IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人京都大学の特許一覧

特許7011856膵芽細胞の製造方法および膵芽細胞を含む膵疾患治療剤
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-01-19
(45)【発行日】2022-01-27
(54)【発明の名称】膵芽細胞の製造方法および膵芽細胞を含む膵疾患治療剤
(51)【国際特許分類】
   C12N 5/071 20100101AFI20220120BHJP
   C12N 5/0735 20100101ALI20220120BHJP
【FI】
C12N5/071
C12N5/0735
【請求項の数】 15
(21)【出願番号】P 2020103076
(22)【出願日】2020-06-15
(62)【分割の表示】P 2016521137の分割
【原出願日】2015-05-20
(65)【公開番号】P2020156504
(43)【公開日】2020-10-01
【審査請求日】2020-06-15
(31)【優先権主張番号】P 2014105049
(32)【優先日】2014-05-21
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】504132272
【氏名又は名称】国立大学法人京都大学
(74)【代理人】
【識別番号】100101454
【弁理士】
【氏名又は名称】山田 卓二
(74)【代理人】
【識別番号】100106518
【弁理士】
【氏名又は名称】松谷 道子
(74)【代理人】
【識別番号】100138911
【弁理士】
【氏名又は名称】櫻井 陽子
(72)【発明者】
【氏名】長船 健二
(72)【発明者】
【氏名】豊田 太郎
【審査官】宮岡 真衣
(56)【参考文献】
【文献】特表2012-507281(JP,A)
【文献】特表2012-508584(JP,A)
【文献】国際公開第2013/184888(WO,A1)
【文献】国際公開第2013/163739(WO,A1)
【文献】C. METCALFE ET AL,Journal of Cell Science,Vol.124 (2011),p.3537-3544
【文献】T.TOYODA, ET AL,Stem Cell Research,Vol.14 (Epub 2015.1.28),p.185-197
(58)【調査した分野】(Int.Cl.,DB名)
C12N 5/00-5/28
A61K 35/00-35/55
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
以下の工程(i)から(iii)を含む、多能性幹細胞から膵芽細胞を製造する方法:
(i)多能性幹細胞を、アクチビンを含む培地で培養する工程、
(ii)工程(i)で得られた細胞を、KGFを含む培地で培養し、次いでKGF、BMP阻害剤、レチノイン酸誘導体およびヘッジホッグ経路阻害剤を含む培地で培養する工程、
(iii)工程(ii)で得られた細胞を、単一細胞へ分離した後、当該細胞をKGF、EGFおよびBMP阻害剤を含み、さらにROCK阻害剤または非筋ミオシンII阻害剤を含む培地中、接着培養条件下で培養する工程。
【請求項2】
前記ROCK阻害剤または非筋ミオシンII阻害剤が、Y-27632、Fasudil、SR3677、GSK269962、H-1152およびBlebbistatinから成る群より選択されるいずれか一つの化合物である、請求項1に記載の方法。
【請求項3】
前記ROCK阻害剤または非筋ミオシンII阻害剤がY-27632である、請求項2に記載の方法。
【請求項4】
培地中のY-27632の濃度が10~200μMである、請求項3に記載の方法。
【請求項5】
前記ROCK阻害剤または非筋ミオシンII阻害剤がBlebbistatinである、請求項2に記載の方法。
【請求項6】
培地中のBlebbistatinの濃度が5~20μMである、請求項5に記載の方法。
【請求項7】
前記工程(i)において、アクチビンを含む培地がさらにGSK3阻害剤を含む、請求項1から6のいずれか1項に記載の方法。
【請求項8】
前記GSK3阻害剤が、CHIR99021である、請求項7に記載の方法。
【請求項9】
前記BMP阻害剤が、Nogginである、請求項1から8のいずれか1項に記載の方法。
【請求項10】
前記レチノイン酸誘導体が、TTNPBである、請求項1から9のいずれか1項に記載の方法。
【請求項11】
前記ヘッジホッグ経路阻害剤が、KAAD‐シクロパミンである、請求項1から10のいずれか1項に記載の方法。
【請求項12】
前記工程(iii)において、工程(ii)で得られた細胞を、単一細胞へ分離した後、KGF、BMP阻害剤、レチノイン酸誘導体およびヘッジホッグ経路阻害剤を含む培地で培養し、その後さらにKGF、EGFおよびBMP阻害剤を含み、さらにROCK阻害剤または非筋ミオシンII阻害剤を含む培地で培養する、請求項1から11のいずれか1項に記載の方法。
【請求項13】
前記膵芽細胞がPDX1陽性およびNKX6.1陽性である請求項1から12のいずれか1項に記載の方法。
【請求項14】
多能性幹細胞が、ヒト細胞である、請求項1から13のいずれか1項に記載の方法。
【請求項15】
多能性幹細胞が、ヒトiPS細胞である、請求項14に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、膵芽細胞の製造方法および同方法によって製造された膵芽細胞を含む膵疾患治療剤に関する。本願はさらに、当該膵芽細胞を用いる膵疾患の治療法に関する。
【背景技術】
【0002】
膵臓は、膵リパーゼ、トリプシン、エラスターゼ、膵アミラーゼなどの消化酵素を分泌する外分泌腺および、グルカゴン、インスリン、ソマトスタチン、膵ポリペプチド(PP)等の膵ホルモンを分泌する内分泌腺として機能している。近年、胃分泌ホルモンであるグレリンが膵臓の内分泌細胞からも分泌されることが報告されている。この膵ホルモンは、膵臓の中のα細胞、β細胞、δ細胞およびPP細胞の4種の細胞からなる膵島と呼ばれる細胞塊により産生されている。
【0003】
ここで、インスリンは、ブドウ糖の利用、蛋白の合成、中性脂肪の形成および貯蔵を促進し、血糖値を低下させ、血糖を正しい濃度に保つ重要な役割を果たす。グルカゴンは、肝糖原分解、糖新生作用などを介する血糖上昇ホルモンとしてインスリンと並び糖代謝調節機構において重要な役割を担っている。ソマトスタチンは、ソマトスタチンレセプターへの結合を介して作用を発現し、膵臓でのグルカゴン、インスリン等の種々のホルモン分泌を抑制する。PPは、食物摂取に対応してランゲルハンス島の細胞から分泌されるホルモンであり、飽食因子として知られ、食物摂取を抑制し、体重増加を低減させる働きがある。グレリンは食物摂取を刺激し、脂肪酸化を低下させることによって体重を増加させることが知られている。
【0004】
糖尿病は、インスリンが不足したりその働きが失われたりすることによって発症する疾患であり、一度発症すると根治させることが難しい疾患である。糖尿病は、1型糖尿病(インスリン依存性糖尿病)と2型糖尿病(インスリン非依存性糖尿病)の大きく2つのタイプに分類することができる。
【0005】
2型糖尿病は、インスリンに対する抵抗性を獲得することで発症する慢性疾患であり、食べ過ぎや運動不足によっておこる肥満やストレス等、生活習慣が発症メカニズムと考えられている糖尿病である。2型糖尿病は中高年で発病することが多く、糖尿病患者の多くは2型糖尿病を罹患している。
【0006】
一方、1型糖尿病は、自己免疫疾患やウイルス感染等によってβ細胞(インスリン産生細胞)が破壊され、インスリンが体内に分泌されないことによっておこる疾患である。インスリンの投与による対症療法が主に行われているが、体内で常に変化する血糖値を自動的にコントロールして、患者の負担を軽くできる治療法として、膵臓移植又は膵島移植も行われている。この治療法によって正常な血糖値を達成することは可能であるが、移植可能な膵臓又は膵島が不足しているのが現状である。また、移植片に対する免疫拒絶反応を回避するために、患者は免疫抑制剤を一生服用し続ける必要があり、感染症の危険性や免疫抑制剤による副作用等の問題が残る。
【0007】
1型糖尿病の治療法として、体外で患者由来の細胞からインスリン産生細胞自体を誘導し、誘導したインスリン産生細胞を患者の生体内に移植することが検討されている。インスリン産生細胞は例えば、患者の膵管上皮由来細胞を体外に取り出して分化させる等により得ることができる法。
【0008】
インスリン産生細胞を得る方法としては、胚性幹(ES)細胞や人工多能性幹(iPS)細胞などの多能性幹細胞をアクチビン(Activin)やレチノイン酸(RA)を用いて分化誘導する方法が例示される(特許文献1、非特許文献1から5)。さらに、多能性幹細胞へPDX1を導入して培養する方法(特許文献2および特許文献3)、低分子化合物を適宜組み合わせて多能性幹細胞に作用させてインスリン産生細胞を製造する方法(特許文献4および非特許文献6)が知られている。しかしながらこのようにin vitroで得られたインスリン産生細胞を生体内に投与して、グルコース応答能を獲得したという報告は無い。一方、膵前駆細胞を製造し、生体内に投与した場合において、投与した細胞からグルコース濃度に応じてインスリンを分泌した報告(非特許文献7および非特許文献8)。
【先行技術文献】
【特許文献】
【0009】
【文献】特開2009-225661号公報
【文献】米国特許7534608号公報
【文献】特開2006-075022号公報
【文献】WO2011/081222
【非特許文献】
【0010】
【文献】E.Kroon et al.,Nature Biotechnology(2008)Vol.26,No.4:443-452
【文献】K.A.D’Amour et al.,Nature Biotechnology(2006)Vol.24,No.11:1392-1401
【文献】W.Jiang,Cell Research(2007)17:333-344
【文献】J.H.Shim et al.,Diabetologia(2007)50:1228-1238
【文献】R.Maehr et al.,PNAS(2009),vol.106,No.37:15768-15773
【文献】Kunisada Y et al.,Stem Cell Res.(2012) vol.8,No.2:274-284.
【文献】Kroon E et al.,Nat Biotechnol.(2008) vol.26,No.4:443-452.
【文献】Rezania A et al., Diabetes.(2012) vol.61,No.8:2016-2029.
【発明の概要】
【発明が解決しようとする課題】
【0011】
一の態様において、本願はPDX1陽性NKX6.1陰性細胞から膵芽細胞を分化誘導する方法を提供することを目的とする。より具体的には、多能性幹細胞から誘導したPDX1陽性NKX6.1陰性細胞をさらに分化する工程を含み、膵芽細胞を分化誘導する方法を提供することを目的とする。
他の態様において、膵臓疾患治療剤、並びに膵臓疾患治療方法を提供することを目的とする。
【課題を解決するための手段】
【0012】
本発明者らは上記の課題を解決すべく鋭意検討を行った結果、PDX1陽性NKX6.1陰性細胞を、細胞凝集塊の生成される条件下でKGF、EGFおよびBMP阻害剤を含む培地中で培養することで膵芽細胞を分化誘導できることを初めて見出した。本発明はそのような知見を基にして完成されたものである。
【0013】
すなわち、本発明は以下の特徴を有する:
[1] PDX1陽性NKX6.1陰性細胞を、KGF、EGFおよびBMP阻害剤を含む培地で培養する工程を含む、膵芽細胞の製造方法。
[2] 前記培地が、さらにROCK阻害剤または非筋ミオシンII阻害剤を含む培地である、[1]に記載の方法。
[3] 前記ROCK阻害剤または非筋ミオシンII阻害剤が、Y-27632、Fasudil、SR3677、GSK269962、H-1152およびBlebbistatinから成る群より選択されるいずれか一つの化合物である、[2]に記載の方法。
[4] 前記培養が、接着培養条件下で行われる、[2]または[3]のいずれか1項に記載の方法。
[5] 前記培養が、細胞凝集塊の生成される条件下で行われる、[1]に記載の方法。
[6] 前記PDX1陽性NKX6.1陰性細胞が、次の2つの工程を含む方法で多能性幹細胞より製造された細胞である、[1]から[5]のいずれか1項に記載の方法:
(1)多能性幹細胞を、アクチビンを含む培地で培養する工程、および
(2)工程(1)で得られた細胞を、KGFを含む培地で培養する工程。
[7] 前記工程(1)において、アクチビンを含む培地がさらにGSK3阻害剤を含む、[6]に記載の方法。
[8] 前記工程(2)において、KGFを含む培地がさらにBMP阻害剤、レチノイン酸誘導体およびヘッジホッグ経路阻害剤を含む、[6]または[7]のいずれか1項に記載の方法。
[9] 前記BMP阻害剤が、Nogginである、[1]から[8]のいずれか1項に記載の方法。
[10] 前記GSK3阻害剤が、CHIR99021である、[7]から[9]のいずれか1項に記載の方法。
[11] 前記レチノイン酸誘導体が、TTNPBである、[8]から[10]のいずれか1項に記載の方法。
[12] 前記ヘッジホッグ経路阻害剤が、KAAD‐シクロパミンである、[8]から[11]のいずれか1項に記載の方法。
[13] 前記膵芽細胞がPDX1陽性およびNKX6.1陽性である[1]から[12]のいずれか1項に記載の方法。
[14] 前記膵芽細胞が、ヒト細胞である、[1]から[13]のいずれか1項に記載の方法。
[15] 以下の工程(i)から(iii)を含む、多能性幹細胞から膵芽細胞を製造する方法:
(i)多能性幹細胞を、アクチビンを含む培地で培養する工程、
(ii)工程(i)で得られた細胞を、KGFを含む培地で培養する工程、
(iii)工程(ii)で得られた細胞を、単一細胞へ分離し、KGF、EGFおよびBMP阻害剤を含む培地で培養する工程。
[16] 前記工程(iii)で用いるKGF、EGFおよびBMP阻害剤を含む培地が、さらにROCK阻害剤または非筋ミオシンII阻害剤を含む培地である、[15]に記載の方法。
[17] 前記ROCK阻害剤または非筋ミオシンII阻害剤が、Y-27632、Fasudil、SR3677、GSK269962、H-1152およびBlebbistatinから成る群より選択されるいずれか一つの化合物である、[16]に記載の方法。
[18] 前記工程(iii)が、単一細胞へ分離し、KGF、BMP阻害剤、レチノイン酸誘導体およびヘッジホッグ経路阻害剤を含む培地で培養後、KGF、EGFおよびBMP阻害剤を含む培地で培養する工程である、[16]または[17]のいずれか1項に記載の方法。
[19] 前記工程(iii)での培養が、接着培養条件下で行われる、[16]から[18]のいずれか1項に記載の方法。
[20] 前記工程(iii)での培養が、浮遊培養条件下で行われる、[15]に記載の方法。
[21] 前記工程(i)において、アクチビンを含む培地がさらにGSK3阻害剤を含む、[15]から[20]のいずれか1項に記載の方法。
[22] 前記工程(ii)において、KGFを含む培地がさらにBMP阻害剤、レチノイン酸誘導体およびヘッジホッグ経路阻害剤を含む、[15]から[21]のいずれか1項に記載の方法。
[23] 前記BMP阻害剤が、Nogginである、[15]から[22]のいずれか1項に記載の方法。
[24] 前記GSK3阻害剤が、CHIR99021である、[21]から[23]のいずれか1項に記載の方法。
[25] 前記レチノイン酸誘導体が、TTNPBである、[18]、または[22]から[24]のいずれか1項に記載の方法。
[26] 前記ヘッジホッグ経路阻害剤が、KAAD‐シクロパミンである、[18]、または[22]から[26]のいずれか1項に記載の方法。
[27] 前記膵芽細胞が、PDX1陽性およびNKX6.1陽性である[15]から[26]のいずれか1項に記載の方法。
[28] 前記膵芽細胞が、ヒト細胞である、[15]から[27]のいずれか1項に記載の方法。
[29] [1]から[28]のいずれか1項に記載の方法で製造された膵芽細胞を含む、膵疾患の治療剤。
[30] 前記膵疾患が糖尿病である、[29]に記載の治療剤。
[31] 前記糖尿病が、1型糖尿病である、[30]に記載の治療剤。
[32] [1]から[28]のいずれか1項に記載の方法で製造された膵芽細胞の、膵疾患の治療剤の製造のための使用。
[33] 膵疾患治療のために用いられる、[1]から[28]のいずれか1項に記載の方法で製造された膵芽細胞。
[34] [1]から[28]のいずれか1項に記載の方法で製造された膵芽細胞を膵疾患の治療が必要な対象へ移植することを含む、膵疾患の治療方法。
【発明の効果】
【0014】
本発明者らによってPDX1陽性NKX6.1陰性細胞から膵芽細胞へ誘導することが可能となり、当該膵芽細胞は、生体内でグルコース応答性のインスリン産生細胞へとなることが初めて見出された。本願で提供される方法で製造された膵芽細胞は、糖尿病等の膵臓疾患の再生医療に使用され得る。
【図面の簡単な説明】
【0015】
図1図1は、多能性幹細胞から膵芽細胞を製造するプロトコールの概略図を示す。
図2図2は、各誘導方法で得られた細胞のPDX1陽性NKX6.1陰性細胞およびPDX1陽性NKX6.1陽性細胞の含有率を示す。図中d0は第2工程終了後の細胞を示し、W/Oは、第3工程において細胞を解離せず、培地交換のみを行った4日目の細胞を示し、Monolayerは、第3工程において接着培養を行った4日目の細胞を示し、Aggregateは、第3工程において浮遊培養を行った4日目の細胞を示す。(N=3-4)
図3図3は、各多能性幹細胞株(KhES3、585A1、604B1、692D2、648B1および409B2)から得られたPDX1陽性NKX6.1陽性細胞の含有率を示す。図中2Dは、第3工程において接着培養を行った場合を示し、Aggは、第3工程において浮遊培養を行った場合を示す。(Mean±S.D.,n=3)
図4図4Aは、第3工程の各経過日数後の細胞におけるPDX1およびNKX6.1の発現強度をフローサイトメーターを用いて測定した結果を示す。図4Bは、第3工程の各経過日数後のPDX1陽性NKX6.1陽性細胞の含有率を示す。(Mean±S.D.,n=3)
図5-1】図5Aは、第3工程4日目の細胞凝集塊における膵芽細胞マーカー(PDX1、NKX6.1、SOX9およびGATA4)に対する免疫染色像を示す。
図5-2】図5Bは、第3工程4日目の細胞凝集塊における内分泌細胞マーカー(INS、GCG、SomatostatinおよびGhrelin)に対する免疫染色像を示す。
図6-1】図6Aは、第3工程12日目の細胞凝集塊における膵芽細胞マーカー(PDX1、NKX6.1、SOX9およびGATA4)に対する免疫染色像を示す。
図6-2】図6Bは、第3工程12日目の細胞凝集塊における内分泌細胞マーカー(INS、GCG、SomatostatinおよびGhrelin)に対する免疫染色像を示す。
図7図7Aは、第3工程における培養条件を検討するための、プロトコールの概略図を示す。図中、黒矢印は、Noggin(NOG)、KGFおよびEGFを培養液に添加する条件を示し、白矢印は、Noggin(NOG)を添加しない、またはNoggin(NOG)、KGFおよびEGFを培養液に添加しない条件を示す。図7Bは、各条件で得られた細胞のPDX1陽性NKX6.1陰性細胞およびPDX1陽性NKX6.1陽性細胞の含有率を示す。
図8図8Aは、第3工程におけるALK5阻害剤IIの効果を検討するための、プロトコールの概略図を示す。図中、矢印は、ALK5阻害剤IIを添加する期間を示す。図8Bは、ALK5阻害剤IIを添加しなかった条件(左図)およびALK5阻害剤IIを添加した条件(右図)におけるPDX1(縦軸)およびNKX6.1(横軸)の発現をフローサイトメーターで測定した結果を示す。図中、数字は、PDX1陽性およびNKX6.1陽性の細胞の含有率を示す。
図9図9は、免疫不全マウス(NOD. CB17-Prkdcscid/J)の副精巣周囲脂肪組織へ移植した30日後の移植部位におけるPDX1およびインスリンに対する免疫染色像を示す。
図10図10Aは、誘導した膵芽細胞を免疫不全マウスの腎被膜下へ移植した移植後の日数に対するマウスの血漿中のヒトC-Peptide量を示す。図10Bは、グルコース負荷(+)による膵芽細胞移植マウスの血漿中のヒトC-Peptideの変化量を示す。
図11-1】図11Aは、多能性幹細胞から膵芽細胞を製造する接着条件プロトコールの概略図を示す。
図11-2】図11Bは、第3工程においてY-27632を50μM用いた場合(右図)での、膵芽細胞マーカー(PDX1(下図)およびNKX6.1(上図))に対する免疫染色像を示す。図中Water(左図)は陰性対照を示す。図11Cは、第3工程において各濃度のY-27632を用いた場合のPDX1陽性NKX6.1陽性細胞およびPDX1陽性NKX6.1陰性細胞の含有率を示す。
図12-1】図12Aは、多能性幹細胞から膵芽細胞を製造する接着条件の改変プロトコールの概略図を示す。
図12-2】図12Bは、改変プロトコールの第3工程においてFasudilを50μM用いた場合(右図)での、膵芽細胞マーカー(PDX1(下図)およびNKX6.1(上図))に対する免疫染色像を示す。図中Water(左図)は陰性対照を示す。図12Cは、第3工程において各濃度のFasudilを用いた場合のPDX1陽性NKX6.1陽性細胞およびPDX1陽性NKX6.1陰性細胞の含有率を示す。図中、Y50は、陽性対照として、Y-27632を50μM用いた場合の結果を示す。
図13-1】図13Aは、改変プロトコールの第3工程においてSR3677を5μM用いた場合(右図)での、NKX6.1に対する免疫染色像を示す。図中DMSO(左図)は陰性対照を示す。図13Bは、改変プロトコールの第3工程において各濃度のSR3677を用いた場合のNKX6.1陽性細胞の含有率を示す。図中、Y50は、陽性対照として、Y-27632を50μM用いた場合の結果を示す。
図13-2】図13Cは、改変プロトコールの第3工程においてGSK269962を0.1μM用いた場合(右図)での、NKX6.1に対する免疫染色像を示す。図中DMSO(左図)は陰性対照を示す。図13Dは、改変プロトコールの第3工程において各濃度のGSK269962を用いた場合のNKX6.1陽性細胞の含有率を示す。図中、Y50は、陽性対照として、Y-27632を50μM用いた場合の結果を示す。
図14-1】図14Aは、改変プロトコールの第3工程においてH-1152を50μM用いた場合(右図)での、NKX6.1に対する免疫染色像を示す。図中DMSO(左図)は陰性対照を示す。図14Bは、改変プロトコールの第3工程において各濃度のH-1152を用いた場合のNKX6.1陽性細胞の含有率を示す。図中、Y50は、陽性対照として、Y-27632を50μM用いた場合の結果を示す。
図14-2】図14Cは、改変プロトコールの第3工程においてBlebbistatinを5μM用いた場合(右図)での、膵芽細胞マーカー(PDX1(下図)およびNKX6.1(上図))に対する免疫染色像を示す。図中DMSO(左図)は陰性対照を示す。図14Dは、改変プロトコールの第3工程において各濃度のBlebbistatinを用いた場合のPDX1陽性NKX6.1陽性細胞の含有率を示す。図中、Y50は、陽性対照として、Y-27632を50μM用いた場合の結果を示す。
【発明を実施するための形態】
【0016】
本願の一つの態様として、PDX1陽性NKX6.1陰性細胞をKGF、EGFおよびBMP阻害剤を含む培地で培養する工程を含む、膵芽細胞を製造する方法を提供する。
【0017】
膵芽細胞とは、内分泌細胞、膵管細胞および外分泌細胞などの膵臓を形成する細胞へと分化誘導できる細胞であり、少なくともPDX1およびNKX6.1が発現している細胞が例示される。このほかにも、SOX9、またはGATA4などの遺伝子マーカーが発現している細胞でも良い。
【0018】
本態様によって製造される膵芽細胞は、他の細胞種が含まれる細胞集団として提供されてもよく、純化された集団であってもよい。好ましくは、30%以上、40%以上、50%以上、60%以上、70%以上または80%以上の膵芽細胞が含まれる細胞集団である。
【0019】
PDX1陽性NKX6.1陰性細胞から膵芽細胞を製造するにあたり、当該PDX1陽性NKX6.1陰性細胞は、KGF、EGFおよびBMP阻害剤を含む培地で細胞凝集塊の生成される条件下で培養しても良い。「細胞凝集塊の生成される条件下」とは、特に限定されず、培地中で細胞凝集塊が得られれば良い。例えば任意の方法で実質的に分離(または解離)することで単一細胞の状態とした後浮遊培養しても、または、予め細胞同士が接着した細胞凝集塊の状態で培養してもよい。好ましくは、単一細胞の状態に分離して浮遊培養する方法である。分離した単一細胞を浮遊培養することによって、細胞同士が接着して細胞凝集塊が生成する。あるいは、分離した細胞を遠心することで、細胞凝集塊を作製しても良い。分離の方法としては、例えば、力学的分離や、プロテアーゼ活性とコラゲナーゼ活性を有する分離溶液(例えば、トリプシン、トリプシンとコラゲナーゼの含有溶液Accutase(TM)およびAccumax(TM)(Innovative Cell Technologies, Inc)が挙げられる)またはコラゲナーゼ活性のみを有する分離溶液を用いた分離が挙げられる。
【0020】
浮遊培養とは、細胞を培養皿へ非接着の状態で培養することである。特に限定はされないが、細胞との接着性を向上させる目的で人工的に処理(例えば、細胞外マトリックス等によるコーティング処理)されていないもの、または、人工的に接着を抑制する処理(例えば、ポリヒドロキシエチルメタクリル酸(poly-HEMA)または2-メタクリロイルオキシエチルホスホリルコリンの重合体(Lipidure)によるコーティング処理)したものを使用して行うことができる。
【0021】
細胞凝集塊の大きさは、特に限定されないが、少なくとも3×10個以上の細胞によって細胞凝集塊が形成されていても良く、細胞凝集塊を構成する細胞数として、例えば、1×10個以上、2×10個以上、3×10個以上、4×10個以上、5×10個以上が挙げられる。
【0022】
他の態様として、PDX1陽性NKX6.1陰性細胞は単一細胞の状態に分離して接着培養する。または、単一細胞の状態に分離した後、後述する(工程2)で使用される培地中で接着培養する。当該(工程2)で使用される培地中で接着培養する期間は、特に限定されないが、例えば、1日以上、2日以上または3日以上が挙げられ、より好ましくは、1日である。当該(工程2)で使用される培地には、多能性幹細胞を単一細胞の状態に分離した際のアポトーシスを抑制する目的でROCK阻害剤を使用することが望ましく、当該ROCK阻害剤は、後述するものと同様のものを用いることができ、好ましくは、Y-27632である。
【0023】
本願明細書及び請求の範囲において接着培養とは、コーティング処理された培養皿にて培養することである。コーティング剤としては、例えば、マトリゲル(BD Biosciences)、Synthemax(Corning)、ゼラチン、細胞外タンパク質(例えば、コラーゲン、ラミニン(例えば、ラミニン111、411または511)、ヘパラン硫酸プロテオグリカン、およびエンタクチン等)、または当該細胞外タンパク質の断片、およびこれらの組み合わせが挙げられる。
【0024】
PDX1陽性NKX6.1陰性細胞から膵芽細胞の培養工程に使用される培地は、動物細胞の培養に用いられる基礎培地へKGF、EGFおよびBMP阻害剤を適宜添加して調製することができる。基礎培地としては、例えば、MEM Zinc Option培地、IMEM Zinc Option培地、IMDM培地、Medium 199培地、Eagle's Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco's modified Eagle's Medium(DMEM)培地、Ham's F12培地、RPMI 1640培地、Fischer's培地、およびこれらの混合培地などが包含される。基礎培地には、血清(例えば、ウシ胎児血清(FBS))が含有されていてもよいし、または無血清でもよい。必要に応じて、例えば、アルブミン、トランスフェリン、KnockOut Serum Replacement(KSR)(ES細胞培養時の血清代替物)(Invitrogen)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3'-チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、GlutaMAX(Invitrogen)、非必須アミノ酸(NEAA)、ビタミン、増殖因子、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類、およびこれらの同等物などの1つ以上の物質も含有しうる。1つの実施形態において、基礎培地は、B27サプリメントを含むIMEM Zinc Option培地である。
【0025】
KGFは、Keratinocyte Growth Factorと呼ばれるタンパク質であり、FGF-7と呼ばれることもある。KGFは、R&D systems社等の市販されているものを使用することができる。KGFの濃度は、1 ng/mlから1 μg/ml、好ましくは、5 ng/mlから500 ng/ml、より好ましくは、10 ng/mlから200 ng/mlである。
【0026】
EGFは、上皮成長因子またはEpidermal Growth Factorと呼ばれるタンパク質である。EGFは、R&D systems社等の市販されているものを使用することができる。EGFの濃度は、1 ng/mlから1 μg/ml、好ましくは、5 ng/mlから500 ng/ml、より好ましくは、10 ng/mlから100 ng/mlである。
【0027】
BMP阻害剤は、Chordin、Noggin、Follistatin、などのタンパク質性阻害剤、Dorsomorphin (すなわち、6-[4-(2-piperidin-1-yl-ethoxy)phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a]pyrimidine)、その誘導体 (P. B. Yu et al. (2007), Circulation, 116:II_60; P.B. Yu et al. (2008), Nat. Chem. Biol., 4:33-41; J. Hao et al. (2008), PLoS ONE, 3(8):e2904)およびLDN-193189(すなわち、4-(6-(4-(piperazin-1-yl)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)quinoline)が例示される。好ましくは、Nogginである。Nogginは、Peprotech社等の市販されているものを使用することができる。
【0028】
BMP阻害剤としてNogginを用いる場合、その濃度は、1 ng/mlから1 μg/ml、好ましくは、5 ng/mlから500 ng/ml、より好ましくは、50 ng/mlから200 ng/mlである。
【0029】
PDX1陽性NKX6.1陰性細胞から膵芽細胞の培養工程に使用される培地は、さらにROCK阻害剤または非筋ミオシンII阻害剤を含んでいてもよい。上述したPDX1陽性NKX6.1陰性細胞を接着培養を行う場合においては、ROCK阻害剤または非筋ミオシンII阻害剤を培地へさらに添加することが好ましい。
ROCK阻害剤は、Rho-キナーゼ(ROCK)の機能を抑制できるものである限り特に限定されず、例えば、Y-27632(例、Ishizaki et al., Mol. Pharmacol. 57, 976-983 (2000);Narumiya et al., Methods Enzymol. 325,273-284 (2000)参照)、Fasudil/HA1077(例、Uenata et al., Nature 389: 990-994 (1997)参照)、SR3677(例、Feng Y et al., J Med Chem. 51: 6642-6645(2008)参照)、GSK269962(例、Stavenger RA et al., J Med Chem. 50: 2-5 (2007)またはWO2005/037197参照)、H-1152(例、Sasaki et al., Pharmacol. Ther. 93: 225-232 (2002)参照)、Wf-536(例、Nakajima et al., Cancer Chemother Pharmacol. 52(4): 319-324 (2003)参照)およびそれらの誘導体、ならびにROCKに対するアンチセンス核酸、RNA干渉誘導性核酸(例、siRNA)、ドミナントネガティブ変異体、およびそれらの発現ベクターが挙げられる。また、ROCK阻害剤としては他の公知の低分子化合物も使用できる(例えば、米国特許出願公開第2005/0209261号、同第2005/0192304号、同第2004/0014755号、同第2004/0002508号、同第2004/0002507号、同第2003/0125344号、同第2003/0087919号、及び国際公開第2003/062227号、同第2003/059913号、同第2003/062225号、同第2002/076976号、同第2004/039796号参照)。本発明では、1種または2種以上のROCK阻害剤が使用され得る。本工程で用いる好ましいROCK阻害剤としては、Y-27632、Fasudil/HA1077、SR3677、GSK269962およびH-1152が挙げられる。
【0030】
ROCK阻害剤としてY-27632を用いる場合の培地中の濃度は、0.1μMから100μM、好ましくは、1μMから500μM、さらに好ましくは、10μMから200μMである。
【0031】
本発明において、ROCK阻害剤としてFasudil/HA1077を用いる場合の培地中の濃度は、1μMから100μM、好ましくは、10μMから100μMである。
【0032】
本発明において、ROCK阻害剤としてSR3677を用いる場合の培地中の濃度は、0.1μMから50μM、好ましくは、0.5μMから50μMである。
【0033】
本発明において、ROCK阻害剤としてGSK269962を用いる場合の培地中の濃度は、0.001μMから100μM、好ましくは、0.005μMから50μM、さらに好ましくは、0.05μMから120μMである。
【0034】
本発明において、ROCK阻害剤としてH-1152を用いる場合の培地中の濃度は、5μMから100μM、好ましくは、10μMから50μMである。
【0035】
非筋ミオシンII阻害剤は、非筋ミオシンIIの重鎖アイソフォームの一つである非筋ミオシンIIAまたは非筋ミオシンIIBの重鎖サブユニットのATPase活性の阻害剤、ミオシン軽鎖キナーゼの阻害剤が例示される。このような薬剤として、例えば、ブレビスタチン(Blebbistatin)A3、Calphostin C、Goe6976、Goe7874、Fasudil/HA1077、Hypericin、K-252a、KT5823、ML-7、ML-9、Piceatannol、Staurosporine、W-5、W-7、W-12、W-13、Wortmannin等が挙げられるがこれらに限定されない。本工程で用いる好ましい非筋ミオシンII阻害剤としては、ブレビスタチンおよびFasudil/HA1077が挙げられる。
【0036】
本発明において、非筋ミオシンII阻害剤としてブレビスタチンを用いる場合の培地中の濃度は、1μMから200μM、好ましくは、10μMから100μMである。
【0037】
本発明のPDX1陽性NKX6.1陰性細胞から膵芽細胞の培養工程に使用される培地は、さらにTGFβ阻害剤を含んでいてもよい。TGFβの受容体への結合からSMADへと続くシグナル伝達を阻害する物質であり、受容体であるALKファミリーへの結合を阻害する物質、またはALKファミリーによるSMADのリン酸化を阻害する物質である限り特に限定されず、例えば、Lefty-1(NCBI Accession No.として、マウス:NM_010094、ヒト:NM_020997が例示される)、SB431542、SB202190(以上、R.K.Lindemann et al., Mol. Cancer, 2003, 2:20)、SB505124 (GlaxoSmithKline)、 NPC30345 、SD093、 SD908、SD208 (Scios)、LY2109761、LY364947、 LY580276 (Lilly Research Laboratories)、A-83-01(WO 2009146408) ALK5阻害剤II(2-[3-[6-メチルピリジン-2-イル]-1H-ピラゾル-4-イル]-1,5-ナフチリジン)、TGFβRIキナーゼ阻害剤VIII(6-[2-tert-ブチル-5-[6-メチル-ピリジン-2-イル]-1H-イミダゾル-4-イル]-キノキサリン)およびこれらの誘導体などが例示される。好ましくは、ALK5阻害剤IIであり得る。
【0038】
TGFβ阻害剤としてALK5阻害剤IIを用いる場合の培地中の濃度は、0.01μMから100μM、好ましくは0.1から50μM、さらに好ましくは、1μMから20μMである。
【0039】
TGFβ阻害剤を添加する場合、PDX1陽性NKX6.1陰性細胞の培養開始後、2日経過後に添加することが望ましい。添加期間は特に限定されないが、1日以上、2日以上、3日以上または4日以上が例示される。
【0040】
PDX1陽性NKX6.1陰性細胞から膵芽細胞の培養工程の日数は、長期間培養することで膵芽細胞の製造効率に特に影響がないため上限はないが、例えば、4日以上、5日以上、6日以上、7日以上、8日以上、9日以上、10日以上、11日以上、12日以上、13日以上または14日以上が挙げられる。より好ましくは、4日以上20日以下である。
【0041】
PDX1陽性NKX6.1陰性細胞から膵芽細胞の培養工程において、培養温度は、以下に限定されないが、約30~40℃、好ましくは約37℃であり、CO2含有空気の雰囲気下で培養が行われ、CO2濃度は、好ましくは約2~5%である。
【0042】
PDX1陽性NKX6.1陰性細胞とは、PDX1を発現しているが、NKX6.1を発現していない細胞であれば、特に限定されない。PDX1を発現しているとは、公知の方法にて、PDX1遺伝子または遺伝子産物を検出できることを意味し、NKX6.1を発現していないとは、NKX6.1遺伝子または遺伝子産物を検出できないことを意味し、当該検出方法として、例えば、免疫染色法などが例示される。
【0043】
PDX1陽性NKX6.1陰性細胞は、生体内から単離されていてもよく、既知の方法にて、多能性幹細胞等の他の細胞種から製造されてもよい。ある態様においてPDX1陽性NKX6.1陰性細胞は、次の工程を含む方法で多能性幹細胞より製造された細胞であっても良い:
(工程1)多能性幹細胞を、アクチビンを含む培地で培養する工程、および
(工程2)工程1で得られた細胞を、KGFを含む培地で培養する工程。
従って、上述のPDX1陽性NKX6.1陰性細胞から膵芽細胞誘導する方法を工程3として適用することで、ある態様として次の工程を含む、多能性幹細胞から膵芽細胞を製造する方法も提供する:
(工程1)多能性幹細胞を、アクチビンを含む培地で培養する工程、
(工程2)工程1で得られた細胞を、KGFを含む培地で培養する工程、
(工程3)工程2で得られた細胞(PDX1陽性NKX6.1陰性細胞)を単一細胞へ分離後、KGF、EGFおよびBMP阻害剤を含む培地で培養する工程。
【0044】
これらの態様の多能性幹細胞をアクチビンを含む培地で培養する工程(工程1)で使用される培地は、動物細胞の培養に用いられる基礎培地へアクチビンを適宜添加して調製することができる。基礎培地としては、例えば、MEM Zinc Option培地、IMEM Zinc Option培地、IMDM培地、Medium 199培地、Eagle's Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco's modified Eagle's Medium(DMEM)培地、Ham's F12培地、RPMI 1640培地、Fischer's培地、およびこれらの混合培地などが包含される。基礎培地には、血清(例えば、ウシ胎児血清(FBS))が含有されていてもよいし、または無血清でもよい。必要に応じて、例えば、アルブミン、トランスフェリン、KnockOut Serum Replacement(KSR)(ES細胞培養時の血清代替物)(Invitrogen)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3’-チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、GlutaMAX(Invitrogen)、非必須アミノ酸(NEAA)、ビタミン、増殖因子、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類、およびこれらの同等物などの1つ以上の物質も含有しうる。1つの実施形態において、基礎培地は、B27サプリメントを含むRPMI 1640培地である。
【0045】
本態様の工程1において、多能性幹細胞は、任意の方法で実質的に分離(または解離)することで単一細胞の状態として培養してもよく、または、細胞同士が接着した細胞凝集塊の状態で培養してもよい。より好ましくは、単一細胞の状態に分離して培養する。分離の方法としては、例えば、力学的分離や、プロテアーゼ活性とコラゲナーゼ活性を有する分離溶液(例えば、トリプシンとコラゲナーゼの含有溶液Accutase(TM)およびAccumax(TM)(Innovative Cell Technologies, Inc)が挙げられる)またはコラゲナーゼ活性のみを有する分離溶液を用いた分離が挙げられる。多能性幹細胞は、コーティング処理された培養皿を用いて接着培養することができる。
【0046】
本態様の工程1における接着培養は、前述の条件と同じ方法によって行い得る。
【0047】
アクチビンは、アクチビンA、B、C、D、ABのいずれのアクチビンもよいが、特にアクチビンAが好適に用いられる。また、アクチビンとしてはヒト、マウス等いずれの哺乳動物由来のアクチビンをも使用することができる。本発明に使用するアクチビンとしては、分化に用いる多能性幹細胞と同一の動物種由来のアクチビンを用いることが好ましく、例えばヒト由来の多能性幹細胞を出発原料とする場合、ヒト由来のアクチビンを用いることが好ましい。これらのアクチビンは商業的に入手可能である。
【0048】
アクチビンを用いる場合、培地中の濃度は、通常0.1から200ng/ml、好ましくは5から150ng/ml、特に好ましくは10から100ng/mlである。
【0049】
工程1に使用される培地は、さらにGSK3阻害剤および/またはROCK阻害剤を含んでいてもよい。GSK3阻害剤とは、GSK-3βタンパク質のキナーゼ活性(例えば、βカテニンに対するリン酸化能)を阻害する物質として定義され、既に多数のものが知られているが、例えば、インジルビン誘導体であるBIO(別名、GSK-3β阻害剤IX;6-ブロモインジルビン3'-オキシム)、マレイミド誘導体であるSB216763(3-(2,4-ジクロロフェニル)-4-(1-メチル-1H-インドール-3-イル)-1H-ピロール-2,5-ジオン)、SB415286(3-[(3-クロロ-4-ヒドロキシフェニル)アミノ]-4-(2-ニトロフェニル)-1H-ピロール-2,5-ジオン)、フェニルαブロモメチルケトン化合物であるGSK-3β阻害剤VII(4-ジブロモアセトフェノン)、細胞膜透過型のリン酸化ペプチドであるL803-mts(別名、GSK-3βペプチド阻害剤;Myr-N-GKEAPPAPPQSpP-NH2)および高い選択性を有するCHIR99021(6-[2-[4-(2,4-Dichlorophenyl)-5-(4-methyl-1H-imidazol-2-yl)pyrimidin-2-ylamino]ethylamino]pyridine-3-carbonitrile)が挙げられる。これらの化合物は、例えばCalbiochem社やBiomol社等から市販されており容易に利用することが可能である。他の入手先から入手しても、あるいは自ら作製してもよい。本発明で使用されるGSK-3β阻害剤は、好ましくは、CHIR99021であり得る。
【0050】
CHIR99021を用いる場合、培地中の濃度は、通常0.01μMから100μM、好ましくは0.1μMから10μM、特に好ましくは1μMから5μMである。
【0051】
GSK3阻害剤を添加する場合、多能性幹細胞の培養開始時に添加することが望ましい。添加期間は特に限定されないが、1日以上、2日以上または3日以上が例示され、好ましくは1日から3日である。
【0052】
工程1に使用されるROCK阻害剤は、上述したものと同様のものを用いることができ、好ましくは、Y-27632である。本発明において、ROCK阻害剤を添加する場合、多能性幹細胞を単一細胞の状態に分離した際のアポトーシスを抑制する目的で使用することができ、添加期間は特に限定されないが、1日以上、または2日以上が例示され、好ましくは1日である。
【0053】
工程1の日数は、長期間培養することで膵芽細胞の製造効率に特に影響がないため上限はないが、例えば、3日以上、4日以上、5日以上、6日以上、または7日以上が挙げられる。より好ましくは、4日である。
【0054】
工程1で得られた細胞をKGFを含む培地で培養する工程(工程2)で使用される培地は、動物細胞の培養に用いられる基礎培地へKGFを適宜添加して調製することができる。基礎培地としては、例えば、MEM Zinc Option培地、IMEM Zinc Option培地、IMDM培地、Medium 199培地、Eagle's Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco's modified Eagle's Medium(DMEM)培地、Ham's F12培地、RPMI 1640培地、Fischer's培地、およびこれらの混合培地などが包含される。基礎培地には、血清(例えば、ウシ胎児血清(FBS))が含有されていてもよいし、または無血清でもよい。必要に応じて、例えば、アルブミン、トランスフェリン、KnockOut Serum Replacement(KSR)(ES細胞培養時の血清代替物)(Invitrogen)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3'-チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、GlutaMAX(Invitrogen)、非必須アミノ酸(NEAA)、ビタミン、増殖因子、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類、およびこれらの同等物などの1つ以上の物質も含有しうる。1つの実施形態において、基礎培地は、B27サプリメントを含むIMEM Zinc Option培地である。
【0055】
工程2で用いるKGFは、上述と同様のものを用いることができ、KGFの濃度は、上述より低濃度を用いることが好ましく、例えば、1 ng/mlから500 ng/ml、好ましくは、10 ng/mlから100 ng/mlである。
【0056】
工程2に使用される培地は、さらにBMP阻害剤、レチノイン酸誘導体およびヘッジホッグ経路阻害剤を含んでもよい。
【0057】
工程2で用いるBMP阻害剤は、上述と同様の条件で用いることができる。
【0058】
工程2に用いるレチノイン酸誘導体は、天然のレチノイン酸が有する機能を保持する人工的に修飾されたレチノイン酸を意味し、例えば、4-[[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbonyl]amino]-Benzoic acid(AM580)(Tamura K,et al., Cell Differ. Dev. 32: 17-26 (1990))、4-[(1E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propen-1-yl]-Benzoic acid(TTNPB)(Strickland S, et al., Cancer Res. 43: 5268-5272 (1983))、パルミチン酸レチノール、レチノール、レチナール、3-デヒドロレチノイン酸、3-デヒドロレチノール、3-デヒドロレチナール、または、Abe, E., et al., Proc.Natl.Acad.Sci.(USA) 78: 4990-4994 (1981)、 Schwartz, E. L.et al., Proc.Am.Assoc.Cancer Res. 24: 18 (1983)、および Tanenaga, K. et al., Cancer Res. 40: 914-919 (1980) に記載されている化合物が挙げられる。本工程で用いる好ましいレチノイン酸誘導体としては、TTNPBが挙げられる。本工程で用いるレチノイン酸誘導体の濃度は、使用するレチノイン酸誘導体に応じて当業者に適宜選択可能であるが、例えば、レチノイン酸誘導体としてTTNPBを用いる場合、1nMから100nM、好ましくは、5nMから50nM、さらに好ましくは、5nMから10nMである。
【0059】
工程2に用いるヘッジホッグ経路阻害剤は、ソニック・ヘッジホッグ、インディアン・ヘッジホッグ、およびデザート・ヘッジホッグのいずれかが膜受容体であるPatchedに結合して起こるシグナル、例えば、Smoothenedの活性を阻害する化合物を意味し、ヘッジホッグが受容体に結合して起こるシグナルを阻害すれば、特に限定されないが、例えば、シクロパミン、ジェルビン、3-Keto-N-(aminoethyl-aminocaproyl- dihydro-cinnamoyl)(KAAD)-シクロパミン、CUR-61414、SANT-1、SANT-2、SANT-3、SANT-4、IPI-926、IPI-269609、GDC-0449およびNVP-LDE-225が挙げられる。好ましくは、KAAD-シクロパミンである。工程2で用いるヘッジホッグ経路阻害剤の濃度は、使用するヘッジホッグ経路阻害剤に応じて当業者に適宜選択可能であるが、例えば、ヘッジホッグ経路阻害剤としてKAAD-シクロパミンを用いる場合、0.1 nMから1 μM、好ましくは、1 nMから500 nMである。
【0060】
本願明細書および請求の範囲において多能性幹細胞とは、生体に存在する全ての細胞に分化可能である多能性を有し、かつ、増殖能をも併せもつ幹細胞であり、それには、例えば胚性幹(ES)細胞(J.A. Thomson et al. (1998), Science 282:1145-1147; J.A. Thomson et al. (1995), Proc. Natl. Acad. Sci. USA, 92:7844-7848;J.A. Thomson et al. (1996), Biol. Reprod., 55:254-259; J.A. Thomson and V.S. Marshall (1998), Curr. Top. Dev. Biol., 38:133-165)、核移植により得られるクローン胚由来の胚性幹(ntES)細胞(T. Wakayama et al. (2001), Science, 292:740-743; S. Wakayama et al. (2005), Biol. Reprod., 72:932-936; J. Byrne et al. (2007), Nature, 450:497-502)、精子幹細胞(「GS細胞」)(M. Kanatsu-Shinohara et al. (2003) Biol. Reprod., 69:612-616; K. Shinohara et al. (2004), Cell, 119:1001-1012)、胚性生殖細胞(「EG細胞」)(Y. Matsui et al. (1992), Cell, 70:841-847; J.L. Resnick et al. (1992), Nature, 359:550-551)、人工多能性幹(iPS)細胞(K. Takahashi and S. Yamanaka (2006) Cell, 126:663-676; K. Takahashi et al. (2007), Cell, 131:861-872; J. Yu et al. (2007), Science, 318:1917-1920; Nakagawa, M.ら,Nat. Biotechnol. 26:101-106 (2008);WO2007/069666)、培養線維芽細胞や骨髄幹細胞由来の多能性細胞(Muse細胞)(WO2011/007900)などが含まれる。より好ましくは、多能性幹細胞はヒト多能性幹細胞である。
【0061】
iPS細胞は移植用膵芽細胞の材料として特に好適に用いられる。得られた膵芽細胞を医薬として用いる場合、拒絶反応が起こらないという観点から、移植先の個体のHLA遺伝子型と同一もしくは実質的に同一である体細胞から得たiPS細胞を用いることが望ましい。ここで、「実質的に同一」とは、移植した細胞に対して免疫抑制剤により免疫反応が抑制できる程度にHLA遺伝子型が一致していることであり、例えば、HLA-A、HLA-BおよびHLA-DRの3遺伝子座あるいはHLA-Cを加えた4遺伝子座が一致するHLA型を有する体細胞である。
【0062】
他の態様においては、上記の工程を用いて得られた膵芽細胞を医薬(特に細胞医療の為の医薬)として利用することができる。当該細胞は、投与前に、放射線を照射する、または、マイトマイシンCなどの細胞増殖を抑止する薬剤によって処理されても良い。
【0063】
得られた膵芽細胞を生理食塩水等に懸濁させ細胞懸濁液を医薬として用い、患者の膵臓、腸間膜、脾臓、肝臓および腎臓(特に、腎被膜化)へ直接投与もしくはポリビニルアルコール(PVA)(Qi Z et al., Cell Transplant.21: 525-534 (2012))またはアルギン酸(Dufrane D, et al., Transplantation 90: 1054-1062 (2010))でカプセル化して投与することによって行い得る。投与の際、当該細胞は、ポリエチレングリコール、ゼラチン、またはコラーゲン等の足場材と共に投与しても良い。投与する細胞数は、体躯の大きさに合わせて適宜増減して用いても良く、例えば、1×10から1×1010細胞/個体、好ましくは、5×10から1×1010細胞/個体、さらに好ましくは、1×10から1×1010細胞/個体である。
【0064】
当該膵芽細胞を含む医薬は、膵疾患の治療に用いても良く、膵疾患には、急性膵炎、慢性膵炎、糖尿病、膵癌、ランゲルハンス島腫瘍などが例示される。本発明の膵芽細胞は、体内で、グルコース濃度に対応して、インスリンを分泌するインスリン産生細胞へと誘導されることから、糖尿病に対して有効である。特に、インスリン産生細胞が死滅する、1型糖尿病に有効である。
【0065】
本明細書中に記載される「細胞」の由来は、ヒト及び非ヒト動物(例えば、マウス、ラット、ウシ、ウマ、ブタ、ヒツジ、サル、イヌ、ネコ、トリなど)であり、特に限定はされないが、ヒト由来の細胞が特に好ましい。
【0066】
以下に実施例を示してさらに詳細に説明するが、本発明は実施例により何ら限定されるものではない。
【実施例1】
【0067】
膵芽細胞分化誘導
ヒトES細胞株KhES3は、京都大学より受領し、従来の方法で培養した(H. Suemori et al. (2006), Biochem. Biophys. Res. Commun., 345:926-932)。(あるいはEssential8, CorningのSynthemaxを用いたfeeder free条件にて培養した。)KhES3を図1に記載したプロトコールに従って膵芽細胞へと誘導した。詳細には、培養皿に対しておおよそ70%コンフルエントに増殖したヒトES細胞株KhES3をCTK溶液(リプロセル)を用いて剥離させ、続いてAccutase(Innovative Cell Technologies)を用いて個々の細胞へと分離し、Matrigel(BD)をコートした24 wellあるいは6 well plate (Greiner)に2.0×105/well~3.0×105/wellにて播種した後、次の工程によって膵芽細胞へと分化誘導した。
【0068】
(第1工程)
2%のB27(Life Technologies)を含むRPMI1640培地(ナカライテスク)(0.4 ml/well)に100 ng/ml アクチビンA(R&D systems)、3 μM CHIR99021(Axon Medchem)および10 μM Y-27632(WaKo)を添加して1日間培養した。培地を100 ng/mlアクチビンAおよび2%のB27(Life Technologies)を含むRPMI1640培地(0.8ml/well)に交換し、2日間培養した。さらに、培地を100ng/ml アクチビンAおよび2%のB27(Life Technologies)を含むRPMI1640培地(0.4ml/well)に交換し、1日間培養した。
【0069】
(第2工程)
50 ng/ml KGF(R&D systems)および1%のB-27(Life Technologies)を含むImproved MEM Zinc Option培地(Invitrogen社)(0.8ml/well)に交換して3日間培養した。続いて、0-50 ng/ml KGF、100 ng/ml Noggin(Peprotech)、5又は10nM TTNPB(Santa Cruz Biotechnology)、0.5 μM 3-Keto-N-aminoethyl-N'-aminocaproyldihydrocinnamoyl Cyclopamine(KAAD‐シクロパミンまたはK-CYC)(Toronto Research Chemicals)および1%のB-27を含むImproved MEM Zinc Option培地(0.8ml/well)に交換して3日間培養した。
【0070】
(第3工程)
第2工程で得られた細胞をTrypsinを用いて単一細胞へと分離し、低接着96ウェルプレート(Lipidure Coat、NOF)に3.0×103~3.0×104/wellにて播種した。100 ng/ml KGF、100 ng/ml Noggin、50ng/ml EGF(R&D systems)、10 μM Y-27632および1%のB-27を含むImproved MEM Zinc Option培地(15×104/ml)を添加してさらに4日間から20日間培養した。この時、同じ培地で4日おきに培地交換した。また、対照として、第2工程で得られた細胞をTrypsinを用いて単一細胞へと分離し、Matrigelをコートした24 well plate (Greiner)に6.0×104~4.8×105/cm2にて播種して、同様の培地により4日間接着培養を行った。同様に、対照として、第2工程で得られた細胞を分離せず、同様の培地へ交換して4日間培養を行った。
【0071】
第3工程4日後に得られた細胞(S3d4)をBD Cytofix/CytopermTM Kitを用いて処理した後、抗PDX1抗体(R&D systems)および抗NKX6.1抗体(University of Iowa)を用いて染色しフローサイトメーターにてPDX1陽性細胞率またはPDX1およびNKX6.1両陽性細胞率を検出したところ、第3工程において、細胞を分離し、細胞凝集塊を作製した場合、PDX1およびNKX6.1両陽性細胞率が増加することが確認された(図2)。また、細胞凝集塊が、3.0×103個以上で構成されることで十分であることが確認された。
【実施例2】
【0072】
種々のiPS細胞株での検討
4種の末梢血単核球由来のiPS細胞株(585A1、604B1、692D2および648B1(全て、Okita K, et al, Stem Cells. 2013 31:458-466))ならびに1種の線維芽細胞由来のiPS細胞株(409B2(Okita K, et al, Nat Methods. 2011 8:409-412)は、京都大学iPS細胞研究所より入手可能である。京都大学より入手したこれらのiPS細胞株を用いて、上記と同様の工程により、膵芽細胞へと分化誘導した。
【0073】
その結果、5種のiPS細胞株いずれから出発した場合においても、(第3工程)にて細胞凝集塊(Agg)を形成した方が、接着培養(2D)よりもPDX1およびNKX6.1両陽性細胞率が増加することが確認された(図3)。
【実施例3】
【0074】
培養期間検討
ヒトES細胞株KhES3を用いて、(第3工程)の期間を0日(S3d0)、1日(S3d1)、2日(S3d2)、4日(S3d4)、8日(S3d8)、12日(S3d12)、16日(S3d16)および20日(S3d20)間行ったところ、8日間以上行った場合にPDX1およびNKX6.1両陽性細胞率が高くなった。このとき12日間行ったあたりで、最大に達し、以後培養を継続することで特に効率が減弱することは確認されなかった(図4AおよびB)。
【0075】
さらに、ヒトES細胞株KhES3を用いて、(第3工程)での細胞凝集塊を3.0×104/wellにて形成させ、4日間(S3d4)または12日間(S3d12)培養した後の細胞凝集を膵芽細胞マーカー(PDX1、NKX6.1、SOX9およびGATA4)および内分泌細胞マーカー(INS、GCG、SomatostatinおよびGhrelin)に対する抗体を用いて免疫染色を行った(図5および図6)。細胞凝集塊形成から12日(S3d12)において、膵芽細胞マーカーの発現している細胞が増大し、内分泌細胞マーカーを発現する細胞が多く現れたことが確認された。
【0076】
第3工程を4日間行った後、1%のB-27を含むImproved MEM Zinc Option培地(15×104/ml)で培養、あるいは100 ng/ml KGF、50ng/ml EGF(R&D systems)、1%のB-27を含むImproved MEM Zinc Option培地(15×104/ml)で培養しても、PDX1およびNKX6.1両陽性細胞率が4日後に比べ12日後で増加することから(図7B)、第3工程を4日以上行うことで細胞の運命が決定されると考える。このことから第3工程は少なくとも4日行うことが望ましい。
【0077】
ALK5阻害剤IIの添加検討
ALK5阻害剤II(Santa Cruz)の処理は、第3工程2日目以降で1-2日間の処理(図8A)でPDX1およびNKX6.1両陽性細胞率を増加させた(図8B)。
【実施例4】
【0078】
膵芽細胞の評価
第3工程は12日目の細胞凝集塊を回収し、免疫不全マウス(NOD. CB17-Prkdcscid/J)(Charles river)の副精巣周囲脂肪組織へ移植し、30日後移植部位を回収したところ管構造をとるPDX1陽性細胞に隣接するインスリン陽性細胞の塊が生じたことから、誘導した膵芽細胞は、in vivoで膵上皮様の構造を形成することが確認された(図9)。
【実施例5】
【0079】
誘導膵芽細胞の治療効果
第3工程4日目、5日目、または12日目の細胞凝集塊を回収し、培養後の細胞を生理食塩水で洗浄し、培地を除去した細胞凝集塊の濃縮物、または、培養上清を除去した細胞凝集塊の濃縮物を調整した。
【0080】
この他にも、第3工程4日目の細胞凝集塊を回収し、5 μM ALK5阻害剤II(Santa Cruz)を添加した1%のB-27を含むImproved MEM Zinc Option培地(15×104/ml)中で1日間培養し、培養後の細胞を生理食塩水で洗浄し、培地を除去した細胞凝集塊の濃縮物、または、培養上清を除去した細胞凝集塊の濃縮物を調整した。
【0081】
得られた細胞凝集塊の濃縮物を、免疫不全マウス(NOD. CB17-Prkdcscid/J)の腎臓被膜下に移植した。
【0082】
膵芽細胞の腎被膜化移植後150日目において、同マウスから末梢血を採取し、ELISAキット(Mercodia)を用いて血漿中のヒトC-Peptideの量を測定したところ、14匹中13匹においてヒトC-Peptideが確認された。また、いずれの方法で調整された細胞凝集塊の濃縮物の移植においても、150日後に、血漿中ヒトC-Peptideを検出できた。さらに、移植後30日から150日間の時間経過と共にC-Peptideの量が増大することが確認された(図10A)。
【0083】
続いて、移植後150日目のマウスに対して、絶食5時間以上後にグルコースを3 g/kg腹腔内投与した場合の、ヒトC-Peptideの増加量を測定したところ、グルコース投与群において、有意にC-Peptideの量が増加していることが確認された(図10B)。このことは、9匹中5匹において確認された。
【0084】
以上より、投与された誘導膵芽細胞は生体内に生着した後、血中グルコース量に応答して、インスリンを産生する機能を有していることが確認された。従って、当該誘導膵芽細胞は、インスリン分泌不全に対する治療剤として利用できることが示唆された。
【実施例6】
【0085】
接着培養でのプロトコール(図11A)の検討
(第1工程)
iPS細胞株(585A1)をMatrigelをコートした24 well plateに2.0×105/wellで播種し、2%のB27(Life Technologies)を含むRPMI1640培地(ナカライテスク)に100 ng/ml アクチビンA(R&D systems)、3 μM CHIR99021(Axon Medchem)および10 μM Y-27632(WaKo)を添加して1日間培養した。培地を100 ng/mlアクチビンA、1 μM CHIR99021および2%のB27(Life Technologies)を含むRPMI1640培地に交換し、2日間培養した。さらに、培地を100ng/ml アクチビンAおよび2%のB27(Life Technologies)を含むRPMI1640培地に交換し、1日間培養した。
【0086】
(第2工程)
第1工程で得られた培養物の培地を、50 ng/ml KGF(R&D systems)および1%のB-27(Life Technologies)を含むImproved MEM Zinc Option培地(Invitrogen社)に交換して3日間培養した。続いて、50 ng/ml KGF、100 ng/ml Noggin(Peprotech)、10nM TTNPB(Santa Cruz Biotechnology)、0.5 μM 3-Keto-N-aminoethyl-N'-aminocaproyldihydrocinnamoyl Cyclopamine(KAAD‐シクロパミンまたはK-CYC)(Toronto Research Chemicals)および1%のB-27を含むImproved MEM Zinc Option培地に交換して3日間培養した。
【0087】
(第3工程)
第2工程で得られた細胞を、Trypsinを用いて単一細胞へと分離し、Matrigelをコートした24 well plateに1.6×105~2.4×105/ cm2にて播種した。100 ng/ml KGF、100 ng/ml Noggin、50ng/ml EGF(R&D systems)、各濃度のY-27632および1%のB-27を含むImproved MEM Zinc Option培地(15×104/ml)を添加して4日間培養した。
【0088】
得られた細胞をBD Cytofix/CytopermTM Kitを用いて処理した後、抗PDX1抗体(R&D systems)および抗NKX6.1抗体(University of Iowa)を用いて染色しフローサイトメーターにてPDX1およびNKX6.1両陽性細胞率を検出した。
第3工程において、Y-27632を用いた場合、濃度依存的にPDX1およびNKX6.1両陽性細胞の含有率が上昇し、100μMで最もその効果が高かった(図11BおよびC)。
【0089】
以上のように、第3工程にて、細胞を解離後、ROCK阻害剤を用いることによって接着培養によりPDX1およびNKX6.1両陽性細胞が産生することが確認された。
【実施例7】
【0090】
接着培養でのプロトコール(図12A)と第3工程での添加剤の検討
(第1工程)
iPS細胞株(585A1)をMatrigelをコートした24 well plateに2.0×105/wellで播種し、2%のB27(Life Technologies)を含むRPMI1640培地(ナカライテスク)に100 ng/ml アクチビンA(R&D systems)、3 μM CHIR99021(Axon Medchem)および10 μM Y-27632(WaKo)を添加して1日間培養した。培地を100 ng/mlアクチビンA、1 μM CHIR99021および2%のB27(Life Technologies)を含むRPMI1640培地に交換し、2日間培養した。さらに、培地を100ng/ml アクチビンAおよび2%のB27(Life Technologies)を含むRPMI1640培地に交換し、1日間培養した。
【0091】
(第2工程)
50 ng/ml KGF(R&D systems)および1%のB-27(Life Technologies)を含むImproved MEM Zinc Option培地(Invitrogen社)に交換して3または4日間培養した。続いて、50 ng/ml KGF、100 ng/ml Noggin(Peprotech)、10nM TTNPB(Santa Cruz Biotechnology)、0.5 μM 3-Keto-N-aminoethyl-N'-aminocaproyldihydrocinnamoyl Cyclopamine(KAAD‐シクロパミンまたはK-CYC)(Toronto Research Chemicals)および1%のB-27を含むImproved MEM Zinc Option培地に交換して2または3日間培養した。
【0092】
(第3工程)
第2工程で得られた細胞をTrypsinを用いて単一細胞へと分離し、Matrigelをコートした24 well plateに1.6×105~2.4×105/ cm2にて播種した。50 ng/ml KGF、100 ng/ml Noggin、10nM TTNPB、0.5 μM KAAD‐シクロパミン、10 μM Y-27632および1%のB-27を含むImproved MEM Zinc Option培地を加え、1日間培養した。続いて、培地を100 ng/ml KGF、100 ng/ml Noggin、50ng/ml EGF(R&D systems)、各化合物(Y-27632、Fasudil(HA-1077)、SR3677、GSK269962、H-1152およびBlebbistatin)および1%のB-27を含むImproved MEM Zinc Option培地(15×104/ml)を添加してさらに4日間培養した。
【0093】
得られた細胞をBD Cytofix/CytopermTM Kitを用いて処理した後、抗PDX1抗体(R&D systems)および抗NKX6.1抗体(University of Iowa)を用いて染色しフローサイトメーターまたはイメージアナライザーにてNKX6.1陽性細胞率またはPDX1およびNKX6.1両陽性細胞率を検出した。
【0094】
第3工程において、Fasudilを用いた場合、濃度依存的にPDX1およびNKX6.1両陽性細胞の含有率が上昇し、50μMで最もその効果が高かった(図12BおよびC)。
【0095】
第3工程において、SR3677を用いた場合、濃度依存的にNKX6.1陽性細胞の含有率が上昇し、5μMで最もその効果が高かった(図13AおよびB)。
【0096】
第3工程において、GSK269962を用いた場合、濃度依存的にNKX6.1陽性細胞の含有率が上昇し、1μMで最もその効果が高かった(図13CおよびD)。
【0097】
第3工程において、H-1152を用いた場合、濃度依存的にNKX6.1陽性細胞の含有率が上昇し、50μMで最もその効果が高かった(図14AおよびB)。
【0098】
第3工程において、Blebbistatinを用いた場合、5μMでPDX1およびNKX6.1両陽性細胞の含有率が上昇し、20μMまでその効果が高かった(図14CおよびD)。
【0099】
以上のように、細胞を解離し、第3工程にて、第2工程と同様の培地を用いて細胞を接着培養し、さらに、第3工程にて、ROCK阻害剤または非筋ミオシンII阻害剤を添加することでPDX1およびNKX6.1両陽性細胞率が増加することが確認された。
図1
図2
図3
図4
図5-1】
図5-2】
図6-1】
図6-2】
図7
図8
図9
図10
図11-1】
図11-2】
図12-1】
図12-2】
図13-1】
図13-2】
図14-1】
図14-2】