IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人神戸大学の特許一覧 ▶ 三木プーリ株式会社の特許一覧

<>
  • 特許-軸継手の特性評価装置及び特性評価方法 図1
  • 特許-軸継手の特性評価装置及び特性評価方法 図2
  • 特許-軸継手の特性評価装置及び特性評価方法 図3
  • 特許-軸継手の特性評価装置及び特性評価方法 図4
  • 特許-軸継手の特性評価装置及び特性評価方法 図5
  • 特許-軸継手の特性評価装置及び特性評価方法 図6
  • 特許-軸継手の特性評価装置及び特性評価方法 図7
  • 特許-軸継手の特性評価装置及び特性評価方法 図8
  • 特許-軸継手の特性評価装置及び特性評価方法 図9
  • 特許-軸継手の特性評価装置及び特性評価方法 図10
  • 特許-軸継手の特性評価装置及び特性評価方法 図11
  • 特許-軸継手の特性評価装置及び特性評価方法 図12
  • 特許-軸継手の特性評価装置及び特性評価方法 図13
  • 特許-軸継手の特性評価装置及び特性評価方法 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-01-27
(45)【発行日】2022-02-04
(54)【発明の名称】軸継手の特性評価装置及び特性評価方法
(51)【国際特許分類】
   G01M 13/025 20190101AFI20220128BHJP
【FI】
G01M13/025
【請求項の数】 14
(21)【出願番号】P 2020110679
(22)【出願日】2020-06-26
(65)【公開番号】P2021028628
(43)【公開日】2021-02-25
【審査請求日】2021-04-13
(31)【優先権主張番号】P 2019147561
(32)【優先日】2019-08-09
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】504150450
【氏名又は名称】国立大学法人神戸大学
(73)【特許権者】
【識別番号】000176992
【氏名又は名称】三木プーリ株式会社
(74)【代理人】
【識別番号】110001379
【氏名又は名称】特許業務法人 大島特許事務所
(72)【発明者】
【氏名】佐藤 隆太
(72)【発明者】
【氏名】谷山 誠
(72)【発明者】
【氏名】廣澤 雅晴
(72)【発明者】
【氏名】里見 孝行
(72)【発明者】
【氏名】佐々木 太一
【審査官】福田 裕司
(56)【参考文献】
【文献】特開2018-173702(JP,A)
【文献】特開2014-122804(JP,A)
【文献】特開2018-007287(JP,A)
【文献】特開平08-136408(JP,A)
【文献】中国特許出願公開第104634569(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01M 13/00~13/045
G01M 99/00
(57)【特許請求の範囲】
【請求項1】
駆動軸から従動軸にトルクを伝達するべく、前記両軸を接続する軸継手の特性評価を行う特性評価装置であって、
前記駆動軸に駆動トルクを付与する駆動用モータ、前記駆動軸の回転角を取得する回転角センサ、及び、与えられたトルク指令に基づいて、前記トルク指令に応じたトルクを出力させるべく、前記駆動用モータを制御するモータ制御部を含むモータシステムと、
前記従動軸に接続された回転負荷部と、
所定の前記駆動トルクを出力するように前記トルク指令を前記モータ制御部に出力するとともに、前記回転角センサによって検出される前記回転角に基づいて、前記トルク指令に対応するトルクの振幅に対する前記回転角の角速度の振幅の利得の周波数特性を算出可能なプロセッサとを有し、
前記プロセッサは、前記モータシステムの応答特性と、前記軸継手が前記両軸を接続する状態において算出された前記周波数特性とに基づいて、前記軸継手の特性を算出することを特徴とする軸継手の特性評価装置。
【請求項2】
前記プロセッサは、
前記モータシステムの応答特性として、前記トルク指令によって前記駆動用モータが駆動し、前記駆動用モータから対応するトルクが発生するまでの伝達関数を用い、
前記軸継手を接続した状態で前記周波数特性を取得し、
前記周波数特性から前記軸継手の共振周波数、及び、前記共振周波数における前記利得を取得し、
前記共振周波数を用いて、前記軸継手のねじり剛性を算出し、
前記伝達関数、前記ねじり剛性、及び前記共振周波数における前記利得を用いて、前記軸継手の粘性係数を算出することを特徴とする請求項1に記載の軸継手の特性評価装置。
【請求項3】
前記プロセッサは、
前記共振周波数における前記利得を、前記伝達関数を用いて、前記伝達関数が1の場合の前記共振周波数における前記利得に対応する換算値に換算し、
前記ねじり剛性と、前記換算値とを用いて、前記軸継手の粘性係数を算出することを特徴とする請求項2に記載の軸継手の特性評価装置。
【請求項4】
前記プロセッサは、前記モータシステムの応答特性を、前記両軸に前記軸継手が接続されていない状態で前記駆動用モータが駆動されたときの前記周波数特性によって取得することを特徴とする請求項1~請求項3のいずれか1つの項に記載の軸継手の特性評価装置。
【請求項5】
駆動軸から従動軸にトルクを伝達するべく、前記両軸を接続する軸継手の特性評価を行う軸継手の特性評価方法であって、
前記駆動軸に駆動トルクを付与する駆動用モータ、前記駆動軸の回転角を取得する回転角センサ、及び、与えられたトルク指令に基づいて、前記トルク指令に応じたトルクを出力させるべく、前記駆動用モータを制御するモータ制御部を含むモータシステムと、
前記従動軸に接続された回転負荷部と、
所定の前記駆動トルクを出力するように前記トルク指令を前記モータ制御部に出力するとともに、前記回転角センサによって検出される前記回転角に基づいて、前記トルク指令に対応するトルクの振幅に対する前記回転角の角速度の振幅の利得の周波数特性を算出可能な特性評価装置を用いて、
前記軸継手が前記両軸を接続する状態において前記周波数特性を取得するステップと、
取得された前記周波数特性、及び、前記モータシステムの応答特性に基づいて、前記軸継手の特性を算出するステップとを実行することを特徴とする軸継手の特性評価方法。
【請求項6】
前記軸継手を接続した状態で前記周波数特性を取得するステップと、
前記周波数特性から前記軸継手の共振周波数、及び、前記共振周波数における前記利得を取得するステップと、
前記共振周波数を用いて、前記軸継手のねじり剛性を算出するステップと、
前記モータシステムの応答特性としての前記トルク指令によって前記駆動用モータが駆動し、前記駆動用モータから対応するトルクが発生するまでの伝達関数、前記ねじり剛性、及び前記共振周波数における前記利得を用いて、前記軸継手の粘性係数を算出するステップとを含むことを特徴とする請求項5に記載の軸継手の特性評価方法。
【請求項7】
前記軸継手の粘性係数を算出する前記ステップは、
前記共振周波数における前記利得を、前記伝達関数を用いて、前記伝達関数が1の場合の前記共振周波数における前記利得に対応する換算値に換算するステップと、
前記ねじり剛性と、前記換算値とを用いて、前記軸継手の粘性係数を算出するステップとを含むことを特徴とする請求項6に記載の軸継手の特性評価方法。
【請求項8】
前記モータシステムの応答特性を、前記両軸に前記軸継手が接続されていない状態で前記駆動用モータが駆動されたときの前記周波数特性によって取得するステップを含むことを特徴とする請求項5~請求項7のいずれか1つの項に記載の軸継手の特性評価方法。
【請求項9】
前記プロセッサは、前記軸継手が前記両軸を接続する状態において2つ以上の振幅の前記駆動トルクを出力するように前記トルク指令を前記モータ制御部に出力して、それぞれの前記振幅に対応する前記周波数特性を算出し、前記モータシステムの応答特性と、算出された前記周波数特性とに基づいて、前記振幅のそれぞれに対応する前記軸継手の特性を算出し、前記トルク指令の前記振幅、前記軸継手の共振周波数における前記駆動トルクの振幅、前記共振周波数における前記回転角の振幅、前記共振周波数における前記角速度の振幅の少なくともいずれか一つと前記軸継手の特性との関係を出力することを特徴とする請求項1に記載の軸継手の特性評価装置。
【請求項10】
前記プロセッサは、取得した前記周波数特性それぞれに対して、前記軸継手のねじり剛性を求め、前記トルク指令の前記振幅、前記共振周波数における前記駆動トルクの振幅、前記共振周波数における前記回転角の振幅、前記共振周波数における前記角速度の振幅の少なくともいずれか一つと、前記軸継手のねじり剛性との関係を出力することを特徴とする請求項9に記載の軸継手の特性評価装置。
【請求項11】
前記プロセッサは、2つ以上の振幅の前記駆動トルクを出力するように前記トルク指令を前記モータ制御部に出力して、それぞれの前記振幅に対応する前記周波数特性を取得し、取得した前記周波数特性それぞれに対して、前記軸継手の粘性係数を求め、前記トルク指令の前記振幅、前記共振周波数における前記駆動トルクの振幅、前記共振周波数における前記回転角の振幅、前記共振周波数における前記角速度の振幅の少なくともいずれか一つと、前記軸継手の粘性係数との関係を出力することを特徴とする請求項9及び請求項10に記載の軸継手の特性評価装置。
【請求項12】
前記軸継手が前記両軸を接続する状態で、2つ以上の振幅の前記駆動トルクを前記モータシステムに出力させて、それぞれの前記振幅に対応する前記周波数特性を取得するステップと、
取得された前記周波数特性、及び、前記モータシステムの応答特性に基づいて、それぞれの前記振幅に対応する前記軸継手の特性を算出するステップとを実行することを特徴とする請求項5に記載の軸継手の特性評価方法。
【請求項13】
前記軸継手を接続した状態で、2つ以上の振幅の前記周波数特性を取得するステップと、
それぞれの前記周波数特性から前記軸継手の共振周波数、及び、前記共振周波数における前記利得を取得するステップと、
前記共振周波数を用いて、それぞれの前記振幅に対応する前記軸継手のねじり剛性を算出するステップと、
前記トルク指令の前記振幅、前記共振周波数における前記駆動トルクの振幅、前記共振周波数における前記回転角の振幅、前記共振周波数における前記角速度の振幅の少なくともいずれか一つと、前記軸継手の前記ねじり剛性との関係を出力するステップとを含むことを特徴とする請求項12に記載の軸継手の評価方法。
【請求項14】
それぞれの前記振幅において、前記モータシステムの応答特性としての前記トルク指令によって前記駆動用モータが駆動し、前記駆動用モータから対応するトルクが発生するまでの伝達関数、前記ねじり剛性、及び前記共振周波数における前記利得を用いて、前記軸継手の粘性係数を算出するステップと、
前記トルク指令の前記振幅、前記共振周波数における前記駆動トルクの振幅、前記共振周波数における前記回転角の振幅、前記共振周波数における前記角速度の振幅の少なくともいずれか一つと、前記軸継手の粘性係数との関係を出力するステップとを含むことを特徴とする請求項13に記載の軸継手の特性評価方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、機械要素の特性評価を行うための特性評価装置及び特性評価方法であって、特に、2つの軸を連結する軸継手の特性評価装置及び特性評価方法に関する。
【背景技術】
【0002】
回転運動を直線運動に変換することによって搬送物体を直動方向に移動させる送り駆動機構(直動機構)を含み、搬送物体の位置決めを行う位置決め装置において、送り機構を特徴づける物理パラメータ同定法が公知である(例えば、特許文献1)。特許文献1では、位置決め装置の周波数特性を周波数特性分析器、サーボアナライザを使って計測し、計測結果から共振値と共振周波数を取得する。その後、取得した共振値と共振周波数とに基づいて、送り機構の固有角周波数、ダンピング係数、バネ定数、及び粘性摩擦抵抗が算出される(例えば、特許文献1)。
【0003】
送り駆動機構はモータの回転軸とボールねじの螺子軸とを連結する軸継手を含むものが多い。送り駆動機構に設けられる軸継手は二つの軸の心ずれや振れ回りを許容しつつ、モータのトルクをボールねじに伝達する機械要素であり、送り駆動機構の特性に大きな影響を及ぼすことが知られている(例えば、非特許文献1)。
【先行技術文献】
【特許文献】
【0004】
【文献】特開平3-282717号公報
【非特許文献】
【0005】
【文献】長尾淳志、佐藤隆太、白瀬敬一、橋本武志、佐々木太一:軸継手及びボールねじが送り駆動系のねじり振動モードに及ぼす影響、2017年度精密工学会秋季大会学術講演会講演論文集、(2017)、pp.425-426.
【発明の概要】
【発明が解決しようとする課題】
【0006】
送り駆動機構の性能を向上させるためには、軸継手の特性をより精度よく評価することが重要である。そこで、特許文献1に基づいて、モータと負荷とを軸継手によって接続し、モータの駆動トルクを入力とし、モータの角速度を出力とする利得(ゲイン)の周波数特性を計測することが考えられる。得られた周波数特性を用いれば、共振値及び共振周波数を取得することができ、これにより、軸継手を特徴づける物理パラメータであるねじり剛性、及びねじり弾性係数を同定することができる。
【0007】
しかし、発明者らはモータに駆動トルクを発生させるべくトルク指令を行った後、駆動トルクが発生するまでのモータシステムの応答特性によって、同定される物理パラメータの精度が低下するおそれがあることを見出した。
【0008】
そこで、本発明は、このような従来技術の課題を鑑みて案出されたものであり、モータシステムの応答特性を考慮した上で、軸継手の特性を適切に評価することのできる軸継手の特性評価装置及び特性評価方法を提供することを主目的とする。
【課題を解決するための手段】
【0009】
本発明の第1の側面では、駆動軸(2)から従動軸(3)にトルクを伝達するべく、前記両軸を接続する軸継手(4)の特性評価を行う特性評価装置(1、101)であって、前記駆動軸に駆動トルクを付与する駆動用モータ(11)、前記駆動軸の回転角を取得する回転角センサ(14)、及び、与えられたトルク指令(Tref)に基づいて、前記トルク指令に応じたトルクを出力させるべく、前記駆動用モータを制御するモータ制御部(13)を含むモータシステム(5)と、前記従動軸に接続された回転負荷部(18)と、所定の前記駆動トルクを出力するように前記トルク指令を前記モータ制御部に出力するとともに、前記回転角センサによって検出される前記回転角に基づいて、前記トルク指令に対応するトルクの振幅に対する前記回転角の角速度(ω)の振幅の利得の周波数特性を算出可能なプロセッサ(21)とを有し、前記プロセッサは、前記モータシステムの応答特性と、前記軸継手が前記両軸を接続する状態において算出された前記周波数特性とに基づいて、前記軸継手の特性を算出することを特徴とする。
【0010】
これによると、軸継手の特性の算出にモータシステムの応答特性が考慮されるため、軸継手の特性をより適切に評価することができる。
【0011】
本発明の第2の側面では、前記プロセッサは、前記モータシステムの応答特性として、前記トルク指令によって前記駆動用モータが駆動し、前記駆動用モータから対応するトルクが発生するまでの伝達関数(G(s))を用い、前記軸継手を接続した状態で前記周波数特性を取得し、前記周波数特性から前記軸継手の共振周波数(f)、及び、前記共振周波数における前記利得を取得し、前記共振周波数を用いて、前記軸継手のねじり剛性(K)を算出し、前記伝達関数、前記ねじり剛性、及び前記共振周波数における前記利得を用いて、前記軸継手の粘性係数(c)を算出することを特徴とする。
【0012】
これによると、周波数特性を用いて、軸継手のねじり剛性を簡便に算出することができる。また、モータにトルク指令が与えられてから駆動軸にトルクが発生するまでの伝達関数を考慮した上で、軸継手の粘性係数を算出することができる。これにより、モータシステムの応答特性を考慮した上で粘性係数が算出されるため、算出される粘性係数の精度が向上する。
【0013】
本発明の第3の側面では、前記プロセッサは、前記共振周波数における前記利得を、前記伝達関数を用いて、前記伝達関数が1の場合の前記共振周波数における前記利得に対応する換算値に換算し、前記ねじり剛性と、前記換算値とを用いて、前記軸継手の粘性係数を算出することを特徴とする。
【0014】
これによると、伝達関数を用いて共振周波数における利得を換算することによって、モータシステムの伝達関数が1の場合の利得に換算することができる。これにより、モータシステムの伝達関数が1の場合のモデルを用いて、軸継手の粘性係数を算出することができる。
【0015】
本発明の第4の側面では、前記プロセッサは、前記モータシステムの応答特性を、前記両軸に前記軸継手が接続されていない状態で前記駆動用モータが駆動されたときの前記周波数特性によって取得することを特徴とする。
【0016】
これによると、モータシステムの周波数特性を取得することによって、モータにトルク指令が与えられてから駆動軸にトルクが発生するまでの伝達関数を算出することができる。
【0017】
本発明の第5の側面では、駆動軸(2)から従動軸(3)にトルクを伝達するべく、前記両軸を接続する軸継手(4)の特性評価を行う軸継手の特性評価方法であって、前記駆動軸に駆動トルクを付与する駆動用モータ(11)、前記駆動軸の回転角を取得する回転角センサ(14)、及び、与えられたトルク指令(Tref)に基づいて、前記トルク指令に応じたトルクを出力させるべく、前記駆動用モータを制御するモータ制御部(13)を含むモータシステム(5)と、前記従動軸に接続された回転負荷部(18)と、所定の前記駆動トルクを出力するように前記トルク指令を前記モータ制御部に出力するとともに、前記回転角センサによって検出される前記回転角に基づいて、前記トルク指令に対応するトルクの振幅に対する前記回転角の角速度の振幅の利得の周波数特性を算出可能な特性評価装置(1)を用いて、前記軸継手が前記両軸を接続する状態において前記周波数特性を取得するステップ(ST5)と、取得された前記周波数特性、及び、前記モータシステムの応答特性に基づいて、前記軸継手の特性を算出するステップ(ST7、ST10)とを実行することを特徴とする。
【0018】
これによると、軸継手の特性の算出にモータシステムの応答特性が考慮されるため、軸継手の特性をより適切に評価することができる。
【0019】
本発明の第6の側面では、前記軸継手を接続した状態で前記周波数特性を取得するステップ(ST5)と、前記周波数特性から前記軸継手の共振周波数(f)、及び、前記共振周波数における前記利得を取得するステップ(ST6)と、前記共振周波数を用いて、前記軸継手のねじり剛性(K)を算出するステップ(ST7)と、前記モータシステムの応答特性としての前記トルク指令によって前記駆動用モータが駆動し、前記駆動用モータから対応するトルクが発生するまでの伝達関数、前記ねじり剛性、及び前記共振周波数における前記利得を用いて、前記軸継手の粘性係数(c)を算出するステップ(ST9、ST10)とを含むことを特徴とする。
【0020】
これによると、周波数特性を用いて、軸継手のねじり剛性を簡便に算出することができる。また、モータにトルク指令が与えられてから駆動軸にトルクが発生するまでの伝達関数を考慮した上で、軸継手の粘性係数を算出することができる。これにより、モータシステムの応答特性を考慮した上で粘性係数が算出されるため、算出される粘性係数の精度が向上する。
【0021】
本発明の第7の側面では、前記軸継手の粘性係数を算出する前記ステップは、前記共振周波数における前記利得を、前記伝達関数(G(s))を用いて、前記伝達関数が1の場合の前記共振周波数における前記利得に対応する換算値(Mf0)に換算するステップ(ST9)と、前記ねじり剛性と、前記換算値とを用いて、前記軸継手の粘性係数を算出するステップ(ST10)とを含むことを特徴とする。
【0022】
これによると、伝達関数を用いて共振周波数における利得を換算することによって、モータシステムの伝達関数が1の場合の利得に換算することができる。これにより、モータシステムの伝達関数が1の場合のモデルを用いて、軸継手の粘性係数を算出することができる。
【0023】
本発明の第8の側面では、前記モータシステムの応答特性を、前記両軸に前記軸継手が接続されていない状態で前記駆動用モータが駆動されたときの前記周波数特性によって取得するステップを含むとよい。
【0024】
これによると、モータシステムの周波数特性を取得することによって、モータにトルク指令が与えられてから駆動軸にトルクが発生するまでの伝達関数を算出することができる。
【0025】
本発明の第9の側面では、軸継手の特性評価装置(101)であって、前記プロセッサは、前記軸継手が前記両軸を接続する状態において2つ以上の振幅の前記駆動トルクを出力するように前記トルク指令を前記モータ制御部に出力して、それぞれの前記振幅に対応する前記周波数特性を算出し、前記モータシステムの応答特性と、算出された前記周波数特性とに基づいて、前記振幅のそれぞれに対応する前記軸継手の特性を算出し、前記トルク指令の前記振幅、前記軸継手の共振周波数における前記駆動トルクの振幅、前記共振周波数における前記回転角の振幅、前記共振周波数における前記角速度の振幅の少なくともいずれか一つと前記軸継手の特性との関係を出力するとよい。
【0026】
これによると、軸継手の特性の、軸継手に加えられる駆動トルクの振幅依存性が出力される。これにより、利用者が軸継手の入力依存特性を適切に評価できるため、様々な運転状況下における振動特性の予測や適切な制御系の設計が可能になる。
【0027】
本発明の第10の側面では、前記プロセッサは、取得した前記周波数特性それぞれに対して、前記軸継手のねじり剛性を求め、前記トルク指令の前記振幅、前記共振周波数における前記駆動トルクの振幅、前記共振周波数における前記回転角の振幅、前記共振周波数における前記角速度の振幅の少なくともいずれか一つと、前記軸継手のねじり剛性との関係を出力するとよい。
【0028】
これによると、軸継手のねじり剛性の駆動トルクの振幅依存性が出力される。これにより、軸継手の入力依存性を適切に評価できる。また、ねじり剛性の振幅依存性が出力されるため、その内容が利用者にとって理解され易くなり、軸継手の特性評価装置の利便性が高められる。
【0029】
本発明の第11の側面では、前記プロセッサは、2つ以上の振幅の前記駆動トルクを出力するように前記トルク指令を前記モータ制御部に出力して、それぞれの前記振幅に対応する前記周波数特性を取得し、取得した前記周波数特性それぞれに対して、前記軸継手の粘性係数を求め、前記トルク指令の前記振幅、前記共振周波数における前記駆動トルクの振幅、前記共振周波数における前記回転角の振幅、前記共振周波数における前記角速度の振幅の少なくともいずれか一つと、前記軸継手の粘性係数との関係を出力するとよい。
【0030】
これによると、軸継手の粘性係数の駆動トルクの振幅依存性が出力される。これにより、軸継手の入力依存特性を適切に評価できる。また、粘性係数の振幅依存性が出力されるため、その内容が利用者にとって理解され易くなり、軸継手の特性評価装置の利便性が高められる。
【0031】
本発明の第12の側面では、軸継手の評価方法であって、前記軸継手が前記両軸を接続する状態で、2つ以上の振幅の前記駆動トルクを前記モータシステムに出力させて、それぞれの前記振幅に対応する前記周波数特性を取得するステップと、取得された前記周波数特性、及び、前記モータシステムの応答特性に基づいて、それぞれの前記振幅に対応する前記軸継手の特性を算出するステップとを実行するとよい。
【0032】
これによると、軸継手の特性の、軸継手に加えられる駆動トルクの振幅依存性を評価することができる。これにより、様々な運転状況下における振動特性の予測や適切な制御系の設計が可能になる。
【0033】
本発明の第13の側面では、前記軸継手を接続した状態で、2つ以上の振幅の前記周波数特性を取得するステップと、それぞれの前記周波数特性から前記軸継手の共振周波数、及び、前記共振周波数における前記利得を取得するステップと、前記共振周波数を用いて、それぞれの前記振幅に対応する前記軸継手のねじり剛性を算出するステップと、前記トルク指令の前記振幅、前記共振周波数における前記駆動トルクの振幅、前記共振周波数における前記回転角の振幅、前記共振周波数における前記角速度の振幅の少なくともいずれか一つと、前記軸継手の前記ねじり剛性との関係を出力するステップとを含むとよい。
【0034】
これによると、軸継手のねじり剛性の駆動トルクの振幅依存性が評価できる。これにより、様々な運転状況下における振動特性の予測や適切な制御系の設計が可能になり、利用者がその内容を理解し易くなる。
【0035】
本発明の第14の側面では、それぞれの前記振幅において、前記モータシステムの応答特性としての前記トルク指令によって前記駆動用モータが駆動し、前記駆動用モータから対応するトルクが発生するまでの伝達関数、前記ねじり剛性、及び前記共振周波数における前記利得を用いて、前記軸継手の粘性係数を算出するステップと、前記トルク指令の前記振幅、前記共振周波数における前記駆動トルクの振幅、前記共振周波数における前記回転角の振幅、前記共振周波数における前記角速度の振幅の少なくともいずれか一つと、前記軸継手の粘性係数との関係を出力するステップとを含むとよい。
【0036】
これによると、軸継手の粘性係数の駆動トルクの振幅依存性が評価できる。これにより、様々な運転状況下における振動特性の予測や適切な制御系の設計が可能になり、利用者がその内容を理解し易くなる。
【発明の効果】
【0037】
このように本発明によれば、モータシステムの応答特性を考慮した上で、軸継手の特性を適切に評価することのできる軸継手の特性評価装置及び特性評価方法を提供することが可能となる。
【図面の簡単な説明】
【0038】
図1】評価装置の機能ブロック、及び、軸継手によって駆動軸及び従動軸を接続したときの評価装置の状態を説明するための説明図
図2】評価装置のハードウェア構成図
図3】軸継手を外したときの評価装置の状態を説明するための説明図
図4】軸継手を外した状態において取得される周波数特性を示す図
図5】軸継手を外した状態を示すブロック線図
図6】軸継手によって駆動軸及び従動軸を接続した状態で取得される周波数特性の例
図7】2慣性系の振動モデルを示す図
図8】軸継手によって駆動軸及び従動軸を接続した状態を示すブロック線図
図9】第1実施形態に係る評価処理のフローチャート
図10】(A)軸継手Aによって駆動軸及び従動軸を接続した状態における周波数特性の測定結果(実線)、及び、モータシステムの応答特性を考慮した場合の計算結果(破線)とを示す図、(B)軸継手Bによって駆動軸及び従動軸を接続した状態における周波数特性の測定結果(実線)、及び、モータシステムの応答特性を考慮した場合の計算結果(破線)とを示す図
図11】軸継手Aによって駆動軸及び従動軸を接続した状態における周波数特性の測定結果(実線)と、モータシステムによる遅れを無視した場合の計算結果(破線)とを示す図
図12】第2実施形態に係る評価処理のフローチャート
図13】軸継手Aによって駆動軸及び従動軸を接続した状態において、トルク指令の振幅を(A)1.0Nmにした場合、及び、(B)3.0Nmにした場合の周波数特性を示すグラフ
図14】軸継手Aによって駆動軸及び従動軸を接続した状態において、トルク指令の振幅を10通りに変えた場合の周波数特性から求めたトルク指令の振幅と(A)ねじり剛性、及び、(B)粘性係数との関係を表すグラフ
【発明を実施するための形態】
【0039】
以下、本発明の実施形態について図面を参照しながら説明する。
【0040】
<<第1実施形態>>
本発明に係る評価装置1は、回転駆動する駆動軸2のトルクを従動軸3に伝達すべく、両軸を接続する軸継手4(カップリング)の特性を評価するための装置である。より具体的には、本発明に係る特性評価装置1によって、軸継手4の特性であるねじり剛性K[Nm/rad]、及び粘性係数c[Nm/(rad/s)]をそれぞれ定量的に評価することができる。
【0041】
図1に示すように、特性評価装置1は駆動軸2を備えたモータシステム5と、従動軸3を備えた従動装置6と、解析装置7と、出入力装置8とを有している。軸継手4の特性評価を行うときには、評価対象となる軸継手4は駆動軸2及び従動軸3を接続するように配置される。
【0042】
モータシステム5は駆動用モータ11、電流センサ12、サーボドライバ13(モータ制御部)、及び回転角センサ14、及び微分器15を含む。
【0043】
駆動用モータ11は汎用のサーボモータであって、駆動軸2となる出力軸が略水平をなすように配置され、駆動軸2に駆動トルクTを付与する。電流センサ12は駆動用モータ11に流れる電流(以下、駆動電流)の電流値を測定するセンサである。サーボドライバ13は駆動用モータ11に駆動電流を供給し、解析装置7から入力されたトルク指令Trefに対応するトルク(以下、指令トルク値)を駆動用モータ11に出力させるべく、駆動電流の電流値を制御して、駆動用モータ11を制御する。より詳細には、サーボドライバ13は、電流センサ12によって取得された電流値と、指令トルク値に対応する電流値との偏差が零となるように、駆動電流をフィードバック(帰還)制御する。すなわち、サーボドライバ13、電流センサ12、及び駆動用モータ11は電流ループ(フィードバックループ)を形成し、サーボドライバ13、電流センサ12、及び駆動用モータ11が協働することによって、トルクを制御量として、駆動軸2に制御量に対応する駆動トルクTを出力させるべく自動で駆動するサーボシステム16(サーボ機構)として機能する。
【0044】
回転角センサ14は駆動軸2の回転角を測定するためのいわゆるロータリーエンコーダであって、光学式、磁気式、及び静電容量式のいずれの検出素子を含むものであってもよい。
【0045】
微分器15は、回転角センサ14と解析装置7とに接続されている。微分器15は回転角センサ14から駆動軸2の回転角を取得して、回転角を時間微分して角速度ωを算出し、解析装置7に出力する。
【0046】
従動装置6は従動軸3に加えて、従動軸3に接続され、従動軸3の回転運動に負荷を与える回転負荷部18を含む。回転負荷部18は所定の慣性モーメントを有する円盤等によって構成されていてもよい。また、回転負荷部18は駆動用モータ11と略同形、又は、大きさの異なるモータによって構成されていてもよい。このとき、モータの出力軸を従動軸3に固定するとよい。従動装置6自体を駆動用モータ11と略同形、又は、大きさの異なるモータによって構成してもよい。モータを従動装置6して用いるときには、出力軸を従動軸3として用いるとよい。モータを回転負荷部18として用いる、又は、モータを従動装置6として用いると、モータにトルク、従動軸3の回転角、又は従動軸3の角速度等の指令を与えることによって、従動軸3に加わる負荷を変えることができる。これにより、負荷状態を変えた軸継手4の特性試験を行うことができる。
【0047】
解析装置7はサーボドライバ13にトルク指令Trefを出力するとともに、駆動軸2の回転角、より具体的には微分器15によって算出される回転角の時間微分である角速度ωに基づいて、軸継手4の特性を算出する装置である。図2に示すように、解析装置7は公知のハードウェアを備えたコンピュータによって構成され、所定のプログラムに基づく処理を実行する1以上のプロセッサ21と、処理に必要なデータ等を保持するメモリ22とを備える。メモリ22は、プロセッサ21のワークエリア等として機能するRAM23(Random Access Memory)と、プロセッサ21が実行するプログラムやデータ等を格納するROM24(Read Only Memory)とを含む。本実施形態では、解析装置7は更に、HDDやSSD等の記憶装置25と、周辺機器等を接続するための複数の出入力ポート26(図1参照)とを備えている。
【0048】
出入力装置8はユーザから入力を受け付けるとともに、取得された軸継手4の特性をユーザに表示するための装置であって、出入力ポート26を介して解析装置7に接続されている。出入力装置8はユーザが解析装置7における各種設定に利用するキーボード及びマウス等の入力装置27、及び解析結果を表示するための液晶モニタ等からなる出力装置28を含む。出入力装置8はモニタ及びキーボードを備えたコンピュータによって構成されていてもよい。
【0049】
サーボドライバ13もまた、出入力ポート26を介して解析装置7に接続されている。これにより、解析装置7及びサーボドライバ13は互いに通信可能となっており、例えば、解析装置7は出入力ポート26を介してサーボドライバ13にトルク指令Trefを出力することができる。微分器15もまた、出入力ポート26を介して解析装置7に接続されている。これにより、解析装置7は微分器15に通信可能となっており、例えば、解析装置7は微分器15から駆動軸2の角速度ωを取得することができる。
【0050】
解析装置7は記憶部31と、周波数特性取得部32と、モータシステム応答取得部33と、軸継手特性評価部34とを備えている。周波数特性取得部32と、モータシステム応答取得部33と、軸継手特性評価部34とはそれぞれ、軸継手4の特性を取得する評価プログラムをプロセッサ21が実行することによって実現されている。
【0051】
記憶部31はメモリ22によって実現され、適宜、周波数特性取得部32、モータシステム応答取得部33及び軸継手特性評価部34の処理に必要となる情報を記憶する。更に、記憶部31は、駆動用モータ11のロータの慣性モーメントJと、回転負荷部18の慣性モーメントJを記憶している。但し、駆動用モータ11のロータの慣性モーメントJ及び、回転負荷部18の慣性モーメントJは、それらの設計仕様に基づいて正確な値が既知であるとする。
【0052】
周波数特性取得部32はサーボドライバ13に対して、周波数を変えながら所定振幅で振動するトルクを出力するようにトルク指令Trefを出力する。同時に、周波数特性取得部32は微分器15から角速度ωを取得する。次に、周波数特性取得部32はトルク指令Trefによって指示したトルク、すなわち指令トルク値の振幅に対する角速度ωの振幅比(以下、速度応答パラメータM)を算出する。その後、式(1)を用いて速度応答パラメータMを利得(以下、ゲインG)に換算する。
【0053】
【数1】
【0054】
周波数特性取得部32は周波数を所定範囲内で変化させてトルク指令Trefを出力することによって、周波数とトルク指令Trefに対応するトルクの振幅に対する回転角の角速度ωの利得との関係を示す周波数特性(例えば、図4図6を参照)を取得する。
【0055】
但し、周波数特性取得部32が出力するトルク指令Trefは、例えば、駆動用モータ11にランダムに振幅が変化するトルクを駆動トルクTとして出力させるM系列信号であってもよく、また、パルス状に振幅が変化するトルクを駆動トルクTとして出力させるインパルス信号であってもよい。このとき、周波数特性取得部32はゲインの時間変化を取得した後、トルク指令Trefに対応するトルクの時間変化、及びゲインの時間変化をフーリエ変換し、両者を用いて周波数と利得との関係を示す周波数特性を取得するとよい。
【0056】
モータシステム応答取得部33は、図3に示すように軸継手4が接続されていない状態で周波数特性取得部32が駆動用モータ11を駆動させて周波数特性(図4参照)を取得し、取得した周波数特性からモータシステム5の応答特性を同定する。
【0057】
より具体的には、モータシステム応答取得部33は、軸継手4が接続されていない状態で取得された周波数特性と、軸継手4が接続されていない状態に対応するブロック線図(例えば、図5)に基づいて計算される周波数特性とが一致するように、応答帯域wを同定する。軸継手4が接続されていない状態で取得された周波数特性とブロック線図により計算される周波数特性とを一致させる方法として、最小二乗法や数値的な解の探索など公知の様々な方法を用いることができる。
【0058】
ここでいう応答帯域wとはいわゆる遮断周波数を角速度ωに換算したものに対応し、モータの応答特性に係るパラメータの一つである。本実施形態では、応答帯域wはモータシステム5の応答特性を一次遅れ系の伝達関数G(s)として表現した場合のパラメータに対応する。サーボドライバ13にトルク指令Trefが入った後、駆動軸2に駆動トルクTが発生するまでには所定の遅れが生じる。そのため、例えば、サーボドライバ13に周波数(すなわち角速度ω)を上昇させながら正弦波状に振動するトルクを発生させるべくトルク指令Trefが入力されると、モータが概ね遮断周波数以上でトルク指令Trefに追従し難くなり、駆動軸2に実際に出力される駆動トルクTの大きさがトルク指令Trefによって駆動軸2に出力されるべきトルクよりも小さくなる。但し、応答帯域wはモータシステム5の応答特性を高次の伝達関数として表現した場合のパラメータであってもよい。
【0059】
より詳細には、駆動用モータ11に角速度ωで振動するトルク指令Trefを与えたときに、駆動軸2に出力されるべきトルク(指令トルク値)の振幅の大きさに対する駆動軸2に実際に出力される駆動トルクTの振幅の大きさの比をデシベル単位で表したときに、その値が-3dBとなる角速度ωが応答帯域wである。応答帯域wの2π倍は遮断周波数に対応し、遮断周波数はトルク指令Trefが与えられてから駆動軸2に駆動トルクTが発生するまでの時間(以下、遅れ時間)の逆数に対応する。遮断周波数より小さい周波数帯域では、駆動トルクTの振幅はトルク指令Trefの振幅に概ね等しく、遮断周波数より大きい周波数帯域では、周波数が高くなるにつれて駆動トルクTの振幅はトルク指令Trefの振幅に比べてより小さくなる。換言すれば、応答帯域wは、モータシステム5がトルク指令Trefに十分追従する角速度領域から、角速度ω(すなわち、周波数)を上昇させていったときに、駆動トルクTの振幅がトルク指令Trefの振幅に比べて小さくなり、両者が乖離し始める角速度ωに対応する。周波数特性取得部32は応答帯域wの同定が完了すると、応答帯域wを軸継手特性評価部34に出力する。
【0060】
軸継手特性評価部34は、モータシステム5の応答特性と、軸継手4が駆動軸2及び従動軸3を接続する状態において取得された周波数特性とに基づいて、軸継手4の特性を算出する。
【0061】
具体的には、軸継手特性評価部34は、まず、軸継手4が駆動軸2及び従動軸3を接続する状態において取得された周波数特性から、図6に示すように、ゲインGのピークに対応する周波数を取得し、共振周波数fとする。更に、軸継手特性評価部34は、軸継手4が駆動軸2及び従動軸3を接続する状態において取得された周波数特性から共振周波数fにおけるゲインGを取得し、共振周波数fにおけるゲインexpf0とする。
【0062】
次に、軸継手特性評価部34は共振周波数fを式(2)に代入することによって、ねじり剛性Kを算出する。
【0063】
【数2】
【0064】
但し、式(2)におけるJとJはそれぞれ駆動用モータ11側と回転負荷部18側の慣性モーメント[kgm]であり、Jは駆動用モータ11のロータの慣性モーメントJと評価対象の軸継手4の慣性モーメントの半分J/2の和、Jは回転負荷部18の慣性モーメントJと評価対象の軸継手4の慣性モーメントの半分J/2の和である。評価対象の軸継手4の慣性モーメントJcは軸継手4の特性評価が行われる際に、ユーザから入力される。
【0065】
式(2)は、以下に示す軸継手4で接続された駆動用モータ11と回転負荷部18とを図7に示す2慣性系の振動モデルとして考えた場合の共振周波数fを示す式(3)をKについて解いたものに対応する。
【0066】
【数3】
【0067】
次に、軸継手特性評価部34は、周波数特性に基づいて求められた共振周波数fにおけるゲインexpf0を式(1)の左辺(G)に代入し、速度応答パラメータexpf0に変換する。
【0068】
その後、軸継手特性評価部34は、共振周波数fにおける速度応答パラメータexpf0を、算出されたねじり剛性K、応答帯域w、及び、慣性モーメントJ、Jを用いて、以下の式(4)に基づいて、換算速度応答パラメータMfo(換算値)に換算する。換算速度応答パラメータMfoは、共振周波数fにおける応答帯域wが無限大の極限(遅れ時間が零の場合)、すなわちトルク指令Trefから駆動トルクTまでの伝達関数が1である場合の速度応答パラメータに相当する。
【0069】
【数4】
【0070】
但し、式(4)のMfowは、共振周波数fにおいて、トルク指令値の振幅の大きさに対する、モータシステム5を一次遅れ系として近似した場合に駆動軸2に発生すると予測されるトルクの振幅の大きさの比であり、以下の式(5)を用いて算出される。
【0071】
【数5】
【0072】
但し、Mfowは式(4)には限定されず、モータシステム5をより高次な系として考慮することによって算出されたものであってもよい。
【0073】
次に、軸継手特性評価部34は、ねじり剛性K、換算速度応答パラメータMfo、及び、慣性モーメントJ、Jを用いて、以下の式(6)に基づいて、粘性係数cを算出する。
【0074】
【数6】
【0075】
なお、式(6)は、軸継手4によって駆動軸2及び従動軸3を接続した状態を図7の振動モデルによってモデル化してブロック線図(図8)として表現し、駆動用モータ11が発生する駆動トルクTから角速度ωまでの伝達関数G(s)を計算することによって求められる。但し、伝達関数G(s)は以下の式(7)で与えられる。
【0076】
【数7】
【0077】
さらに、式(7)を用いて、共振周波数fにおける速度応答パラメータMf0は式(8)のように表される。
【0078】
【数8】
【0079】
式(8)を粘性係数cについて解くことによって、上述の式(6)が得られる。
【0080】
式(8)に示す速度応答パラメータMf0は駆動用モータ11が発生する駆動トルクTから角速度ωまでの伝達関数G(s)の共振周波数fにおける速度応答パラメータである。しかし、図1及び図8に示すように、測定ではトルク指令Trefを出力して角速度ωを測定することによって周波数特性を取得しているから、トルク指令Trefを出力してから、駆動用モータ11から駆動トルクTが発生するまでの遅れ、すなわちモータシステム5の遅れを考慮する必要がある。
【0081】
モータシステム5を一次遅れ系として近似した場合の速度応答パラメータMf0allは、式(9)で表すことができる。
【0082】
【数9】
【0083】
但し、Mfowは、トルク指令Trefによって駆動用モータ11が駆動し、駆動用モータ11から対応する駆動トルクTが発生するまでの伝達関数G(s)を導くことによって算出される。モータシステム5を一次遅れ系として近似した場合には、伝達関数G(s)は以下の式(10)で与えられる。式(10)に示すように、伝達関数G(s)は応答帯域wをパラメータとして含む。
【0084】
【数10】
【0085】
モータシステム5が一次遅れ系として近似できる場合には、測定される速度応答パラメータexpf0がMf0allに等しくなる(式(11))。
【0086】
【数11】
【0087】
モータシステム5が一次遅れ系として近似できる場合には、式(11)を式(9)に代入することで、測定された速度応答パラメータexpf0を応答帯域wが無限大の極限(遅れ時間が零の場合)、すなわちトルク指令Trefから駆動トルクTまでの伝達関数が1である場合の速度応答パラメータMf0に換算することができる。式(9)及び式(11)から理解できるように、式(4)はその換算式に対応する。
【0088】
軸継手特性評価部34は、粘性係数cの算出が完了すると、軸継手特性評価部34はねじり剛性K、及び粘性係数cを出力装置28に表示させる。
【0089】
軸継手4のねじり剛性Kと粘性係数cとを取得するべく、出入力装置8にユーザが所定の入力を行うと、解析装置7のプロセッサ21は、軸継手4の評価方法を実施すべく評価プログラムを実行して、図9のフローチャートに示す評価処理を行う。以下では、図9を参照して、評価処理の詳細について説明する。但し、評価処理が開始されるときには、駆動軸2及び従動軸3のいずれにも軸継手4が接続されていないものとする。
【0090】
評価処理が開始されると、まず、周波数特性取得部32が周波数特性を取得する(ST1)。これにより、駆動軸2及び従動軸3に軸継手4が接続されていない状態で駆動用モータ11が駆動されて周波数特性が取得される。その後、モータシステム応答取得部33は駆動軸2及び従動軸3に軸継手4が接続されていない状態で取得された周波数特性を用いて、モータシステム5の応答特性を取得する(ST2)。より詳細には、モータシステム応答取得部33は、軸継手4が接続されていない状態で周波数特性から伝達関数G(s)に含まれるパラメータである応答帯域wを取得する。
【0091】
応答帯域wの取得が完了すると、プロセッサ21は出力装置28に軸継手4によって駆動軸2及び従動軸3を繋ぐように促す画面を表示させ、対応する軸継手4の評価対象の軸継手4の慣性モーメントJcの入力の受付とを行う(ST3)。その後、プロセッサ21は、ユーザから入力装置27に軸継手4の慣性モーメントJcの入力が行われたかを判定する(ST4)。入力が有った場合には、周波数特性取得部32は周波数特性を取得する(ST5)。これにより、軸継手4を接続した状態での周波数特性が取得される。入力が無い場合には、ユーザから入力装置27に軸継手4の接続が完了したことを示す入力があるまで待機する。
【0092】
軸継手4を接続した状態での周波数特性が取得されると、軸継手特性評価部34は、軸継手4を接続した状態での周波数特性から軸継手4の共振周波数f、及び共振周波数fにおけるゲイン(利得)Gf0を取得する(ST6)。
【0093】
次に、軸継手特性評価部34は共振周波数fを用いて、式(1)を用いて、軸継手4のねじり剛性Kを算出する(ST7)。その後、軸継手特性評価部34は式(3)に基づいて、共振周波数fにおけるゲインexpf0から速度応答パラメータexpf0を算出する(ST8)。更に、軸継手特性評価部34は応答帯域wを用いて、算出された速度応答パラメータexpf0を速度応答パラメータに相当する換算速度応答パラメータMfoに換算する(ST9)。その後、軸継手特性評価部34は、ねじり剛性K、及び換算速度応答パラメータMfoから、式(5)を用いて、軸継手4の粘性係数cを算出する。軸継手特性評価部34は、軸継手4の粘性係数cの算出が完了すると、算出されたねじり剛性K及び粘性係数cを出力装置28に表示させる(ST10)。
【0094】
ねじり剛性K及び粘性係数cの表示が完了すると、プロセッサ21は評価処理を終える。
【0095】
次に、所定の軸継手Aを評価する場合を例に挙げて、本発明に係る特性評価装置1の動作について説明する。ユーザが評価処理を開始すると、まず、駆動軸2及び従動軸3に軸継手4が接続されていない状態での周波数特性が取得される(ST1)。図4には、このとき取得された周波数特性が実線で示されている。その後、モータシステム応答取得部33は取得された周波数特性に対して、軸継手4が接続されていない状態に対応するブロック線図に対応する伝達関数を最小二乗法によりフィティングして応答帯域wを算出し、伝達関数G(s)を取得する(ST2)。図4に示す周波数特性に対して、図5に示すブロック線図に基づいて算出される周波数特性に対応する伝達関数をフィティングすると、応答帯域wは1200rad/s(遮断周波数で~191Hz)と算出される。図4には、算出された応答帯域wを用いて計算された周波数特性が破線で示されている。図4の破線で示されるように、軸継手4が接続されていない状態での周波数特性が理論的に算出された応答帯域wによって再現できていることから、モータシステム5が一次遅れ系として十分近似でき、且つ応答帯域wが精度よく算出されていると考えられる。また、図4では、測定されたゲインGが応答帯域wに対応する遮断周波数(w/2π)近傍において緩やかに屈曲していることが確認できる。
【0096】
その後、出力装置28に軸継手4を繋ぐように促す表示が行われ、軸継手4の慣性モーメントJcの入力受付が行われる(ST2)。ユーザが評価対象となる軸継手4を接続して、軸継手4の慣性モーメントJcを入力すると(ST4)、軸継手4が駆動軸2及び従動軸3を接続する状態において周波数特性が取得される(ST5)。図10(A)には軸継手Aが両軸を接続する状態での周波数特性の測定結果が示されている。
【0097】
次に、軸継手特性評価部34は、軸継手4が駆動軸2及び従動軸3を接続する状態において取得された周波数特性から共振周波数f、及び共振周波数fにおけるゲインexpf0を取得する(ST6)。その後、軸継手特性評価部34は共振周波数fを用いて軸継手4のねじり剛性Kを算出し(ST7)、共振周波数fにおけるゲインexpf0から速度応答パラメータexpf0を算出する(ST8)。更に、軸継手特性評価部34は、速度応答パラメータexpf0を応答帯域wを用いて、換算速度応答パラメータMfoに換算し(ST9)、その後、粘性係数cを算出する(ST10)。
【0098】
軸継手Aについては、図10(A)に示す周波数特性に基づいて、ねじり剛性Kが5026Nm/rad、粘性係数cが0.0142Nm/(rad/s)と算出される。算出が終わり、ねじり剛性K及び粘性係数cが表示されると、評価処理が完了する。
【0099】
図10(B)には、軸継手Aとは異なる軸継手Bの特性を同様にして評価したときの周波数特性の測定結果が示されている。軸継手Bについては、図10(B)に示す周波数特性に基づいて、ねじり剛性Kが5026Nm/rad、粘性係数cが0.0142Nm/(rad/s)と算出される。
【0100】
応答帯域wは回転負荷や評価用の軸継手4によって影響を受けるものではないため、軸継手Aの特性を評価した後、軸継手Bの特性を評価するときには、評価処理のステップST3から実行してもよい。このように、一度決定された応答帯域wの値はそのまま他の軸継手4の試験に用いることができる。
【0101】
図10(A)及び(B)には、それぞれ算出されたねじり剛性K及び粘性係数cを用いて計算された周波数特性が破線によって示されている。図10(A)及び(B)に示されるように、ねじり剛性K及び粘性係数cを用いて計算される周波数特性と、測定によって得られた周波数特性(ステップST1において取得された周波数特性)とは、よい合致を示すことが理解できる。
【0102】
次に、本発明に係る特性評価装置1の効果について説明する。一般にモータシステム5には所定の応答特性があり、トルク指令Trefが入力された場合に、瞬時にはトルク指令Trefと一致する駆動トルクTが駆動軸2に発生しない。一例として、トルク指令Trefが入力された後、駆動トルクTが発生するまでに所定の遅れがあり、駆動軸2に発生する駆動トルクTがトルク指令Trefに一致するまでに所定の時間(すなわち、遅れ時間)を要する場合が挙げられる。このような場合には、駆動軸2に発生する駆動トルクTは特に遮断周波数以上の周波数において、トルク指令Trefに対応するトルク(すなわち、仮にトルク指令Trefから駆動トルクTまでの伝達関数が1であると想定した場合のトルク)に比べて小さくなる。すなわち、モータシステム5を用いて測定することによって取得されるゲインは、特に遮断周波数よりも高い周波数帯域において、モータシステム5の応答特性を考慮しないモデル、すなわち、トルク指令Trefから駆動トルクTまでの伝達関数が1であり、トルク指令Trefが入力された後、瞬時にトルク指令Trefに一致する駆動トルクTが発生するとするモデルに基づいて期待されるゲインよりも小さくなる。従って、軸継手4を繋いだ状態で測定された周波数特性に基づき、モータシステム5の応答特性を考慮しないモデルを用いて物理パラメータを算出すると、算出された物理パラメータは軸継手4の本来の物理パラメータの値、すなわち真値とは異なるおそれがある。特に、図10(A)及び(B)に示されるように、共振周波数fが応答帯域w(191Hz)よりも大きい場合には、モータシステム5の応答特性を考慮しないモデルを用いて物理パラメータを算出すると、算出される物理パラメータと真値との乖離は大きくなると予測される。
【0103】
モータシステム5の応答特性による物理パラメータの評価への影響を考察するため、軸継手Aを繋いだ状態で取得される周波数特性(図10(A)参照)に対して、モータシステム5の応答特性を無視して、ねじり剛性K、及び粘性係数cを算出した。より具体的には、測定される速度応答パラメータexpf0をMf0と見做して、式(5)に代入することによって、ねじり剛性K、及び粘性係数cを取得した。取得されたねじり剛性K、及び粘性係数cはそれぞれ5026Nm/rad、0.0380Nm/(rad/s)となった。
【0104】
図11には、軸継手Aを繋いだ状態で取得される周波数特性を実線で、モータシステム5の応答特性を無視して取得されたねじり剛性K、及び粘性係数cを用いて計算された周波数特性を二点鎖線でそれぞれ示した。図10(A)に示すように、測定された周波数特性(実線)と、計算された周波数特性(破線)とが、図10(A)の場合に比べて乖離していることが理解できる。すなわち、本発明に係る特性評価装置1では、図10(A)に示すように、計算(シミュレーション)によってより精度よく測定された周波数特性を再現できることから、同定される軸継手4の物理パラメータが真値により近いものであることが理解できる。すなわち、特性評価装置1を用いることによって、軸継手4の特性の算出にモータにトルク指令Trefを行った後、駆動用モータ11によって駆動トルクTが発生するまでの応答特性を考慮することが可能となり、軸継手4の特性をより適切に評価することができる。
【0105】
このように、本発明による特性評価装置1(特性評価方法)を用いることで、軸継手4のねじり剛性K及び粘性係数cを取得することができ、軸継手4の特性の検査が可能となる。さらに、入力するトルク指令Trefを変更し、駆動用モータ11から出力されるトルクの振幅を変えて評価を行うことで、軸継手4の特性が使用状態によってどのように変化するかを明らかにすることができる。また、特性評価装置1によって取得された軸継手4のねじり剛性K及び粘性係数cを用いて、その軸継手4が組み込まれる機械装置の特性をより正確にシミュレーションすることができる。
【0106】
また、一度決定された応答帯域wの値はそのまま他の軸継手4の試験に用いることができるため、軸継手4を交換するごとに応答帯域wを取得する必要がなく、複数の軸継手4の特性の評価をより迅速に行うことができる。
【0107】
<<第2実施形態>>
第2実施形態に係る特性評価装置101は軸継手4のねじり剛性Kのトルク指令Trefの振幅に対する依存性と、軸継手4の粘性係数cのトルク指令Trefの振幅に対する依存性とを取得する。振幅依存性を取得するため、第2実施形態に係る特性評価装置101のプロセッサ21は、第1実施形態に係る評価装置1とは異なる評価プログラムを実行し、第1実施形態とは異なる評価処理を行う。以下、図12を参照して、評価処理の詳細について説明する。但し、第1実施形態と同様に、評価処理が開始されるときには、駆動軸2及び従動軸3のいずれにも軸継手4が接続されていないものとする。
【0108】
評価処理が開始されると、プロセッサ21は、サーボドライバ13に出力指示を行うための複数のトルクの振幅の値の受付を行う(ST11)。このとき、出入力装置8に振幅の上限値及び下限値と、設定すべき振幅の値の数とが入力された場合には、プロセッサ21は上限値及び下限値の間をその値の数に基づいて分割することによって、出力指示を行うためのトルクの振幅の値を受け付けてもよい。
【0109】
次に、周波数特性取得部32は周波数を変えながら、サーボドライバ13に受け付けた振幅で振動するトルクを出力するようにトルク指令Trefを出力し、それぞれの振幅における周波数特性を取得する(ST12)。これにより、駆動軸2及び従動軸3に軸継手4が接続されていない状態で駆動用モータ11が駆動されて、それぞれの振幅における周波数特性が取得される。その後、モータシステム応答取得部33は駆動軸2及び従動軸3に軸継手4が接続されていない状態で取得された周波数特性を用いて、それぞれの振幅におけるモータシステム5の応答特性を取得する(ST13)。より詳細には、モータシステム応答取得部33は、軸継手4が接続されていない状態で、それぞれの振幅の周波数特性から伝達関数G(s)に含まれるパラメータである応答帯域wを取得する。
【0110】
応答帯域wの取得が完了すると、プロセッサ21は出力装置28に軸継手4によって駆動軸2及び従動軸3を繋ぐように促す画面を表示させ、対応する軸継手4の評価対象の軸継手4の慣性モーメントJcの入力の受付を行う(ST14)。その後、プロセッサ21は、ユーザから入力装置27に軸継手4の慣性モーメントJcの入力が行われたかを判定する(ST15)。
【0111】
慣性モーメントJcの入力が有った場合には、周波数特性取得部32は周波数を変えながら、入力された振幅でそれぞれ振動するトルクを出力するようにトルク指令Trefを出力し、それぞれの振幅における周波数特性を取得する(ST16)。これにより、各振幅における軸継手4を接続した状態での周波数特性が取得される。入力が無い場合には、ユーザから入力装置27に軸継手4の接続が完了したことを示す入力があるまで待機する。
【0112】
軸継手4を接続した状態での入力された振幅の値それぞれの周波数特性が取得されると、軸継手特性評価部34は、軸継手4を接続した状態でのそれぞれの周波数特性から、それぞれの振幅に対する軸継手4の共振周波数f、及び共振周波数fにおけるゲイン(利得)Gf0を取得する(ST17)。
【0113】
次に、軸継手特性評価部34はそれぞれの振幅における共振周波数fと、式(1)とを用いて、それぞれの振幅に対する軸継手4のねじり剛性Kを算出する(ST18)。その後、軸継手特性評価部34は式(3)に基づいて、共振周波数fにおけるゲインexpf0から、それぞれの振幅に対する速度応答パラメータexpf0を算出する(ST19)。
【0114】
更に、軸継手特性評価部34は応答帯域wを用いて、それぞれの振幅において算出された速度応答パラメータexpf0をそれぞれ、換算速度応答パラメータMfoに換算する(ST20)。その後、軸継手特性評価部34は、それぞれの振幅におけるねじり剛性K、及び換算速度応答パラメータMfoから、式(5)を用いて、それぞれの振幅における軸継手4の粘性係数cを算出する(ST21)。軸継手特性評価部34は、軸継手4の粘性係数cの算出が完了すると、トルク指令Trefの振幅とねじり剛性Kとの関係、及び、トルク指令Trefの振幅と粘性係数cとの関係と出力装置28に表示させる(ST22)。このとき、軸継手特性評価部34は、出入力装置8に、図13(A)及び(B)に示すように、ねじり剛性K及び粘性係数cの、トルク指令Trefの振幅に対する依存性をグラフによって図示するとよい。
【0115】
ねじり剛性K及び粘性係数cの振幅依存性の表示が完了すると、プロセッサ21は評価処理を終える。
【0116】
次に、このように構成した特性評価装置101の効果について説明する。本実施形態に係る軸継手4の特性評価装置101のプロセッサ21は、軸継手4が両軸を接続する状態において2つ以上の振幅の駆動トルクTを出力するようにトルク指令Trefをサーボドライバ13(モータ制御部)に出力して、それぞれの振幅に対応する周波数特性を算出する。モータシステム5の応答特性と、算出された周波数特性とに基づいて、振幅のそれぞれに対応する軸継手4の特性を算出する。より具体的には、プロセッサ21は、取得した周波数特性それぞれに対して、軸継手4のねじり剛性Kと粘性係数cとを求め、振幅及び軸継手4のねじり剛性Kの関係と、振幅及び軸継手4の粘性係数cの関係とをグラフによって出力する。
【0117】
図13(A)ではトルク指令Trefの振幅を1.0Nmにした場合と図13(B)では、3.0Nmにした場合とにおける、軸継手Aのゲインの周波数特性が示されている。図13(A)及び(B)では、トルク指令Trefの振幅によって、周波数特性の測定結果には若干の差異が生じていることが理解できる。より具体的には、図13(A)及び(B)の三角形によって示されるように、トルク指令Trefの振幅を3.0Nmとした場合のほうが、800Hz付近の共振周波数fにおけるゲインが小さくなっていることがわかる。トルク指令Trefの振幅の設定を変えて周波数特性を測定し、その結果からトルク指令Trefの振幅のそれぞれにおける軸継手Aのねじり剛性Kと粘性係数cとを求めることで、トルク指令Trefの振幅とねじり剛性Kおよび粘性係数cとの関係を評価することができる。
【0118】
図14(A)に、トルク指令Trefの振幅を10通りに変えて軸継手Aのゲインの周波数特性を測定し、そこから各トルク振幅における軸継手Aのねじり剛性Kと粘性係数cとを求め、横軸をトルク指令Trefの振幅、縦軸をねじり剛性Kとした場合と、図14(B)に、横軸をトルク指令Trefの振幅、縦軸を粘性係数cとした場合とのグラフをそれぞれ示した。図14(A)及び(B)では、より正確な値を取得するため、トルク指令Trefで設定した振幅それぞれにおいて同じ測定を5回ずつ行っている。図14(A)及び(B)中の実線は、変化の傾向を表す近似曲線である。
【0119】
図14(A)及び(B)から、軸継手Aにおいては、トルク指令Trefの振幅が大きくなるとともに、ねじり剛性Kは小さくなり、粘性係数cは大きくなる傾向があることがわかる。このように、トルク指令Trefの振幅に対する変化の傾向を理解することによって、軸継手4の入力依存特性を適切に評価することができ、様々な運転状況下における振動特性の予測や、適切な制御系の設計が可能になる。
【0120】
本実施形態では、軸継手4のねじり剛性Kのトルク指令Trefの振幅依存性、及び、粘性係数cのトルク指令Trefの振幅依存性が出力される。これにより、軸継手4の入力依存特性を適切に評価できる。また、軸継手4の特性のトルク指令Trefの振幅依存性がねじり剛性K及び粘性係数cの振幅依存性として出力されるため、その内容が利用者にとって理解され易くなり、軸継手4の特性評価装置101の利便性が高められる。
【0121】
以上、本発明を特定の実施形態に基づいて説明したが、これらの実施形態はあくまでも例示であって、本発明はこれらの実施形態によって限定されるものではない。評価方法、及び評価プログラムの各構成要素は、必ずしも全てが必須ではなく、少なくとも本発明の範囲を逸脱しない限りにおいて適宜取捨選択することが可能である。
【0122】
第2実施形態において、グラフの横軸はトルク指令Trefの振幅であったが、この態様には、限定されない。グラフの横軸は、トルク指令Trefの振幅、共振周波数fにおける駆動トルクTの振幅、共振周波数fにおけるモータ軸(駆動軸2)の回転角の振幅、共振周波数fにおけるモータ軸(駆動軸2)の角速度ωの振幅の少なくともいずれか一つであればよい。
【0123】
共振周波数fにおけるモータ軸(駆動軸2)の回転角の振幅、又は、共振周波数fにおけるモータ軸(駆動軸2)の角速度ωの振幅を横軸とするときには、共振周波数fは測定対象となる軸継手について測定や設計等によって予め取得されたものであってもよく、また、所定のトルク指令Trefの下で取得された周波数特性に基づいて取得されたものであってもよい。また、トルク指令Trefそれぞれにおいて取得された周波数特性を用いて、共振周波数fを求めて、その共振周波数fに対応する回転角の振幅や角速度ωの振幅を横軸としてもよい。
【0124】
トルク指令Trefの振幅のそれぞれにおける周波数特性の測定は複数回行ってもよく、1回のみの測定でもよい。周波数特性の測定を複数回行った場合には、結果の繰返し性についてもあわせて評価することができる。
【0125】
上記第2実施形態では、ステップST12において、駆動軸2及び従動軸3に軸継手4が接続されていない状態において、入力されたトルク指令Trefの振幅に対応する周波数特性が取得されていたが、この態様には限定されない。より具体的には、駆動軸2及び従動軸3に軸継手4が接続されていない状態における周波数特性のトルク指令Trefの振幅による変化が小さい場合には、入力されたトルク指令Trefの振幅に対応する周波数特性をそれぞれ、所定の一つの振幅において取得された周波数特性によって代用し、ステップST12以降の処理を行ってもよい。
【0126】
上記第2実施形態では、軸継手特性評価部34は、出入力装置8に、ねじり剛性K及び粘性係数cの、トルク指令Trefの振幅に対する依存性をグラフによって図示していたが、この態様には限定されない。軸継手特性評価部34は、出入力装置8に、トルク指令Trefの振幅とねじり剛性Kとの関係、又は、トルク指令Trefの振幅と粘性係数cとの関係を、表や、関数等によって出力するものであってもよい。
【符号の説明】
【0127】
1 :第1実施形態に係る特性評価装置
2 :駆動軸
3 :従動軸
4 :軸継手
5 :モータシステム
6 :従動装置
7 :解析装置
8 :出入力装置
11 :駆動用モータ
12 :電流センサ
13 :サーボドライバ(モータ制御部)
14 :回転角センサ
15 :微分器
16 :サーボシステム
18 :回転負荷部
21 :プロセッサ
22 :メモリ
23 :RAM
24 :ROM
25 :記憶装置
26 :出入力ポート
27 :入力装置
28 :出力装置
31 :記憶部
32 :周波数特性取得部
33 :モータシステム応答取得部
34 :軸継手特性評価部
101 :第2実施形態に係る特性評価装置
(s) :伝達関数
:ねじり剛性
fo :換算速度応答パラメータ(換算値)
:駆動トルク
:粘性係数
:共振周波数
w :応答帯域
ω :角速度
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14