(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-01-31
(45)【発行日】2022-02-08
(54)【発明の名称】小型ロボットと小型ロボットより成るメッシュ型ロボット
(51)【国際特許分類】
A63H 11/00 20060101AFI20220201BHJP
A63H 33/10 20060101ALI20220201BHJP
B25J 9/08 20060101ALI20220201BHJP
【FI】
A63H11/00 Z
A63H33/10 D
B25J9/08
(21)【出願番号】P 2018059705
(22)【出願日】2018-03-27
【審査請求日】2020-11-16
(73)【特許権者】
【識別番号】504180239
【氏名又は名称】国立大学法人信州大学
(72)【発明者】
【氏名】岩本 憲泰
(72)【発明者】
【氏名】西川 敦
(72)【発明者】
【氏名】新井 宏明
(72)【発明者】
【氏名】姜 洋
【審査官】樋口 幸太郎
(56)【参考文献】
【文献】特表2008-525201(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A63H 11/00
A63H 33/10
B25J 9/08
(57)【特許請求の範囲】
【請求項1】
概円盤形状を有し、前記概円盤形状の径を変化させる膨張収縮型アクチュエータと、前記膨張収縮型アクチュエータの外周に設けられ、前記径の変化に応じて
全周が伸縮し、しかも均等にまたは均一に結合部材が設けられた概円環状の伸縮型結合部を含む、小型ロボット。
【請求項2】
前記概円盤形状は、軸対称形または8角以上の回転対称形であることを特徴とする請求項1に記載の小型ロボット。
【請求項3】
前記膨張収縮型アクチュエータは空気圧により前記概円盤形状の径を変化させることを特徴とする請求項1または請求項2に記載の小型ロボット。
【請求項4】
前記伸縮型結合部における前記結合部材は回動可能に設けられた永久磁石であることを特徴とする請求項1に記載の小型ロボット。
【請求項5】
前記伸縮型結合部は前記複数の結合部材が弾性体により連結されてなることを特徴とする、請求項1に記載の小型ロボット。
【請求項6】
それぞれ概円盤形状を有し、前記概円盤形状の径を変化させる膨張収縮型アクチュエータと、前記膨張収縮型アクチュエータの外周に設けられ、前記径の変化に応じて
全周が伸縮し、しかも均等にまたは均一に結合部材が設けられた概円環状の伸縮型結合部を含む複数の小型ロボットユニットが、各々の中心部において固定されて成る小型ロボット。
【請求項7】
請求項1または6に記載の小型ロボットが複数集合してなるメッシュ型ロボットであって、前記各小型ロボットは他の小型ロボットと各々の伸縮型結合部を介して結合して成る、メッシュ型ロボット。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、三次元形態、特に曲面を形成する、細胞の機能を有した小型ロボットおよびその集合体であるメッシュ型ロボットに関する。
【背景技術】
【0002】
複数の小型ロボットが移動する、または互いに接続・分離を行うことで集合体の形態が変化する、いわゆるモジュラーロボットが古くから提案されている。その一方で自然界での形態変化として生物の発生に伴う変化を研究し将来ロボットに応用する研究も進められている。例えば、多くの生物が球殻(胞胚)の状態から恣意的な外界の力を必要とせず複雑で多種多様な形態を形成する点について、興味を持っている研究者は少なくない。
【0003】
また、カブトムシの角のような一層の上皮シートの複雑な折り畳みからなる形態形成があり、この原理を明らかにするため実験およびシミュレーション両面から研究が行われている(非特許文献1)。特に、近年の上皮シートの三次元モデルを用いた研究結果によって、細胞アピカル面の収縮、細胞の伸長と移動、基底面の弾性と粘性等が重要であることがわかっている(非特許文献2)。
【0004】
また、数学分野の離散微分幾何では三角メッシュを基本とした円形メッシュの構成法としてSchiftnerらの提案したCircle Packing Mesh(CPM)理論(非特許文献4)が知られている。
【0005】
一方、モジュラー型ロボットとしては、例えば、個々の小型ロボットが回転型のアクチュエータと連結機構を有し、複数の小型ロボットが互いに連結して任意の形状と動きを実現させた例がある(特許文献1、特許文献2)。また、正三角形の3辺すべてに回転型アクチュエータを設けた小型ロボットを折り紙のように繋いで任意の曲面形状を近似的に形成できるモジュラー型ロボットも提案されている(非特許文献3)。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2003-103063号公報
【文献】米国特許US6568869
【非特許文献】
【0007】
【文献】M. Imai et al. “Three-dimensional morphogenesis of MDCK cells induced by cellular contractile forces on a viscous substrate”, Scientific Reports, 2015.
【文献】S. Okuda et al., “Apical contractility in growing epithelium supports robust maintenance of smooth curvatures against cell-division-induced mechanical disturbance”, J. Biomech., 2013.
【文献】C. H. Belke and J. Paik, “Mori: A Modular Origami Robot”, Trans. Mechatronics, 2017.
【文献】A. Schiftner et al., “Packing circles and spheres on surfaces”, Proc. of ACM SIGGRAPH, 2009.
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、上記特許文献1、2の技術では、個々の小型ロボットのアクチュエータ動作が一軸回動に限られ、しかもアクチュエータを介して小型ロボットは一次元方向にしか拡張できないため、実現可能なモジュラー型ロボットとしては、いわゆる蛇型か、複数の蛇型の組み合わせにならざるを得なかった。
【0009】
また、非特許文献3の技術は、二次元的な拡張性はあっても、三角形の辺の長さがすべて固定されているため、実現可能な形状が制限される。もし、各辺が任意に変えられた場合、三角形はFEM解析に見られるように任意の曲面を構成することができる。しかし、このような三辺独立に長さが変えられる三角形ロボットは、実現出来たとしても、構造が非常に複雑になることは避けられない。
【0010】
さらに医療用、例えば手術時に内臓の形状に合わせて形状が変化するような圧排器具への応用を考えたとき、三角形メッシュでは頂点の角によって臓器を損傷させる可能性が高い、といった実用上の課題が生じる。そこで、本発明者らは、上記課題を解決するために鋭意検討を行い、新たな知見を見出すに至った。
【課題を解決するための手段】
【0011】
本発明に係る小型ロボットは、概円盤形状を有し、前記概円盤形状の径を変化させる膨張収縮型アクチュエータと、前記膨張収縮型アクチュエータの外周に設けられ、前記径の変化に応じて全周が伸縮し、しかも均等にまたは均一に結合部材が設けられた概円環状の伸縮型結合部を含む。
【0012】
前記概円盤形状は、軸対称形または8角以上の回転対称形であってもよい。
【0013】
前記膨張収縮型アクチュエータは空気圧により前記概円盤形状の径を変化させてもよい。
【0014】
前記伸縮型結合部における前記結合部材は回動可能に設けられた永久磁石であってもよい。
【0015】
前記伸縮型結合部は前記複数の結合部材が弾性体により連結されてなるものであってもよい。
【0016】
本発明に係る小型ロボットは、それぞれ概円盤形状を有し、前記概円盤形状の径を変化させる膨張収縮型アクチュエータと、前記膨張収縮型アクチュエータの外周に設けられ、前記径の変化に応じて全周が伸縮し、しかも均等にまたは均一に結合部材が設けられた概円環状の伸縮型結合部を含む、複数の小型ロボットユニットが、各々の中心部において固定されて成る。
【0017】
本発明に係るメッシュ型ロボットは、前記小型ロボットが複数集合してなるメッシュ型ロボットであって、前記各小型ロボットは他の小型ロボットと各々の伸縮型結合部を介して結合している。
【発明の効果】
【0018】
本発明によれば、極めてシンプルな構造で実現でき、さらに集合することで内部に空洞を保ちつつ曲面を構成するロボットを実現することができる。
【図面の簡単な説明】
【0019】
【
図1】本発明の一実施形態に係る小型ロボットの構成図
【
図2】
図1の小型ロボットが集合したメッシュ型ロボットの動作説明図
【
図5】実施例1における膨張収縮型アクチュエータの構成図
【
図6】実施例2における膨張収縮型アクチュエータの構成図
【
図9】実施例5における小型ロボットの斜視図と上面図
【
図11】実施例6におけるメッシュ型ロボットの外観図
【
図12】実施例7におけるメッシュ型ロボットの設計方法を表す説明図
【
図13】実施例7におけるメッシュ型ロボットの初期配置生成結果
【発明を実施するための形態】
【0020】
以下、本発明に係る実施の形態について図面を参照して詳細に説明する。
図1に本発明に係る実施の形態(以下、本実施形態)における小型ロボットの概念図を示す。
図1において、小型ロボット100は概円盤形状を有し、動力供給部11と、その外側に膨張収縮型アクチュエータ1と、さらにその膨張収縮型アクチュエータ1の外周に設けられた伸縮型結合部2より構成される。
【0021】
なお、本発明において、概円盤形状とは概円形の扁平形状,もしくは円柱形状を表し、概円形とは軸対称形または8角以上の回転対象形(例えば正八角柱形)を表すものとする。また、小型ロボット100の表面には微細な凹凸が含まれてもよいものとする。また、正多角柱形の場合、各辺の長さが10%程度ばらついてもよいものとする。
【0022】
前記膨張収縮型アクチュエータ1は小型ロボット100の概円盤形状の径を変化させる。径を変化させる方法は特に限定されず、電磁的な方法、電気化学的な方法、油圧や空気圧等の物理的な方法を用いてもよい。また、形状記憶合金を用いてもよい。空気圧を利用する具体的な構成については後述の実施例で述べる。なお、空気圧の供給方法については特に限定されず、動力供給部11を介して外部から供給されるものであってもよく、動力供給部11がマイクロポンプを内蔵し、このポンプにより供給されるものであってもよい。また、化学反応により圧力を変えるものでもよい。
【0023】
電気化学的な方法としては、例えば誘電性高分子材料に電場を作用させて屈曲変形やクリープ変形を生じさせる方法がある。誘電性高分子材料としてはポリ塩化ビニル(PVC)、ポリメタクリル酸メチル、ポリウレタン、ポリスチレン、ポリ酢酸ビニル、ナイロン6、ポリビニルアルコール、ポリカーボネイト、ポリエチレンテレフタレート、ポリアクリロニトリル、シリコーンゴム等を用いることができる。
【0024】
伸縮型結合部2は、前記膨張収縮型アクチュエータ1の外周に設けられ、前記アクチュエータの径の変化に応じて全周が伸縮する円環形状を有する。また、伸縮型結合部2は円周方向のみならず、半径方向に弾性変形するものであってもよい。この機能は、複数の小型ロボットを用いて安定に曲面を近似するのに役立つ。
【0025】
さらに、伸縮型結合部2には均等にまたは均一に結合部材21が設けられている。これらの前記結合部材は特に限定されず、磁気的方法、電気的方法、化学的方法、機械的方法、いずれの方法を採ってもよい。化学的方法としては、例えば弱粘再剥離(最貼付け可能)型粘着剤を外周面上に均一に塗布したものでもよい。磁気的方法については、永久磁石を用いても電磁石を用いてもよいが、永久磁石を用いる方法については、伸縮性の実現方法も含め、後述の実施例で説明する。
【0026】
動力供給部11は前記膨張収縮型アクチュエータ1に対して、膨張および収縮動作実行させるための動力源すなわちパワーを供給する。空気圧の場合は、前記のように内蔵ポンプを備えてもよいし、外部から供給される空気圧を制御するバルブを備えてもよい。電気エネルギーの場合は、内蔵電池であっても、有線または無線を用いた外部電源からの供給を中継するものであってもよい。また、動力供給部11は、ロボットの制御に必要なセンサ情報や目標値などの情報を他のロボットと、または複数のロボットを統括して制御するコンピューターと送受信する通信手段を備えていてもよい。外部からのパワーの供給や情報の送受信については後述する。
【0027】
また、小型ロボット100のサイズは、特に限定はされないが、ニュートラル状態で5mm~100mm程度であってもよい。また厚みは1mm~100mm程度であってもよい。膨張収縮の範囲は大きいほどよいが、最大半径が最小半径に対して2倍程度まで変化するのが好ましい。
【0028】
複数の小型ロボット100を集合させたときの様子を
図2に示す。
図2において、各小型ロボット(100)は他の小型ロボット(100’)と各々の伸縮型結合部2を介して結合している。特に永久磁石等で構成された結合部材21が結合に直接作用している。
【0029】
さらに、
図2に示すように、各小型ロボット100は他の小型ロボット100’と接しながら、膨張または収縮動作を行う。このとき、互いの接点は適宜スライドする。その結果、CPM理論(非特許文献4)に基づき、任意の三次元曲面を近似形成することができる。さらに、一旦三次元曲面を形成した後、適当な部位にある一つまたは複数の小型ロボットを膨張/収縮動作させることにより、この三次元曲面を変化させることも可能である。
【0030】
なお、伸縮型結合部2に磁石等の結合部材21を均等配置して構成した場合、互いに接する小型ロボット間の接点は連続的にはスライドせず、離散的に変位する。例えば、後述の実施例の正12角形(縮小時)の小型ロボットでは、1辺当たり2個、計24個の結合部材21が最大半径時に均等間隔になるよう配置されており、15度(円周の1/24)の精度で接点が変えられる。1辺当たり1個の結合部材であっても、多角形になるほど(例えば36角形)精度は上がる(10度刻み)。
【0031】
もっとも、後述の実施例のように各結合部材21を弾性体(22)で繋いでおくと、隣接する小型ロボットと結合部材21の位置の間に多少の誤差があっても、互いに引き寄せ合う方向にそれぞれの弾性体が変形する。その結果、均等配置の状態から多少はずれるが、確実に結合部材21の永久磁石どうしを結合させることができる。
【0032】
集合体を形成する各小型ロボット100において、現在自身が置かれている状況は、
図3に示されるように、自身の半径rと他のロボット100’との接点の角度(θ
1、θ
2、・・θ
n)よりなる極座標で決定される。言い換えれば、すべての小型ロボットの接点の極座標を集積することで、これらのロボットが形成する集合体の現在の全体像を特定することができる。この集合体の全体像と所望の全体像(参照曲面)との差を求め、その差が縮小するようにフィードバックをかければ、小型ロボットの集合体を所望の全体像に近づけることができる。
【0033】
図4に各小型ロボットに対する入出力の概念図を示す。
図4において110は入力ラインを、111は出力ラインを、それぞれ表す。ここで各小型ロボットはidによって区別されているとする。膨張または収縮のための動力源(power)は、入力ライン110を通って、各小型ロボットに供給される。また、各小型ロボットがそれぞれ周囲の小型ロボットと接する位置の座標情報(r、θ
1、θ
2、・・θ
n)は、そのid情報とともに出力ライン111を通って返される。
【0034】
入力ライン110は有線でも無線でもよい。有線の場合、動力源(power)として電気を供給する導線であってもよいし、空気圧を供給するパイプであってもよい。供給される動力源が空気圧の場合、ロボットによって必要とされる供給量が異なるが、idで識別される各小型ロボット100の入り口にマイクロバルブ等を設けることで、個別に調整することができる。このとき、id情報と併せてマイクロバルブの開閉を指示する情報も入力ライン110を通じて伝送する必要がある。空気圧利用の場合は、パイプの中に導線を通してこれらの情報を伝送してもよい。
【0035】
出力ライン111は電気信号のみ伝送されるものであり、有線または無線のいずれであってもよい。有線の場合は導線を用いてもよく、さらに前記入力ライン110の導線と共有してもよい。この場合、各信号が混信するのを避けるため、周波数軸上または時間軸上で分離可能なように予めチャンネルを割り当てておいてもよい。また、前記の様に入力ライン110が導線のみで構成される場合、入力ライン110と出力ライン111とをさらにまとめて、1本の導線で実現してもよい。
【0036】
前記入力ライン110および出力ライン111と各小型ロボット100との接続であるが、入出力を1本の導線または導線内蔵の1本のパイプで実現する場合、当該導線またはパイプで各小型ロボット100を数珠状に一列に繋いでもよい。あるいは当該導線またはパイプを格子状に組み、各交点に小型ロボット100を繋いでもよい。
【実施例】
【0037】
以下、本発明の実施例について説明する。
(実施例1)
まず、本発明における小型ロボット100の具体例として、膨張収縮型アクチュエータ1が空気圧を利用するものについて、
図5を用いて説明する。
【0038】
図5において、膨張収縮型アクチュエータ1は、円環状の弾性チューブ12、13、14と、それぞれと貫通し放射状に設けられた弾性チューブ15、16より構成される。動力供給部11は弾性チューブ15、16を介して、円環状の弾性チューブ12、13、14に空気(空気圧)を供給する。空気圧が供給された円環状の弾性チューブ12、13、14はその圧力に応じてその円周が伸縮し、それに伴い膨張収縮型アクチュエータ1の径も伸縮する。
【0039】
なお、空気圧を利用する場合、空気圧が径方向と円周方向の伸縮にのみ作用するのが好ましいが、弾性チューブでは圧力が等方に働くため、若干ではあるが厚み方向にも変化する。そこで、弾性チューブの代わりに次の実施例で示すようならせん状の折り目を有したシートを用いた膨張収縮型アクチュエータ1を用いてもよい。
【0040】
(実施例2)
図6において、膨張収縮型アクチュエータ1におけるシート17には、らせん状に折り目が付けられている。図中、実線は山折りを、点線は谷折りを表す。このようなシート17を2枚、それぞれ外周部どうし、内周側どうしをシールして、中に空気圧を加えると、前記折り目を伸ばす方向に力が働き、らせんが直線に近くなるように形状変化し、その結果、(貼り合わせた)シート17の半径は拡大する。なお、動力供給部11は2枚のシート17に挟まれるように設けられても良い。このらせん状折り目シートは最大および最小半径のダイナミックレンジが非常に広く、しかも、厚み方向に広がらない、といった優れた特徴を有する。
【0041】
(実施例3)
図7に、本発明に係る小型ロボット100における伸縮型結合部2の実施例を示す。
図7において、伸縮型結合部2(円環状構造の一部分のみを表示)は、複数の結合部材21とそれらを連結する弾性体22により構成される。さらに各結合部材21には永久磁石が回動可能に設けられている。
【0042】
図7において、2’は小型ロボット(100)と接する他の小型ロボット(100’)の一部を表す。一方の小型ロボット(100)と他方の小型ロボット(100’)の接点付近におけるそれぞれの結合部材中の永久磁石は、それぞれ逆極性になるように回動し、互いに吸引し、接合する。
【0043】
弾性体22は膨張収縮型アクチュエータ1の拡大縮小に応じて伸縮できるものであれば特に限定されず、シリコーンゴムなどの樹脂系であっても、コイルバネ等の金属加工品であってもよい。より好ましくは、次の実施例で示されるような、折り畳み式フレームを用いたものであってもよい。
【0044】
(実施例4)
図8に、本発明に係る小型ロボット100における伸縮型結合部2の他の実施例を示す。
図8において、各結合部材21は折り畳み式フレーム形状の弾性体23によりほぼ均等に連結されている。連結方法としては結合部材21と同数の独立した弾性体23を、結合部材21交互に接続して、最終的に円環状の伸縮型結合部2を形成してもよいし、弾性体を、折り畳み部分以外を直線または平面で繋いで円環状に一体成型した後、折り畳み部分以外の部分に結合部材21を接着などの方法で固定して形成してもよい。後者について次の実施例で説明する。
【0045】
(実施例5)
図9は、折り畳み式フレーム形状の弾性体23を一体成型したことを特徴とする、本発明に係る小型ロボット100の一実施例の斜視図(左)および上面図(右)である。本実施例において、小型ロボット(100)は正12角形(縮小時)の扁平形状をなしており、特に外周の形状は伸縮型結合部2の形状により決定される。
【0046】
図9に示されるように、弾性体23は畳み式フレーム部とその間をつなぐ籠状のフレームが環状に一体成型されている。なお、弾性体23の材料は弾性変形する性質のものであれば特には限定されず、ゴム、樹脂、あるいは板バネであってもよい。本実施例では、結合部材21を構成する1対(2個)の永久磁石はこの籠状のフレームの両端に1つずつ固定される。このように弾性体23を一体成型すれば、よりローコストに伸縮型結合部2を製造することができる。
【0047】
なお、本実施例では籠状のフレームの両端に1対の磁石を配置したが、この構成により、膨張収縮型アクチュエータ1が最小半径に収縮したときには、隣のフレームの磁石と近接(ほぼ一体化)するため、実質的に1周12個の磁石が配置されたのと等価になる。一方、膨張収縮型アクチュエータ1が最大半径に膨張したとき、弾性体23の畳み式フレーム部が伸びきるため、隣のフレームとの間隔が開き、1周24個の間隔の磁石として機能する。
【0048】
(実施例6)
図10に2枚の小型ロボットユニット100a、100bをそれぞれの中心部で固定した小型ロボットの断面図を示す。それぞれのロボットユニットは膨張収縮型アクチュエータ1a、1bおよび伸縮型結合部2a、2bを有し、膨張収縮型アクチュエータ1a、1bはそれぞれ独立に動作する。この構成により、複数の小型ロボットを集合させて曲面を形成することがさらに容易になる。なお、それぞれの小型ロボットにおける動力供給部11a、11bは定形をなし、これらを貼り合わせてもよく、一体成型してもよい。さらに、2枚の小型ロボットユニット全体を一体成型してもよい。また、2枚に限らず複数の小型ロボットユニットを中心部で固定してもよい。
【0049】
例えば、
図11に示すように、様々な曲率半径(R)の曲面を形成するような場合、Rが大きい場所に対しては小型ロボットユニット100a、100bの半径差を小さく、Rが小さい場所に対しては小型ロボットユニット100a、100bの半径差を大きくすることで、より安定に目標とする曲面を形成することができる。
【0050】
(実施例7)
本実施例では、具体的なメッシュ型ロボットの構築方法、特に任意の曲面を複数の小型ロボットで充填する場合の各ロボットの半径および接点の求め方について述べる。まず、目標とする参照曲面を設定する。次に任意の数の曲上の点を取得し、その点群を四角形の頂点群として四角形メッシュとする。次に、対角線を引いて三角形メッシュを生成する。このとき対角線が互い違いになるようにする。この後、各三角形(
図12のE
1E
2E
3)に内接する円を配置してCPM(circle packing mesh)を得る。この時点では互いに隣接する小型ロボットどうしは直接接触していない(
図12の(100)および(100’))。
【0051】
このモデルに対し、レーベンバーグ・マーカート法による非線形最適化処理を行う。当最適化では、内接点同士を近づけるためのパラメータと、参照曲面とCPMを近づけるためのパラメータ、計2つのパラメータを用いる。これら2つのパラメータにそれぞれ重み付けの係数をかけて足した値が最小となるように三角形頂点群の座標を更新していく。この2つのパラメータにより、内接点を近づけつつも参照曲面から離れすぎないように最適化することができる。
【0052】
(シミュレーション)
上記の手順に従って,グラフィックライブラリOpenGLを用いてシミュレータを作製した。まず、目標値を
図10のような双4次ベジエ曲面とし、横に14列、縦に18行の四角形メッシュを生成した。これに対角線を引いて計504個の内接円(小型ロボット)を配置し、これを初期状態として最適化を行った。
【0053】
前記最適化を行った結果を
図13に示す。504個の小型ロボット群が、双4次ベジエ曲面形状に収束することが示された。以上のように、それぞれの目標値に対して各小型ロボット100の半径と隣接ロボットとの接触位置を最適化することより、任意の曲面を形成することができる。
【0054】
この曲面に対し力学的要素を加味する場合の考え方について、以下述べる。まず、各小型ロボットを剛体の円とした場合、運動方程式は以下の様に書ける。
【数1】
ここで、M∈R
3×3は質量mを単位行列にかけたものを、J∈R
3×3は慣性テンソルを、p”∈R
3はpを位置としたときの加速度を、θ”∈R
3はθを各軸周りの角度としたときの角加速度を、F∈R
3は外力のベクトルを、N∈R
3は回転モーメントを、それぞれ表す。
【0055】
前記式(1)式を小型ロボット100の数だけ連立して各円の加速度、角加速度を求める。CPMを得るには隣接する内接点(円と三角形との接点)が直接円どうし接触するよう最適化を行っているが、内接点で完全に接触する解は無いと考えられる。つまり、2つの円(小型ロボット)が接触していなければ力は発生せず、得たCPMから外れた状態で初めて接触が発生する。
【0056】
そこで、一つの考え方として、小型ロボット100が拡大したときの半径増幅量Δrを設定し、拡大円同士のめり込み量で考える(
図11)。Δrは半径の大きさに反比例する。すなわち、力のかかる位置は
図12の三角形の辺E
1、E
2、E
3上で円が重なった距離の中間地点とする。ここに隣接円からの力^f’
i(i=1~3)と基準円からの力^f”
iがかかる。よって基準円にかかる外力は^f’
iと^f”
iの反力の合力となり、さらに他辺においても同様に考えて、最大3方向から斥力が加わる。これは円同士がめり込んでいる場合であり、離れている場合は伸縮型結合部2として使用する性質に基づいた力が働く。特に、磁気的方法をとる場合には磁石による引力が働く。
【産業上の利用可能性】
【0057】
本発明は、細胞の機能を表現するシミュレータとして利用することが可能である。また、従来の3D形態形成学やメカノバイオロジーでの知見をロボットで観察可能となるとともに、新たな数理モデルの実証研究が可能となる。また、本発明は小型ロボットが狭い入口から侵入し内部空間で任意形状のメッシュ型を構成できることから低侵襲手術における圧排用の医療ロボットとしての発展が期待される。具体的には、内視鏡手術において鉗子の手先が作業可能な領域を確保するロボットとしての利用が考えられる。また、バーチャルリアリティ向けのロボットとしての利用が考えられる。
【符号の説明】
【0058】
1膨張収縮型アクチュエータ
2伸縮型結合部
11動力供給部
12~14弾性チューブ
17シート
21結合部材
22弾性体
23弾性体
100小型ロボット