(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-02
(45)【発行日】2022-02-10
(54)【発明の名称】力および/または圧力センサ
(51)【国際特許分類】
G01L 1/14 20060101AFI20220203BHJP
【FI】
G01L1/14 J
(21)【出願番号】P 2019205833
(22)【出願日】2019-11-13
(62)【分割の表示】P 2019516402の分割
【原出願日】2017-06-20
【審査請求日】2020-04-13
(32)【優先日】2016-07-11
(33)【優先権主張国・地域又は機関】FI
(73)【特許権者】
【識別番号】519012677
【氏名又は名称】フォルシオット オイ
【氏名又は名称原語表記】FORCIOT OY
【住所又は居所原語表記】Hermiankatu 12 E,Tampere Finland
(74)【代理人】
【識別番号】100075557
【氏名又は名称】西教 圭一郎
(72)【発明者】
【氏名】ヤルヴィネン,ペトリ
(72)【発明者】
【氏名】ツルネン,ミッコ
(72)【発明者】
【氏名】ヘイットカンガス,ヤルモ
(72)【発明者】
【氏名】ヴァンハラ,ユッカ
(72)【発明者】
【氏名】イソ-ケトラ,ペッカ
【審査官】岡田 卓弥
(56)【参考文献】
【文献】国際公開第2014/204323(WO,A1)
【文献】国際公開第2013/073677(WO,A1)
【文献】特開2009-20006(JP,A)
【文献】特開2005-164448(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01L 1/00- 1/26
G01L 5/00- 5/28
G01B 7/00- 7/34
(57)【特許請求の範囲】
【請求項1】
第1ヤング率(Y
200)と第1降伏ひずみ(ε
y,200)とを有する層(200)を含む、またはかかる層(050)から成る弾性伸縮層(050,100,200)と、
前記弾性伸縮層(050,100,200)に取り付けられ、互いに第1距離(d
1,d
1,301,302)離れて配設される、少なくとも第1伸縮性電極(301)および第2伸縮性電極(302)と、
第2ヤング率(Y
500)を有するフレキシブル箔(500)と、
前記フレキシブル箔(500)に取り付けられた導電配線(400)と、
第1導電層(600)とを含む、センサ(900)であって、
前記導電配線(400)の少なくとも一部は、前記第1伸縮性電極(301)に導電的に結合され、
前記導電配線(400)の少なくとも一部は、前記第2伸縮性電極(302)に導電的に結合され、
前記弾性伸縮層(050)は、前記第1導電層(600,600a)と前記第1伸縮性電極(301)との間に前記センサ(900)の厚み方向に配設され、
前記第1降伏ひずみ(ε
y,200)は、少なくとも10パーセントであり、
前記第1ヤング率(Y
200)は、前記第2ヤング率(Y
500)よりも小さく、
前記センサ(900)は、
前記導電配線(400)に導電的に結合され、少なくとも前記第1伸縮性電極(301)の静電容量を測定するように構成される、少なくとも1つの集積回路(700)と、
追加の弾性変形層(100b)と、
第2導電層(600b)とを含み、
前記第1導電層(600,600a)と前記第2導電層(600b)とは、前記第1伸縮性電極(301)の反対側にあり、
前記追加の弾性変形層(100b)は、前記第2導電層(600b)と前記第1伸縮性電極(301)との間に前記センサ(900)の厚み方向に配設されることを特徴とするセンサ(900)。
【請求項2】
前記弾性伸縮層(050)は、
弾性変形層(100)と、
伸縮層(200)とを含み、
前記伸縮層(200)、前記第1伸縮性電極および前記第2伸縮性電極(301,302)、前記フレキシブル箔(500)、ならびに導電配線(400)が、前記弾性変形層(100)の同じ側にあることを特徴とする請求項1に記載のセンサ(900)。
【請求項3】
前記伸縮層(200)は、前記第1伸縮性電極(301)と前記弾性変形層(100)との間に配設されることを特徴とする請求項2に記載のセンサ(900)。
【請求項4】
前記弾性変形層(100)は、前記第1ヤング率(Y
200)よりも小さいヤング率(Y
100)を有することを特徴とする請求項2または3に記載のセンサ(900)。
【請求項5】
前記伸縮層(200)は、熱可塑性ポリウレタン(TPU)、ポリアミド、およびポリエステルのうちの1つを含むことを特徴とする請求項2~4のいずれか1項に記載のセンサ(900)。
【請求項6】
前記弾性伸縮層(050,100,200
)が、ポリウレタン、ポリエチレン、ポリ(エチレン-ビニルアセテート)、ポリ塩化ビニル、ポリボロジメチルシロキサン、ポリスチレン、アクリロニトリル-ブタジエン-スチレン、スチレン-ブタジエンスチレン、エチレンプロピレンゴム、ネオプレン、コルク、ラテックス、天然ゴム、シリコーン、および熱可塑性エラストマーゲルのうちの少なくとも1つを含むことを特徴とする請求項1~5のいずれか1項に記載のセンサ(900)。
【請求項7】
無電極空間(210)が、前記弾性伸縮層(050,100,200)に取り付けられた全ての伸縮性電極(300,301,302,303,304,305,306)の外側の前記弾性伸縮層(050,100,200)にあり、
少なくともいくつかの前記導電配線(400)が、前記無電極空間(210)の上または下に配設さ
れることを特徴とする請求項1~6のいずれか1項に記載のセンサ(900)。
【請求項8】
前記導電配線(400)は、最大200μmの幅(W
400)を有するワイヤ(401,402)を含
むことを特徴とする請求項1~7のいずれか1項に記載のセンサ(900)。
【請求項9】
前記第1伸縮性電極(301)は
、互いに導電的に結合した
導電性粒子を含むことを特徴とする請求項1~8のいずれか1項に記載のセンサ(900)。
【請求項10】
フレキシブル箔(500)は、ポリエステル、ポリイミド、ポリエチレンナフタレート、およびポリエーテルエーテルケトンのうちの少なくとも1つを含むことを特徴とする請求項1~9のいずれか1項に記載のセンサ(900)。
【請求項11】
前記弾性伸縮層(050,100,200)に結合した複数の伸縮性電極(300)を含み、
前記伸縮性電極(300)のそれぞれが、全ての他の前記伸縮性電極(300)からいくらかの距離(d
1,i,j)離れて配設さ
れることを特徴とする請求項1~10のいずれか1項に記載のセンサ(900)。
【請求項12】
前記第1および/もしくは前記第2導電層(600,600a,600b)の少なくとも一部は、導電性インクで作製され、ならびに/または
前記第1および/もしくは前記第2導電層(600,600a,600b)は、導電性ファブリックを含み、ならびに/または
前記第1および/もしくは前記第2導電層(600,600a,600b)は、導電性ポリマを含むことを特徴とする請求項1~11のいずれか1項に記載のセンサ(900)。
【請求項13】
支持層(650)を含み、
前記第1伸縮性電極(301)と前記第2伸縮性電極(302)とが、前記弾性伸縮層(050,100,200)と前記支持層(650)との間に配設されることを特徴とする請求項1~12のいずれか1項に記載のセンサ(900)。
【請求項14】
前記フレキシブル箔(500)の断面積は、最大でも前記弾性伸縮層(050,100,200)の断面積の半分であることを特徴とする請求項1~13のいずれか1項に記載のセンサ。
【請求項15】
請求項1~14のいずれか1項に記載のセンサ(900)を含む
、着用可能品。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、力センサに関する。本発明は、圧力センサに関する。本発明は、静電容量および/または圧力センサに関する。本発明は、装着型の、静電容量および/または圧力センサに関する。
【背景技術】
【0002】
健康に対する関心が高まっている。これは、個人の健康、およびヘルスケアを含む。これによって、たとえばセンサのような、多くの個人用の医療用モニタリング装置が生まれている。そのようなセンサは、衣類、たとえば、グローブ、ミット、履物、ヘルメットなどに埋め込むことができる。衣類用の力または圧力センサの場合、それらは、たとえば、圧抵抗性、圧電性、または容量性とすることが可能である。静電容量/圧力センサは、典型的には、容易に入手できる材料だけに関与している。
【0003】
静電容量センサでは、電極の静電容量が測定される。静電容量は、周囲と相対的に、または他の電極、たとえば接地電極に相対して測定することができる。一般的には、2つの動作原理が存在する。(1)(たとえば、2つの電極間において)電極に近い誘電材料が、変化して、静電容量を変化させる、および/または(2)2つの電極間の距離が変化し、これが、これらの電極間の静電容量を変化させる。これらの原理は、当業者に公知である。
【0004】
たとえば、特許出願DE102009055121は、複数の導体と、その間に弾性非導電層とを有する力センサを開示している。力を印加することによって、弾性非導電層が変形し、導体(すなわち、電極)間の静電容量の変化をもたらす。
【0005】
そのようなセンサには、いくつかの相互に関連する問題がある。たとえば、電極の面積は、力を正確に測定するために適度に大きくなければならない。また、電極の静電容量の測定は、他の電極の静電容量の測定結果に影響を与えてはならない。さらに、複数の静電容量を並行して、すなわち同時にまたは実質的に同時に測定することができることが有益であろう。たとえば、走り高跳びの選手の能力をモニタリングするとき、適度に速いサンプリング速度で時間の関数として足の下の圧力分布を測定することができなければならない。さらに、空間分解能は、適度に高くなければならず、それによって電極の数は適度に多くなければならない。さらにまた、センサは、着心地がよく、機械的に信頼性があるべきである。
【発明の概要】
【0006】
上述の特徴間でよいバランスを有する力および/または圧力センサが開示される。力および/または圧力センサは、伸縮性および弾性である単数または複数の層を含む。このセンサは、この単数の層またはこれら複数の層のうちの1つに取り付けられた伸縮性電極をさらに含む。伸縮性は、力センサの快適さを向上させる。しかしながら、電極の配線が問題をもたらすことが分かっている。伸縮層上では、伸縮性配線は、そのような目的に使用可能である伸縮性材料であるがゆえに、かなりの幅を有していなければならない。広幅の配線は電極のサイズを小さくし、それによって全体の力ではなく、局所的な圧力しか測定することができないので、いくつかの問題をもたらす。この問題を解決するために、電極用配線はフレキシブル箔上に配設される。電極とは対照的に、箔上の配線は伸縮性である必要はない。したがって、配線を大幅に細くすることができ、それに対応して電極も大きくすることができる。より具体的には、本発明は、請求項1に開示されている。
【0007】
さらに、配線が、主として、電極間にある領域において延びるように配設されている場合、静電容量の測定は他の静電容量の測定を妨げない。この実施形態および他の実施形態は、従属請求項に開示されている。
【図面の簡単な説明】
【0008】
【
図1a】力および/または圧力センサの一実施形態を側面図で示す。
【
図1b】
図1aの力および/または圧力センサの断面Ib-Ibを底面図で示す。
【
図1c】
図1aの力および/または圧力センサの断面Ic-Icを上面図で示す。
【
図1d】
図1aの力および/または圧力センサの層を底面図で示す。
【
図1e】弾性伸縮層050に取り付けられた伸縮性電極を有する、力および/または圧力センサの一実施形態を側面図で示す。
【
図2】伸縮層およびその上に配設された伸縮性電極を底面図で示す。
【
図3a】伸縮層およびその上に配設された伸縮性電極を底面図で示す。
【
図3b】
図3aの伸縮層および伸縮性電極と共に使用されるフレキシブル箔を上面図で示す。
【
図3c】
図3bのフレキシブル箔と、フレキシブル箔上に配設された配線とを上面図で示す。
【
図3d】
図3aの伸縮層および伸縮性電極と共に使用することができる別のフレキシブル箔を上面図で示す。
【
図4a】伸縮層およびその上に配設された伸縮性プリント電極を底面図で示す。
【
図4b】伸縮層およびその上に配設された伸縮性テキスタイル電極を底面図で示す。
【
図4c】
図4bの伸縮層および伸縮性テキスタイル電極を有する力および/または圧力センサの層を底面図で示す。
【
図5a】導電層を有する力および/または圧力センサの一実施形態を側面図で示す。
【
図5b】2つの導電層を有する力および/または圧力センサの一実施形態を側面図で示す。
【
図6a】伸縮層がインソールのために形成された、伸縮層およびその上に配設された伸縮性電極を底面図で示す。
【
図6b】
図6aの、伸縮層および伸縮性電極と共に使用されるフレキシブル箔を上面図で示す。
【
図6c】伸縮層がインソールの形状である、伸縮層およびその上に配設される伸縮性電極を底面図で示す。
【
図6d】
図6cの伸縮層および伸縮性電極と共に使用されるフレキシブル箔を上面図で示す。
【
図7a】力センサおよび/または圧力センサの弾性変形層を上面図で示す。
【
図7b】力センサおよび/または圧力センサの弾性変形層を上面図で示す。
【
図7c】力センサおよび/または圧力センサの弾性変形層を上面図で示す。
【
図7d】力および/または圧力センサの弾性変形層を側面図で示す。
【
図7e】力および/または圧力センサの弾性変形層を側面図で示す。
【
図7f】力および/または圧力センサの弾性変形層を側面図で示す。
【
図8a】熱可塑性支持層を有する、力または圧力センサの実施形態を側面図で示す。
【
図8b】熱可塑性支持層を有する、力または圧力センサの実施形態を側面図で示す。
【
図8c】熱可塑性支持層を有する、力または圧力センサの実施形態を側面図で示す。
【発明を実施するための形態】
【0009】
本発明は、圧力および/または力センサとしての使用に適したセンサ900に関する。本発明の実施形態に従った力または圧力センサは、比較的薄い。すなわち、厚みは、長さおよび幅の小さい方よりも小さい。センサの形状は、平面状であってもよい。さらに、センサは適合性があり、それによって使用時に、その形状が保管時の形状とは異なってもよい。たとえば、センサは、平面形態で格納されてもよく、たとえばミットの中に組み込まれるとき、その形状は、ミットの形状に合わせてもよい。実施形態は、平面形態で示されている。しかしながら、センサは、任意に湾曲した物体に取り付けることができることが理解される。
【0010】
図1aおよび
図1eは、側面図で力および/または圧力センサ900の実施形態を示す。図において、方向Szは、力および/または圧力センサ900の厚み方向を表す。他の方向SxおよびSyは、Szに対して互いに垂直である。以下において、力および/または圧力センサ900は、力センサ900と称され、センサのいくつかの実施形態でも、圧力を測定し、このようにして力の少なくとも一部を測定するのに適している。この点については、以下で明らかにされる。
図1eを参照すると、一実施形態は、弾性伸縮層050を含む。
図1aを参照すると、弾性伸縮層050は、弾性層100および伸縮層200を含んでもよい。また、伸縮層200は、少なくともある程度弾性がある。
図1aの力センサ900は、弾性変形層100(または
図5bにおける100a)を含む。使用時において、この層は、変形し、その結果、電極300の静電容量が変化する。使用時に合理的な変形を確保するために、弾性変形層100(すなわち、弾性変形層100の材料)は、第3ヤング率Y
100を有する。たとえば、層100の材料は、当該層100が、典型的な用途において、約1~15%、たとえば30%まで圧縮されるように選択されてもよい。当然に、圧縮は、圧力に依存し、空間的または時間的に均一である必要はない。典型的な圧力は、2kPa~1000kPaのオーダーであってもよく、たとえば、片足または両足で立っている人、または跳躍する人もそのような圧力をもたらす可能性がある。したがって、第3ヤング率Y
100は、たとえば、最大で15MPa、または最大で5MPaであってもよい。また、第3ヤング率Y
100は、たとえば、少なくとも0.05MPa、または少なくとも0.2MPaであってもよい。(小さなヤング率から生じる)大きなひずみは、使用時に弾性変形層100の材料をクリープさせる可能性がある。このことは、長期的に測定を悪化させる可能性がある。さらに、(大きなヤング率から生じる)小さなひずみは、測定することが難しい。
【0011】
弾性変形層100の厚みt100は、重要ではない。応力は、層100にひずみ(すなわち、比例変形)を加え、そのひずみは、電極の静電容量の変化に影響を与える。いくつかの用途、たとえばインソールでは、弾性変形層100の厚みは、通常の履物に合う快適なセンサを有するために、たとえば1mm~5mmであってもよい。
【0012】
一実施形態では、弾性変形層100は、ポリウレタン、ポリエチレン、ポリ(エチレン-酢酸ビニル)、ポリ塩化ビニル、ポリボロジメチルシロキサン、ポリスチレン、アクリロニトリル-ブタジエン-スチレン、スチレン-ブタジエンスチレン、エチレンプロピレンゴム、ネオプレン、コルク、ラテックス、天然ゴム、シリコーン、および熱可塑性エラストマーゲルのうちの少なくとも1つを含む。
【0013】
これらの材料のいくつかは、Plastazote(登録商標)、Evazote(登録商標)、Zotek(登録商標)、Poron(登録商標)、Pe-Lite(登録商標)(ミディアム)、Spenco(登録商標)、およびSorbothane(登録商標)の商品名で市販されている。
【0014】
力センサは、伸縮層200を含む。層200は、使用時にセンサを含む物体の形状に適合するように伸縮性である。たとえば、ミットまたはインソールがセンサを含む場合、伸縮層200は、使用時に、ミットまたはインソールの動的形状に一致するように伸縮してもよい。このように、伸縮性は、センサの快適性を向上させる。しかしながら、適度に容易に伸縮するために、伸縮層200(すなわち、伸縮層の材料)は、比較的小さい第1ヤング率Y200を有する。一実施形態では、第1ヤング率Y200は、フレキシブル箔500のヤング率Y500よりも小さい。しかしながら、センサ内の変形を弾性変形層100に主に集中させるために、一実施形態では、第3ヤング率Y100は、第1ヤング率Y200よりも小さい。このことは、測定精度を向上させる。なぜなら、圧縮の位置が、よりよく制御されるからである。
【0015】
伸縮性については、伸縮層200(すなわち、伸縮層200の材料)は、適度に大きい第1降伏ひずみεy,200を有する。一実施形態では、第1降伏ひずみεy,200は、少なくとも10パーセントである。この値は、多くの用途において快適な力センサにとって十分に高いことが分かっている。典型的な変形はこの値より小さいので、この値は伸縮層200の機械的信頼性の観点からも十分に高いことが分かっている。これに代えて、第1降伏ひずみεy,200は、少なくとも20パーセントまたは少なくとも30パーセントであってもよい。また、伸縮層200(すなわち、伸縮層の材料)は、電気的に絶縁性である。この明細書全体を通して、電気絶縁材料は、抵抗率(すなわち、比電気抵抗)が20℃において100Ωmを超える材料を表す。
【0016】
伸縮層200は、適切なポリマフィルムから成っていてもよい。伸縮層200は、適切な織物で作製されてもよい。一実施形態では、伸縮層200は、ポリマフィルム、たとえば熱可塑性ポリウレタン(TPU)フィルムを含む。TPUは、ポリエステル系TPUおよび/またはポリエーテル系TPUを含んでもよい。一実施形態では、伸縮層は、織物、たとえばポリアミド(ナイロンなど)またはポリエステルを含む。伸縮層200は、織物およびフィルムを含んでもよい。
【0017】
力センサは、伸縮層200に、または弾性伸縮層050に取り付けられた、少なくとも第1伸縮性電極301および第2伸縮性電極302を備える。個々の伸縮性電極は、参照符号301,302,303,・・・によって表わされる。一方、伸縮性電極は、一般に参照符号300によって表わされる。伸縮性電極300は、導電性材料で作製される。本明細書を通して、導電性材料は、20℃において抵抗率(すなわち、比電気抵抗)が1Ωm未満である材料を表す。伸縮性電極300を互いに電気的に絶縁するために、第1伸縮性電極301は、第2伸縮性電極302から距離d
1だけ離れて配設される(
図1bを参照)。伸縮性電極300の伸縮性について、伸縮性電極300は、一実施形態では少なくとも10パーセントである第2降伏ひずみε
y,300を有する。この値は、多くの用途における適合性力センサとして十分に高いことが分かっている。適合性センサは、着心地がよく、変動荷重下において機械的信頼性がある。典型的な変形はこの値より小さいので、この値は伸縮性電極300の機械的信頼性の観点からも十分に高いことが分かっている。これに代えて、第2降伏ひずみε
y,300は、少なくとも20パーセントまたは少なくとも30パーセントであってもよい。典型的には、第2降伏ひずみε
y,300は、第1降伏ひずみε
y,200よりも小さい。従来のように、第1電極と第2電極との間の距離d
1、および電極iと電極jとの間の距離d
1,i,jは、2つの電極の最も近い点の間の距離、すなわち2つの電極間の最小距離を表す。
【0018】
一実施形態では、伸縮性電極(301,302)または全ての伸縮性電極300は、導電性インクから作製される。一実施形態では、伸縮性電極(301,302)または全ての伸縮性電極は、導電性ファブリックまたはファイバから作製される。一実施形態では、伸縮層200はTPUを含み、伸縮性電極300は導電性インクから作製される。一実施形態では、伸縮層200は、伸縮性電極300の間に非導電性ファブリックを含み、伸縮性電極300またはそれらの少なくともいくつかは、金属、たとえば銀によって被覆された導電性ファブリック、たとえばポリアミドまたはポリエステルを用いて作製されてもよい。これに代えて、またはこれに加えて、導電性インクは、伸縮性電極300またはその少なくともいくつかを形成するために、織物と組み合わせて使用されてもよい。
【0019】
導電性インクおよびファブリックは通常、互いに付着した導電性粒子、たとえばフレークまたはナノ粒子を含む。したがって、一実施形態では、第1伸縮性電極301は、電気的に互いに付着しあった導電性粒子、たとえば、フレークまたはナノ粒子を含む。好ましい実施形態において、導電性粒子は、炭素、銅、銀、および金のうちの少なくとも1つを含む。
【0020】
図4aを参照すると、第1伸縮性電極301は、導電性インクから作製されてもよく、それによって第1伸縮性電極301は適度に均質である。そのような伸縮性電極は、電極の面積と実質的に同じ面積内の静電容量の変化を検出するように構成される。したがって、そのような伸縮性電極がそこから圧力を測定するように構成されている有効面積A
301(
図1bおよび
図4aを参照)は、伸縮性電極301自体の面積に等しい。本明細書では、面積は、センサ900の厚み方向に平行である表面法線を有する平面上への伸縮性電極の断面の面積を表す。
【0021】
しかしながら、
図4bを参照すると、第1伸縮性電極301は、非導電層200、たとえば、テキスタイル層などに縫い込まれていてもよい。したがって、伸縮性電極301は、導電性糸、たとえば、金属被覆ポリアミドまたはポリエステルのメッシュとして作製されてもよい。また、そのような伸縮性電極は、伸縮性電極の外縁部によって制限される領域と実質的に同じ領域内の静電容量の変化を検出するように構成されることに留意されたい。したがって、そのような伸縮性電極がそこから圧力を測定するように構成される有効面積A
301(
図4b)は、たとえ導電性糸の面積が小さくても、伸縮性電極301の外縁によって制限される面積に等しい。縫製に代わるものとして、メッシュ形状を有する電極を導電性インクで印刷することができる。明らかなように、両方の種類の電極において、伸縮性電極の有効面積は、伸縮性電極301の外縁によって制限される面積に等しい。
【0022】
当業者に知られているように、力(すなわち全ての力)は、力が作用する表面にかかる圧力の積分である。したがって、圧力(すなわち局所的な圧力)に加えて力(すなわち全ての力)を測定することができるようにするためには、好ましくは実質的に全ての測定領域が伸縮性電極300で覆われなければならない。したがって、上述の距離d1は、小さくなければならない。一方、距離d1が小さすぎると、隣接する電極300は、互いに容量的に結合して測定に支障をきたすおそれがある。
【0023】
図3aを参照すると、一実施形態では、各伸縮性電極i(301,302,303,・・・,315,316)は、互いに伸縮性電極j(316,301,302,303,・・・,315)から距離d
1,i,j離れて配設されている。
図3aでは、距離d
1,301,302およびd
1,301,311のみが示されている。一実施形態では、距離d
1,i,jの最小値は、少なくとも1mm、好ましくは少なくとも2mmである。そのような最小距離は、伸縮性電極の分離を向上させ、その結果、電極間の容量結合が少なくなる。その結果、測定中にそれから生じる変形は減少するであろう。
【0024】
好ましい構成を特徴付ける代替的または追加的な方法は、電極300とその電極に最も近い別の電極との間の距離が適度に小さくなければならないことである。このことは、伸縮層200の大部分が電極によって覆われることを確実にし、力を測定するための精度を向上させる。このことは、距離d
1,i,jで表すことができる。電極iが与えられると、電極jm(i)は、その電極が電極iに最も近くなるように選択される。すなわち、所与の電極iについて、jm(i)は、所与の電極iについて距離d
1,i,jの最小値をもたらす電極jである。一例として、
図3aでは、電極302は、電極301に最も近い。したがって、jm(301)は、302に等しく、d
1,301,302は、d
1,301,jm(301)に等しい。好ましい電極構成では、2つの最も近い各電極は、互いに適度に近い。より具体的には、一実施形態では、d
1,i,jm(i)の最大値は、最大で15mm、好ましくは最大で10mm、または最大で5mmである。最大値は、その後に各電極iを考慮することによって見出すことができる。
【0025】
一実施形態において、力センサ900は、伸縮層200(または層050)に付加した少なくとも15個の伸縮性電極300を含む。さらに、各伸縮性電極300は、全ての他の伸縮性電極300からいくらかの距離d
1,i,j離れて配設される。互いに前記距離d
1,i,jによって電気的に絶縁された多数の伸縮性電極は、センサの空間的精度に相関する。より多くの電極300が使用されるほど、空間的精度が良好になる。好ましい実施形態において、たとえば、
図6cの実施形態において、伸縮性電極の数は、少なくとも20個、たとえば23個である。
【0026】
伸縮性電極300の面積に関して、
図1bを参照して、一実施形態では、伸縮性電極300の総有効断面積A
300は、伸縮層200の総断面積A
200のうち少なくとも50%、少なくとも70%、または少なくとも80%である。ここで、伸縮性電極300の有効断面積A
300は、伸縮性電極の有効面積の合計、たとえば、
図1bでは、第1伸縮性電極301と第2伸縮性電極302との有効面積の合計を表す。有効面積については、上記を参照されたい。明らかなように、断面積は、センサ900の厚み方向に平行な表面法線を有する断面平面上に規定される。
【0027】
図1aを参照すると、一実施形態では、伸縮層200は、第1伸縮性電極301と弾性変形層100との間に配設される。典型的な用途では、弾性変形層100が伸縮層200と直接接触していれば、すなわち伸縮性電極300が弾性変形層100と伸縮層200との間に配設されなければ、センサはより快適に使用することができる。
【0028】
図1eに示されるように、一実施形態では、伸縮層200と弾性層100との両方の目的で弾性伸縮層050が機能する。伸縮層200に関して伸縮性電極300について述べたことが、弾性伸縮層050に関して伸縮性電極300にも当てはまる。さらに、伸縮層200の伸縮性、特にその第1降伏ひずみε
y,200について述べたことは、弾性伸縮層050にも当てはまる。 さらに、伸縮層200の導電性について述べたことは、弾性
伸縮層050にも当てはまる。さらに、弾性変形層100の弾性、特にそのヤング率についても述べたことは、弾性伸縮層050にも当てはまる。したがって、弾性伸縮層050のヤング率Y
050は、層100に関して上述した範囲内であってもよい。さらに、弾性変形層100の、厚みt
100または厚みt
100の方向について述べた(またはこれから述べる)ことは、弾性伸縮層050の厚みt
050および厚みt
050の方向にも当てはまる。
【0029】
図1aおよび
図1cを参照すると、力センサ900は、第2ヤング率Y
500を有するフレキシブル箔500と、当該フレキシブル箔500に付加された導電配線400とをさらに備える。(伸縮層200の)第1ヤング率Y
200は、第2ヤング率Y
500よりも小さい。このようにして、フレキシブル箔500は、伸縮層200よりも変形に抵抗する。
【0030】
第1ヤング率と第2ヤング率との間の差に関して、第1ヤング率Y200は、たとえば、第2ヤング率Y500よりも、少なくとも25%、少なくとも50%、または少なくとも75%小さくてもよい。
【0031】
ヤング率の差は、使用時にフレキシブル箔500の引張りひずみが小さいので、フレキシブル箔500に取り付けられた配線400が伸縮性である必要がないという効果を有する。このことは、配線400が伸縮性である場合よりも、配線400をはるかに細くすることができるというさらなる効果を有する。たとえば、一実施形態では、導電性配線400は、最大200μmまたは最大150μmの幅W400を有するワイヤ(401,402)を含む。より好ましくは、導電配線400はそのようなワイヤ(401,402)からなり、ワイヤ(401,402)の、少なくとも50%または少なくとも60%は、最大200μmまたは最大150μmの幅W400を有する。本明細書では、所与の幅を有する比は、長さ方向に与えられる。したがって、たとえば、ワイヤの全長が1000mm、たとえば、少なくとも500mmである場合、ワイヤが最大200μmの幅を有してもよい。
【0032】
当業者に知られているように、箔の柔軟性は、箔の厚みの3乗に反比例する。したがって、フレキシブル箔は、使用時の柔軟性を確保するために十分に薄くなければならない。一実施形態では、フレキシブル箔500の厚みt500は、最大0.5mmである。フレキシブル箔500の厚みt500は、たとえば0.4mm未満であってもよい。一実施形態では、フレキシブル箔は、ポリエステル、ポリイミド、ポリエチレンナフタレート、およびポリエーテルエーテルケトンのうちの少なくとも1つを含む。
【0033】
さらに、快適なセンサ900を有するために、好ましくは、センサ900の大部分が伸縮性であるか、または少なくとも伸縮性であると感じる。一方、フレキシブル箔500は、上述の意味では非伸縮性箔500であってもよく、伸縮層200と比べて小さくてもよい。したがって、一実施形態では、フレキシブル箔500の断面積は、最大で伸縮層200の断面積の半分である。本明細書では、断面積は、センサ900の厚み方向に平行な表面法線を有する平面上の断面積を表す。これらのいくつかの実施形態において、フレキシブル箔500の断面積は、最大で、伸縮層200の断面積の3分の1または4分の1である。そのような実施形態は、たとえば、
図1d,
図3d,および
図6dに記載されている。
【0034】
力センサ900では、導電配線400の少なくとも一部は、第1伸縮性電極301と導電的に接続されており、導電配線400の少なくとも一部は、第2伸縮性電極302と導電的に接続されている。このように、センサ900は、配線400と伸縮性電極300との間に接続部490を備える。接続部は、導電性である。接続部490は、接続部の電気抵抗率が最大10Ωであるように作製されてもよい。これに加えて、またはこれに代えて、接続部490の材料は、上述の意味で導電性であってもよい。
【0035】
一実施形態では、接続部490は、導電性接着剤から作製され、すなわち硬化した導電性接着剤を含む。 そのような接着剤は、等方導電性接着剤および異方性導電性接着剤を
含む。接続部490は、導電性テープ、たとえば異方性導電性接着剤を使用して形成することができる。導電性接着剤は、典型的には、マトリックス材料中に混合された、ニッケル、グラファイト、または銀粒子を含む。マトリックス材料は、硬化中に接着剤の樹脂が重合することによって形成される硬化ポリマであってもよい。樹脂は、エポキシ樹脂であってもよい。そのような接着剤の例は、LOCTITE ABLESTIK CA 3150およびHysol ECCOBOND
CA 3150の名称で知られている。さらに、接続部490は、ガルバニックであってもよく、それによって接続部は何らかの半田を含んでもよく、半田はスズを含んでもよい。一般的に入手可能な半田は、スズ-鉛、スズ-銅-銀、およびスズ-亜鉛-銅半田合金を含む。
【0036】
図3cおよび4cに示されるように、ワイヤ400は、ワイヤ401,402,403,…,416を含む。ワイヤ401,402,403,…,416は、互いに電気的に絶縁されている。さらに、各伸縮性電極には、少なくとも1本のワイヤが導電的に結合されている。たとえば、一実施形態では、導電配線400の少なくとも一部、たとえばワイヤ401は、導電接続部490によって第1伸縮性電極301に結合されている。一実施形態において、導電配線400の少なくとも一部、たとえばワイヤ402は、導電性接続部490を用いて第2伸縮性電極302に結合されている。
【0037】
さらに、典型的には、ワイヤは、1つの伸縮性電極のみに導電的に結合されている。これは、センサの空間分解能を向上させるためであり、すなわち、各伸縮性電極は、実質的に伸縮性電極のみの位置で力または圧力を測定するために使用することができる。
【0038】
電極に接続されているワイヤは、それが接続されている伸縮性電極と重複している。本明細書では、用語「重複」は、伸縮性電極の境界によって規定される領域が少なくともワイヤの突起を含み、その突起がセンサ900の厚み方向にその領域上に突出することを意味する。さらに、好ましくは、各ワイヤは、1つの電極のみと重複する。このことは、第1伸縮性電極301を用いる測定が、第2伸縮性電極302を用いる測定を妨げないことを確実にする。
【0039】
それに加えて、またはその代わりに、一実施形態では、配線400の少なくとも一部は、いずれの伸縮性電極300とも重複しないように配設される。たとえば、一実施形態では、配線400の最大25%(長さ方向の測定割合、上記参照)は、伸縮性電極300と重複する(上述の意味で)ように配設される。同様に、無電極空間210(
図1bを参照)は、伸縮層200に取り付けられた全てのそのような伸縮性電極(300,301,302,303,304,305,306)の外側の伸縮層200上にある。一実施形態では、導電配線400の少なくともいくつかは、無電極空間210と重複するように配設されている。したがって、無電極空間210は、少なくともいくつかの配線400の突起を含み、当該突起は、無電極空間210上にセンサ900の厚み方向に延びる。言い換えれば、導電配線400の少なくともいくつかは、無電極空間210の上または下に配設される。上述のように、一実施形態では、導電配線400の少なくとも75%は、無電極空間210と重複するように配設される。また、このことは、第1伸縮性電極301を用いる測定が第2伸縮性電極302を用いる測定に与える障害を減少させる。
【0040】
さらに、一実施形態では、配線400の少なくとも一部は、センサ900の中央領域に配設される。好ましくは、配線400の大部分は、センサ900の中央領域に配設される。これは、2つの効果を有する。第一に、典型的な用途では、センサの境界が、最も高い機械的ひずみ、特に厚み以外の方向のひずみにさらされることが分かった。同様に、そのようなひずみは、中心においてより低い。フレキシブル箔500は実質的に伸縮性ではないので、箔500および配線を中央領域に適用することは、センサ900の機械的信頼性を向上させる。第二に、このようにして、センサ900を成形することができる。特に、センサ900の機能に影響を与えることなくセンサ900の境界を切断することができる。このようにして、類似のセンサ900を製造することができ、それらは必要に応じた形状に切断することができる。たとえば、ワンサイズ、すなわち大きいインソールを製造することができ、インソールを使用者の履物に合うように切断することができる。したがって、一実施形態では、導電配線400の少なくとも90%は、伸縮層200の境界から離れた第2距離d
2(
図1dを参照)だけ離れて配設される。一実施形態では、伸縮層200の長さL
200および幅W
200のうち小さい方の少なくとも5%である。一実施形態では、第2距離d
2は、少なくとも5mmである。一実施形態では、導電配線400の少なくとも95%が、伸縮層200の境界から第2距離d
2だけ離れて配設される。
【0041】
配線の好ましい配設を説明する別の方法は、伸縮性電極300の構成を考慮することである。
図4aおよび
図4bを参照すると、全ての伸縮性電極300は、センサ900の厚み方向に平行な表面法線を有する平面の凸状領域内に配設される。全ての伸縮性電極300を含むそのような凸状領域の最も小さいものは、
図4aおよび
図4bにおいて参照符号390によって示される。それらの図において、そのような領域の境界のみが示される。従来通り、用語「凸状領域」は、平面の一部であって、当該平面の一部の任意の2点を結ぶ部分が、当該平面の一部内に完全に含まれるような平面の一部を表す。いくつかの実施形態において、そのような最小の凸状領域は、伸縮層200に含まれる。しかしながら、伸縮層200の形状が凸状ではない場合、最小の凸状領域は、伸縮層200に含まれなくてもよい。これは、たとえば
図6cの場合である。一実施形態では、配線400の少なくとも90%または少なくとも95%が、全ての伸縮性電極300を含む最小の凸状領域390と重複する。
【0042】
図1bでは、ワイヤ401が取り付けられている位置はp
401で示される。そのような位置は、接触位置と称されてもよい。同様に、ワイヤ402が取り付けられている位置は、p
402で示される。配線400は、接触位置p
401,p
402に接続されるように配設されたパッドを含んでもよい。同様の位置は、
図2および
図3aにも示されている。 接触位置p
401,p
402,・・・の位置は、配線400の長さが最小になるように最適化される。このように、配線の抵抗も400と小さい。
図1dに示すように、ワイヤ401は接触位置p
401に取り付けられ、ワイヤ402は接触位置p
402に取り付けられる。
【0043】
力センサ900では、伸縮層200、第1および第2伸縮性電極301、302、フレキシブル箔500、ならびに導電配線400は、弾性変形層100の同じ側にある。これは、力センサの製造可能性に役立つ。
【0044】
図1c、
図1d、および
図4cを参照すると、力センサ900の一実施形態は、導電配線400に導電的に取り付けられた少なくとも1つの集積回路700を備える。
図1dおよび
図4cについて、これらの図において、配線400および回路700はフレキシブル箔500の下にあることに留意されたい。しかしながら、明確にするために、配線400および回路700は、図に示されている。
図1bおよび
図1cでは、導電性物質(400,300)が対応する基板(それぞれ500,200)の上にあるように図(上面図または底面図)が選択される。
【0045】
また、力センサ900の一実施形態は、集積回路700に電力を供給するように構成されたバッテリを備える。好ましくは、バッテリは、充電式である。集積回路700は、伸縮性電極300のうちの少なくとも1つの静電容量を測定するように構成される。好ましくは、集積回路700は、各伸縮性電極300の静電容量を別々に測定するように構成される。一実施形態では、集積回路700は、測定結果を外部制御ユニットに送信するように構成される。一実施形態では、集積回路700は、測定結果を外部の制御ユニットに無線で送信するように構成される。これにより、測定データをリアルタイムで分析することができる。一実施形態では、集積回路700は、力センサ900のメモリ、たとえば集積回路700のメモリに測定結果を格納するように構成される。これにより、少なくとも測定後に測定データを分析することができる。
【0046】
一実施形態では、集積回路700は、他の力センサからデータを受信するように構成される。さらに、一実施形態では、集積回路700は、そのようなデータを別の外部制御ユニットに送る(すなわち送受信する)ように構成される。このようにして、複数の力センサは、他のセンサを介して外部制御ユニットに測定データを送ることができる。
【0047】
上述したようなセンサ構造では、ある対象について伸縮性電極300の静電容量を測定することが可能である。静電容量は、別の伸縮性電極300に対して測定することができる。たとえば、他の全ての伸縮性電極300は、静電容量を測定することができる共通接地を形成してもよい。したがって、続いて、全ての伸縮性電極300の静電容量を測定することができる。このことは、しかしながら、サンプリングレートを低下させる。周囲に対する静電容量を測定することも可能である。これは、しかしながら、正確な結果をもたらさない。
【0048】
したがって、
図5aを参照すると、センサ900の好ましい実施形態は、第1導電層600(または600a)を含む。弾性伸縮層050は、電極300と第1導電層600との間に配設される。弾性伸縮層050が弾性変形層100と伸縮層200とを含む場合、弾性変形層100は、第1導電層600と伸縮層200との間に配設される。このようにして、第1導電層600は、接地電極として機能することができ、それに関して、各伸縮性電極300の静電容量が測定される。そのような構成では、弾性変形層100の圧縮は、2つの電極(すなわち、第1導電層600と、伸縮性電極300、たとえば第1伸縮性電極301と)の間の距離に影響を及ぼす。当業者に知られているように、前記2つの電極によって形成されたそのようなコンデンサの静電容量は、電極間の距離に反比例する。静電容量を測定することによって、電極間の距離を計算することができる。この距離から、弾性変形層100内のひずみを決定することができる。層100の材料は既知であるので、ひずみは変形層100内の応力(すなわち圧力)を規定する。このようにして、各伸縮性電極における圧力を決定することができる。さらに、伸縮性電極の有効面積が分かっているので、その伸縮性電極に影響を及ぼす力を決定することができる。最後に、電極がセンサの全断面積を実質的に覆っていれば、全ての力を測定することができる。
【0049】
第1導電層600(または600a)の材料について、第1導電層600は、
導電性インクで作製された導電性材料、
導電性ファブリック、および
導電性ポリマ、のうちの少なくとも1つを含んでもよい。
【0050】
導電性ポリマは、ポリマから成るフィルムであってもよい。いくつかの実施形態では、第1導電層600は、導電的に互いに付着した導電性粒子、たとえばフレークまたはナノ粒子を含む。これらの実施形態のいくつかにおいて、導電性粒子は、炭素、銅、銀、および金のうちの少なくとも1つを含む。
【0051】
水分(または水)が測定結果に影響を与える可能性があることも分かっている。一般的に着用可能な適切なセンサは、汗がセンサ900に水分をもたらすように使用される。特に、水分が電極300に近づくと、水分が測定値に大きな影響を及ぼす可能性がある。
【0052】
図5bを参照すると、過剰な水分に関連する問題を防ぐために、力センサ900の一実施形態は、追加の弾性変形層100bと第2導電層600bとを含む。追加の弾性変形層100bは、第2導電層600bと伸縮層200との間に配設される。さらに、伸縮層200の少なくとも一部は、弾性変形層100と追加の弾性変形層100bとの間に配設される。したがって、伸縮層200の少なくとも一部は、第1導電層600aと第2導電層600bとの間に配設される。一実施形態では、少なくとも第1伸縮性電極301は、第1導電層600aと第2導電層600bとの間に配設される。一実施形態では、全ての伸縮性電極300は、第1導電層600aと第2導電層600bとの間に配設される。
【0053】
第1導電層(600,600a)の材料について述べたことは、第2導電層600bの材料にも当てはまる。弾性変形層100,100aの材料について述べたことは、追加の弾性変形層100bにも当てはまる。
【0054】
そのようなセンサに関する問題は、弾性変形層100,100aおよび/または追加の弾性変形層100bの材料の選択である。上記のように、層のヤング率は、適度に小さくなければならない。しかしながら、柔らかいおよび/または小さなヤング率を有する多くの材料は、クリープすることが知られている。 一方、弾性変形層100,100a,1
00bの永久的な圧縮が測定結果に影響を与えるので、クリープは好ましくない。
【0055】
図7a~
図7cを参照すると、この問題に対処するために、一実施形態では、弾性変形層100,100aは、弾性変形層100の厚みt
100の方向に延びる孔110を制限する。そのような孔110は、材料を柔らかくする。したがって、孔110を有することによって、より硬い材料および/またはより高いヤング率を有する材料を使用することができる。そのような材料は、典型的にはより柔らかい材料よりも非常に少なくクリープする。孔110の効果は、変形可能な固体材料を含む弾性変形層100のその部分の面積を単に減らすことである。面積が減少すると、同様の力がより高い応力を発生させる。明示的に示されていなくても、代替的または追加的に、追加の弾性変形層100bは、対応する孔を制限してもよい。
【0056】
好ましくは、孔110の総断面積A110は、弾性変形層100の断面積A100の少なくとも5%または少なくとも10%を構成する。ここで、断面積は、厚み方向に平行な表面法線を有する平面の断面積を表す。さらに、孔110の総断面積A110は、個々の孔110の断面積の合計を表す。さらに、弾性変形層100の断面積A100は、弾性変形層100の外側の境界によって制限された断面の面積を表す。したがって、弾性変形層100の断面積A100は、孔110の総断面積A110と、変形層100の変形可能な固体材料を含む弾性変形層100のその部分の面積とによって構成される。しかしながら、弾性変形層100の一部のみが孔を制限することが可能であり、それによって孔110の総断面積A110が小さくなってもよい。
【0057】
一実施形態では、孔110の少なくともいくつかは、弾性変形層100,100aの第1側面102,102a(
図5aおよび
図5b参照)から弾性変形層100,100aを通って弾性変形層100の第2側面104,104aまで延びる。軟化に加えて、そのような貫通孔は、センサ900の通気性を向上させることができる。センサ900が追加の弾性変形層100bを含む場合、一実施形態において、少なくともいくつかの孔は、追加の弾性変形層100bの第1側面102b(
図5b参照)から、追加の弾性変形層100bを通って、追加の弾性変形層100bの第2側面104bに延びる。
【0058】
図7a~
図7c、特に
図7bおよび
図7cを参照すると、孔110を使用して弾性変形層100の局所有効硬度を設計することができる。孔を使用することによって、両方の領域で同じ材料を使用しても、ある領域を他の領域より柔らかくすることができる。同様に、荷重(力または圧力)が小さいことが知られている領域では、材料を非常に柔らかくするために多数の孔を作製することができる。多数の孔は、変形層100の対応する領域に比例した孔の総断面積を表す。孔のサイズおよび/または数を増やすことによって、材料をより柔らかくすることができる。
図7bは、孔110によって形成されたより硬い領域およびより柔らかい領域を示し、孔のサイズは同じであるが、それらの数密度は異なる。
図7bは、孔110によって形成されたより硬い領域およびより柔らかい領域を示し、孔のサイズはそれらの数密度と同様に変化する。当然、孔のサイズのみに影響を与えることもある。
【0059】
図7bおよび
図7cにおいて、弾性変形層100は、第1領域100Aと第2領域100Bとを含む。第2領域100Bは、第1領域100Aの一部を含まない。第1領域100Aは、弾性変形層100の厚みt
100の方向に延びる第1孔110Aを制限する。第1孔の総断面積A
110Aは、第1領域100Aの断面積A
100Aの第1部分(A
110A/A
100A)を構成する。さらに、第2領域100Bは、弾性変形層100の厚みt
100の方向に延びる第2孔110Bを制限する。第2孔A
110Bの総断面積は、第2領域100Bの断面積A
100Bの第2部分(A
110B/A
100B)を構成する。材料を異なる位置で異なるように軟化させる前述の効果を得るために、第1部分(A
110A/A
100A)は、第2部分(A
110B/A
100B)とは異なる。たとえば、部分(A
110A/A
100A)と(A
110B/A
100B)との間の差は、少なくとも25パーセント単位であってもよい。
【0060】
さらに、層100の剛性は、特に伸縮性電極が配設されている場所で設計することができる。したがって、一実施形態では、伸縮性電極300の外縁によって囲まれた領域は、孔110の突起の少なくとも一部を含み、孔110の突起は、センサ900の厚み方向の領域上に延びる。一実施形態では、伸縮性電極300の外縁によって囲まれた領域は、孔110の突起を含む。一実施形態では、伸縮性電極300の外縁によって囲まれた領域は、複数の孔110の突起を含む。一実施形態では、領域100A,100B,100Cは、伸縮性電極300の少なくとも一部を含む。さらに好ましくは、領域100A,100B,100Cは、伸縮性電極300を含む。
【0061】
第1孔110Aと第2孔110Bとの数が重要であるとき、柔らかさの設計がさらに有効であることに留意されたい。たとえば、第1領域100Aにおける第1孔110Aの数は、少なくとも10個、または少なくとも50個であってもよい。たとえば、第2領域100Bにおける第2孔110Bの数は、少なくとも10個、または少なくとも50個であってもよい。さらに、第1領域100Aまたは第2領域100Bは、任意に大きいわけではない。一実施形態において、第1領域100Aは、全ての第1孔110Aを取り囲む最も小さい凸状領域である。一実施形態において、第2領域100Bは、全ての第2孔110Bを取り囲む最も小さい凸状領域である。一実施形態において、第1領域100Aと第2領域100Bとは、弾性変形層100を構成する。
【0062】
しかしながら、
図7bおよび
図7cに示されるように、第3領域100Cが、第2領域100Bの一部または第1領域100Aの一部を含まないように、弾性変形層100は、第3領域100Cを含んでもよい。第3領域100Cは、弾性変形層100の厚みt
100の方向に延びる第3孔110Cを制限する。第3孔A
110Cの総断面積は、第3領域100Cの断面積A
100Cの第1部分(A
110C/A
100C)を構成する。さらに、第3部分(A
110C/A
100C)は、第1部分(A
110A/A
100A)および第2部分(A
110B/A
100B)とは異なる。一実施形態において、第1領域100A、第2領域100B、および第3領域100Cは、弾性変形層100を構成する。
【0063】
図7d~
図7fを参照すると、孔110に加えて、または孔110の代わりに、弾性変形層100,100aの材料は、弾性変形層100,100aの一部として、材料160の柔らかい層を適用することによって軟化させることができる。軟らかい層160は、たとえば、
図7dに示されるように、2つの硬い層150の間に配設することができる。さらに、より硬い材料150は、
図7eおよび
図7fに示されるように、より軟らかい材料で充填された孔110を含んでもよい。上述のように、孔110は、充填される必要はない。
【0064】
図示されていなくても、加えてまたは代えて、追加の弾性変形層100bを同様の方法で軟化させることができる。
【0065】
さらに、
図1eを参照すると、一実施形態では、弾性伸縮層050は、1つの材料のみの層からなる。弾性変形層100の剛性を設計することに関して述べたことは、弾性伸縮層050にも同様に当てはまる。孔110は、弾性伸縮層050の厚みの方向に延びてもよい。孔110は、弾性伸縮層050の厚み方向に、弾性伸縮層050の一方側から弾性伸縮層050の他方側へ延びてもよい。
【0066】
測定値に加えて、センサの一実施形態を使用して使用者を支援することができる。そのような支援は、さらに快適性を向上させることができる。
図8a~
図8bを参照すると、センサ900の一実施形態は、支持層650を備える。このような支持体は、使用される身体部分に適合するように形作られていれば、典型的には快適である。しかしながら、身体部分の形状は、使用者によって異なるであろう。
【0067】
必要に応じて支持層650を形成するために、支持層650は、熱可塑性材料を含む。熱可塑性材料は、撓み温度を超えると変形可能になり、冷却時にその剛性を回復する。このように、支持層は、撓み温度よりも高い温度に加熱されてもよい。加熱されている間、支持層650は、ある形状、たとえば、使用者の身体部分、たとえば足の形状などに適合する形状に変形することができる。冷却すると、支持層650は、その剛性を取り戻し、使用者に対する支持体として機能することができる。このようにして、支持体をカスタマイズすることができる。
【0068】
支持層650の熱可塑性材料の撓み温度は、使用中、特に身体部分に接触するときにも支持効果を有するために、低すぎてはならない。さらに、支持層650の熱可塑性材料の撓み温度は、高すぎてはならない。なぜなら、センサ900は、熱に対して弱い電気接点を含むからである。好ましくは、撓み温度は、60℃~120℃である。さらに、適当な支持層650を有するためには、支持層650の厚みは、少なくとも0.2mm、たとえば0.2mm~2mmでなければならない。本明細書において厚みとは、平均厚みを表す。
【0069】
一実施形態では、支持層650は、ポリカーボネート、ポリ塩化ビニル、アクリル(たとえば、スチレン-アクリロニトリルコポリマ、アクリロニトリル-スチレンアクリレート)、ポリメチル-メタクリレート、ポリエチレンテレフタレート、およびグリコール変性ポリエチレンテレフタレートのうちの少なくとも1つを含む。支持層650は、炭素繊維、ガラス繊維、およびアラミド繊維を含む群からの強化繊維をさらに含んでもよい。
【0070】
支持層650は、使用時に、感知される力が影響を及ぼす点と支持層650との間に、弾性変形層(100,100a)、または追加の弾性変形層100bがあるように配設されてもよい。たとえば、
図8a~
図8cのセンサは、感知される力が第1導電層600または600aの上の点で作用するように使用されるように構成される。したがって、弾性層100,100aは、支持体650とそのような点との間にある。
【0071】
上述のように、力センサ900は、着用可能品、たとえば衣服に含まれてもよい。したがって、本発明の一実施形態は、上述したような力センサ900を含む着用可能品である。
【0072】
ウェアラブルアイテムの例は、
足に着用するもの、たとえば、履物、インソール、または靴下
手に着用するもの、たとえば、グローブ、ミット、またはミトン、特に、スポーツウェア、たとえば、ボクシンググローブ、ゴルフグローブなど、ならびに
ズボン、およびパンツを含む。
【0073】
また、センサは、スマート家具、たとえば、
車両の椅子、
椅子、ソファ、
ベッドシーツ、毛布、マットレス、ならびに
ラグ、およびカーペットに使用することができる。
【0074】
しかしながら、伸縮層200によって、センサ900は、使用中にセンサが変形する用途に最も適している。
【0075】
センサは、履物に適したインソール910での使用に特に適している。そのような場合、インソール910の形状は、履物の形状に適合される。さらに、インソール910は、上述のように力センサ900を備える。
以下の実施例は、本発明のいくつかの実施形態を要約している。
[実施例1]
第1ヤング率(Y200)と第1降伏ひずみ(εy,200)とを有する層(200)を含む、またはかかる層(050)から成る弾性伸縮層(050,100,200)と、
前記弾性伸縮層(050,100,200)に取り付けられ、互いに第1距離(d1,d1,301,302)離れて配設される、少なくとも第1伸縮性電極(301)および第2伸縮性電極(302)と、
第2ヤング率(Y500)を有するフレキシブル箔(500)と、
前記フレキシブル箔(500)に取り付けられた導電配線(400)とを含む、センサ(900)であって、
前記導電配線(400)の少なくとも一部は、前記第1伸縮性電極(301)に導電的に結合され、
前記導電配線(400)の少なくとも一部は、前記第2伸縮性電極(302)に導電的に結合され、
前記第1降伏ひずみ(εy,200)は、少なくとも10パーセントであり、
前記第1ヤング率(Y200)は、前記第2ヤング率(Y500)よりも小さく、
前記フレキシブル箔(500)の厚み(t500)は、最大で0.5mmであり、
前記伸縮性電極の総有効断面積(A300)は、前記弾性伸縮層(050,100,200)の総断面積(A200)の少なくとも50%であることを特徴とするセンサ(900)。
[実施例2]
前記弾性伸縮層(050)は、
弾性変形層(100)と、
伸縮層(200)とを含み、
前記伸縮層(200)、前記第1伸縮性電極および前記第2伸縮性電極(301,302)、前記フレキシブル箔(500)、ならびに導電配線(400)が、前記弾性変形層(100)の同じ側にあることを特徴とする実施例1に記載のセンサ(900)。
[実施例3]
前記伸縮層(200)は、前記第1伸縮性電極(301)と前記弾性変形層(100)との間に配設されることを特徴とする実施例2に記載のセンサ(900)。
[実施例4]
前記弾性変形層(100)は、前記第1ヤング率(Y200)よりも小さいヤング率(Y100)を有することを特徴とする実施例2または3に記載のセンサ(900)。
[実施例5]
前記伸縮層(200)は、熱可塑性ポリウレタン(TPU)、ポリアミド、およびポリエステルのうちの1つを含むことを特徴とする実施例2~4のいずれか1項に記載のセンサ(900)。
[実施例6]
前記弾性伸縮層(050,100,200)、たとえばその弾性変形層(100)が、ポリウレタン、ポリエチレン、ポリ(エチレン-ビニルアセテート)、ポリ塩化ビニル、ポリボロジメチルシロキサン、ポリスチレン、アクリロニトリル-ブタジエン-スチレン、スチレン-ブタジエンスチレン、エチレンプロピレンゴム、ネオプレン、コルク、ラテックス、天然ゴム、シリコーン、および熱可塑性エラストマーゲルのうちの少なくとも1つを含むことを特徴とする実施例1~5のいずれか1項に記載のセンサ(900)。
[実施例7]
無電極空間(210)が、前記弾性伸縮層(050,100,200)に取り付けられた全ての伸縮性電極(300,301,302,303,304,305,306)の外側の前記弾性伸縮層(050,100,200)にあり、
少なくともいくつかの前記導電配線(400)が、前記無電極空間(210)の上または下に配設され、
好ましくは、少なくとも75%の前記導電配線(400)が、前記無電極空間(210)の上または下に配設されることを特徴とする実施例1~6のいずれか1項に記載のセンサ(900)。
[実施例8]
前記導電配線(400)は、最大200μmの幅(W400)を有するワイヤ(401,402)を含み、
好ましくは、前記導電配線(400)は、ワイヤ(401,402)から成り、前記ワイヤの少なくとも50%が最大200μmの幅(W400)を有することを特徴とする実施例1~7のいずれか1項に記載のセンサ(900)。
[実施例9]
前記第1伸縮性電極(301)は、導電性粒子、たとえば、互いに導電的に結合したフレークまたはナノ粒子を含み、
好ましくは、前記導電性粒子は、炭素、銅、銀、および金のうちの少なくとも1つを含むことを特徴とする実施例1~8のいずれか1項に記載のセンサ(900)。
[実施例10]
フレキシブル箔(500)は、ポリエステル、ポリイミド、ポリエチレンナフタレート、およびポリエーテルエーテルケトンのうちの少なくとも1つを含むことを特徴とする実施例1~9のいずれか1項に記載のセンサ(900)。
[実施例11]
前記伸縮性電極の前記総有効断面積(A300)は、前記伸縮層(200)の前記総断面積(A200)の少なくとも50%であることを特徴とする実施例1~10のいずれか1項に記載のセンサ(900)。
[実施例12]
前記導電配線(400)に導電的に結合した少なくとも1つの集積回路(700)を含み、
前記集積回路(700)は、少なくとも前記第1伸縮性電極(301)の静電容量を測定するように構成されることを特徴とする実施例1~11のいずれか1項に記載のセンサ(900)。
[実施例13]
少なくとも90%の前記導電配線(400)は、全ての前記伸縮性電極(300)を含む最も小さな凸状領域(390)の上または下に配設されることを特徴とする実施例1~12のいずれか1項に記載のセンサ(900)。
[実施例14]
少なくとも90%の前記導電配線(400)は、前記弾性伸縮層(050,100,200)の境界から第2距離(d2)離れて配設され、
前記第2距離(d2)は、前記弾性伸縮層(050,100,200)の長さ(L200)および幅(W200)の小さい方の少なくとも5%であることを特徴とする実施例1~13のいずれか1項に記載のセンサ(900)。
[実施例15]
前記弾性伸縮層(050,100,200)に結合した複数の伸縮性電極(300)を含み、
前記伸縮性電極(300)のそれぞれが、全ての他の前記伸縮性電極(300)からいくらかの距離(d1,i,j)離れて配設され、
好ましくは、距離(d1,i,j)の最小値は、少なくとも1mmであることを特徴とする実施例1~14のいずれか1項に記載のセンサ(900)。
[実施例16]
前記伸縮性電極(300)を前記配線(400)に電気的に接続する接続部(490)を含み、
少なくとも1つの前記接続部(490)は、導電性接着剤または導電性半田を含むことを特徴とする実施例1~15のいずれか1項に記載のセンサ(900)。
[実施例17]
前記弾性伸縮層(050,100,200)は、前記弾性伸縮層(050,100,200)の前記厚み(t050,t100)の方向に延びる孔(110)を制限し、
好ましくは、
前記孔(110)の前記総断面積(A110)は、前記弾性伸縮層(050,100,200)の前記断面積(A100)の少なくとも5%を構成し、および/または
前記孔(110)の少なくともいくつかは、前記弾性伸縮層(050,100,200)の第1面から、前記弾性伸縮層(050,100,200)を介して、前記弾性伸縮層(050,100,200)の第2面まで延び、および/または
前記弾性伸縮層(050,100,200)は、弾性変形層(100)を含み、
前記孔(110)の少なくともいくつかは、前記弾性変形層(100)の第1面(102)から、前記弾性変形層(100)を介して、前記弾性変形層(100)の第2面(104)まで延びることを特徴とする実施例1~16のいずれか1項に記載のセンサ(900)。
[実施例18]
前記弾性伸縮層(050,100,200)は、第1領域(100A)と、当該第1領域(100A)の一部を含まない第2領域(100B)とを含み、
前記第1領域(100A)は、前記第1孔の前記総断面積(A110A)が、前記第1領域(100A)の前記断面積(A100A)の第1比率(A110A/A100A)を構成するように、前記弾性変形層(100)の前記厚み(t050,t100)の方向に延びる第1孔(110A)を制限し、
前記第2領域(100B)は、前記第2孔の総断面積(A110B)が、前記第2領域(100B)の前記総断面積(A100B)の第2比率(A110B/A100B)を構成するように、前記弾性変形層(100)の前記厚み(t050,t100)の方向に延びる第2孔(110B)を制限し、
前記第1比率(A110A/A100A)は、前記第2比率(A110B/A100B)とは異なることを特徴とする実施例17に記載のセンサ(900)。
[実施例19]
追加の弾性変形層(100b)を含み、
前記第1伸縮性電極(301)および前記第2伸縮性電極(302)は、前記弾性伸縮層(050,100,200)と前記追加の弾性変形層(100b)との間に配設されることを特徴とする実施例1~18のいずれか1項に記載のセンサ(900)。
[実施例20]
前記弾性伸縮層(050)は、
弾性変形層(100)と、
伸縮層(200)とを含み、
前記第1伸縮性電極(301)および前記第2伸縮性電極(302)は、前記弾性変形層(100)と前記追加の弾性変形層(100b)との間に配設されることを特徴とする実施例19に記載のセンサ(900)。
[実施例21]
第1導電層(600,600a)を含み、
前記弾性伸縮層(100)は、前記第1導電層(600,600a)と前記第1伸縮性電極(301)との間に前記センサ(900)の厚み方向に配設されることを特徴とする実施例1~20のいずれか1項に記載のセンサ(900)。
[実施例22]
追加の弾性変形層(100b)と、
第2導電層(600b)とを含み、
前記第1導電層(600,600a)と前記第2導電層(600b)とは、前記第1伸縮性電極(301)の反対側にあり、
前記追加の弾性変形層(100b)は、前記第2導電層(600b)と前記第1伸縮性電極(301)との間に前記センサ(900)の厚み方向に配設されることを特徴とする実施例21に記載のセンサ(900)。
[実施例23]
前記第1および/もしくは前記第2導電層(600,600a,600b)の少なくとも一部は、導電性インクで作製され、ならびに/または
前記第1および/もしくは前記第2導電層(600,600a,600b)は、導電性ファブリックを含み、ならびに/または
前記第1および/もしくは前記第2導電層(600,600a,600b)は、導電性ポリマを含むことを特徴とする実施例21~22のいずれか1項に記載のセンサ(900)。
[実施例24]
支持層(650)を含み、
前記第1伸縮性電極(301)と前記第2伸縮性電極(302)とが、前記弾性伸縮層(050,100,200)と前記支持層(650)との間に配設されることを特徴とする実施例1~23のいずれか1項に記載のセンサ(900)。
[実施例25]
60℃~120℃の撓み温度を有する熱可塑性材料を含む支持層(650)を含み、
前記支持層(650)は、少なくとも0.2mmの厚みを有することを特徴とする実施例1~24のいずれか1項に記載のセンサ。
[実施例26]
前記支持層(650)は、使用時に、
前記弾性伸縮層(050)と、
前記弾性変形層(100,100a)と、
追加の弾性変形層(100b)とのうちの少なくとも1つが、[i]感知可能な力が影響を及ぼす点と、[ii]前記支持層(650)との間にあるように配設されるように配設されることを特徴とする実施例25に記載のセンサ。
[実施例27]
前記支持層(650)は、ポリカーボネート、ポリビニルクロライド、アクリル樹脂(たとえば、スチレン-アクリロニトリルコポリマ、アクリロニトリルスチレンアクリレート)、ポリメチル-メタクリレート、ポリエチレンテレフタレート、および糖化修飾ポリエチレンテレフタレートのうちの少なくとも1つを含み、
任意に、前記支持層(650)は、カーボン繊維、ガラス繊維、およびアラミド繊維を含む群の補強繊維をさらに含むことを特徴とする実施例25または26に記載のセンサ。
[実施例28]
前記フレキシブル箔(500)の断面積は、最大でも前記弾性伸縮層(050,100,200)の断面積の半分であることを特徴とする実施例1~27のいずれか1項に記載のセンサ。
[実施例29]
各伸縮性電極(300,i)は、上述の伸縮性電極(300,i)に最も近い伸縮性電極(300,jm(i))からある距離(d1,i,jm(i))だけ離れて位置し、これによって、
前記伸縮性電極(300,i)の構成は、各伸縮性電極(300,i)について、他の各伸縮性電極(300)からの最小距離(d1,i,jm(i))を規定し、それら最小距離のうちの少なくともいくつかは等しくてもよく、
前記最小距離(d1,i,jm(i))の最大値は、最大15mm、たとえば、最大10mm、または最大5mmであることを特徴とする実施例1~28のいずれか1項に記載のセンサ。
[実施例30]
実施例1~29のいずれか1項に記載のセンサ(900)を含む、衣服などの着用可能品。
[実施例31]
靴、インソール、もしくは靴下、または
グローブ、もしくはミット、たとえばボクシンググローブのいずれか1つであることを特徴とする実施例30に記載の着用可能品。
[実施例32]
履物に適したインソール(910)であって、
前記インソール(910)の形状は、前記履物の形状に適合しており、
前記インソール(910)は、実施例1~29のいずれか1項に記載のセンサ(900)を含むことを特徴とするインソール(910)。