(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-01-20
(45)【発行日】2022-01-28
(54)【発明の名称】タービンブレードおよび対応する供与方法
(51)【国際特許分類】
F01D 5/18 20060101AFI20220121BHJP
【FI】
F01D5/18
(21)【出願番号】P 2020508341
(86)(22)【出願日】2017-08-14
(86)【国際出願番号】 US2017046694
(87)【国際公開番号】W WO2019035802
(87)【国際公開日】2019-02-21
【審査請求日】2020-06-12
(73)【特許権者】
【識別番号】517298149
【氏名又は名称】シーメンス アクティエンゲゼルシャフト
(74)【代理人】
【識別番号】100108453
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【氏名又は名称】実広 信哉
(72)【発明者】
【氏名】スティーヴン・ウィリアムソン
(72)【発明者】
【氏名】ナン・ジアン
【審査官】高吉 統久
(56)【参考文献】
【文献】米国特許出願公開第2015/0078916(US,A1)
【文献】特許第5456192(JP,B1)
【文献】特開2006-118503(JP,A)
【文献】特開2011-089517(JP,A)
【文献】米国特許出願公開第2002/0182074(US,A1)
【文献】特表2015-524895(JP,A)
【文献】特開2011-163123(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F01D 5/18
F01D 5/20
(57)【特許請求の範囲】
【請求項1】
タービンブレード(1)であって、
前縁(18)においてかつ後縁(20)において接合される圧力側壁(14)および吸引側壁(16)によって形成される外壁(12)を備えるエアフォイル(10)と、
第1の半径方向端部におけるブレード先端(30)と、
前記タービンブレード(1)を支持するためかつ前記タービンブレード(1)をディスクに連結するための、前記第1の半径方向端部の反対側にある第2の半径方向端部における翼根(8)と、
を備えており、
前記ブレード先端(30)は、
前記圧力側壁(14)と前記吸引側壁(16)との間に延在する先端キャップ(32)と、
前記先端キャップ(32)の半径方向外側に延在しかつ前記前縁(18)から前記後縁(20)への方向に沿って延在するスキーラ先端壁(34)であって、前記圧力側壁(14)の外面(14b)に連続している前方表面(34b)を備える、スキーラ先端壁(34)と、
前記スキーラ先端壁(34)の輪郭に沿って離間される複数の冷却チャネル(50)と、
を備えており、
前記冷却チャネル(50)の各々は、
エアフォイル内部キャビティ(28)から冷媒を受け取るよう構成される入口(52)と、
前記入口(52)から前記スキーラ先端壁(34)の前記前方表面(34b)まで延在する閉チャネルを備える上流セクション(54)と、
前記スキーラ先端壁(34)の前記前方表面(34b)におけるスロット(60)によって形成される開チャネルを備える下流セクション(56)であって、前記スロット(60)は、冷媒を前方表面(34b)に沿って前記スキーラ先端壁(34)の半径方向最外先端(84)に向けて案内するように、下流方向において半径方向外側に延在する、下流セクション(56)と、
前記スロット(60)に設けられ、前記上流セクション(54)に接続されるスロット入口(61)と、
を備え、
前記スロット(60)は、両側に一対のスロット側壁(64、66)が配置されるスロット床(62)によって形成されており、
前記スロット側壁(64、66)間の距離によって画定される前記スロット床の幅(W)は、半径方向外側方向に増加していき、これにより該スロット床は実質的にV字状をなし、
前記スロット入口(61)は、前記スロット床(62)が形成する前記V字の頂点部に位置して
おり、
前記ブレード先端(30)は、前記先端キャップ(32)の圧力側縁部(44)において半径方向外側の段部(102)を備え、
前記スキーラ先端壁(34)は、前記段部(102)から前記半径方向最外先端(84)まで半径方向外側に延在しており、
前記ブレード先端(30)は、翼弦方向に離間される複数の冷却孔(110)をさらに備えており、前記冷却孔(110)は、前記段部(102)を通してエアフォイル内部冷却システムと流体連通するよう形成される
ことを特徴とするタービンブレード(1)。
【請求項2】
前記スロット側壁(64、66)は、前記スロット床(62)に対して垂直であることを特徴とする請求項1に記載のタービンブレード(1)。
【請求項3】
前記スキーラ先端壁(34)の半径方向外側に面する先端表面(34c)が、山(92)と谷(94)とを交互に並べることによって画定される前方縁部(72)を有するように、前記スロット(60)は、前記スキーラ先端壁(34)の前記半径方向最外先端(84)を貫通して延在することを特徴とする請求項1または請求項2に記載のタービンブレード(1)。
【請求項4】
前記スロット(60)は、前記スキーラ先端壁(34)の前記半径方向最外先端(84)においてゼロの深さとなるまで半径方向外側方向において徐々に減少する深さ(D)を有することを特徴とする請求項1または請求項2に記載のタービンブレード(1)。
【請求項5】
前記スロット(60)は、少なくとも前記スキーラ先端壁(34)の前記半径方向最外先端(84)まで延在することを特徴とする請求項1に記載のタービンブレード(1)。
【請求項6】
前記スロット側壁(64、66)は、前記スロット床(62)に対して外側に傾斜していることを特徴とする請求項1に記載のタービンブレード(1)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガスタービンエンジンのためのタービンブレード、とりわけタービンブレード先端に関する。
【背景技術】
【0002】
ガスタービンエンジンなどのターボ機械では、空気は圧縮機セクションで加圧され、続いて燃料と混合され、そして高温の燃焼ガスを生成するために燃焼器セクションで燃焼される。高温の燃焼ガスは、エンジンのタービンセクション内で膨張され、当該タービンセクションでは、圧縮機セクションに動力供給するために、かつ電気を生成するべく発電機を始動するなどの有用な仕事を生成するために、エネルギーが抽出される。高温の燃焼ガスは、タービンセクション内の一連のタービン段を通って移動する。タービン段は、固定エアフォイルすなわちベーンの列と、固定エアフォイルの後に続く回転エアフォイルすなわちタービンブレードの列と、を含んでもよく、タービンブレードは、出力動力を提供するために、高温の燃焼ガスからエネルギーを抽出する。
【0003】
典型的には、タービンブレードは、一端における翼根と、翼根に連結されるプラットホームから外側に延在するエアフォイルを形成する細長部分と、から形成される。エアフォイルは、半径方向外側端部における先端と、前縁と、後縁とを備える。多くの場合、タービンブレードの先端は、タービンブレードによって生成されるトルクの量を低減させる先端流れの漏出を防止するべく、タービンのガス経路内のリングセグメントとブレードとの間のギャップのサイズを小さくするために先端形体部を有する。先端形体部は、多くの場合にスキーラ先端と称されており、かつ頻繁に、タービン段間の圧力損失の低減に役立つようにブレードの先端に組み込まれている。これら先端形体部は、ブレードの先端とリングセグメンとの間の漏出を最小限にするように設計されている。
【0004】
なお、極端なエンジン動作温度が原因となって、スキーラ先端の設計は、サービス間隔全体で存在し続けるよう取り組まれている。続いて、スキーラ先端の高温酸化および侵食が、エンジンの出力および効率を低下させている。
【発明の概要】
【課題を解決するための手段】
【0005】
簡潔には、本発明の態様は、改善した冷却機能を備えるスキーラ先端の設計を提供する。
【0006】
本発明の第1の態様によれば、タービンブレードが提供される。タービンブレードはエアフォイルを備えており、当該エアフォイルは、前縁においてかつ後縁において接合される圧力側壁と吸引側壁とによって形成される外壁を備える。タービンブレードは、第1の半径方向端部におけるブレード先端と、ブレードを支持するためかつ当該ブレードをディスクに連結するための、第1の半径方向端部の反対側にある第2の半径方向端部における翼根と、を含む。ブレード先端は、圧力側壁と吸引側壁との間に延在する先端キャップと、当該先端キャップの半径方向外側に延在するスキーラ先端壁とを備えおり、スキーラ先端壁は、前縁から後縁への方向に沿って延在する。スキーラ先端壁は、圧力側壁の外面に連続している前方表面を備える。ブレード先端はさらに、スキーラ先端壁の輪郭に沿って離間される複数の冷却チャネルを備える。各冷却チャネルは、エアフォイル内部キャビティから冷媒を受け取るよう構成される入口と、当該入口からスキーラ先端壁の前方表面まで延在する閉チャネルを備える上流セクションと、スキーラ先端壁の前方表面におけるスロットによって形成される開チャネルを備える下流セクションと、を備える。スロットは、下流方向において半径方向外側に延在しており、冷媒をスキーラ先端壁の半径方向最外先端へ向けて前方表面に沿って案内する。
【0007】
本発明の第2の態様によれば、ブレード先端の冷却を向上するべく、タービンブレードを供与するための方法が提供される。タービンブレードはエアフォイルを備えており、当該エアフォイルは、前縁においてかつ後縁において接合される圧力側壁および吸引側壁によって形成される外壁を備える。タービンブレードは、第1の半径方向端部におけるブレード先端と、ブレードを支持するためかつ当該ブレードをディスクに連結するための、第1の半径方向端部の反対側にある第2の半径方向端部における翼根と、を含む。ブレード先端は、圧力側壁と吸引側壁との間に延在する先端キャップと、先端キャップの半径方向外側に延在するスキーラ先端壁とを備えており、当該スキーラ先端壁は、前縁から後縁への方向に沿って延在する。スキーラ先端壁は、圧力側壁の外面に連続している前方表面を備える。ブレードを供与するための方法は、スキーラ先端壁の輪郭に沿って離間される複数の冷却チャネルを機械加工するステップを含む。各冷却チャネルを機械加工するステップは、エアフォイル内部キャビティと流体連通するよう構成される冷却チャネル入口を機械加工するステップと、当該入口からスキーラ先端壁の前方表面まで延在する閉チャネルを備える上流セクションを機械加工するステップと、スキーラ先端壁の前方表面におけるスロットによって形成される開チャネルを備える下流セクションを機械加工するステップと、を含む。スロットは、スキーラ先端壁の半径方向最外先端へ向けて下流方向において半径方向外側に延在する。
【0008】
本発明は、図を活用してより詳細に示される。図面は特定の構造を示しており、本発明の範囲を限定するものではない。
【図面の簡単な説明】
【0009】
【
図1】公知のタイプのスキーラ先端を備えるタービンブレードの斜視図である。
【
図2】
図1における断面II-IIに沿う概略断面図である。
【
図3】本発明の第1の実施形態に基づくタービンブレードの一部の斜視図である。
【
図4】
図3における断面IV-IVに沿う斜視断面図を示す図である。
【
図5】スロットの第1の例示的な構造を示す、圧力側から吸引側への方向に見た場合の拡大斜視図である。
【
図6】スカラップ状(波状)の先端表面を備えるスキーラ先端壁を示す、
図3のタービンブレードのブレード先端の一部の拡大斜視図である。
【
図7】本発明の第2の実施形態に基づくタービンブレードの一部の斜視図である。
【
図8】
図7の断面VIII-VIIIに沿う斜視断面図を示す。
【
図9】スロットの第2の例示的な構造を示す、圧力側から吸引側への方向に見た場合の拡大斜視図である。
【発明を実施するための形態】
【0010】
好ましい実施形態の以下の詳細な説明では、本明細書の一部を形成する添付の図面が参照され、当該図面では、限定のためではなく例示のために本発明が実施され得る特定の実施形態が示されている。他の実施形態が利用されてもよいこと、および本発明の趣旨および範囲から逸脱することなく変更がなされてもよいことを理解されたい。
【0011】
様々な図面を通して同一の参照符号が同じ要素を示している図面を参照すると、
図1は、タービンブレード1を示す。ブレード1は、おおむね中空のエアフォイル10を含み、エアフォイル10は、ブレードプラットホーム6から半径方向外側に、高温ガス経路流体の流れの中に延在している。翼根8は、プラットホーム6から半径方向内側に延在しており、例えば、ブレード1をロータディスク(図示せず)に連結するために従来のモミの木形状を備えてもよい。エアフォイル10は、チャンバライン29を画定する、前縁18においてかつ後縁20においてともに接合される略凹形の圧力側壁14および略凸形の吸引側壁16から形成される外壁12を備える。エアフォイル10は、半径方向内側端部における翼根8から半径方向外側端部の先端30まで延在しており、高温ガス流からエネルギーを抽出してロータディスクを回転させるのに適した任意の構造を取ってもよい。
【0012】
図2に示されるように、中空エアフォイル10の内部は、タービンブレード1のための内部冷却システムを形成するために、圧力側壁14の内面14aと吸引側壁16の内面16aとの間に画定される少なくとも1つの内部キャビティ28を備えてもよい。内部冷却システムは、圧縮機セクション(図示せず)から方向転換される空気などの冷媒を受け取ってもよく、当該冷媒は、ブレード翼根8に通常設けられている冷媒供給通路を介して内部キャビティ28に入ってもよい。内部キャビティ28の内部では、冷媒は、略半径方向に流れてもよく、外部オリフィス17、19、37、38を介して高温ガス経路内に放出される前に、圧力側壁14の内面14aおよび吸引側壁16の内面16aから熱を吸収する。
【0013】
特に高圧タービン段では、ブレード先端30は、いわゆる「スキーラ先端」として形成されてもよい。
図1および
図2をともに参照すると、ブレード先端30は、外壁12の半径方向外端部において外壁12にわたって配置される先端キャップ32から形成されてもよい。先端キャップ32は、圧力側壁14と吸引側壁16との間に延在し、かつ圧力側縁部44と吸引側縁部46とを有する。先端キャップ32は、エアフォイル内部キャビティ28に面する半径方向内面32と、先端キャビティ35に面する半径方向外面32bとを備える。ブレード先端30は、少なくともスキーラ先端壁、この例では圧力側スキーラ先端壁34および吸引側スキーラ先端壁36をさらに備えており、圧力側スキーラ先端壁34および吸引側スキーラ先端壁36の各々は、先端キャップ32からそれぞれのスキーラ先端壁34、36の半径方向最外先端84、86へ向けて半径方向外側に延在する。
【0014】
図2を参照すると、圧力側スキーラ先端壁34は、内面34aと、横方向において内面34aの反対側にある外面34bと、半径方向外側に面する先端表面34cと、を備えており、当該先端表面34cは、圧力側スキーラ先端壁34の半径方向最外先端84に配置される。この例では、外面34bは、圧力側壁14の外面14bに平行である。吸引側スキーラ先端壁36は、内面36aと、横方向において内面36aの反対側にある外面36bと、半径方向外側に面する先端表面36cと、を備えており、先端表面36cは、吸引側スキーラ先端壁36の半径方向最外先端86に配置される。この例では、外面36bは、吸引側壁16の外面16bに平行である。圧力側スキーラ先端壁34および吸引側スキーラ先端壁36は、実質的につまり全体的に先端キャップ32の外周に沿って延在してもよく、それによって、先端キャビティ35は、圧力側スキーラ先端壁34の内面34aと吸引側スキーラ先端壁36の内面36aとの間に画定される。ブレード先端30は付加的に複数の冷却孔37、38を含んでもよく、冷却孔37、38は、内部キャビティ28を、高温ガス経路の流体にさらされるブレード先端30の外面に流体的に接続する。図示される例では、冷却孔37は、圧力側スキーラ先端壁34を貫通するよう形成されており、一方で冷却孔38は、先端キャビティ35に開口する先端キャップ32を貫通するよう形成される。付加的または代替的に、ブレード先端30における他の箇所に冷却孔が設けられてもよい。
【0015】
効果的なブレード先端シーリング能力および二次的な流れ損失の低減をもたらすべく、スキーラ先端壁は、より実現可能な空気力学的設計を提供するためにウィングレットとして構成されてもよい。なお、エンジンの動作温度が極端であることが原因となって、スキーラ先端ウィングレットの設計は、効果的な冷却方式を用いずにサービス間隔全体で存在し続けるよう取り組まれている。続いて、スキーラ先端ウィングレットの高温酸化および侵食は、エンジンの出力および効率を低下させる。本発明の実施形態は、高い動作温度で存在し続けるよう改善した冷却機能を備えるスキーラ先端ウィングレットの設計を提供する。とりわけ、例示される実施形態は、圧力側スキーラ先端壁またはウィングレット上の改善されるフィルム冷却へ向けて方向付けられている。
【0016】
図3から
図6は、本発明の第1の例示的な実施形態を示す。この実施形態は、
図1および
図2の構成とは、少なくともウィングレットとして設計されている圧力側スキーラ先端壁36の構造について異なっている。
図3から
図6に示されるように、圧力側スキーラ先端壁またはウィングレット36は、先端キャップ32の半径方向外側に延在しており、かつ前縁18から後縁20への方向に沿って延在している。圧力側スキーラ先端壁34は、圧力側壁14の外面14bに連続している外面つまり前方表面34bを備える。圧力側スキーラ先端壁34の内面つまり後方表面34aは、先端キャビティ35に隣接している。スキーラ先端壁34は、半径方向外側に面する先端表面34cをさらに備えており、先端表面34cは、スキーラ先端壁34の半径方向最外先端84に配置される。先端表面34cは、前方表面34bに隣接する前方縁部72と、スキーラ先端壁34の後方表面34aに隣接する後方縁部74とを有する。
図3に示されるように、圧力側スキーラ先端壁34は、少なくとも前縁18から後縁20への方向において圧力側壁14の一部に沿って翼弦方向(chord-wise)に延在してもよい。本発明の態様によれば、
図3および
図4に示されるように、複数の冷却チャネル50が、スキーラ先端壁34の輪郭に沿って離間されるよう設けられている。
【0017】
特に
図4を参照すると、各冷却チャネル50は、エアフォイル内部キャビティ28から冷媒を受け取るよう構成される入口52が設けられている。冷媒は、例えば、圧縮機セクションから抜き取られた空気を含んでもよく、当該空気は、ブレード翼根に配置される1つ以上の供給通路を介して内部キャビティ28に供給される。各冷却チャネル50は、上流セクション54と下流セクション56とを含む。上流セクション54は、入口52からスキーラ先端壁34の前方表面34bまで延在する閉チャネルとして形成される。上流セクション54は、一定(典型的には円筒形)の流れ断面の貫通孔として機械加工されてもよい。図示される実施形態では、入口52は、先端キャップ32の半径方向内面32aに形成されており、それにより、貫通孔は、先端キャップ32の半径方向内面32aからスキーラ先端壁34の前方表面34bまで延在する。下流セクション56は、スキーラ先端壁34の前方表面34bにおけるスロット60によって形成される開チャネルを備える。スロット60は、上流セクション54に接続される(前方表面34bに配置される)スロット入口61を備えており、冷媒をスキーラ先端壁34の半径方向最外先端84へ向けて前方表面34bに沿って案内するため下流方向において半径方向外側に延在する。好ましくは、スロット60は、
図4から
図6(同様に
図8および
図9)に示されるように、少なくとも半径方向最外先端84まで延在してもよい。
【0018】
スロット60は、スキーラ先端壁34の前方表面34bに平行に機械加工されてもよく、冷却空気をスキーラ先端壁34に直接送りかつフィルム冷却の適用範囲の正確な制御をもたらすよう構成される。有利には、各スロット60は、スキーラ先端壁34の前方表面34b上での冷却空気フィルムの適用範囲をより良好に制御するために、圧力側表面の付近のディフューザ形状の吹出部分(break-out)として構成されてもよい。このため、
図5に示されるように、各スロット60は、半径方向外側方向に広がっていく幅Wを有してもよい。とりわけ、例示される実施形態では、各スロット60は、両側に一対のスロット側壁64、66が配置されるスロット床62から形成されてもよい。スロット床の幅W(すなわちスロット側壁64、66間の距離)によって画定されるスロット60の幅は、半径方向外側方向に増大していく。一実施形態では、スロット側壁64、66の各々は、スロット床62に対して垂直である。別の実施形態では、スロット側壁64、66は、スロット床62に対して傾斜されていてもよい(スロット床62に対して垂直ではない)。
【0019】
図3から
図6に例示される実施形態では、スロット床62とスロット側壁64、66とを含む各スロット60は、
図4に示されるように、スキーラ先端壁34の半径方向最外先端84を通って延在する。結果的に、
図6で最もよく見られるように、スキーラ先端壁34の半径方向外側に面する先端表面34cは、山92と谷94とを交互に並べることによって画定されるスカラップ状の前方縁部72を有する。そのため、本実施形態では、各スロット60は、冷却空気のための2つの実現可能な出口、すなわち(例えば固定リングセグメントへ向けて)先端84から出る第1の出口と、エアフォイルの圧力側へ向けて出る第2の出口と、を有する。スロット60を半径方向最外先端84まで完全に延長することによって、先端84で地金に最も近接する熱伝導経路が配置される。さらに、本実施形態では、冷却チャネル50は、一定のフィルム冷却の適用範囲を有するフィルム冷却チャネルを作り出すために、圧力側スキーラ先端壁34に「刻みを付ける」。刻み付けチャネルは、フィルム冷却が一様な様式で地金先端84にわたって伝達されるよう促進する。
【0020】
本発明の第2の例示的な実施形態が
図7から
図9に示されている。この実施形態は、スロット60の構造を除いて、
図3から
図6の実施形態に類似している。この場合、
図8に示されるように、各スロット60は、スキーラ先端壁32の半径方向最外先端84まで延在するが、当該先端84を貫通するようには延在しない。このため、各スロット60は所定の深さを有してもよく、当該深さは、スキーラ先端壁34の前方表面34bに垂直な方向において、半径方向外側方向において徐々に減少する。本実施形態では、
図9に示されるように、各スロット60は、上流セクション54に接続される(前方表面34bに配置される)スロット入口61を備える。各スロット60は、両側に一対のスロット側壁64、66が配置されるスロット床62から形成される。スロット床の幅W(すなわちスロット側壁64、66間の距離)によって画定されるスロット60の幅は、圧力側表面付近にディフューザ状吹出部分を形成するために、半径方向外側方向において増加していく。スロット側壁64、66の各々は、スロット床62に対して垂直であってもよい。スロット側壁64、66の各々は所定の深さDを有してもよく、当該深さDは、スキーラ先端壁34の半径方向最外先端84において実質的にゼロの深さとなるまで、半径方向外側方向において徐々に減少する。結果的に、
図7に見られるように、スキーラ先端壁34の半径方向外側に面する先端表面34cは、連続した(スカラップ状ではない)前縁72を有する。それゆえ、本明細書における各スロット60は、エアフォイルの圧力側へ向けて出る、冷却空気のための実現可能な出口を1つだけ有する。
【0021】
上で例示される実施形態では、スキーラ先端壁34の前方表面34bは、
図4および
図8に示されるように、半径方向軸線40に対してブレード圧力側へ向けて傾斜されている。スキーラ先端壁34のそうした傾斜は、冷却チャネル50を、周囲の固定タービン構成要素(例えばリングセグメント)に対するスキーラ先端壁34の回転および擦れる方向から離れるように配向し、それにより、目詰まりのリスクを低減する。付加的な特徴として、上述の実施形態の1つ以上において、後方表面34aおよび前方表面34bは、翼弦方向に沿って独立して変化するそれぞれの角度で(半径方向軸線40に対して)配向されてもよく、それによって、後方表面34aと半径方向軸線40との間の第1の角度αの翼弦方向の変化は、前方表面34bと半径方向軸線40との間の第2の角度βの翼弦方向の変化とは異なっている。変化可能に傾斜されるスキーラの形状は、例えば、高い先端漏出流が確認される領域においてより大きな傾斜角度を提供するよう最適化されてもよい。
【0022】
上に例示される実施形態の各々において、
図3、
図4、
図7および
図8から明らかにできるように、ブレード先端30は、先端キャップ32の圧力側縁部44において半径方向外側段部102を備える。スキーラ先端壁34は、段部102から半径方向最外先端84まで半径方向外側に延在する。段部102は、スキーラ先端壁34の輪郭に沿って翼弦方向に延在してもよい。段部102は、多くの方式において有益となり得る。例えば、スキーラ先端ポケット内の段状形体部は、冷却チャネルを冷却空気供給コアへ機械加工するための適切な材料を提供する。付加的な利点として、段部102は、翼弦方向に離間される冷却孔110が設けられていてもよく、冷却孔110は、エアフォイル内部の冷却システムと流体連通している段部102を通して形成される。段部102における冷却孔110は、スキーラウィングレット34を通る冷却チャネル50と組み合わせると、ブレード先端30の冷却を増大させる。
【0023】
図面に示される実施形態では、ブレード吸引側に、吸引側スキーラ先端壁36が設けられる。他の実施形態では、ブレード吸引側には、付加的にまたは代替的な先端形体部が設けられてもよい。
【0024】
本発明の態様はまた、例示される実施形態のいずれかに基づいて、圧力側スキーラ先端壁の前方側面に沿って冷却チャネルの列を機械加工することによって、ブレード先端冷却を向上させるべくタービンブレードを供与するための方法に方向付けられてもよい。
【0025】
特定の実施形態について詳細に説明したが、当業者は、本開示の教示全体に照らしてこれら詳細に対するさまざまな修正および代替を展開できることを理解し得るだろう。したがって、説明される特定の構成は、単なる例示を意味しており、本発明の範囲を限定するものではなく、添付の請求項の全範囲およびそのあらゆるすべての同等物が与えられるべきである。
【符号の説明】
【0026】
1 タービンブレード
6 プラットホーム
8 翼根
10 エアフォイル
12 外壁
14 圧力側壁
14a 圧力側壁の内面
14b 圧力側壁の外面
16 吸引側壁
16a 吸引側壁の内面
16b 吸引側壁の外面
18 前縁
20 後縁
28 エアフォイル内部キャビティ
30 ブレード先端
32 先端キャップ
32a 半径方向内面
32b 半径方向外面
34 スキーラ先端壁
34a 後方表面
34b 前方表面
34c 半径方向外側に面する先端表面
40 半径方向軸線
44 先端キャップの圧力側縁部
50 冷却チャネル
52 入口
54 上流セクション
56 下流セクション
60 スロット
62 スロット床
64、66 スロット側壁
72 前方縁部
84 スキーラ先端壁の半径方向最外先端
92 山
94 谷
102 段部
110 冷却孔
D 深さ
W スロット床の幅
α 第1の角度
β 第2の角度