(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2022-01-20
(45)【発行日】2022-02-14
(54)【発明の名称】ファインバブル生成ユニット及び給水システム
(51)【国際特許分類】
B01F 23/20 20220101AFI20220204BHJP
B01F 25/10 20220101ALI20220204BHJP
B01F 25/40 20220101ALI20220204BHJP
E03C 1/02 20060101ALI20220204BHJP
【FI】
B01F3/04 Z
B01F5/00 G
B01F5/06
E03C1/02
(21)【出願番号】P 2021093813
(22)【出願日】2021-06-03
【審査請求日】2021-06-03
【早期審査対象出願】
(73)【特許権者】
【識別番号】391054165
【氏名又は名称】トーフレ株式会社
(74)【代理人】
【識別番号】100101454
【氏名又は名称】山田 卓二
(72)【発明者】
【氏名】中野 勝利
(72)【発明者】
【氏名】芦辺 和也
【審査官】壷内 信吾
(56)【参考文献】
【文献】特開2021-058847(JP,A)
【文献】特開2015-047527(JP,A)
【文献】国際公開第01/036105(WO,A1)
【文献】特開2019-214012(JP,A)
【文献】特開2014-083477(JP,A)
【文献】特開2014-028340(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B01F 1/00-5/26
E03C 1/00-1/10
(57)【特許請求の範囲】
【請求項1】
液体に圧力の変化を与えることによって前記液体中の溶存気体を気泡化してファインバブルを生成するファインバブル生成ユニットであって、
(a) 前記ファインバブル生成ユニットは、
中心軸(2)と、前記中心軸(2)に沿って延在する管状内壁(3)と、前記管状内壁(3)に囲まれた流路(4)とを有し、全体が一つの部材で構成された管状部材(1)を有し、
(b) 前記管状内壁(3)は、
前記中心軸(2)に向かって内側に突出し且つ前記中心軸(2)を中心とする絞り流路(11)を形成する内方突出部(10)と、
前記流路(4)内を流れる前記液体の流れ方向に関して前記内方突出部(10)の下流側に形成された下流側流路(13)を有し、
(c) 前記下流側流路(13)は、前記中心軸(2)を中心とする一定の内径を有する非テーパ状の円筒面であって、前記流れ方向に関して前記内方突出部(10)の下流側に前記内方突出部(10)に隣接して形成された上流側円筒部(17)及び前記流れ方向に関して前記上流側円筒部(17)の下流側に前記上流側円筒部(17)に隣接して形成された下流側円筒部(18)を有し、
(d)
前記上流側円筒部(17)は平滑な管状内面を有し、
(e) 前記下流側円筒部(18)は、前記流れ方向に関して前記管状部材(1)の下流端から前記上流側円筒部(17)と前記下流側円筒部(18)との境界まで一様に形成された内ねじ(19)を備えており、
(
f) 前記ファインバブル生成ユニットはまた、前記内ねじ(19)に螺合できる外ねじ(33)が形成された下流側撹拌部材(31)を備えており、
(
g) 前記下流側撹拌部材(31)は、
前記外ねじ(33)を前記内ねじ(19)に螺合して
前記下流側流路(13)における前記下流側円筒部(18)に配置されており、
(h) 前記下流側撹拌部材(31)は、前記中心軸(2)を中心とする周方向に一定の間隔をあけて、前記流れ方向に延在する複数の貫通溝(34)が形成されて、前記外ねじ(33)が前記周方向に分断されている、ファインバブル生成ユニット。
【請求項2】
前記下流側円筒部(18)の前記内ねじ(19)には、前記流れ方向に関して
前記下流側撹拌部材(31)の下流側に、前記中心軸(2)を中心とする周方向に連続した
環状溝(117)が形成されており、
前記環状溝(117)には、
前記下流側撹拌部材(31)が
前記環状溝(117)の下流側へ移動するのを防止する止めリング(118)が嵌められている、請求項1に記載のファインバブル生成ユニット。
【請求項3】
液体に圧力の変化を与えることによって前記液体中の溶存気体を気泡化してファインバブルを生成するファインバブル生成ユニットであって、
(a) 前記ファインバブル生成ユニットは、
中心軸(2)と、前記中心軸(2)に沿って延在する管状内壁(3)と、前記管状内壁(3)に囲まれた流路(4)とを有し、全体が一つの部材で構成された管状部材(1)を有し、
(b) 前記管状内壁(3)は、
前記中心軸(2)に向かって内側に突出し且つ前記中心軸(2)を中心とする絞り流路(11)を形成する内方突出部(10)と、
前記流路(4)内を流れる前記液体の流れ方向に関して前記内方突出部(10)の下流側に形成された下流側流路(13)を有し、
(c) 前記下流側流路(13)は、前記中心軸(2)を中心とする一定の内径を有する非テーパ状の円筒面を有し、
(d) 前記下流側流路(13)の前記円筒面には、前記流れ方向に関して前記内方突出部(10)の下流端から前記管状部材(1)の下流端まで一様に内ねじ(19)が形成されており、
(e) 前記ファインバブル生成ユニットはまた、前記内ねじ(19)に螺合できる外ねじ(33)が形成された下流側撹拌部材(31)を備えており、
(f) 前記下流側撹拌部材(31)は、前記円筒面の上流端と下流端との間に、前記外ねじ(33)を前記内ねじ(19)に螺合して配置されて、前記円筒面の前記上流端と前記下流側撹拌部材(31)との間に第1の下流側撹拌室(36)が形成され、前記円筒面の前記下流端と前記下流側撹拌部材(31)との間に第2の撹拌室(37)が形成されており、
(g) 前記下流側撹拌部材(31)は、前記中心軸(2)を中心とする周方向に一定の間隔をあけて、前記流れ方向に延在する複数の貫通溝(34)が形成されて、前記外ねじ(33)が前記周方向に分断されている、ファインバブル生成ユニット。
【請求項4】
前記下流側流路(13)の前記内ねじ(19)には、前記流れ方向に関して前記下流側撹拌部材(31)の下流側に、前記中心軸(2)を中心とする周方向に連続した環状溝(117)が形成されており、
前記環状溝(117)には、前記下流側撹拌部材(31)が前記環状溝(117)の下流側へ移動するのを防止する止めリング(118)が嵌められている、請求項3に記載のファインバブル生成ユニット。
【請求項5】
前記管状内壁(3)は、前記流れ方向に関して前記内方突出部(10)の上流側に形成された上流側流路(12)を有し、
前記上流側流路(12)は、前記中心軸(2)を中心とする一定の内径を有する非テーパ状の円筒面
からなり、前記内方突出部(10)に隣接して形成された下流側円筒部(14)有し、
前記上流側流路(12)における前記下流側円筒部(14)の内面には内ねじ(21)が形成されている、請求項1~4のいずれかに記載のファインバブル生成ユニット。
【請求項6】
前記上流側流路(12)は、前記流れ方向に関して前記上流側流路(12)における前記下流側円筒部(14)の上流側に形成された上流側円筒部(15)を備えており、
前記上流側流路(12)における前記上流側円筒部(15)には上流側撹拌部材(51)が固定されており、
前記上流側撹拌部材(51)は、前記中心軸(2)の周囲に、前記中心軸(2)を中心とする周方向に一定の間隔をあけて、前記中心軸(2)の方向に前記上流側撹拌部材(51)を貫通する複数の上流側撹拌孔(58)を備えている、請求項5に記載のファインバブル生成ユニット。
【請求項7】
前記管状内壁(3)は、前記流れ方向に関して前記内方突出部(10)の上流側に形成された上流側流路(12)を有し、
前記上流側流路(12)は、前記流れ方向に関して前記絞り流路(11)から上流側に向かって次第に径が大きくなるテーパ部(73)を有し、
前記流れ方向に関して前記テーパ部(73)の上流側には上流側撹拌部材(51)が固定されており、
前記上流側撹拌部材(51)は、前記中心軸(2)の周囲に、前記中心軸(2)を中心とする周方向に一定の間隔をあけて、前記中心軸(2)の方向に前記上流側撹拌部材(51)を貫通する、複数の上流側撹拌孔(58)を有する、請求項
1から4のいずれかに記載のファインバブル生成ユニット。
【請求項8】
請求項1~
7のいずれかのファインバブル生成ユニットと、前記ファインバブル生成ユニットの下流側に接続されたホースとを備えた給水システム。
【請求項9】
前記ファインバブル生成ユニットの上流側に接続された水栓を備えた請求項8に記載の給水システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液体力学的キャビテーションを利用してファインバブルを生成するファインバブル生成ユニット及び該ファインバブル生成ユニットを組み入れた給水システムに関する。本発明は、特に、液体に圧力の変化を与えることによって液体中の溶存気体を気泡化してファインバブルを生成するファインバブル生成ユニット及び該ファインバブル生成ユニットを組み入れた給水システムに関する。
【背景技術】
【0002】
従来、ベンチェリー構造のファインバブル生成ユニット及びファインバブル生成ユニットを含む液体供給装置が特許文献1~3に提案されている。これらの文献に記載されたファインバブル生成ユニットはいずれも、管状の部材からなり、長手方向の中心軸に沿って延在する筒状内壁によって流路が形成されている。筒状内壁には、中心軸に向かって突出する絞り部が形成されている。絞り部は、流れの方向に関して上流側に、上流側から下流側に向かって次第に内径が小さくなる入口側(上流側)テーパを有し、流れの方向に関して下流側に、上流側から下流側に向かって次第に内径が大きくなる出口側(下流側)逆テーパが形成されている。したがって、流路内を上流側から下流側に向かって流れる液体は、上流側テーパの下流端に向かうにしたがって加圧された後、そこを超えて下流側逆テーパに入ると急激に減圧され、これにより液体内に溶解している気体(通常は空気)が気泡化されて細かなファインバブルを発生する。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2017-136590号公報
【文献】特開2018-134587号公報
【文献】特開2019-042700号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上述のファインバブル生成ユニットは、流路の上流側と下流側にそれぞれテーパと逆テーパを備えており、そこを通過する液体に圧力の変化を与えることによって微細なファインバブルを析出させるもので、相当数のファインバブルを生成することができることが確認されている。以下、このようなファインバブル生成ユニットを「ダブルテーパ型ファインバブル生成ユニット」という。
【0005】
本願発明者らは、上述のダブルテーパ型ファインバブル生成ユニットよりもさらに多くのファインバブルを生成することができる新たな形のファインバブル生成ユニットを提供するために鋭意研究を重ねた結果、絞り部の下流側に位置する流路内壁に凹凸を形成することによって、さらに多くのファインバブルが形成されることを知見した。
【課題を解決するための手段】
【0006】
本発明は、上記知見に基づいてなされたもので、例えば、一つの実施形態のファインバブル生成ユニットは、
液体に圧力の変化を与えることによって前記液体中の溶存気体を気泡化してファインバブルを生成するファインバブル生成ユニットであって、
(a) 前記ファインバブル生成ユニットは、
中心軸(2)と、前記中心軸(2)に沿って延在する管状内壁(3)と、前記管状内壁(3)に囲まれた流路(4)とを有し、全体が一つの部材で構成された管状部材(1)を有し、
(b) 前記管状内壁(3)は、
前記中心軸(2)に向かって内側に突出し且つ前記中心軸(2)を中心とする絞り流路(11)を形成する内方突出部(10)と、
前記流路(4)内を流れる前記液体の流れ方向に関して前記内方突出部(10)の下流側に形成された下流側流路(13)を有し、
(c) 前記下流側流路(13)は、前記中心軸(2)を中心とする一定の内径を有する非テーパ状の円筒面であって、前記流れ方向に関して前記内方突出部(10)の下流側に前記内方突出部(10)に隣接して形成された上流側円筒部(17)及び前記流れ方向に関して前記上流側円筒部(17)の下流側に前記上流側円筒部(17)に隣接して形成された下流側円筒部(18)を有し、
(d) 前記上流側円筒部(17)は平滑な管状内面を有し、
(e) 前記下流側円筒部(18)は、前記流れ方向に関して前記管状部材(1)の下流端から前記上流側円筒部(17)と前記下流側円筒部(18)との境界まで一様に形成された内ねじ(19)を備えており、
(f) 前記ファインバブル生成ユニットはまた、前記内ねじ(19)に螺合できる外ねじ(33)が形成された下流側撹拌部材(31)を備えており、
(g) 前記下流側撹拌部材(31)は、
前記外ねじ(33)を前記内ねじ(19)に螺合して前記下流側流路(13)における前記下流側円筒部(18)に配置されており、
(h) 前記下流側撹拌部材(31)は、前記中心軸(2)を中心とする周方向に一定の間隔をあけて、前記流れ方向に延在する複数の貫通溝(34)が形成されて、前記外ねじ(33)が前記周方向に分断されていることを特徴とする。
【発明の効果】
【0007】
本発明の実施形態のユニットによれば、流路内を上流側から下流側に向けて液体が流される。このとき、液体は、絞り流路に入ると、そこで急激に圧力と流速が上昇し、圧力が変化して(動圧は上昇し、静圧は減少する)、液体から気泡が析出する。その後、絞り流路を通過すると、液体の圧力が急激に変化する(動圧が低下し、静圧が上昇する)。これにより、析出した気泡が破砕されて微細化されてファインバブルになる。その後、下流側内ねじの近傍を流れる液体に含まれる気泡が、該内ねじから受ける抵抗によってさらにせん断されて微細化される。したがって、流路を通過した液体は、微細化された大量のファインバブルを含む。
【図面の簡単な説明】
【0008】
【
図1】本発明の実施形態1に係るファインバブル生成ユニットの縦断面図。
【
図2】本発明の実施形態2に係るファインバブル生成ユニットの縦断面図。
【
図3】本発明の実施形態3に係るファインバブル生成ユニットの縦断面図。
【
図4】本発明の実施形態4に係るファインバブル生成ユニットの縦断面図。
【
図5】本発明の実施形態5に係るファインバブル生成ユニットの縦断面図。
【
図6】本発明の実施形態6に係るファインバブル生成ユニットの縦断面図。
【
図7】本発明の実施形態7に係るファインバブル生成ユニットの縦断面図。
【
図8】本発明の実施形態8に係るファインバブル生成ユニットの縦断面図。
【
図9】本発明の実施形態9に係るファインバブル生成ユニットの縦断面図。
【
図10】本発明の実施形態10に係るファインバブル生成ユニットの縦断面図。
【
図13】実験1で使用したファインバブル生成ユニットの概略構造とファインバブル発生数を示す図。
【
図14】実験2で使用したファインバブル生成ユニットの概略構造を示す図。
【
図15】実験2の結果(水温20℃、40℃で発生したマイクロバブル、ウルトラファインバブルの発生数)を示す図。
【
図16】
図15とともに実験2の結果(水温20℃、40℃で発生したマイクロバブル、ウルトラファインバブルの発生数)を示す図。
【
図19】実施形態6のファインバブル生成ユニットを組み入れた給水システムの分解斜視図。
【
図20】
図19に示す部材を組み合わせた給水システムの断面図。
【
図21】
図19と
図20に示すファインバブル生成ユニットを組み入れたホースユニットの分解斜視図。
【
図22】
図19と
図20に示すファインバブル生成ユニットを組み合わせたホースユニットの断面図。
【発明を実施するための形態】
【0009】
[ファインバブル生成ユニットの実施形態]
以下、添付図面を参照して本発明に係るファインバブル生成ユニットの実施形態を説明する。なお、以下に説明する実施形態のファインバブル生成ユニットは、いわゆる液体力学的キャビテーション方式を採用したものである。液体力学的キャビテーションとは、流水の向きが急激に変化する付近で負圧域(空洞部)ができ、その圧力が水蒸気圧より低いと瞬間的に局所的沸騰が生じて溶存気体から微小気泡が発生し、逆に、非負圧域における圧力の回復により収縮する現象である。[日本家政学会誌Vol.71,No.2, 124-128(2020)]
【0010】
ファインバブルは、泡の大きさにより「マイクロバブル」と「ウルトラファインバブル」に分けられ、通常、ファインバブルのうち直径100μm未満で1μm(=0.001mm)以上の泡を「マイクロバブル」、それよりも小さい直径1μm未満の泡を「ウルトラファインバブル」と分類されている[国際標準化機構(ISO)専門委員会TC281(ファインバブル技術)、「一般原則(パート1用語)」を参照。]したがって、以下の説明において、「ファインバブル」は、マイクロバブルとウルトラファインバブルの両方を含む概念として理解すべきである。
【0011】
[実施形態1]
図1は、実施形態1に係るファインバブル生成ユニット、特にファインバブル生成ユニットの流路構造を示す。図示するように、ファインバブル生成ユニット(以下、単に「ユニット」という。)100は管状部材1からなる。好ましくは、管状部材1は金属(例えば、ステンレス)で作られるが、その他の材料(例えば、セラミック、プラスチック)で作ることもできる。実施形態では、
管状部材1は、全体が一つの部材で構成されているが、複数の部材を組み合わせて構成してもよい。
【0012】
管状部材1は、長手方向の中心軸2に沿って延在する管状内壁3を有する。管状内壁3は、中心軸2に沿って延在する円筒状の流路4を形成している。流路4は、図の右側に現れる部分が上流側部分で、図の左側に現れる部分が下流側部分である。以上の基本構成は、以下に説明する複数の実施形態にも共通する。
【0013】
実施形態1のユニット100の管状内壁3は、上流側部分と下流側部分の間に、中心軸2に向かって内方に突出する絞り部(内方突出部)10を有する。実施形態1において、絞り部10は、環状のフランジである。具体的に、実施形態において、絞り部10は、中心軸2の方向に一定の間隔をあけて、内壁3から中心軸2に向かってかつ中心軸に対して垂直に延在する一対の環状壁と、一対の環状壁の径方向内側端部を連結する管状面を有する。
【0014】
絞り部10の中心は中心軸2に一致しており、これにより、絞り部10の内側には、中心軸2に沿って延在する絞り流路11が形成されている。絞り流路11は一定の径を有する。本明細書において「径」は「直径」を意味する。絞り部10の上流側には該絞り部10に隣接する上流側流路12が形成され、絞り部10の下流側には該絞り部10に隣接する下流側流路13が形成されている。
【0015】
上流側流路12は、絞り部10から上流側に向かって配置された複数の非テーパ円筒部によって形成されている。実施形態1は、3つの円筒部、すなわち、最下流円筒部14、中間円筒部15及び最上流円筒部16を有する。実施形態1において、円筒部14、15,16はいずれも、平滑な管状内面を有する。図示するように、最下流円筒部14が最も小さい径を有し、最上流円筒部16が最も大きい径を有する。
【0016】
下流側流路13は、絞り部10に隣接する上流側円筒部17と、該上流側円筒部17の下流側に隣接する下流側円筒部18を有する。上流側円筒部17と下流側円筒部18はそれぞれ一定の内径を有する非テーパ状の円筒面である。上流側円筒部17は平滑な管状内面を有する。下流側円筒部18の管状内面にはその全体に凹凸が形成されている。実施形態では、凹凸は、下流側円筒部18の下流端から上流側円筒部17との境界まで一様に形成された内ねじ19である。このように、実施形態1では、内ねじ19の上流端と絞り部10との間に平滑な管状内面の上流側円筒部17が形成されているが、下流側流路13のほぼ全面に内ねじを形成してもよい。この点は、以下の実施形態でも同様である。
【0017】
各部分の寸法は、ユニット100の構成を実際の装置に適用するにあたって適宜決めることができる。家庭用の水道蛇口等に実施形態1を適用する場合、例えば、絞り流路11の内径は4.0mmで軸方向長さは5.0mmが適当である。上流側流路12における最下流円筒部14の内径は8.376mmmm、中間円筒部15の内径は13.6mm、最上流円筒部16の内径は15.8mmである。下流側流路13において、上流側円筒部17の内径は8.376mm、下流側円筒部18の内ねじ19は、ピッチが1.5mm、谷径が10mm、有効径が9.026mm、山径が8.376mmである。
【0018】
このように構成された実施形態1のユニット100によれば、流路4内を上流側から下流側に向けて液体(例えば、水)が流される。このとき、液体は、上流側流路12の円筒部16,15,14を通過して絞り部10の絞り流路11に入ると、そこで急激に流速が上昇し、圧力が変化して(動圧は上昇し、静圧は減少する)、液体に溶解している気体が気泡となって析出する。その後、絞り部10を通過した液体は下流側流路13に入り、そこで液体の圧力が急激に変化する(動圧が低下し、静圧が上昇する)。これにより、析出した気泡が破砕されて微細化されてファインバブルになる。その後、液体は下流側流路13を通過する際に、内ねじ19の近傍を流れる液体に含まれるファインバブルが、該内ねじ19から受ける抵抗によってせん断されてさらに微細化される。したがって、流路4を通過した液体は、微細化された大量のファインバブルを含む。
【0019】
[実施形態2]
図1は、実施形態2に係るファインバブル生成ユニット200、特にファインバブル生成ユニット200の流路構造を示す。図示するように、実施形態2のユニット200は、上流側流路12の最下流円筒部14の全面に凹凸が形成されている点で、実施形態1のユニット100と異なり、それ以外の構造は実施形態1のユニットと同じである。したがって、同一部分には同一の符号を付して説明を省略する。
【0020】
実施形態2における凹凸は、実施形態1と同様に内ねじ21で構成されている。内ねじ21の寸法は、実施形態1の内ねじ19の寸法と同じである。もちろん、上流側流路12の内ねじ19と下流側流路13の内ねじ21は異なる寸法であってもよい。
【0021】
このように構成された実施形態2のユニット200によれば、流路4内を上流側から下流側に向けて液体(例えば、水)が流される。このとき、液体は、上流側流路12の円筒部14を流れる際に、内ねじ21の近傍を流れる液体が、該内ねじ21から受ける抵抗によって撹乱される。次に、液体は、絞り部10の絞り流路11に入ると、そこで急激に圧力が変化して(動圧は上昇し、静圧は減少する)、液体に溶解している気体が気泡となって析出する。その後、絞り部10を通過した液体は下流側流路13に入り、そこで液体の圧力が急激に変化する(動圧が低下し、静圧が上昇する)。これにより、析出した気泡が破砕されて微細化されてファインバブルになる。その後、液体は下流側流路13を通過する際に、内ねじ19の近傍を流れる液体に含まれるファインバブルが、該内ねじ19から受ける抵抗によってせん断されてさらに微細化される。したがって、流路4を通過した液体は、微細化された大量のファインバブルを含む。
【0022】
[実施形態3]
図3は、実施形態3に係るファインバブル生成ユニット300、特にファインバブル生成ユニット300の流路構造を示す。図示するように、実施形態3のユニット300は、下流側流路13の下流側円筒部18に撹拌部材31が設けられている点で、実施形態1のユニット100と異なり、それ以外の構造は実施形態1のユニットと同じである。したがって、同一部分には同一の符号を付して説明を省略する。
【0023】
撹拌部材23の実施形態を
図11に示す。図示する実施形態の撹拌部材31は、軸32を中心とする円周上に外ねじ33を有する外ねじ部材である。外ねじ33の寸法は、下流側円筒部18に形成された内ねじ19に対応する寸法を有する。撹拌部材31はまた、軸32を中心とする円周上にあって周方向に90度の間隔をあけたそれぞれの点を中心として軸32と平行に延びる円筒部分を切除して、4つの円筒状の貫通孔又は溝(下流側撹拌孔)34が形成されている。図示するように、実施形態において、貫通孔又は溝34は互いに独立しており、これにより、隣接する貫通孔又は溝34の間に、軸32の方向に延在する壁35を備えている。実施形態において、貫通孔又は溝34は、外周の外ねじ33を4つに分断する大きさと形を有し、そのため、
図11(b)に示されるように軸32の方向から見たとき、撹拌部材31は全体がX形状に現れる。以下、撹拌部材31を、適宜「Xプレート」という。実施形態では、4つの螺旋貫通孔34が形成されているが、貫通孔又は溝34の数や形状は限定的ではなく、軸32の周りに均等に複数配置するのが好ましい。
【0024】
このように構成されたXプレート31は、その外ねじ33を下流側流路13の内ねじ19に螺合して、下流側流路13の下流側円筒部に配置される。内ねじ19と絞り部10との間には、上流側円筒部17に非ねじ部が形成されている。そのため、下流側流路18の内ねじ19にXプレート31を螺合させた状態で、Xプレート31と絞り部10の間には、非ねじ部に対応する長さの上流側空間(第1の下流側撹拌室)36が形成される。一方、下流側円筒部18の下流側端部とXプレート31との間には下流側空間(第2の下流側撹拌室)37が形成される。
【0025】
このように構成された実施形態3のユニット300によれば、流路4内を上流側から下流側に向けて液体(例えば、水)が流される。このとき、液体は、上流側流路12の円筒部16,15,14を通過して絞り部10の絞り流路11に入ると、そこで急激に圧力が変化して(動圧は上昇し、静圧は減少する)、液体に溶解している気体が気泡となって析出する。その後、絞り部10を通過した液体は下流側流路13に入り、そこで液体の圧力が急激に変化する(動圧が低下し、静圧が上昇する)。これにより、析出した気泡が破砕されて微細化されてファインバブルになる。その後、絞り部10を通過して上流側空間36に入ると、そこで液体の圧力が急激に変化する(動圧が低下し、静圧が上昇する)。これにより、析出した気泡が破砕されて微細化されてファインバブルになる。次に、液体は、Xプレート31の貫通孔又は溝34に入り、そこで再び液体の圧力が変化する(動圧は上昇し、静圧は減少する)。その後、液体は、Xプレート31の貫通孔又は溝34を通過して下流側空間37に入ると、そこで液体の圧力が急激に変化する(動圧が低下し、静圧が上昇する)。これにより、新たな気泡が析出するとともに、析出した気泡がさらに破砕されて微細化される。また、液体は下流側流路13を通過する際に、内ねじ19の近傍を流れる液体に含まれるファインバブルが、該内ねじ19から受ける抵抗によってせん断されてさらに微細化される。したがって、流路4を通過した液体は、微細化された大量のファインバブルを含む。
【0026】
[実施形態4]
図4は、実施形態4に係るファインバブル生成ユニット400、特にファインバブル生成ユニット400の流路構造を示す。図示するように、実施形態4に係るユニット400は、実施形態3のユニット300に、実施形態2で説明したように上流側流路12の最下流円筒部14の内面に内ねじ21を形成したもの、または、実施形態2のユニット200に、実施形態3で説明したXプレート31を設けたもので、その他の構成は実施形態1~3で説明した構成と同じである。したがって、同一部分には同一の符号を付して説明を省略する。
【0027】
実施形態4のユニット400によれば、流路4内を上流側から下流側に向けて液体(例えば、水)が流される。このとき、液体は、上流側流路12の円筒部14を流れる際に、内ねじ21の近傍を流れる液体が、該内ねじ21から受ける抵抗によって撹乱される。次に、液体は、絞り部10の絞り流路11に入ると、そこで急激に圧力が変化して(動圧は上昇し、静圧は減少する)、液体に溶解している気体が気泡となって析出する。その後、絞り部10を通過して上流側空間36に入ると、そこで液体の圧力が急激に変化する(動圧が低下し、静圧が上昇する)。これにより、析出した気泡が破砕されて微細化されてファインバブルになる。次に、液体は、Xプレート31の貫通孔又は溝34に入り、そこで再び液体の圧力が変化する(動圧は上昇し、静圧は減少する)。その後、液体は、Xプレート31の貫通孔又は溝34を通過して下流側空間37に入ると、そこで液体の圧力が急激に変化する(動圧が低下し、静圧が上昇する)。これにより、新たな気泡が析出するとともに、析出した気泡がさらに破砕されて微細化される。また、液体は下流側流路13を通過する際に、内ねじ19の近傍を流れる液体に含まれるファインバブルが、該内ねじ19から受ける抵抗によってせん断されてさらに微細化される。したがって、流路4を通過した液体は、微細化された大量のファインバブルを含む。
【0028】
[実施形態5]
図5は、実施形態5に係るファインバブル生成ユニット500、特にファインバブル生成ユニット500の流路構造を示す。図示するように、実施形態5のユニット500は、実施形態2のユニット200において、上流側流路12の中央円筒部15に撹拌部材51を配置したものである。その他の構成は実施形態1で説明した構成と同じである。したがって、同一部分には同一の符号を付して説明を省略する。
【0029】
撹拌部材51の実施形態を
図12に示す。図示する実施形態の撹拌部材51は、軸54を中心とする円筒外面55を有する。円筒外面55の外径は、中央円筒部15の内径と同じ又はほぼ同じで、撹拌部材51は円筒部15にはめ込まれて固定されており、これにより、上流側流路12は、撹拌部材51の上流側と下流側にそれぞれ位置する上流側空間52と下流側空間(上流側撹拌室)53に分けられている。
【0030】
撹拌部材51は、軸54を中心とする円周上に周方向に90度の間隔をあけたそれぞれの点を中心として、撹拌部材51の表面56から裏面57に達する4つの貫通孔58が形成されている。貫通孔58は、該貫通孔58の中心が、表面56から裏面57に向かって、図の時計周り方向に螺旋(ヘリックス)を描くように、捩られている。以下、撹拌部材51を、適宜「螺旋プレート」という。実施形態では、4つの螺旋貫通孔58が形成されているが、貫通孔58の数や大きさ及びつるまき角は限定的ではない。例えば、螺旋貫通孔58は、軸54の周りに均等に3つ以上配置するのが好ましい。
【0031】
この実施形態5のユニット500によれば、上流側流路12の上流側空間52に入った液体は、その後螺旋プレート51の複数の貫通孔58に入る。このとき、液体は、流路の断面積が減少することによって、圧力が変化する(動圧が上昇し、静圧が減少する)。これにより、液体に溶解している気体が気泡となって析出する。その後、貫通孔58から出た液体は、上流側流路12の円筒部14に入ると、そこで圧力が変化する(動圧が上昇し、静圧が減少する)。これにより、貫通孔58を通過する際に析出した気泡が破砕されて微細化されてファインバブルになる。次に、液体は、上流側流路12の円筒部14を流れる際に、内ねじ21の近傍を流れる液体が、該内ねじ21から受ける抵抗によってせん断される。次に、液体は、絞り部10の絞り流路11に入ると、そこで急激に圧力が変化して(動圧は上昇し、静圧は減少する)、液体に溶解している気体が気泡となって析出する。その後、絞り部10を通過した液体は下流側流路13に入り、そこで液体の圧力が急激に変化する(動圧が低下し、静圧が上昇する)。これにより、析出した気泡が破砕されて微細化されてファインバブルになる。その後、液体は下流側流路13を通過する際に、内ねじ19の近傍を流れる液体に含まれるファインバブルが、該内ねじ19から受ける抵抗によってせん断されてさらに微細化される。したがって、流路4を通過した液体は、微細化された大量のファインバブルを含む。
【0032】
[実施形態6]
図6は、実施形態6に係るファインバブル生成ユニット600、特にファインバブル生成ユニット600の流路構造を示す。図示するように、実施形態6のユニット600は、実施形態4のユニット400において、上流側流路12の中央円筒部15に撹拌部材51を配置した点で実施形態4のユニット400と異なり、その他の構成は実施形態4で説明した構成と同じである。したがって、同一部分には同一の符号を付して説明を省略する。
【0033】
この実施形態6のユニット600によれば、上流側流路12の上流側空間52に入った液体は、その後螺旋プレート51の複数の貫通孔58に入る。このとき、液体は、流路の断面積が減少することによって、圧力が変化する(動圧が上昇し、静圧が減少する)。これにより、液体に溶解している気体が気泡となって析出する。その後、貫通孔58から出た液体は、上流側流路12の円筒部14に入ると、そこで圧力が変化する(動圧が上昇し、静圧が減少する)。これにより、貫通孔58を通過する際に析出した気泡が破砕されて微細化されてファインバブルになる。次に、液体は、上流側流路12の円筒部14を流れる際に、内ねじ21の近傍を流れる液体が、該内ねじ21から受ける抵抗によってせん断される。次に、液体は、絞り部10の絞り流路11に入ると、そこで急激に圧力が変化して(動圧は上昇し、静圧は減少する)、液体に溶解している気体が気泡となって析出する。その後、絞り部10を通過して上流側空間36に入ると、そこで液体の圧力が急激に変化する(動圧が低下し、静圧が上昇する)。これにより、析出した気泡が破砕されて微細化されてファインバブルになる。次に、液体は、Xプレート31の貫通孔又は溝34に入り、そこで再び液体の圧力が変化する(動圧は上昇し、静圧は減少する)。その後、液体は、Xプレート31の貫通孔又は溝34を通過して下流側空間37に入ると、そこで液体の圧力が急激に変化する(動圧が低下し、静圧が上昇する)。これにより、新たな気泡が析出するとともに、析出した気泡がさらに破砕されて微細化される。また、液体は下流側流路13を通過する際に、内ねじ19の近傍を流れる液体に含まれるファインバブルが、該内ねじ19から受ける抵抗によってせん断されてさらに微細化される。したがって、流路4を通過した液体は、微細化された大量のファインバブルを含む。
【0034】
[実施形態7]
図7は、実施形態7に係るファインバブル生成ユニット700、特にファインバブル生成ユニット700の流路構造を示す。図示するように、実施形態7のユニット700の管状内壁3は、上流側部分と下流側部分の間に、中心軸2に向かって内方に突出する環状凸部からなる絞り部(内方突出部)71を有する。絞り部71の中心は中心軸2に一致しており、これにより、絞り部71の内側には、中心軸2に沿って延在する絞り流路72が形成されている。その他の基本構成は、実施形態1で説明した構成と同じである。したがって、同一部分には同一の符号を付して説明を省略する。
【0035】
絞り部71は、上流側から下流側に向かって次第に径が小さくなる円筒テーパ部(テーパ面)73と、円筒テーパ部73の下流側に配置されて一定の径を有する小径円筒部74を有する。円筒テーパ部73と小径円筒部74は、それらの中心を中心軸2に合わせて、同軸的に配置されている。
【0036】
絞り部71の上流側には、該絞り部71(すなわち、円筒テーパ部73)の上流端から上流に向かって延在する上流側流路75を有する。上流側流路75は、絞り部71(円筒テーパ部73)の上流端から上流側に向かって延在する下流側円筒部76と、該下流側円筒部76の上流端から上流側に向かって延在する上流側円筒部77を有する。実施形態において、下流側円筒部76は円筒テーパ部73の上流側端部の径よりも大きい内径を有し、上流側円筒部77は下流側円筒部76の内径よりも大きな内径を有する。
【0037】
絞り部71の下流側に位置する下流側流路13の構造は、実施形態1における下流側流路の構造と同じである。したがって、同一部分には同一の符号を付して説明を省略する。
【0038】
各部分の寸法は、ユニット100の構成を実際の装置に適用するにあたって適宜決めることができる。例えば、家庭用の水道蛇口等に実施形態7を適用する場合、絞り流路72における小径円筒部74は、その内径が4.0mm、軸方向長さが5.0mmである。円筒テーパ部73のテーパ角は26.2°、軸方向長さは15.0mmである。小径円筒部74の内径は4.0mmである。上流側流路75において、下流側円筒部76の内径は13.6mm、上流側円筒部77の内径は15.8である。下流側流路13において、上流側円筒部17の内径は8.376mm、下流側円筒部18における内ねじ19の寸法は、ピッチが1.5mm、谷径が10mm、有効径が9.026mm、山径が8.376mmである。
【0039】
このように構成された実施形態7のユニット700によれば、流路4内を上流側から下流側に向けて流れる液体は、上流側流路75の上流側円筒部77と下流側円筒部76を経たのち、円筒テーパ部73に入る。円筒テーパ部73を通過する液体は、円筒テーパ部73を移動する際に徐々に圧力が変化する(動圧が上昇し、静圧が減少する)。これにより、液体に溶解している気体が気泡となって析出する。その後、絞り部71を通過した液体は下流側流路13に入り、そこで液体の圧力が急激に変化する(動圧が低下し、静圧が上昇する)。これにより、析出した気泡が破砕されて微細化されてファインバブルになる。その後、液体は下流側流路13を通過する際に、内ねじ19の近傍を流れる液体に含まれるファインバブルが、該内ねじ19から受ける抵抗によってせん断されてさらに微細化される。したがって、流路4を通過した液体は、微細化された大量のファインバブルを含む。
【0040】
[実施形態8]
図8は、実施形態8に係るファインバブル生成ユニット800、特にファインバブル生成ユニット800の流路構造を示す。図示するように、実施形態8のユニット800は、実施形態7のユニット700における下流側流路13の下流側円筒部18(内ねじ19)に、実施形態3で説明したXプレート31が設けられている点で、実施形態7のユニット700と異なる。その他の構成は、実施形態7で説明した構成と同じである。したがって、同一部分には同一の符号を付して説明を省略する。
【0041】
このように構成された実施形態8のユニット800によれば、流路4内を上流側から下流側に向けて流れる液体は、上流側流路75の上流側円筒部77と下流側円筒部76を経たのち、円筒テーパ部73に入る。円筒テーパ部73を通過する液体は、円筒テーパ部73を移動する際に徐々に圧力が変化する(動圧が上昇し、静圧が減少する)。これにより、液体に溶解している気体が気泡となって析出する。その後、絞り部71を通過して上流側空間36に入ると、そこで液体の圧力が急激に変化して(動圧が低下し、静圧が上昇する)、析出した気泡が破砕されて微細化されてファインバブルになる。次に、液体は、Xプレート31の貫通孔又は溝34に入り、そこで再び液体の圧力が変化する(動圧は上昇し、静圧は減少する)。その後、液体は、Xプレート31の貫通孔又は溝34を通過して下流側空間37に入ると、そこで液体の圧力が急激に変化する(動圧が低下し、静圧が上昇する)。これにより、新たな気泡が析出するとともに、析出した気泡がさらに破砕されて微細化される。また、液体は下流側流路13を通過する際に、内ねじ19の近傍を流れる液体に含まれるファインバブルが、該内ねじ19から受ける抵抗によってせん断されてさらに微細化される。したがって、流路4を通過した液体は、微細化された大量のファインバブルを含む。
【0042】
[実施形態9]
図9は、実施形態9に係るファインバブル生成ユニット900、特にファインバブル生成ユニット900の流路構造を示す。図示するように、実施形態9のユニット900は、実施形態7のユニット700における上流側流路75における下流側円筒部76に、実施形態5で説明した螺旋プレート51が設けられている点で、実施形態7のユニット700と異なる。その他の構成は、実施形態5,7で説明した構成と同じである。したがって、同一部分には同一の符号を付して説明を省略する。
【0043】
このように構成された実施形態9のユニット900によれば、流路4内を上流側から下流側に向けて流れる液体は、上流側流路75の上流側円筒部77を経たのち、螺旋プレート51の複数の貫通孔58に入る。このとき、液体は、流路の断面積が減少することによって、圧力が変化する(動圧が上昇し、静圧が減少する)。これにより、液体に溶解している気体が気泡となって析出する。その後、貫通孔58から出た液体は、円筒テーパ部73に入る。円筒テーパ部73を通過する液体は、円筒テーパ部73を移動する際に徐々に圧力が変化して(動圧が上昇し、静圧が減少する)、液体に溶解している気体が気泡となって析出する。その後、絞り部71を通過して上流側空間36に入ると、そこで液体の圧力が急激に変化する(動圧が低下し、静圧が上昇する)。これにより、析出した気泡が破砕されて微細化されてファインバブルになる。次に、液体は、Xプレート31の貫通孔又は溝34に入り、そこで再び液体の圧力が変化する(動圧は上昇し、静圧は減少する)。その後、液体は、Xプレート31の貫通孔又は溝34を通過して下流側空間37に入ると、そこで液体の圧力が急激に変化する(動圧が低下し、静圧が上昇する)。これにより、新たな気泡が析出するとともに、析出した気泡がさらに破砕されて微細化される。また、液体は下流側流路13を通過する際に、内ねじ19の近傍を流れる液体に含まれるファインバブルが、該内ねじ19から受ける抵抗によってせん断されてさらに微細化される。したがって、流路4を通過した液体は、微細化された大量のファインバブルを含む。
【0044】
[実施形態10]
図10は、実施形態10に係るファインバブル生成ユニット1000、特にファインバブル生成ユニット1000の流路構造を示す。図示するように、実施形態10のユニット1000は、実施形態8のユニット800における上流側流路75における下流側円筒部76に、実施形態9で説明した螺旋プレート51を設けたものである。その他の構成は、実施形態8,9で説明した構成と同じである。したがって、同一部分には同一の符号を付して説明を省略する。
【0045】
このように構成された実施形態9のユニット800によれば、流路4内を上流側から下流側に向けて流れる液体は、上流側流路75の上流側円筒部77を経たのち、螺旋プレート51の複数の貫通孔58に入る。このとき、液体は、流路の断面積が減少することによって、圧力が変化する(動圧が上昇し、静圧が減少する)。これにより、液体に溶解している気体が気泡となって析出する。その後、貫通孔58から出た液体は、円筒テーパ部73に入る。円筒テーパ部73を通過する液体は、円筒テーパ部73を移動する際に徐々に圧力が変化して(動圧が上昇し、静圧が減少する)、液体に溶解している気体が気泡となって析出する。その後、絞り部71を通過して上流側空間36に入ると、そこで液体の圧力が急激に変化して(動圧が低下し、静圧が上昇する)、析出した気泡が破砕されて微細化されてファインバブルになる。次に、液体は、Xプレート31の貫通孔又は溝34に入り、そこで再び液体の圧力が変化する(動圧は上昇し、静圧は減少する)。その後、液体は、Xプレート31の貫通孔又は溝34を通過して下流側空間37に入ると、そこで液体の圧力が急激に変化する(動圧が低下し、静圧が上昇する)。これにより、新たな気泡が析出するとともに、析出した気泡がさらに破砕されて微細化される。また、液体は下流側流路13を通過する際に、内ねじ19の近傍を流れる液体に含まれるファインバブルが、該内ねじ19から受ける抵抗によってせん断されてさらに微細化される。したがって、流路4を通過した液体は、微細化された大量のファインバブルを含む。
【0046】
上述の実施形態のユニットは種々改変可能である。例えば、環状の絞り部10,71は、中心軸の周りに円筒状の内面を連続的に有する環状部としたが、中心軸の周りに一定の間隔をあけて断続的に形成された複数の突出部からなるものであってもよい。
【0047】
また、上述の実施形態において、流路4に形成された凹凸は内ねじであるが、流路を流れる液体にせん断力を与え得る構成であれば内ねじ以外の凹凸形状であってもよい。
【0048】
[実験1]
図13に示す6種類のタイプのファインバブル生成ユニット(A,A’,B,B’,C、C’)を作成し、絞り部下流側に設けた内ねじと、絞り部の上流側と下流側に設けた撹拌部材が、ファインバブルの発生に及ぼす効果を調べた。
【0049】
[ユニットのタイプ]
タイプAのユニットは、絞り部の上流側と下流側の流路が内ねじの無い滑らかな円筒面を有するユニットである。
タイプBのユニットは、タイプAのユニットの絞り部の下流側円筒面に内ねじを形成したものである。
タイプCのユニットは、タイプBのユニットの内ねじにXプレート(
図11参照)を取り付けたユニットである。
タイプA’,B’,C’は、タイプA,B,Cのユニットに螺旋プレート(
図12)を取り付けたユニットである。
各ユニットに形成した絞り部の寸法(内径4.0mm、軸方向長さ5.0mm)、内ねじの寸法(ピッチ1.5mm、谷径10mm、有効径9.026mm、山径8.376mm)、内ねじの無い円筒面の寸法(内径8.376mm)は共通である。
【0050】
[液体]
液体には水を使用した。使用した水の温度は、20℃と40℃である。20℃の水は、流量が16.5リットル/分、水圧が0.33MPa、40℃の水は、流量が14.8リットル/分、水圧が0.22MPaである。
【0051】
[ファインバブルの測定装置及び方法]
ファインバブルの測定は、株式会社島津製作所製「ナノ粒子径分布測定装置SALD-7500nano」(以下、「測定装置」という。)を使用した。
【0052】
測定はまず、ファインバブル発生ユニットを装着していない水栓(ユニット非装着水栓)から流れる水を所定量貯蔵し、2分経過後、30秒ごとに、ユニット非装着水栓から流れる水に本来的に含まれている微粒子の数を4回測定し、それらの平均値(ブランク数)N1を求めた。
次に、ファインバブル発生ユニットを装着した水栓(ユニット装着水栓)から流れる水を所定量貯蔵し、2分経過後、30秒ごとに、ユニット装着水栓から流れる水に含まれている微粒子の数を4回測定し、それらの平均値N2を求めた。この時点の微粒子の数N2は、上述の「水に本来的に含まれている微粒子」の数(N1)と、ユニットで生成されたマイクロバブルの数N(micro)と、ユニットで生成されたウルトラフィンバブルの数N(ultra)の合計[N1+N(micro)+N(ultra)]である。したがって、N2からN1を引いた数(N2-N1)がファインバブルの数N(fine)である。
【0053】
[結果]
結果を
図13の表に示す。表に示すとおり、内ねじを設けたユニットB、B’のファインバブル発生数は、水温20℃、40℃のいずれの場合も、内ねじの無いユニットAのファインバブル発生数の約1.2倍~約1.5倍であった。
また、内ねじに撹拌部材を設けたユニットC、C’のファインバブル発生数は、大幅に増加し、水温20℃、40℃のいずれの場合も、内ねじの無いユニットAのファインバブル発生数の約2倍~約3倍であった。
以上の結果から、絞り部の下流側に内ねじを設けること、また、内ねじに撹拌部材を取り付けることによって、ファインバブルの発生数が大幅に増加することが確認された。
【0054】
[実験2]
図14に示す7種類のタイプのファインバブル生成ユニット(A,B,C、D、E1~E3、A’,B’,C’、D’、E1’~E3’)を作成し、それぞれのユニットについて、マイクロバブルとウルトラファインバブル(A,B,C、D、E1~E3)[図示せず]のそれぞれの発生数を調べた。
【0055】
[ユニットのタイプ]
タイプAのユニットは、中央の絞り部の上流側にテーパ流路、下流側に逆テーパ流路を形成し、上流側テーパ流路の上流側に螺旋プレートを配置したダブルテーパ型ファインバブル生成ユニットである。上流側テーパ流路と下流側テーパ流路のテーパ角(θ1、θ2)は共に26.2°、下流側テーパ流路の長さは15mm、上流側と下流側のテーパ流路の間にある小径の絞り流路の長さは5.0mm、絞り流路の内径は4.0mmである。
タイプBのユニットは、絞り部の上流側と下流側に内ねじ(M10:ピッチ1.5mm、谷径10mm、有効径9.026mm、山径8.376mm)を形成し、上流側内ねじの上流側に螺旋プレートを配置した、実施形態5のユニット500である。絞り流路の長さは5.0mm、絞り流路の内径は4.0mmである。
タイプCのユニットは、絞り部の上流側と下流側に内ねじを形成し、上流側内ねじの上流側に螺旋プレートを配置し、下流側内ねじにXプレート(
図11参照)を配置した、実施形態6のユニット600である。絞り流路の長さは5.0mm、絞り流路の内径は4.0mmである。
タイプDは、絞り部の上流側にテーパ流路を形成し、下流側に内ねじを形成し、流側テーパ流路の上流側に螺旋プレートを配置し、下流側内ねじにXプレート(
図11参照)を配置した、実施形態10のユニット1000である。テーパ流路の下流側に形成した絞り流路の長さ5.0mm、絞り流路の内径は4.0mmである。
タイプE1~E3は、絞り部の上流側にテーパ流路を形成し、下流側に内ねじを形成し、上流側テーパ流路の上流側に螺旋プレートを配置した、実施形態9のユニット900である。ユニットE1,E2,E3において、上流側テーパ角はそれぞれ26.2°、53.2°、17.4°、上流側テーパ流路の長さはそれぞれ15mm、7mm、23mmである。テーパ流路の下流側に形成した絞り流路の長さ5.0mm、絞り流路の内径は4.0mmである。
タイプA’,B’,C’、D’、E1’~E3’は、タイプA,B,C、D、E1~E3からそれぞれ上流側の螺旋プレートを除いたものである。
【0056】
[ファインバブルの測定装置及び方法]
ファインバブルの測定は、実験1と同様に、株式会社島津製作所製「ナノ粒子径分布測定装置SALD-7500nano」(以下、「測定装置」という。)を使用した。
【0057】
測定方法は、ファインバブル発生ユニットを装着していない水栓(ユニット非装着水栓)から流れる水を所定量貯蔵し、2分経過後、30秒ごとに、ユニット非装着水栓から流れる水に本来的に含まれている微粒子の数を4回測定し、それらの平均値(ブランク数)N1を求めた。
次に、ファインバブル発生ユニットを装着した水栓(ユニット装着水栓)から流れる水を所定量貯蔵し、2分経過後、30秒ごとに、ユニット装着水栓から流れる水に含まれている微粒子の数を4回測定し、それらの平均値N2を求めた。この時点の微粒子の数N2は、上述の「水に本来的に含まれている微粒子」の数(N1)と、ユニットで生成されたマイクロバブルの数N(micro)と、ユニットで生成されたウルトラフィンバブルの数N(ultra)の合計[N1+N(micro)+N(ultra)]である。したがって、N2からN1を引いた数(N2-N1)がファインバブル数N(fine)[マイクロバブルの数N(micro)+とウルトラファインバブルの数N(ultra)]である。
続いて、ファインバブル発生ユニットを装着した水栓(ユニット装着水栓)から流れる水を所定量貯蔵し、24時間放置した後、30秒ごとに、微粒子の数を4回測定し、それらの平均値N3を求めた。24時間放置したことによりマイクロバブルは消滅しているので、この時点の微粒子の数N3は、上述の「水に本来的に含まれている微粒子」の数と、24時間放置した後の水に存在するウルトラフィンバブルの数N(ultra)の合計[N1++N(ultra)]である。したがって、N2からN3を引いた数がマイクロバブルの数N(micro)である。また、N3からN1を引いた数がウルトラフィンバブルの数N(ultra)である。
【0058】
[結果]
測定結果を
図15,16の表と
図17,18のグラフに示す。これらの表とグラフに示すように、マイクロバブルに関しては、絞り部の下流側にXプレートを設けたユニットC,Dについて、水温40℃のとき、従来のユニットAに比べて、大幅にマイクロバブルの発生数が増加すること確認された。一方、ウルトラファインバブルに関しては、すべてのユニットについて、水温に拘わらず、従来のユニットAに比べて大幅にウルトラファインバブルの発生数が増加すること確認された。
【0059】
上述の実験1,2より、絞り部の下流側に内ねじを設けることによって、絞り部の上流側と下流側にテーパ流路を形成した従来のユニットよりも、ファインバブルの発生が大幅に増加することが確認された。
【0060】
[実験3]
実施形態2のユニットであって、絞り流路の内径が3.5mm、4.0mm、4.5mm、5.0mmの4種類のユニットを家庭用水栓に接続して、ファインバブルの発生量と節水効果を調べた。絞り部の上流側と下流側に形成した内ねじの寸法はM10(ピッチ1.5mm、谷径10mm、有効径9.026mm、山径8.376mm)である。測定に用いた装置は、実験1,2と同じである。
【0061】
実験3の結果、絞り部内径を3.5mmの場合、絞り部の下流側にキャビテーションは発生し易くなるものの、流量が少なくなり、結果的にファインバブルの発生量は低下した。一方、絞り部内径を4.0mm、4.5mm、5.0mmへと大きくすると、キャビテーションが発生し難くなり、ファインバブルの発生量が低下した。したがって、家庭用水栓の場合、絞り部の内径は4.0mmに設定するのが、節水とファインバブルの発生という両面から考えて、最も適当であることが確認された。
【0062】
[実験4]
絞り流路の内径を4.0mm、上流側内ねじと下流側内ねじの寸法をM10とした実施形態3のユニット(Xプレート付きユニット)について、絞り部の下流端(絞り流路の出口)とXプレートとの間隔(上流側円筒部17の軸方向距離)を2,5mm、3.5mm、4.5mm、6.5mmに設定し、2つの条件(水温20℃、水圧0.33MPa、流量16.5リットル/分と、40℃、水圧0.22MPa、流量14.8リットル/分)で水を流し、ファインバブルの発生量を調べた。
【0063】
実験4の結果、水温20℃で、絞り部とXプレートの距離が2,5mm、3.5mm、4.5mm、6.5mmの場合、ファインバブルの発生量はそれぞれ、2010、1871,2121,1756個/ミリリットルで、水温40℃で、絞り部とXプレートの距離が2,5mm、3.5mm、4.5mm、6.5mmの場合、ファインバブルの発生量はそれぞれ、5164,4925,5307,4384個/ミリリットルであった。この結果から、絞り部とXプレートとの間に4.5mmの間隔をあけることが最も適当であることが確認された。
【実施例】
【0064】
[実施例1]
図17~20を参照して、ファインバブル発生器を組み込んだ給水システムを説明する。
【0065】
給水システム101は、水栓102と、ホースユニット103と、水栓102とホースユニット103を接続する接続機構104を有する。
【0066】
図示する水栓102は、水または湯のいずれかを吐出する単水栓であるが、水と湯を混合して吐出する混合栓であってもよいし、その他の型式の水栓であってもよい。
【0067】
ホースユニット103は、ホース105と、ホース105の基端に接続されたホースジョイント106を有する。ホースジョイント106は、上述の実施形態6のユニット600を具体化したもので、金属(例えば、ステンレス)又はプラスチックからなる筒状の部材からなり、中心軸に沿って、基端側から末端側まで連続した円筒空間(流路)108が形成されている。円筒空間108は、基端側から末端側に向かって順番に、実施形態6で説明した上流側円筒部109、上流側内ねじ110、絞り部111、下流側円筒部112、下流側内ねじ113が形成されており、上流側内ねじ110の上流側に螺旋プレート115がはめ込まれ、下流側内ねじ113の上流部分にXプレート116がはめ込まれている。Xプレート116は、下流側内ねじ113に形成した環状溝117に止めリング118を嵌めて、抜け(下流側への移動)が防止されている。
【0068】
ホースジョイント106は、末端側をホース105の基端に差し込み、周囲に金属製のカラー119をかしめて、ホース105に固定される。ホース105からホースジョイント106が抜けるのを防止するために、ホースジョイント106の末端側外周には環状凹凸120が形成されており、その外形に沿った形にカラー119がかしめて変形される。
【0069】
水栓102とホースユニット103を接続する接続機構104は、水栓102に設けた水栓側接続機構部分とホースユニット103に設けたホース側接続機構部分を有する。
【0070】
水栓側接続機構部分は、水栓102の吐出口121がはめ込まれる環状のソケット122を有する。ソケット122は、ソケット122を吐出口121に装着した状態で、ソケット122の内周面と外周面を貫通する複数のねじ孔123にねじ124を嵌めて、固定される。ソケット122と吐出口121との間には、両者の隙間を埋める環状のアダプタ125が配置される。
【0071】
ソケット122の外周には環状の口金126が固定される。そのために、ソケット122の外周面には外ねじ127が形成され、口金126の内周面には対応する内ねじ128が形成されており、これら外ねじ127と内ねじ128を嵌め合わせることによって両者が連結される。ソケット122と口金126との間をシールするために、両者の間にはパッキン129が配置される。
【0072】
口金126は、末端側に筒状口部130を有する。筒状口部130の外周面には、環状の溝131が形成されている。
【0073】
ホース側接続機構部分は、ホースジョイント106の基端側外周に装着されたスリーブ132を有する。スリーブ132の基端側内周面には、基端から末端側に向かって次第に径が小さくなるテーパ面133が形成され、テーパ面133の末端側に環状段部134が形成されている。
【0074】
スリーブ132に覆われたホースジョイント106の基端側円筒部分には、周方向に一定の間隔をあけて、内周面と外周面を貫通する複数の貫通孔135が形成されており、該貫通孔135に対応する大きさの金属球136が収容されている。ホースジョイント106の基端側円筒部分の内周面には、貫通孔135の末端側に環状の溝137が形成されており、該溝132にパッキン138が配置されている。一方、ホースジョイント106の基端側円筒部分の外周面には、環状段部139が形成されており、該環状段部139とスリーブ132の環状段部134との間にヘリカルスプリング140が配置されている。これにより、スプリング140のばね力によって、ホースジョイント116に対してスリーブ132が基端側に付勢され、
図22に示す前進位置に保持される。実施例では、ホースジョイント106の基端側外周には、溝141が形成されるとともに該溝141に止めリング142が装着されており、これによって、スリーブ132は図示する前進位置に保持されている。
【0075】
口金126にホースジョイント106を接続する場合、まずスプリング140の付勢力に抗してスリーブ132を末端側に移動する。これにより、貫通孔135に収容された金属球136は径方向外側に移動可能となる。次に、この状態からホースジョイント106に口金126の筒状口部130を差し込む。このとき、挿入される筒状口部130が金属球136に当たり、該金属球136を外側に移動する。また、筒状口部130の外周面にパッキン138が接触し、ホースジョイント106と口金126との間がシールされる。
【0076】
筒状口部130が完全に差し込まれた後、スリーブ132を解放し、スプリング140の付勢力によって前進位置に移動させる。これにより、金属球136は径方向内側に移動して溝131に嵌る。また、スリーブ132の外周に一体的に形成した係止爪143が口金126の環状フランジ144に係合し、ホースジョイント116を口金126に連結する。
【0077】
このように構成された給水システム101によれば、実施形態6で説明したように、水栓102から吐出される圧力水は、口金126を介してホースジョイント106に入り、螺旋プレート115、上流側内ねじ110、絞り部111、下流側円筒部112、下流側内ねじ113を通過してホース102に流れ、その際に、水に含まれる気泡が加圧と減圧が繰り返されるとともに内ねじとの接触によって細かくせん断され、マイクロバブルとウルトラファインバブルを大量に含むファインバブル含有水が生成される。
【産業上の利用可能性】
【0078】
上述した複数の実施形態のユニットは、種々の分野で種々の目的に利用できる。例えば、環境分野(工場排水処理、汚泥減容化、水質浄化、水質改善)、農業分野(植物成長促進、収量増加、品質向上、害虫駆除)、食品分野(鮮度保持、酸化防止、薬剤使用抑制)、洗浄分野(トイレの洗浄、衣類や食品の洗浄)、美容分野(洗顔、頭皮洗浄、シャワーヘッド)等における給水システムに幅広く利用可能である。その場合、適用する分野によっては、液体は水である必要はなく、水以外の液体(例えば油、油と油以外の液体との混合液)であってもよい。
【符号の説明】
【0079】
100:ファインバブル生成ユニット
1:管状部材
2:中心軸
3:管状内壁
4:流路
10:絞り部(内方突出部)
11:絞り流路
19:内ねじ(凹凸)
21:内ねじ(凹凸)
31:撹拌部材(Xプレート)
33:外ねじ
34:貫通孔又は溝(下流側撹拌孔)
51:撹拌部材(螺旋プレート)
58:貫通孔(上流側撹拌孔)
71:絞り部
72:絞り流路
101:給水システム
102:水栓
103:ホースユニット
105:ホース
【要約】 (修正有)
【課題】ファインバブルを大量に発生できるファインバブル発生ユニットを提供する。
【解決手段】ファインバブル生成ユニットは、流路4内を流れる液体に圧力の変化を与えることによってファインバブルを生成するファインバブル生成ユニットであって、中心軸2と、中心軸に沿って延在する管状の内壁3によって囲まれた流路4を有する管状部材1を有し、内壁は中心軸に向かって内側に突出して絞り流路11を形成する内方突出部10と、流路内を流れる液体の流れ方向に関して内方突出部の下流側に形成された下流側凹凸部19とを有する。
【選択図】
図1