IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ グローリー株式会社の特許一覧

特許7017862光センサ、光検出装置、紙葉類処理装置及び光検出方法
<>
  • 特許-光センサ、光検出装置、紙葉類処理装置及び光検出方法 図1
  • 特許-光センサ、光検出装置、紙葉類処理装置及び光検出方法 図2
  • 特許-光センサ、光検出装置、紙葉類処理装置及び光検出方法 図3
  • 特許-光センサ、光検出装置、紙葉類処理装置及び光検出方法 図4
  • 特許-光センサ、光検出装置、紙葉類処理装置及び光検出方法 図5
  • 特許-光センサ、光検出装置、紙葉類処理装置及び光検出方法 図6
  • 特許-光センサ、光検出装置、紙葉類処理装置及び光検出方法 図7
  • 特許-光センサ、光検出装置、紙葉類処理装置及び光検出方法 図8
  • 特許-光センサ、光検出装置、紙葉類処理装置及び光検出方法 図9
  • 特許-光センサ、光検出装置、紙葉類処理装置及び光検出方法 図10
  • 特許-光センサ、光検出装置、紙葉類処理装置及び光検出方法 図11
  • 特許-光センサ、光検出装置、紙葉類処理装置及び光検出方法 図12
  • 特許-光センサ、光検出装置、紙葉類処理装置及び光検出方法 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-01
(45)【発行日】2022-02-09
(54)【発明の名称】光センサ、光検出装置、紙葉類処理装置及び光検出方法
(51)【国際特許分類】
   G01N 21/64 20060101AFI20220202BHJP
   G01J 1/02 20060101ALI20220202BHJP
   G01J 1/42 20060101ALI20220202BHJP
   G07D 7/121 20160101ALI20220202BHJP
   H01L 31/12 20060101ALI20220202BHJP
【FI】
G01N21/64 Z
G01J1/02 P
G01J1/42 Q
G07D7/121
H01L31/12 E
【請求項の数】 8
(21)【出願番号】P 2017061065
(22)【出願日】2017-03-27
(65)【公開番号】P2018163080
(43)【公開日】2018-10-18
【審査請求日】2020-01-17
(73)【特許権者】
【識別番号】000001432
【氏名又は名称】グローリー株式会社
(74)【代理人】
【識別番号】110002952
【氏名又は名称】特許業務法人鷲田国際特許事務所
(72)【発明者】
【氏名】佐藤 剛
(72)【発明者】
【氏名】小西 博
【審査官】伊藤 裕美
(56)【参考文献】
【文献】特開平06-309546(JP,A)
【文献】特開2002-197506(JP,A)
【文献】米国特許出願公開第2016/0005252(US,A1)
【文献】特表2005-513426(JP,A)
【文献】特表2007-514219(JP,A)
【文献】米国特許出願公開第2006/0072822(US,A1)
【文献】特開2001-291458(JP,A)
【文献】国際公開第2015/159438(WO,A1)
【文献】特表2015-525880(JP,A)
【文献】国際公開第2016/069858(WO,A1)
【文献】国際公開第2015/045186(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/64
G01J 1/00-1/60
G01J 3/00-3/51
G07D 7/121
H01L 31/12-3/173
(57)【特許請求の範囲】
【請求項1】
励起光を照射する光源と、
前記励起光によって励起した検出対象から放射される放射光を検出する光検出器と、
前記励起光及び前記放射光を透過するブロック状に形成され、前記励起光を前記検出対象へ導くとともに前記放射光を前記光検出器へ導く導光体と、
前記励起光が前記検出対象に到達する前に前記光検出器に到達することを防止する遮光領域と、を備え、
前記光源と前記光検出器とは、前記導光体の一方の側に配置され、
前記遮光領域は、前記導光体における前記一方の側の部位に形成された段差であって、前記一方の側の部位における前記光源側にある部分と前記光検出器側にある部分との間に形成された段差により構成される光センサ。
【請求項2】
前記段差は、
前記光源に対向する励起光入射面と、
前記光検出器に対向し、前記励起光入射面よりも前記導光体の他方の側に近い側または前記他方の側から遠い側に位置する放射光出射面と、
前記励起光入射面と前記放射光出射面とをつなぐ平面状の起立面とにより構成される請求項1記載の光センサ。
【請求項3】
前記光源と前記導光体との間、及び/又は、前記光検出器と前記導光体との間に光学フィルタを備える請求項1又は2記載の光センサ。
【請求項4】
前記光源と前記光検出器が同一の基板上に配置されている請求項1乃至のいずれかに記載の光センサ。
【請求項5】
請求項1乃至のいずれかに記載の光センサと、
前記放射光を検出したときの前記光検出器に対する前記検出対象の相対位置に基づいて、前記光検出器で検出された前記放射光の強度を補正する補正部と、
を備える光検出装置。
【請求項6】
前記光源は、前記検出対象の移動中に前記励起光を照射するとともに、前記光検出器に対して前記検出対象の移動方向上流側に配置されている請求項記載の光検出装置。
【請求項7】
請求項又は記載の光検出装置を備える紙葉類処理装置。
【請求項8】
光センサを用いる光検出方法であって、
前記光センサは、ブロック状に形成された導光体と、前記導光体の一方の側に配置された光源および光検出器と、前記導光体における前記一方の側の部位に形成された段差であって、前記一方の側の部位における前記光源側にある部分と前記光検出器側にある部分との間に形成された段差により構成される遮光領域と、を備え、
前記光検出方法は、
前記光源が励起光を照射する工程、
前記導光体によって前記励起光を検出対象に導くとともに、前記遮光領域によって前記励起光が前記検出対象に到達する前に前記光検出器に到達することを防止する工程、
前記導光体を透過した前記励起光によって励起した検出対象から放射された放射光であって前記導光体を透過した放射光を光検出器が検出する工程、
を有する光検出方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、励起光によって励起された検出対象から放射される放射光を検出する光センサ、当該光センサを備える光検出装置、当該光検出装置を備える紙葉類処理装置及び前記放射光を検出する光検出方法に関する。
【背景技術】
【0002】
従来、紙幣や文書等の紙葉類、商品等の真偽を識別するために所定の光学特性を有するセキュリティマークが利用されている。例えば、可視光下では放射光を放射せず、紫外線等の所定波長の励起光が照射された場合にのみ放射光を放射する特殊な素材を含むセキュリティマークを紙葉類や商品パッケージ上に印刷等によって設けておき、放射光の放射状態から紙葉類や商品等の真偽が判別されている。放射光としては、励起光照射時に放射される蛍光や、励起光照射後に放射される燐光が利用されている。
【0003】
特許文献1には、製造ライン上を移動するルミネッセンス材料でマークされたアイテムに対して、光源から励起光を照射し、5つのフォトセンサでルミネッセンス光を検出する装置が開示されている。
【0004】
また、特許文献2には、紙幣に対して斜めに配置された発光ダイオードから、紙幣中の蛍光体に対して、紫外線を照射し、紙幣から発せられた蛍光を、レンズを用いた光学系を介して、蛍光検出器で検出する装置が開示されている。
【0005】
また、特許文献3には、紙幣に対して斜めに配置された光源から、紙幣に対して、励起光を照射し、紙幣中又は紙幣上で励起されたルミネッセンス光を、レンズを用いた光学系を介して、検出器ユニットで検出する装置が開示されている。
【0006】
また、特許文献4には、紙幣に励起光を照射し、放射される蛍光や燐光を検出して紙幣の真偽を検証する装置が開示されている。特許文献4に開示された装置においては、円筒形のレンズを備えた光学系を介してアレイ型検出器によって蛍光や燐光が検出される。
【先行技術文献】
【特許文献】
【0007】
【文献】特表2014-519130号公報
【文献】米国特許第6918482号明細書
【文献】米国特許第6777704号明細書
【文献】特許第3790931号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
特許文献1に開示される装置は、検出器を複数有しているため、放射光の受光範囲を大きくできるという利点があるものの、その一方で装置が複雑になるとともに大型化してしまうという欠点を有している。
【0009】
また、特許文献2、特許文献3又は特許文献4に開示される装置は、レンズを用いた光学系を用いている。よって、レンズと、蛍光検出器、検出器ユニット又はアレイ型検出器との間に、レンズ焦点距離分の間隔を確保する必要がある。つまり、これらの文献に開示された装置は、小型化が困難であるという問題を有している。また、レンズを用いた光学系では受光範囲がレンズ径の制約を受けるため、これらの文献に開示された装置は、受光範囲を大きくすることが難しいという問題を有している。
【0010】
以上のように、従来の装置は、放射光を検出するセンサ部の小型化と、放射光受光面を大きくすることを両立させることができないものであった。本発明はこのような状況に鑑み、センサを小型化しつつセンサの放射光受光面を大きくすることを課題とする。
【課題を解決するための手段】
【0011】
本発明に係る光センサは、励起光を照射する光源と、前記励起光によって励起した検出対象から放射される放射光を検出する光検出器と、前記励起光及び前記放射光を透過するブロック状に形成され、前記励起光を前記検出対象へ導くとともに前記放射光を前記光検出器へ導く導光体と、前記励起光が前記検出対象に到達する前に前記光検出器に到達することを防止する遮光領域と、を備え、前記光源と前記光検出器とは、前記導光体の一方の側に配置され、前記遮光領域は、前記導光体における前記一方の側の部位に形成された段差であって、前記一方の側の部位における前記光源側にある部分と前記光検出器側にある部分との間に形成された段差により構成される
【0012】
また、本発明に係る光検出方法は、光センサを用いる光検出方法であって、前記光センサは、ブロック状に形成された導光体と、前記導光体の一方の側に配置された光源および光検出器と、前記導光体における前記一方の側の部位に形成された段差であって、前記一方の側の部位における前記光源側にある部分と前記光検出器側にある部分との間に形成された段差により構成される遮光領域と、を備え、前記光検出方法は、前記光源が励起光を照射する工程、前記導光体によって前記励起光を検出対象に導くとともに、前記遮光領域によって前記励起光が前記検出対象に到達する前に前記光検出器に到達することを防止する工程、前記導光体を透過した前記励起光によって励起した検出対象から放射された放射光であって前記導光体を透過した放射光を光検出器が検出する工程、を有する。
【発明の効果】
【0013】
本発明によれば、単一の導光部によって、光源から検出対象へ励起光を導光するとともに、検出対象から光検出器に放射光を導光することができるので、センサを小型化しつつセンサの放射光受光面を大きくすることができる。
【図面の簡単な説明】
【0014】
図1】本発明に係る光センサの一実施例の構造を示す模式図である。
図2図1中のII-II断面図である。
図3図1中のIII-III断面図である。
図4図1中のIV-IV断面図である。
図5図1中のV-V断面図である。
図6】本発明に係る光センサにおいて光が導かれる様子を説明する模式図である。
図7】移動する検出対象から放射光を検出する方法の説明図である。
図8】光源消灯後の検出対象の移動距離と検出される強度の関係を示すグラフである。
図9】本発明に係る光検出装置の一実施例の構成を示す模式図である。
図10】本発明に係る光検出装置の動作フローを示すフローチャートである。
図11】本発明に係る光センサの他の実施例の構造を示す模式図である。
図12】本発明に係る光センサの更に他の実施例の構造を示す断面図である。
図13】本発明に係る光センサの更に他の実施例の構造を示す断面図である。
【発明を実施するための形態】
【0015】
以下、本発明について、図面を参照しながら詳細に説明する。
【0016】
(1)光センサの構造
図1は、本発明を適用する一実施例に係る光センサ10の構造を示す側方断面模式図である。また、図2図3図4及び図5は、それぞれ、図1中のII-II断面図、III-III断面図、IV-IV断面図及びV-V断面図である。なお、図1は光センサ10が下向きに取り付けられる場合を示しているが、光センサ10は任意の向きに取り付け可能である。
【0017】
光センサ10は、ホルダ20、光源30、光検出器40、導光体50、基板60及び光学フィルタ70を備えている。
【0018】
ホルダ20は黒色樹脂等の光を透過しない物質からなり、上下が開口した貫通孔を有し、筒状部となっている。この貫通孔内には、下方側から順に、導光体50、光学フィルタ70、光源30及び光検出器40が配置されている。また、この貫通孔の上側開口は基板60によって塞がれている。また、ホルダ20はその一部として、光源30と光検出器40との間に配置される仕切り21を有している。仕切り21が導光体50に接触すると、導光体50の表面に傷をつけ、この傷によって光の漏れや減衰又は拡散を引き起こし、導光体50の導光性能を低下させる恐れがある。そのため、仕切り21の下端と導光体50の表面との間にはわずかに隙間が設けられている。但し、そのような恐れがない場合は、仕切り21を導光体50に接触させてもよい。また、仕切り21はホルダ20とは別体の部材であってもよいことは勿論である。
【0019】
光源30は、検出対象に励起光を照射する。具体的には、光源30は紫外線LEDであり、基板60の下面に取り付けられている。光源30が照射する励起光は、検出対象を励起させることができる波長が含まれており、検出する放射光の波長域を含まないものが望ましい。
【0020】
光検出器40は、検出対象から放射された放射光を検出する。具体的には、光検出器40は受光した光の強度(光量)に応じて変化する信号を出力するフォトダイオードであり、基板60の下面に取り付けられている。図5に示されるように、光センサ10は光検出器40を2つ備えている。これらの光検出器40は検出できる波長域が異なる。よって、同時に2種類の放射光を検出することができる。なお、特定の波長の放射光のみを検出したり、波長に関わらず放射光の強度を検出する場合は、光検出器40の数は1つでもよい。また、光検出器40の数を3つ以上とすることで、同時に3種類以上の放射光を検出することも可能である。
【0021】
導光体50は、光源30から照射された励起光を検出対象へ導き、検出対象から放射された放射光を光検出器40へ導く。すなわち、導光体50は、導光部として機能する。導光体50は、アクリルやポリカーボネート等の透明な樹脂でできたブロックであり、その上部に、励起光入射面51と放射光出射面52を有し、その下部に、光入出射面53を有する。光入出射面53は光検出器40の受光面よりも大きい。また、導光体50は、励起光入射面51と放射光出射面52との間に起立面54を有し、励起光入射面51と起立面54と放射光出射面52によって、段差が形成されている。また、導光体50は、励起光入射面51及び放射光出射面52と、光入出射面53との間に延在する側面55を有している。側面55とホルダ20の内面との間にはわずかに隙間が設けられている。なお、特に限られるわけではないが、本実施例において、導光体50の側面55で取り囲まれる部分の形状は、光源30及び光検出器40の側から見て、略正方形の光源30側の2つの角を面取りした六角形状である。この形状によって、光源30からの励起光を効率よく検出対象に照射することができる。また、導光体50の素材は、透明な樹脂に限らず、透明なガラスであってもよい。なお、導光体50の素材は、励起光と放射光を透過する材料であればよく、透明な材料には限られない。
【0022】
光源30と励起光入射面51とは、光学フィルタ70の一種であり紫外線を透過し可視光をカットする可視光カットフィルタ71を介して対向するように配置されている。また、光検出器40と放射光出射面52とは、光学フィルタ70の一種である紫外線カットフィルタ72及びカラーフィルタ73を介して対向するように配置されている。本実施例に係る光センサ10のように、光検出器40が複数個備わっている場合は、各光検出器40に対向するカラーフィルタ73の種類を変え、各光検出器40がそれぞれ異なる波長(色)の光を検出できるようにすることができる。例えば、赤色、緑色、青色の放射光を検出する場合は、3つの光検出器40と放射光出射面52との間に、1つずつ、計3つのカラーフィルタ73を配置する。各カラーフィルタ73は、それぞれ赤色波長領域、緑色波長領域、または青色波長領域の光を透過する。これらの光学フィルタ70は目的に応じて他の特性のフィルタに替えてもよいし、不要であれば配置しなくてもよい。
【0023】
(2)導光体による導光
光源30から照射された励起光に含まれる紫外線は、可視光カットフィルタ71を通過し、励起光入射面51から導光体50内に入射する。導光体50に入射する前の励起光が直接、又は励起光入射面51や放射光出射面52で反射して、光検出器40に到達することは、仕切り21によって防止されている。すなわち、仕切り21が遮光領域として機能している。
【0024】
図6に示されるように、導光体50内に入射した励起光は、起立面54や側面55で反射されつつ導光体50内を導かれ、光入出射面53に到達する。前述の通り、仕切り21と導光体50の表面との間には隙間があるが、励起光入射面51と起立面54と放射光出射面52によって形成された段差が存在し、励起光入射面51から入射した励起光は起立面54で反射する。すなわち、当該段差が遮光領域として機能している。また、起立面54は、励起光を光源30の直下部に集光させる機能も果たしている。
【0025】
光入出射面53に達した励起光は、光入出射面53から出射される。光入出射面53は、検出対象Tに対向するように配置されている。検出対象Tは、励起すると蛍光や燐光などの放射光を放射する素材を含むインクを用いて紙幣等に印刷されたセキュリティマークである。よって、検出対象Tは、光入出射面53から出射した励起光によって励起され、蛍光や燐光などの放射光を放射する。
【0026】
検出対象Tから放射された放射光は、光入出射面53から導光体50内に入射する。導光体50内に入射した放射光は、側面55で反射されつつ導光体50内を導かれ、放射光出射面52に到達する。放射光出射面52に達した放射光は、放射光出射面52から出射される。放射光出射面52から出射された放射光のうち、検出の目的とされている所定の色(波長)の放射光が、紫外線カットフィルタ72とカラーフィルタ73を通過して、光検出器40で検出される。
【0027】
なお、検出対象Tの表面で励起光が反射し、反射した励起光に含まれる紫外線が放射光出射面52に達し、放射光出射面52から出射されることがあり得るが、当該紫外線は紫外線カットフィルタ72を通過することができないので、光検出器40に達することはない。
【0028】
以上説明したように、光センサ10は、光学系に導光体50を用いている。よって、レンズを用いた場合のように、レンズの焦点距離分の間隔を光検出器40の前に確保する必要がない。また、単一の導光体50によって、光源30から検出対象Tへの励起光の導光と、検出対象Tから光検出器40への放射光の導光が行われている。したがって、光センサ10は全体としてコンパクトな構成となっている。しかも、レンズを用いた場合のように放射光が光検出器40上で集光しないので、受光面の大きな光検出器40を使用することができる。そのため、光センサ10は装置の中に設置して、移動する検出対象Tからの放射光を検出するのに適したものとなる。
【0029】
更に、導光体50の放射光受光面すなわち光入出射面53が、光検出器40の受光面に比べて大きくなっているとともに、光入出射面53から入射した放射光を光検出器40に向けて導光体50が導光するように構成されている。よって、光センサ10は全体としてコンパクトな構成となっているにもかかわらず、受光範囲が大きく、感度よく放射光を検出することができる。したがって、後に説明するように検出対象Tを移動させながら放射光の検出を行う場合であっても、検出対象Tの位置のばらつきによる放射光強度(光量)の変動を低減させることができる。また、印刷むらによる放射強度の変動の影響を低減することもできる。
【0030】
また、レンズを用いた光学系のように、ホルダ20の内部で光検出器40と導光体50の間に中空部がある場合、当該中空部に入射した光は、ホルダ20の内壁に衝突する際に吸収され、減衰してしまう。これに対し、光センサ10においては、ホルダ20の内部はその大部分が導光体50によって占められているので、そのような光の吸収及び減衰はほとんど生じない。また、ホルダ20の内部はその大部分が導光体50によって占められているので、内部に塵埃類が溜まり、光が塵埃類に吸収されて減衰することを未然に防止できる。
【0031】
更に、同一の基板60に光源30と光検出器40が取り付けられているとともに、基板60がホルダ20の蓋の役目を果たしているので、部材費用及び製造工数を低減することができ、ひいては光センサ10を低コストで製造することができる。
【0032】
また、光検出器40を検出対象Tから少なくとも導光体50の高さだけ離すことができるので、検出対象Tやこれを搬送する装置が帯びている静電気の影響を光検出器40が受けることを未然に防止できる。しかも、光検出器40と検出対象Tとの間はその大部分が導光体50によって占められているので、検出対象Tから放射された放射光が光検出器40に到達するまでの間に放射光が減衰することも防止されている。
【0033】
上述のとおり、光センサ10は、受光範囲が大きく且つコンパクトである。よって、従来は空間的な制約によって光センサを搭載することができなかった装置に光センサ10を搭載し、光検出装置を構成することができる。そのような光検出装置としては例えば紙葉類処理装置が挙げられる。
【0034】
(3)放射光の検出方法
次に、光センサ10を用いた放射光の検出方法について説明する。光センサ10を用いて放射光を検出する際、光センサ10は、基板60を介して図1には示されない制御装置に接続される。制御装置は、光源30の点灯(すなわち励起光の照射の開始)及び光源30の消灯(すなわち励起光の照射の停止)を行う。また、制御装置は、放射光を検出した光検出器40が送信する信号を受信し、放射光の強度(光量)の算出等を行う。
【0035】
(3-1)蛍光の検出方法
蛍光の検出は次のように行われる。なお、蛍光は、検出対象に励起光が照射されている間に検出対象から放射される放射光である。励起光の照射が停止されると、検出対象からの蛍光の放射も停止される。
【0036】
まず、光源30が励起光を照射する。照射された励起光は導光体50を透過する。導光体50を透過した励起光は検出対象に達し、検出対象を励起する。励起された検出対象は蛍光を放射する。検出対象から放射された蛍光は、導光体50を透過する。光検出器40は、導光体50を透過した蛍光を検出する。
【0037】
蛍光を検出した光検出器40は、蛍光の検出を知らせる信号、又は、検出した蛍光の強度に応じて変化する信号を制御装置に送信する。光検出器40から信号を受信した制御装置は、蛍光の強度の算出等を行う。このようにして蛍光の検出が行われる。
【0038】
蛍光の検出は、励起光の照射中であれば任意のタイミングと時間で行うことが出来る。検出する蛍光の強度は、検出中に行った1回の測定の信号から算出してもよく、検出中に行った複数回の測定の信号を積分または平均して算出してもよい。
【0039】
(3-2)燐光の検出方法
燐光の検出は次のように行われる。なお、燐光は、検出対象への励起光の照射が停止された後に検出対象から放射される放射光である。検出対象から放射される燐光の強度は、励起光の照射の停止後、時間の経過とともに徐々に減衰する。
【0040】
まず、光源30が励起光を照射する。照射された励起光は導光体50を透過する。導光体50を透過した励起光は検出対象に達し、検出対象を励起する。続いて、光源30は消灯する。すると、励起された検出対象は燐光を放射する。検出対象から放射された燐光は、導光体50を透過する。光検出器40は、導光体50を透過した燐光を検出する。
【0041】
燐光を検出した光検出器40は、燐光の検出を知らせる信号、又は、検出した燐光の強度に応じて変化する信号を制御装置に送信する。光検出器40から信号を受信した制御装置は、燐光の強度の算出等を行う。このようにして燐光の検出が行われる。
【0042】
燐光の検出は、励起光の照射の停止後、速やかに開始するのが好ましい。燐光の検出時間は任意に定めることが出来るが、後述のように減衰時定数を算出する場合は、検出時間を短くするほど減衰時定数を正確に算出できる。検出する燐光の強度は、検出中に行った1回の測定の信号から算出してもよく、検出中に行った複数回の測定の信号を積分または平均して算出してもよい。
【0043】
なお、各燐光放射物質は、それぞれ固有の燐光強度減衰時定数(燐光強度がe分の1になるまでに要する時間)を有している。すなわち、横軸を光源30の消灯後の経過時間、縦軸を燐光強度とした座標系に描かれる燐光強度減衰曲線は、各燐光放射物質によって異なる。よって、光源30の消灯後、燐光強度の算出を多数回行い、算出された各燐光強度を基準となる燐光強度と比較することにより、検出対象に含まれる燐光放射物質を判別することが可能である。
【0044】
また、燐光強度の減衰時定数を算出するとともに、算出された減衰時定数と基準となる減衰時定数とを比較することによって、検出対象に含まれる燐光放射物質を判別することも可能である。燐光強度の減衰時定数は、光源30の消灯後、燐光強度の検出を2回行い、次の数式1に基づいて算出することができる。
【0045】
【数1】
【0046】
数式1において、τは燐光強度の減衰時定数である。t及びtは、それぞれ、光源30の消灯後、1回目及び2回目の燐光検出までの経過時間である。P及びPは、それぞれ、1回目及び2回目に検出された燐光の強度である。
【0047】
更に、光源30の消灯後、燐光強度の算出を少なくとも3回行うことで、検出対象が互いに減衰時定数が異なる複数種類の燐光放射物質を含有するものであるか否かを判別することも可能である。
【0048】
(3-3)移動する検出対象から放射される放射光の検出方法
また、光センサ10を用いることで、移動する検出対象から放射される放射光を検出することができる。光センサ10と検出対象Tの位置関係を模式的に示す図7を参照しながらその方法を説明する。
【0049】
移動する検出対象から放射される放射光を検出する場合、検出対象の搬送経路に光入出射面53が対向するように光センサ10は配置される。図7(A)に示されるように、光入出射面53に対向する位置であって、例えば光源30の正面となる位置に検出対象Tが搬送されてくると、光源30は励起光を照射する。照射された励起光は導光体50を透過する。導光体50を透過した励起光は検出対象Tに達し、検出対象Tを励起する。
【0050】
検出対象Tから蛍光が放射される場合、蛍光は導光体50を透過する。光検出器40は導光体50を透過した蛍光を検出する。
【0051】
続いて、光源30は消灯する。検出対象Tから燐光が放射される場合、燐光は導光体50を透過する。光検出器40は、導光体50を透過した燐光を検出する。このとき、検出対象Tは、図7(B)に示されるように、その移動方向下流側に距離L移動している。
【0052】
光源30が励起光を照射してから蛍光又は燐光が検出されるまでの間、検出対象Tは移動しているが、光入出射面53が広いので、導光体50はこれらの放射光を導光体50内に入射させることができる。また、導光体50内に放射光が入射すれば、導光体50は当該放射光を光検出器40に導くことができる。よって、光センサ10は、検出対象Tが移動していても放射光を検出することができる。なお、検出対象の移動速度や光入出射面53の大きさにもよるが、励起光の照射停止後に放射される燐光の検出は、光源30の消灯後、0~3.0msecが経過した時点で行うことが好ましい。
【0053】
ただし、光検出器40で検出される放射光の強度は、放射光を放射する検出対象Tと光検出器40との相対位置、すなわち、光源30の消灯後に検出対象Tが移動した距離Lに応じて、図8に示されるように変化する。図8には、検出対象から放射される燐光の強度が常に一定であると仮定とした場合の、光源30の消灯後の検出対象Tの移動距離Lと、光検出器40で検出される燐光の強度の関係を示す曲線が模式的に示されている。
【0054】
図8に示されるように、光検出器40で検出される燐光の強度は、距離Lが所定値Lとなるときに最大値となり、距離LがLから離れるにつれ小さくなる。
【0055】
検出対象Tの移動速度が一定であれば、光源30の消灯後所定のタイミングで燐光を検出することにより、検出対象Tと光検出器40の相対位置を常に一定に保つことができる。しかしながら、検出対象Tを搬送する装置の速度変動などが原因で、検出対象Tと光検出器40の相対位置を常に一定に保つことが困難な場合がある。その場合、検出対象Tと光検出器40の相対位置が変動することによって、燐光強度を正確に検出できなくなる。
【0056】
よって、放射光の強度を正確に検出するためには、検出対象Tと光検出器40との相対位置に応じて、検出された放射光の強度を補正することが望ましい。
【0057】
そこで、制御装置は、図8に例示される曲線に関する情報を記憶しておき、当該情報と、光源30の消灯後燐光を検出するまでに検出対象Tが移動した距離Lから補正係数を得、検出された燐光強度にこの補正係数を乗じることで、燐光強度を補正することができる。そのような情報として、例えば、光源30の消灯後燐光を検出するまでに検出対象Tが移動する距離Lと光検出器40によって検出される燐光の強度との関係を表す関数又はテーブルを、制御装置は記憶しておくことができる。
【0058】
補正された燐光強度を基準値と比較することによって、より正確に検出対象Tに含まれる燐光放射物質を判別することができる。それによって、検出対象Tまたは検出対象Tが付されている紙葉類や商品等の真偽を判別することができる。
【0059】
また、補正された燐光強度に基づいて燐光強度の減衰時定数を算出するとともに、算出された減衰時定数と基準となる減衰時定数とを比較することによって、検出対象に含まれる燐光放射物質を判別することも可能である。補正された燐光強度に基づく減衰時定数の算出は、光源30の消灯後、燐光強度の検出を2回行い、次の数式2に基づいて算出することができる。
【0060】
【数2】
【0061】
数式2において、τは燐光強度の減衰時定数である。t及びtは、それぞれ、光源30の消灯後、1回目及び2回目の燐光検出までの経過時間である。P及びPは、それぞれ、1回目及び2回目に検出された燐光の強度である。Yは光源30の消灯後の検出対象Tの移動距離と、光検出器40によって検出される燐光の強度との関係を表す関数である。L及びLは、それぞれ、1回目及び2回目の燐光検出までの、光源30の消灯後の検出対象Tの移動距離である。
【0062】
以上のとおり、光センサ10によれば、検出対象Tを移動させたまま放射光を検出することができ、また、検出対象Tの位置に応じて燐光の強度を補正することができる。よって、検出対象Tからの放射光の検出、及び検出対象Tに含まれる燐光放射物質の判別を、迅速且つ正確に行うことができる。
【0063】
(4)光検出装置の構成
次に、光センサ10を搭載する光検出装置について説明する。図9は、光検出装置100の構成を模式的に示すブロック図である。光検出装置100は、被搬送物Xに付された検出対象Tの真偽を判定するために用いられる装置である。光検出装置100は、搬送装置80、搬送装置80の上方に設置された光センサ10、並びに、搬送装置80及び光センサ10を制御する制御装置90を有している。被搬送物Xを紙幣等の紙葉類として、光検出装置100を紙葉類処理装置とすることができる。
【0064】
搬送装置80は、所定の位置に検出対象Tが付された被搬送物Xを、矢印で示される方向に連続的に搬送する装置であり、被搬送物Xの形状等の特性に応じ、ベルトコンベヤやローラコンベヤ、浮上搬送装置等とすることができる。本実施例においては、搬送装置80はベルトコンベヤである。当該ベルトコンベヤは、ベルト及び当該ベルトを駆動するプーリーを有している。当該プーリーの回転軸には、当該プーリーの回転数(回転角度)を検出するロータリーエンコーダが接続されている。また、搬送装置80は、光センサ10よりも上流側に、被搬送物Xの通過を検知する通過検知センサ(図示略)を有している。
【0065】
光検出装置100において、光センサ10は、光源30が搬送装置80における被搬送物Xの搬送方向上流側、光検出器40が同下流側に位置するように配置されている。また、光センサ10は、導光体50の光入出射面53が、搬送装置80上を搬送される被搬送物Xに付された検出対象Tに対向するように配置されている。
【0066】
制御装置90は、電源、CPU及びメモリ等から構成されており、機能部として、搬送装置制御部91、検出部92、補正部93、判別部94及び記憶部95を有している。
【0067】
搬送装置制御部91は、搬送装置80の動作を制御する。また、搬送装置制御部91は、通過検知センサによって被搬送物Xの通過が検知された後のロータリーエンコーダのパルス数に基づいて、ベルトの移動距離、すなわち、検出対象Tの移動距離(検出対象Tの存在位置に関する情報)を算出する。
【0068】
検出部92は、被搬送物Xの通過が通過検知センサによって検知された後、所定のタイミングで、光源30に対し、励起光の照射及びその停止を指令する。また、検出部92は、光検出器40から送信される信号を受信して、検出された放射光の強度を算出する。
【0069】
補正部93は、検出対象Tの存在位置に関する情報を搬送装置制御部91から得るとともに、光検出器40で検出された放射光の強度に関する情報を検出部92から得る。補正部93は、更に、後述する記憶部95から補正係数に関する情報を得る。補正部93はこれらの情報に基づいて検出された放射光の強度を補正する。
【0070】
判別部94は、検出部92で得られた放射光の強度、又は、補正部93で得られた補正後の放射光の強度と、記憶部95に記憶されている基準値とを比較することによって、検出対象Tに含まれる物質を判別し、検出対象Tの真偽を判定する。また、判別部94は、燐光の減衰時定数τを算出し、この減衰時定数τに基づいて検出対象Tに含まれる物質を判別し、検出対象Tの真偽を判定することもできる。
【0071】
記憶部95は、放射光強度の補正に用いられる補正係数に関する情報を記憶している。この情報は、例えば、光検出器40と検出対象Tの相対位置と、補正係数との関係を示す関数又はテーブルである。
【0072】
また、記憶部95は、真の検出対象Tから放射される放射光の強度や、燐光の減衰時定数等の情報を記憶している。これらの情報は、検出対象Tの真偽を判定するための基礎となる。
【0073】
(5)光検出装置の動作
以上のように構成された光検出装置100の動作フローの一例を、図10を参照しながら説明する。
【0074】
光検出装置100の動作が開始されると、搬送装置80が被搬送物Xを搬送し、通過検知センサが被搬送物Xの通過を検知する(S1)。
【0075】
通過検知センサによる被搬送物Xの通過の検知後、ロータリーエンコーダのパルス数が所定数に達すると、光源30が点灯する(S2)。このとき、被搬送物Xに付された検出対象Tは光センサ10の下に移動している。また、光源30から照射された励起光は導光体50によって検出対象Tに導かれ、検出対象Tを励起する。励起光が照射されている間、検出対象Tから蛍光が放射される。
【0076】
次に、光検出器40が蛍光を検出する(S3)。
【0077】
光源30の点灯開始から所定時間経過後、光源30は消灯する(S4)。すると、検出対象Tからの蛍光の放射は停止する。また、検出対象Tからの燐光の放射が開始する。
【0078】
続いて、光源30の消灯後、所定のタイミングで、検出対象Tから放射される燐光を複数の光検出器40それぞれが複数回検出する(S5)。
【0079】
光検出器40毎(放射光の色毎)に蛍光の強度と燐光の減衰特徴を検出し、それらに基づいて、検出対象Tに含まれている物質の判別を行うとともに、被搬送物Xの真偽を判定する(S6)。
【0080】
なお、光検出装置100の動作は、上述のように蛍光や燐光の検出を1回行うものには限られない。すなわち、被搬送物Xが通過する間に、蛍光や燐光の検出を複数回行ってもよい。また、被搬送物Xの検出対象Tが付されているべきではない位置に励起光を照射するとともに、放射光が放射されないことを確認することで被搬送物Xの真偽判定を行うことも可能である。更に、1つの被搬送物Xに対して、検出対象Tが付されているべき位置と、検出対象Tが付されているべきではない位置の両方に励起光を照射することで、被搬送物Xの真偽判定を行うことも可能である。この場合、検出対象Tが付されているべき位置から放射光が放射されるとともに、検出対象Tが付されているべきではない位置から放射光が放射されないことが確認されれば、被搬送物Xは真と判定され、それ以外の場合は、偽であると判定される。
【0081】
(6)光センサの他の実施例
本発明を適用する光センサ10は、図1に示されるものには限られない。例えば、導光体50と光源30及び光検出器40との間に配置される光学フィルタ70の有無やその厚さに応じて、励起光入射面51と放射光出射面52の高さを変更し、導光体50と光源30及び光検出器40との間に無駄な空間を生じさせることなく、よりコンパクトな光センサ10とすることができる。具体的には、光センサ10は、励起光入射面51側が低く、放射光出射面52側が高い段差を有する導光体50を備えるものであってもよい。また、図11に示されるように、光センサ10は、励起光入射面51と放射光出射面52とが同じ高さとされた導光体50を備えるものであってもよい。この場合、励起光入射面51と、放射光出射面52との間に、一段低い中間面56が形成され、遮光領域として機能する段部が形成されている。
【0082】
また、本発明を適用する光センサ10において、導光体50は、励起光を光源30から検出対象Tまで導くことができ、放射光を検出対象Tから光検出器40に導くことができる限り、光源30及び光検出器40と、光センサ10に対向する検出対象Tとによって挟まれる位置に配置されている必要はない。例えば、導光体50は、図12に示されるように、励起光入射面51と放射光出射面52を前後に有し、光入出射面53を下方に有してもよい。
【0083】
更に、本発明を適用する光センサ10は、励起光を光源30から検出対象Tまで導くことができるとともに、放射光を検出対象Tから光検出器40に導くことができる導光部を有する限り、導光体50を有するものには限られない。例えば、図13に示されるような光センサ10であってもよい。
【0084】
図13に示される光センサ10は、図1に示される光センサ10と比較して、導光体50を有していない点で相違する。また、励起光及び放射光を透過させる素材でできたカバー150によって、筒状のホルダ20の貫通孔の下側開口が塞がれている点で相違する。更に、筒状のホルダ20の内面が反射面とされている点で相違する。
【0085】
筒状のホルダ20の内面の反射面は、例えば、鏡面である。当該鏡面は、ホルダ20の内面がアルミニウム又は銀若しくはそれらの合金等の金属で被覆され、それら金属の表面が公知の方法によって仕上げられることによって形成される。なお、筒状のホルダ20の内面の反射面は、励起光及び放射光の大部分が反射するならば、上述の方法で形成された鏡面に限定されないことは勿論である。また、筒状のホルダ20は、例えば筒状部の一部に、励起光や反射光の一部が漏れるスリットや穴があっても、大部分が囲われていて励起光や反射光の漏れ量が少なければ十分に機能する場合がある。なお、ホルダ20の内面には、仕切り21の側面及び下面も含まれる。
【0086】
図13に示される光センサ10においては、光源30から照射された励起光は、ホルダ20の内面(仕切り21の側面を含む)でほぼ全反射しながら、カバー150へ向かう。カバー150に達した励起光はカバー150を透過し、検出対象を励起する。励起された検出対象は放射光を放射する。検出対象から放射された放射光はカバー150を透過し、ホルダ20の内面(仕切り21の側面を含む)でほぼ全反射しながら、光検出器40へ向かう。
【0087】
すなわち、図13に示される光センサ10においては、ホルダ20によって、励起光が光源30から検出対象まで導かれ、放射光が検出対象から光検出器40に導かれる。つまり、ホルダ20が導光部として機能する。また、特に限られるわけではないが、ホルダ20の内面の形状は、光源30及び光検出器40の側から見て、略正方形の光源30側の2つの角を面取りした六角形状とすることができる。この形状とすることによって、光源30からの励起光を効率よく検出対象に照射することができる。
【0088】
なお、仕切り21は、その下面及び対向する一対の側面と、ホルダ20の貫通孔の上部開口を覆う部材(図13の場合、基板60)とによって段差部を形成している。よって、図13に示される光センサ10においては、仕切り21は、ホルダ20の内部の光源30側の部分と光検出器40側の部分との間において、光源30から照射された励起光が直接光検出器40に到達することを防止する遮光領域として機能する。
【0089】
なお、カバー150の形状は、ホルダ20の貫通孔の下側開口を塞ぎ、励起光を検出対象に向けて透過させ、放射光をホルダ20の貫通孔内に向けて透過させることができるものであればどのようなものであってもよい。例えば、ホルダ20内への突出部が無い平板であってもよい。逆に、ホルダ20内への突出部を厚くして、導光部の機能を持たせてもよい。すなわち、ホルダ20の内面とカバー150の突出部により導光部が構成され、ホルダ20の内面の反射とカバー150の突出部の側面の反射とによって、励起光と放射光を導くようにしてもよい。
【0090】
本発明の光センサ及び光検出装置は、例えば銀行券や証券等の有価書類(value document)の表面にセキュリティ特徴(security feature)として取り付けられた発光物質を検出するものであり、検出対象となる発光物質に励起光を照射し、発光物質から放射された蛍光や燐光などの放射光を検出する。蛍光や燐光のスペクトル及び燐光の減衰特徴などの放射光の特徴は発光物質の組成によって決まるので、放射光を検出して特徴を比較することによってセキュリティ特徴の真偽を判定することが出来る。
【0091】
また、本発明の光センサは、一組の光源30と光検出器40を有するものには限られず、複数組の光源30と光検出器40が一列に並んだ、いわゆるラインセンサの構成を有していてもよい。
【0092】
更に、本発明の光検出装置は、光センサ10を1個配置したもののほか、光センサ10を複数個配置したものであってもよい。この場合、複数個の光センサ10によって、1つの被搬送物Xの複数の位置を走査して各位置において放射光を検出することが出来る。
【0093】
以上本発明の実施例について説明したが、本発明は上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
【産業上の利用可能性】
【0094】
本発明は、励起されると放射光を放射する検出対象から放射される放射光を検出する光センサ、光検出装置、紙葉類処理装置、又は光検出方法に用いるのに好適である。
【符号の説明】
【0095】
10 光センサ
20 ホルダ
21 仕切り
30 光源
40 光検出器
50 導光体
51 励起光入射面
52 放射光出射面
53 光入出射面
54 起立面
55 側面
56 中間面
60 基板
70 光学フィルタ
71 可視光カットフィルタ
72 紫外線カットフィルタ
73 カラーフィルタ
80 搬送装置
90 制御装置
91 搬送装置制御部
92 検出部
93 補正部
94 判別部
95 記憶部
100 光検出装置
150 カバー
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13