューブ24からイオン化装置のハウジング26内に移送する。
【0029】
内側のガスG1は、出口30でスプレー31を生成する。スプレー31は、径方向外側に拡がり、通常は出口30から下流に数cm(例えば、約1cmから10cmの間)内で、外側のガス移送チューブ24の壁によって境界が定められた外側のガスG2と混合され、外側のガスG2内に同伴されることになる。また、分析物のイオンは、出口28まで、合わせられた流れの距離d内で移送される。
【0030】
ハウジング26は、少なくともプローブ10の先端を収容し、イオン化された分析物を質量分析装置12の下流の段階に移送及びガイドするための適切な環境を維持するためのエンクロージャを提供する。図示の実施形態では、イオンは、電界により、チューブ24の出口28と、質量分析装置12の下流の要素の流入口34との間をガイドされる。ハウジング26の追加の電極(図示せず)が、流入口34へイオンをガイドすることをさらに補助するために使用される場合がある。ハウジング26は、導電材料で形成されている場合がある。ハウジング26の内部は、おおむね大気圧に維持されている場合があるが、より高い圧力(例えば、100Tから2000Tまでの間)及びより低い圧力が可能である。ハウジング26は、真空ポンプ(図示せず)によって真空にされる場合がある。
【0031】
図示の実施形態では、分析物のチューブ20及び内側のガス移送チューブ22とは、図2の断面図に最適に示されているように、同軸である場合がある。
【0032】
分析物の供給チューブ20の先端30は、溶媒和された分析物の液滴を放出する開口を有する。例えば、先端30は、50ミクロンから250ミクロンの間の内径を有するニードル開口の形態を取る場合がある。先端30は、数ミリメートルだけ多く、または少なく、内側のガス移送チューブ22の流出口から離間している場合があり、それにより、内側のガス移送チューブ22からのガス流によって促されて液滴を放出する。
【0033】
内側のガス移送チューブ22は、先端30の開口の内径の数倍(例えば、2倍から20倍の間)の内径を有する。外側のガス移送チューブ24は、内側のガス移送チューブ22の内径の数倍(例えば、2倍から5倍の間)の内径を有している場合がある。第1のガスG1は、プローブ10の外側から、移送チューブ22の長さに沿って、分析物供給チューブ20と同軸の方向に流れる。したがって、ガスは概して、分析物供給チューブ20から外側のガス移送チューブ22に、分析物供給チューブ20の先端30において放出される分析物の液滴に対して接線方向である。
【0034】
図示の実施形態では、先端30の近位の、移送チューブ22内での第1のガスG1の流量は、通常、1基準リットル毎分(SLPM:standard litres per minute)から5SLPMの間である場合があり、移送チューブ24内のガスG2の流量は、5SLPMから100SLPMの間である場合がある。
【0035】
ガスG1及びガスG2は、101kPaから1000kPaの範囲、通常は300kPaから700kPaの間の範囲の圧力で導入される場合がある。
【0036】
速度v1及び速度v2は、G1及びG2の上流の圧力、ならびに、チューブの直径に影響される。出口速度v1は、亜音速または音速である場合がある。速度v2は、通常、v1よりかなり低い。
【0037】
流入口34は、ハウジング26の方向に流入口34を出るか、流入口34の上流かつ近位に配置された第2のコーン(図示せず)を出る向流ガスの追加により、下流の大きい液滴の移送を低減する助けになるように、向流ガスを提供するようにさらに構成されている場合がある。
【0038】
任意の特定の理論によって束縛されることを望むことなく、ガス移送チューブ22内のガスG1と、移送チューブ24内のガスG2との流れの相互作用により、先端30において溶媒和された分析物の分子に剪断力が印加され、それにより、溶媒(例えば、水、メタノール等)分子から分析物を剥離し、分析物のイオンをさらに解放すると考えられる。とりわけ、図示の実施形態では、このことは、先端30において顕著な電界がない状態で達成される場合がある。
【0039】
ガスG2は、分析物及びガスG1とさらに相互作用する場合がある。この相互作用は物理的または化学的である場合があり、それにより、形成されたイオンが、次いで、これらイオンが出口28においてプローブ10を出る際に、ガスG2に同伴される。
【0040】
論じたように、プローブ10のチューブ20への電圧Vinnermost、チューブ22への電圧Vinner、及びチューブ24への電圧Vouterは、チューブ24の出口28からハウジング26を通して流入口34内にイオンをガイドするために、電界を提供するように選択される場合がある。同様に、適切な電圧が、イオンを流入口34にガイドすることをさらに補助するように、電極62に印加される場合がある。
【0041】
図示の実施形態では、プローブ10は、チューブ20、22及び24が導電性であるように構成されている。第1の動作モードでは、電圧源50は、外側のガス移送チューブ24、内側のガス移送チューブ22、及び分析物の供給チューブ20の電位をほぼ等しく維持するように構成されている場合がある。各チューブ20、22、及び24は、このため、各々が、一様な電位に維持されている場合がある。そのように構成されると、内側のガス移送チューブ22の先端30における電位は、先端30を出る液滴に顕著な電圧/電界が印加されないことから、従来型の電気スプレーのイオン化で印加される電位とは異なっている。
【0042】
チューブ20、22、及び24に印加される電圧は、質量分析装置12へのイオンの移送を最大化するために、出口28から流入口34へガイドする電界をさらに形成するように、ゼロではない場合がある。
【0043】
電圧の極性は、分析されることになる分析物の電荷に応じて選択することができる。例えば、通常、正電荷の分析物に関しては、電圧源50は、チューブ20、22、及び24を、0Vから5000Vの間の電位に維持する場合があり、負電荷の分析物に関しては0Vから-5000Vの間に維持する場合がある。
【0044】
任意選択的に、電圧Velectrodeが、分析物のイオンを出口28から流入口34にガイドすることをさらに補助するように、電極62に印加される場合がある。電極62は、流入口34内にイオンをガイドする助けになるように、チューブ20、22、及び24に印加される電圧に対して選択される、約10Vから5000Vの電圧の、尖っていないか鋭い先端のニードルを含む任意の形状のレンズである場合がある。任意選択的に、追加の電圧Vinlet(図示せず)が、約10Vから2000Vで、イオンをガイドすることのさらなる助けになるように、流入口34で電極に印加される場合がある。このため、流入口34の近位の質量分析装置12の部分は、流入口34を規定する導電材料で形成されている場合がある。代替的には、電極(図示せず)は、電位を印加することを可能にするように、流入口34のすぐ下流に配置されている場合がある。
【0045】
イオン、及びいくつかの溶媒和された分析物を搬送する、内側のガス移送チューブ22を出るガスG1は、外側の移送チューブ24内で第2のガスG2と混合され、また、ガスG2内に同伴される場合がある。外側のチューブ24内及び外側のチューブ24の流出口へ向かう第2のガスG2の流れは、適切な圧力及び流れの管理体制によって同様に維持される場合がある。
【0046】
図示の実施形態で述べたように、外側のガス移送チューブ24の出口の近位における第2のガスG2の流量は、約5SLPMから100SLPMの間である。このことを達成するために、外側の移送チューブ24の直径は、約3mmである場合があり、ガスG2の流入圧力は、数気圧である場合があり、当該技術で既知であるように、可変オリフィス(図示せず)によって制御可能である。図1に示すように、外側の移送チューブ24は、その出口28の近位で直径にさらにテーパが付されている場合がある。この方法で、移送チューブ24を出る移送ガスは、わずかに増大された速度で出る場合がある。
【0047】
イオン化された分析物を含む移送ガスG2が移送チューブ24を出ると、分析物のイオンは、チューブ24の出口28と、質量分析装置12の下流部分への流入口34との間の適切な電界の勾配により、質量分析装置12の下流の構成要素の入口にガイドされる場合がある。流入口34は、同様に、導電性であり、ステンレス鋼等の材料から金属電極として形成される場合がある。電界の勾配は、例えば、チューブ24の出口28と、質量分析装置12の下流の構成要素の流入口34との間の適切な電圧差を印加することにより、ハウジング26内で達成される場合がある。
【0048】
図示の実施形態では、電圧源50は、チューブ24の出口28と、質量分析装置12の下流部分の流入口34との間に電位を印加する場合がある。述べたように、流入口34の近位の質量分析装置12の部分も、例えば、この電位を維持することを可能にするように、導電性である場合がある。
【0049】
ハウジング26は、電圧源50により、外側のガス移送チューブ24(そしてひいては、チューブ20及び22)の電位またはこの電位に近い電位に維持される場合もあるか、単に、移送チューブ24に電気的に伝えられる場合がある。
【0050】
オプションの光子イオン化装置60は、ハウジング26内に配置されている場合がある。上述の第1の動作モードでは、光子イオン化装置60は作動していない場合があり、電圧源50は、電位Velectrodeを電極62に印加して、流出口28から流入口34へのイオンのガイドを補助する場合がある。代替的には、電極62も作動していない場合がある。一実施形態では、電圧源50は、代替的に、ゼロ電位をチューブ20、22、及び24に印加する場合がある。
【0051】
第2の動作モードでは、高い電圧Velectrodeが、例えば電圧源50により、電極62に、先端が鋭い電極に印加されて、コロナ放電を発生させる場合もある。ガスG1及びG2、ならびに溶媒和された分析物は、第1の動作モードで記載したように流れる場合がある。例えば、1000Vから6kVの間の適切な電圧が、電極62に、その先端の近位で、例えば1μAから500μAの間のある電流で印加される場合があり、コロナ放電を発生させる。ガスG2に同伴される分析物は、こうして、電極62におけるコロナ放電によってさらにイオン化される場合がある。
【0052】
この第2の動作モードでは、ガスG2に同伴された分析物は、分析物の極性、分極率、溶液マトリックス、溶液の組成、pH等に応じて、低い効率でイオン化される場合があり、また、イオン化が代わりに、電極62において有効にされる場合がある。電極62に印加される電圧Velectrodeは、ここで、電流で制御されて、コロナイオンの形成を促す場合がある。この構成では、イオン化装置14は、サンプル流入チューブ内で液体を気化し、電極62の近位でのコロナイオンの形成により、大気圧化学イオン化(APCI)源として作用する。
【0053】
さらなる第3の動作モードでは、光子イオン化装置60にエネルギが与えられる場合があり、電圧源50によってチューブ20、22、及び24に印加される電圧は、上述の電圧よりわずかに低い場合があるが、比較的等しいレベルに維持される。例えば、(接地に対して)500ボルトが、チューブ20、22、及び24の各々に印加される場合がある。光子イオン化装置60は、ガスG2に同伴される分析物を光イオン化する場合がある。明らかであり得るように、最も効率的であるように、分析物または付加される試薬ガスの種類は、光イオン化の影響を受けやすいものとする。
【0054】
このモードでは、プローブ10は、光子イオン化装置60と組み合わせて、大気圧光イオン化源として作用する。質量分析装置12の下流部分の流入口34に印加される電圧は、外側のガス移送チューブ24の出口28と流入口34との間でガイドする電界の勾配を維持するために、例えば500ボルト未満に、状況に応じて調整される場合がある。
【0055】
第4の動作モードでは、電源50は、チューブ20の先端30において電気スプレーのイオン化を有効にする電界を形成するように、チューブ20及び24に十分な電位差を印加する場合がある。例えば、1000ボルトから6000ボルトの間の電位差Vinnermost-Vouterは、陽イオンの形成のために電界を確立するように印加される場合がある(同様に、-1000ボルトから-6000ボルトが陰イオンの形成のために印加される場合がある)。外側のチューブ24に印加される電位は、イオンのガイドをさらに補助する場合がある。一実施形態では、内側のチューブ22に印加される電位は、最も内側のチューブ20に印加される電位と等しい(Vinnermost-Vinner=0)。例えば、正の電気スプレーイオンを生成するために、1000から6000の間の電圧が、最も内側のチューブ30に印加される場合があり、0から1000の間の電圧が、外側のチューブ24に印加される場合があり、それにより、電気スプレーの電界が、チューブ30とチューブ24との間で確立されるようになっている。こうして生成される電気スプレーイオンは、ガスG2に同伴される場合があり、さらに流入口34にガイドされる。他の電圧の組合せが可能である。電極62は、さらにバイアスがかけられて、イオン化された分析物を流入口34にさらにガイドする場合がある。適切な電圧が、電源50によって流入口34及び電極62(ならびに、図示されていない、任意の他のオプションのガイド電極)に印加されて、イオンを質量分析装置12に向けることを補助する場合もある。
【0056】
実際には、異なるモードにより、向上された感度、検出限界、及び再現性を含む、異なる分子の組のための良好なイオン化が提供される場合がある。
【0057】
例えば、第1のモードは、高い感度で、高い極性の分子イオンを効率的に生成する場合がある。第2のモード及び第3のモードは、APCI及びAPPI等に良好に反応する、極性の少ない分子を効率的に生成する場合がある。第4のモードは、従来型の電気スプレーに良好に反応する、極性の少ない分子イオンを効率的に生成する場合がある。
【0058】
このため、電圧源50によって印加される電圧(例えば、Vouter、Vinner、Vinnermost、及びVelectrode、ならびに光子イオン化装置60のオン/オフ制御/電圧)は、例えば、液体クロマトグラフィ分析のコラムから抽出時間に相関させるように、時間的に継続的に印加される場合がある。特有の方法が、対象の合成物に関して確立される場合があり、最適な電圧が、印加される場合があり、処理量を向上させる。
【0059】
代替的には、クロマトグラフィの流れの中で、1つまたは2つのみのイオン化モードを利用することも可能である。次いで、物理的にイオン発生源を切り替える必要なしに、第2のクロマトグラフィの流れに迅速に移行することが有益である場合がある。
【0060】
質量分析装置のデータは、作動しているイオン化モードに対応する電子識別及びタイムスタンプを伴う場合がある。この方法で、各モードからのデータを、分析物の定量化に関する適切な濃縮曲線と相関させることができ、各モードに関する迅速なデータ分析を可能にする。
【0061】
代替的なプローブ100が図3に記載されている。プローブ100は、構造的にプローブ10(図1及び図2)と同様であり、イオン化装置114の一部を形成する。プローブ100は、プローブ10のチューブ20、22、及び24に類似の3つの同心のチューブ120、122、及び124を含む。分析物供給チューブ120は、第1のガス供給チューブ122に囲まれており、第1のガス供給チューブ122は、第2のガス供給チューブ124によって囲まれている。ガスG2は、同様に、電気スプレーからのイオンの脱溶媒和及び解放をさらに補助するように、加熱される場合がある。
【0062】
しかし、ガス供給チューブ124は、プローブ10のチューブ24とは異なり、絶縁材料で形成されている。導電性の端部130は、金属の環状リングとして形成される場合があり、スリーブまたはシースが取り付けられるとともに、チューブ124から延びている。端部130は、テーパが付される場合があり、また、その頂部が先端125と整列され得るように配置されている。先端130’の長さは、混合、同伴、層流化、及び/または、形成されたイオンの効率的なイオンの搬送を可能にするために、先端125から、1mmから10mmで変化する場合がある。
【0063】
電圧源150は、チューブ120、122、及び端部130に電位を印加する場合がある。電位は、サンプル流入チューブ120と導電性の端部130との間に印加される場合があり、それにより、電気スプレーのイオン化がされる。
【0064】
チューブ120上の電圧は、0Vから5000Vの間とすることができ、端部130の電圧は、0Vから5000Vの間とすることができ、1つまたは複数の電圧源150によって供給される。例えば、陽イオンを放出するために、チューブ120の電圧は、陽イオンに関し、端部130の電圧よりプラスに数千ボルト高い場合があり、また、陰イオンを生成するために、マイナスに数千ボルト高い場合がある。先端125と、質量分析装置の下流の段の流入口134と、オプションの電極162との間の電界は、電極62が構成されるのと同じ方法で、端部130から流入口134にイオンをガイドするように構成されている。
【0065】
代替的実施形態では、端部130は、チューブ124から別様に絶縁させることができる。この方法で、チューブ124を任意の材料で形成することができる。端部130は、チューブ124からこの端部130を物理的に分離すること、または端部130とチューブ124との間にスペース(例えば、絶縁材料の環状スペーサの形態)を介在させることにより、チューブ124から絶縁される場合がある。
【0066】
プローブ10及び100は、イオンの1つの極性に関して構成されたチューブ20/120とともに作動することができるが、質量分析装置の下流の段の流入口34/134にイオンをガイドする電界が、逆の極性で構成されている。例えば、プローブ100に関し、-3000Vがチューブ120に印加される場合があり、+2000Vが端部130に印加される。これにより、負の電気スプレーから生成された陽イオンが、流入口134にガイドされ、+500Vに維持される。同様に、印加される電圧の極性を切り替えることにより、陰イオンを正の電気スプレーから流入口134に、-500 Vでガイドすることが可能である。これら電圧は、単に例示的範囲であることを理解されたい。
【0067】
しかし、第2のガス供給チューブ124は、チューブ24とは異なり、導電性の端部130を伴い、絶縁材料で形成されている。端部130にはテーパを付す必要はない。
【0068】
図4は、イオン化装置114’の一部を形成するさらなるプローブ100’を示す。プローブ100’は、イオン化装置14のプローブ10の機能的構成要素に類似であるが、コンパクトに配置された機能的構成要素を含む。このため、チューブ120’、122’、及び124’、1つまたは複数の電圧源(複数可)150’、ならびにガス流G1及びG2は、プローブ100(図3)における対応するものと概して同じであり、電気スプレーの電界が先端125’と端部130’との間に形成されている。しかし、導電性の端部130’は、電気スプレープロセスから形成されたイオンの同伴及びガイドを可能にするために、先端30より長くなっており、絶縁体(明確には示されていない)によって端部130’から絶縁された流入口134’にガイドし、こうして、感度を向上させ、ハウジング(ハウジング26に類似)の必要性を除去している。
【0069】
図4に記載の実施形態では、ESIイオンを生成するために、チューブ120’に5000V、チューブ130’に1000V、流入口134’に0Vから500Vの電圧が印加される場合がある。逆の極性が陰イオンに使用される場合がある。さらに、電極162’(電極62に類似)及び光子イオン化装置160’(光子イオン化装置60に類似)が、外側のガス移送チューブ24’(図1の外側のガス移送チューブ24に類似)内に配置されており、また、図1を参照して記載したように選択的に作動される場合がある。
【0070】
イオン化装置14の同様の細長いチューブ24も、イオン化装置14に適用される場合があり、それにより、チューブ24は、34を通してイオンをガイドする助けになるように、細長くなっている場合があり、流入口34及びチューブ24に別々の電圧を許容するための絶縁体を利用する。
【0071】
当然、上述の実施形態は、説明的ものに過ぎず、いずれの方法でも限定するものではない。記載の実施形態は、形態、パーツの配置、詳細、及び動作の順番に多くの変更の余地がある。本発明は、そのような変更形態すべてを、特許請求の範囲によって規定されるその範囲に包含することを意図している。
図1
図2
図3
図4