IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ▲広▼州大学の特許一覧

特許7018234膜構造の風雨負荷作用下での動力応答試験方法
<>
  • 特許-膜構造の風雨負荷作用下での動力応答試験方法 図1
  • 特許-膜構造の風雨負荷作用下での動力応答試験方法 図2
  • 特許-膜構造の風雨負荷作用下での動力応答試験方法 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2022-02-02
(45)【発行日】2022-02-10
(54)【発明の名称】膜構造の風雨負荷作用下での動力応答試験方法
(51)【国際特許分類】
   G01M 9/04 20060101AFI20220203BHJP
【FI】
G01M9/04
【請求項の数】 9
(21)【出願番号】P 2021139969
(22)【出願日】2021-08-30
【審査請求日】2021-08-30
(31)【優先権主張番号】202110393419.8
(32)【優先日】2021-04-13
(33)【優先権主張国・地域又は機関】CN
【早期審査対象出願】
(73)【特許権者】
【識別番号】519295166
【氏名又は名称】▲広▼州大学
(74)【代理人】
【識別番号】110000291
【氏名又は名称】特許業務法人コスモス国際特許商標事務所
(72)【発明者】
【氏名】劉 長江
(72)【発明者】
【氏名】鄭 周練
(72)【発明者】
【氏名】劉 ▲堅▼
(72)【発明者】
【氏名】▲盤▼ 栄杰
(72)【発明者】
【氏名】姜 ▲蘇▼
(72)【発明者】
【氏名】王 夢斐
(72)【発明者】
【氏名】謝 海兵
(72)【発明者】
【氏名】張 夢佳
(72)【発明者】
【氏名】黄 ▲偉▼彬
(72)【発明者】
【氏名】孫 源君
【審査官】岡村 典子
(56)【参考文献】
【文献】中国実用新案第210719740(CN,U)
【文献】中国特許出願公開第105758753(CN,A)
【文献】特開平10-267786(JP,A)
【文献】特開2004-061188(JP,A)
【文献】中国特許出願公開第111076890(CN,A)
【文献】中国特許出願公開第109282961(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01M 9/00-9/08
G01N 17/00
(57)【特許請求の範囲】
【請求項1】
膜構造の風雨負荷作用下での動力応答試験方法であって、
被試験膜構造は動力応答試験装置に固定され、引張組立体を介して前記被試験膜構造を引張し、安定予備張力を有する第一の膜面を形成し、
前記動力応答試験装置は、
両側面に吸風口と風出口がそれぞれ設けられている風室と、
前記風室内に配置され、前記被試験膜構造を引張し、安定予備張力を有する前記第一の膜面を形成するための引張組立体と、
前記風室内に位置されるとともに、前記引張組立体の上方に配置され、雨滴を前記第一の膜面に滴下するための降雨組立体と、
前記風室の吸風口に配置され、前記風室のために安定した風場を提供するための送風組立体と、
レーザー変位センサと、風速計とを含む信号収集組立体であって、前記レーザー変位センサが前記風室外に位置されるとともに、前記引張組立体の下方に配置され、前記風速計が前記風室内に位置されるとともに、前記引張組立体の上方に配置されている、信号収集組立体と、
前記降雨組立体、前記送風組立体、前記レーザー変位センサ及び前記風速計と通信接続されている制御組立体とを備え
前記動力応答試験方法は、
前記降雨組立体を介して、予め設定された降雨強度で前記第一の膜面に雨滴を滴下させ、前記送風組立体を介して前記風室のために安定した風場を提供することと、
前記風速計により風速パラメータを取得し、前記風速パラメータに基づいて風速経時推移曲線を決定することと、
前記レーザー変位センサにより前記第一の膜面の変位パラメータを取得し、前記変位パラメータに基づいて変位経時推移曲線を得ることと、
前記降雨強度、前記風速経時推移曲線及び前記変位経時推移曲線に基づいて、前記被試験膜構造の風雨負荷作用下での第一の動力応答データを算出して得ることと、
前記被試験膜構造と実際膜構造との相似比パラメータを取得し、前記第一の動力応答データと前記相似比パラメータに基づいて、前記実際膜構造の風雨負荷作用下での第二の動力応答データを決定することとを含む、ことを特徴とする膜構造の風雨負荷作用下での動力応答試験方法。
【請求項2】
前記引張組立体は、水平支持部、垂直支持部及び把持装置を含み、前記把持装置は、前記被試験膜構造が安定予備張力を有する第一の膜面を形成するように、前記被試験膜構造を水平支持部及び垂直支持部に固定するために用いられる、ことを特徴とする請求項1に記載の膜構造の風雨負荷作用下での動力応答試験方法
【請求項3】
前記降雨組立体は、降雨ノズルとマイクロポンプとを含み、前記降雨ノズルは、前記引張組立体の上方に配置され、前記マイクロポンプは、配管を介して前記降雨ノズルに接続され、前記マイクロポンプは、さらに前記制御組立体と通信接続されている、ことを特徴とする請求項1に記載の膜構造の風雨負荷作用下での動力応答試験方法
【請求項4】
前記風室の上表面には、少なくとも二つの貫通孔が設けられ、前記貫通孔は、前記引張組立体の上方に位置され、前記貫通孔は、前記降雨ノズル及び前記風速計を取り付けるために用いられる、ことを特徴とする請求項3に記載の膜構造の風雨負荷作用下での動力応答試験方法
【請求項5】
前記降雨ノズルは、前記引張組立体中心点の真上に配置されている、ことを特徴とする請求項3に記載の膜構造の風雨負荷作用下での動力応答試験方法
【請求項6】
前記風速計は、前記降雨ノズルよりも前記風室の吸風口に近い側に配置されている、ことを特徴とする請求項5に記載の膜構造の風雨負荷作用下での動力応答試験方法
【請求項7】
前記送風組立体は、送風機と、導流カバーとを含み、前記送風機の出口は、前記導流カバーを介して前記風室の吸風口と連通し、前記送風機は、さらに前記制御組立体と通信接続されている、ことを特徴とする請求項1に記載の膜構造の風雨負荷作用下での動力応答試験方法
【請求項8】
前記風室は、有機ガラス風室である、ことを特徴とする請求項1~7のいずれか1項に記載の膜構造の風雨負荷作用下での動力応答試験方法
【請求項9】
前述した、前記降雨強度、前記風速経時推移曲線及び前記変位経時推移曲線に基づいて、前記被試験膜構造の風雨負荷作用下での第一の動力応答データを算出して得ることは、具体的には、
前記風速経時推移曲線に基づいて、空力的負荷を決定することと、
前記降雨強度と前記風速経時推移曲線に基づいて、雨負荷を決定することと、
前記空力的負荷、前記雨負荷及び前記変位経時推移曲線に基づいて、前記被試験膜構造の風雨負荷作用下での第一の動力応答データを算出して得ることとを含む、ことを特徴とする請求項に記載の動力応答試験方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、建築膜構造の技術分野に関し、特に、膜構造の風雨負荷作用下での動力応答試験装置及び方法に関する。
【背景技術】
【0002】
新たな空間構造形式として、膜構造は建築技術及び材料科学発展の現在レベルを代表し、芸術と技術との完璧な結合である。膜構造システムは、人類の古代生活でのテントに起源するが、本当の意味上での膜構造は新たな建築構造として20世紀半ばから発展し、それは剛性を発生し、最終に膜表面の予備応力によって形成される。その卓越した建築特徴、優れた構造特徴及び合理的な経済性のため、膜構造は大スパン空間構造、例えば、スタジアム、展覧館及び鉄道(バス)駅に幅広く用いられている。膜構造の発展は、膜材料の発展と構造システムの発展を含み、膜材料の発展によって、構造システムの多様性を豊富し、新規構造システムの発展と応用を促進した。同時に、構造システムの発展は、さらに新規膜材料の発展を促進した。
【0003】
膜構造の幅広く応用に伴い、膜構造による工事事故もたびたび見ているので珍しくない。工事の実際応用の前に、膜構造は現在国内の唯一の膜構造設計規程である『膜構造技術規程』(CECS158:2015)を参照して事前設計を行っている。風負荷の膜構造への悪影響を主に考慮した場合、雨、雪などの別の不利な負荷による消極的作用を兼ねて考慮する。しかしながら、厳格な耐風設計の後、実際工事では、臨界よりはるかに低い不安定風速が発生する場合、膜構造が大きく破壊される可能性がある。一般的には、膜構造設計は、様々な最も不利な効果を組み合わせて設計するだけであり、不利な負荷の相互作用下での結合作用を考慮しなく、主な設計条件としての風は、通常に降雨を伴うため、風雨結合作用下での膜構造の動力応答を検討する必要がある。
【0004】
従来の風雨結合作用を検討する主要方法は、理論解析、数値シミュレーション及び試験研究がある。実際の工事では、膜構造は比較的大きなスパンと高さがあるため、ハーフアンドハーフ復刻で試験を行うことがほとんど不可能である。試験対象を等比縮小してモデルを作り、風洞で風雨試験を行うのが一般的であるが、常規意味上での風洞の建設コストが極めて高いため、試験費用が高価である。
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記技術的課題を解決するために、本発明の目的は、低コスト、便利で迅速で、適用性が強い膜構造の風雨負荷作用下での動力応答試験装置及び方法を提供することである。
【課題を解決するための手段】
【0006】
本発明で用いられる第一の技術案は、以下のとおりであある。
膜構造の風雨負荷作用下での動力応答試験装置であって、
両側面に吸風口と風出口がそれぞれ設けられている風室と、
前記風室内に配置され、被試験膜構造を引張し、安定予備張力を有する第一の膜面を形成するための引張組立体と、
前記風室内に位置されるとともに、前記引張組立体の上方に配置され、雨滴を前記第一の膜面に滴下するための降雨組立体と、
前記風室の吸風口に配置され、前記風室のために安定した風場を提供するための送風組立体と、
レーザー変位センサと、風速計とを含む信号収集組立体であって、前記レーザー変位センサが前記風室外に位置されるとともに、前記引張組立体の下方に配置され、前記風速計が前記風室内に位置されるとともに、前記引張組立体の上方に配置されている、信号収集組立体と、
前記降雨組立体、前記送風組立体、前記レーザー変位センサ及び前記風速計と通信接続されている制御組立体とを備える。
【0007】
さらに、前記引張組立体は、水平支持部、垂直支持部及び把持装置を含み、前記把持装置は、前記被試験膜構造が安定予備張力を有する第一の膜面を形成するように、前記被試験膜構造を水平支持部及び垂直支持部に固定するために用いられる。
【0008】
さらに、前記降雨組立体は、降雨ノズルとマイクロポンプとを含み、前記降雨ノズルは、前記引張組立体の上方に配置され、前記マイクロポンプは、配管を介して前記降雨ノズルに接続され、前記マイクロポンプは、さらに前記制御組立体と通信接続されている。
【0009】
さらに、前記風室の上表面には、少なくとも二つの貫通孔が設けられ、前記貫通孔は、前記引張組立体の上方に位置され、前記貫通孔は、前記降雨ノズル及び前記風速計を取り付けるために用いられる。
【0010】
さらに、前記降雨ノズルは、前記引張組立体中心点の真上に配置されている。
【0011】
さらに、前記風速計は、前記降雨ノズルが前記風室の吸風口に近い側に配置されている。
【0012】
さらに、前記送風組立体は、送風機と、導流カバーとを含み、前記送風機の出口は、前記導流カバーを介して前記風室の吸風口と連通し、前記送風機は、さらに前記制御組立体と通信接続されている。
【0013】
さらに、前記風室は、有機ガラス風室である。
【0014】
本発明で用いられる第二の技術案は、以下のとおりであある。
膜構造の風雨負荷作用下での動力応答試験装置の制御方法であって、被試験膜構造は、上記膜構造の風雨負荷作用下での動力応答試験装置に固定され、引張組立体を介して、前記被試験膜構造を引張し、安定予備張力を有する第一の膜面を形成する。
【0015】
前記動力応答試験方法は、
降雨組立体を介して、予め設定された降雨強度で前記第一の膜面に雨滴を滴下させ、送風組立体を介して風室のために安定した風場を提供することと、
風速計により風速パラメータを取得し、前記風速パラメータに基づいて風速経時推移曲線を決定することと、
レーザー変位センサにより前記第一の膜面の変位パラメータを取得し、前記変位パラメータに基づいて変位経時推移曲線を得ることと、
前記降雨強度、前記風速経時推移曲線及び前記変位経時推移曲線に基づいて、前記被試験膜構造の風雨負荷作用下での第一の動力応答データを算出して得ることと、
被試験膜構造と実際膜構造との相似比パラメータを取得し、前記第一の動力応答データと前記相似比パラメータに基づいて、実際膜構造の風雨負荷作用下での第二の動力応答データを決定することとを含む。
【0016】
さらに、前述した、前記降雨強度、前記風速経時推移曲線及び前記変位経時推移曲線に基づいて、前記被試験膜構造の風雨負荷作用下での第一の動力応答データを算出して得ることは、具体的には、
前記風速経時推移曲線に基づいて、空力的負荷を決定することと、
前記降雨強度と前記風速経時推移曲線に基づいて、雨負荷を決定することと、
前記空力的負荷、前記雨負荷及び前記変位経時推移曲線に基づいて、前記被試験膜構造の風雨負荷作用下での第一の動力応答データを算出して得ることとを含む。
【発明の効果】
【0017】
本発明は、以下の有益な効果を有する。
本発明は、膜構造の風雨負荷作用下での動力応答試験装置及び方法を提供する。試験を行う時に、風室における引張組立体を介して、被試験膜構造を引張し、安定予備張力を有する第一の膜面を形成し、引張組立体上方の降雨組立体を介して、予め設定された降雨強度で第一の膜面に雨滴を滴下させるとともに、風室の吸風口の送風組立体を介して風室のために安定した風場を提供し、その後、引張組立体上方の風速計によりリアルタイムで風室内の風速パラメータを取得し、風速経時推移曲線を得、レーザー変位センサによりリアルタイムで第一の膜面の変位パラメータを取得し、変位経時推移曲線を得ることによって、降雨強度、風速経時推移曲線及び変位経時推移曲線に基づいて、被試験膜構造の風雨負荷作用下での第一の動力応答データを求める。さらに、被試験膜構造と実際膜構造との相似比パラメータに基づいて、実際膜構造の風雨負荷作用下での第二の動力応答データを決定する。本発明の動力応答試験装置は、構造が簡単であり、建築膜構造動力応答試験のコストを低減し、且つ操作容易であり、本発明の動力応答試験方法は、被試験膜構造の風雨負荷作用下での変位経時推移曲線を取得し、風室内の風速パラメータ及び降雨強度を結合して、被試験膜構造の風雨負荷作用下での第一の動力応答データを得、さらに被試験膜構造と実際膜構造との相似比パラメータを結合して実際膜構造の風雨負荷作用下での第二の動力応答データを決定することによって、風雨結合作用下での建築膜構造の動力応答に対して研究を行うことができ、建築膜構造の耐風耐雨設計のために理論基礎を提供し、高試験精度を保証するとともに、比較的強い適用性を持っている。
【図面の簡単な説明】
【0018】
図1】本発明の実施例による膜構造の風雨負荷作用下での動力応答試験装置の構造概略図である。
図2】本発明の実施例による膜構造の風雨負荷作用下での動力応答試験装置の信号接続図である。
図3】本発明の実施例による膜構造の風雨負荷作用下での動力応答試験方法のステップフローチャートである。
【発明を実施するための形態】
【0019】
以下、図面と具体的な実施例を結び付けながら、本発明をさらに詳細に説明する。以下の実施例におけるステップ番号は単に説明の便宜のためのものであり、ステップ間の実行順序は特に限定されない。実施例における各ステップの実行順序は、いずれも当業者の理解に基づいて適応調整を行ってもよい。
【0020】
本発明の説明において、複数の意味は二つ以上であり、「第一の」、「第二の」という用語は、技術的な特徴を区別するためのものであり、相対的な重要性を指示する又は示唆するか、又は、指示された技術的な特徴の数を特定するか、又は指示された技術的な特徴の前後関係を特定するものとして解釈されるべきではない。また、特に定義されない限り、本明細書で使用されるすべての技術用語及び科学用語は、当業者によって一般に理解されるのと同じ意味を有する。本明細書で使用される用語は、具体的な実施例を説明するためのものであり、本発明を限定するものではない。
【0021】
図1図2を参照して、本発明の実施例は、膜構造の風雨負荷作用下での動力応答試験装置を提供する。この試験装置は、
両側面に吸風口101と風出口102がそれぞれ設けられている風室10と、
風室10内に配置され、被試験膜構造70を引張し、安定予備張力を有する第一の膜面を形成するための引張組立体20と、
風室10内に位置されるとともに、引張組立体20の上方に配置され、雨滴を第一の膜面に滴下するための降雨組立体30と、
風室10の吸風口101に配置され、風室10のために安定した風場を提供するための送風組立体40と、
レーザー変位センサ501と、風速計502とを含む信号収集組立体50であって、レーザー変位センサ501が風室10外に位置されるとともに、引張組立体20の下方に配置され、風速計502が風室10内に位置されるとともに、引張組立体20の上方に配置されている、信号収集組立体50と、
降雨組立体30、送風組立体40、レーザー変位センサ501及び風速計502と通信接続されている制御組立体60とを備える。
【0022】
図1に示すように、本発明の実施例による膜構造の風雨負荷作用下での動力応答試験装置の構造概略図である。図1において、制御組立体60は、送風組立体40及びレーザー変位センサ501に電線を介して接続され、制御組立体60は、降雨組立体30(図1は、降雨ノズルのみを示す)及び風速計502に無線通信接続されている。理解すべきことは、図1に示される接続形式は、本発明の実施形態の一つだけであり、制御組立体60と降雨組立体30、送風組立体40、レーザー変位センサ501及び風速計502との間は、有線通信であってもよいし、無線通信接続であってもよい。
【0023】
図2は、本発明の実施例による膜構造の風雨負荷作用下での動力応答試験装置の信号接続図である。制御組立体60は、降雨組立体30、送風組立体40、レーザー変位センサ501及び風速計502に対して制御を行う制御命令を発するために用いられ、且つレーザー変位センサ501及び風速計502によって収集されたデータを受信して後続処理を行う。
【0024】
具体的には、本発明の実施例は、試験を行う時に、風室10における引張組立体20を介して、被試験膜構造70を引張し、安定予備張力を有する第一の膜面を形成し、引張組立体20上方の降雨組立体30を介して、予め設定された降雨強度で第一の膜面に雨滴を滴下させ、風室10の吸風口の送風組立体40を介して風室10のために安定した風場を提供し、その後、引張組立体20上方の風速計502によりリアルタイムで風室10内の風速パラメータを取得し、風速経時推移曲線を得、レーザー変位センサ501によりリアルタイムで第一の膜面の変位パラメータを取得し、変位経時推移曲線を得ることによって、降雨強度、風速経時推移曲線及び変位経時推移曲線に基づいて、被試験膜構造の風雨負荷作用下での第一の動力応答データを求める。さらに、被試験膜構造と実際膜構造との相似比パラメータに基づいて、実際膜構造の風雨負荷作用下での第二の動力応答データを決定する。本発明の実施例は、構造が簡単であり、建築膜構造動力応答試験のコストを低減し、且つ操作容易であり、風雨結合作用下での建築膜構造の動力応答に対して研究を行うことができ、建築膜構造の耐風耐雨設計のために理論基礎を提供し、高試験精度を保証するとともに、比較的強い適用性を持っている。
【0025】
さらに、選択的な実施形態として、引張組立体20は、水平支持部、垂直支持部及び把持装置を含み、把持装置は、被試験膜構造70が安定予備張力を有する第一の膜面を形成するように、被試験膜構造70を水平支持部及び垂直支持部に固定するために用いられる。
【0026】
具体的には、引張組立体20は、鋼骨格を用いて作製され、必要に応じて水平支持部と垂直支持部の二つの部分から構成され、把持装置を介して被試験膜構造70を鋼骨格に固定される。本発明の実施例では、風室10内の風場が均一且つ安定で、閉塞しないようにするために、風室10には先端の吸風口101と後端の風出口102とが設けられ、被試験膜構造70は、まず、把持装置を介して引張組立体20に固定され、次に、試験過程における膜構造風上面の風を受ける方向が水平方向とすることを保証するために、被試験膜構造70の風上面を風室10の吸風口に正対させるように、引張組立体20を風室10に固定されている。
【0027】
さらに、選択的な実施形態として、降雨組立体30は、降雨ノズル301とマイクロポンプ302とを含み、降雨ノズル301は、引張組立体20の上方に配置され、マイクロポンプ302は、配管を介して降雨ノズル301に接続され、マイクロポンプ302は、さらに制御組立体60と通信接続されている。
【0028】
具体的には、本発明の実施例のマイクロポンプ302は、制御組立体60を介して制御されることにより、予め設定された降雨強度で降雨ノズル301から被試験膜構造70上に雨滴を滴下させることができる。
【0029】
図1を参照して、さらに、選択的な実施形態として、風室10の上表面には、少なくとも二つの貫通孔103が設けられ、貫通孔103は、引張組立体20の上方に位置され、貫通孔103は、降雨ノズル301及び風速計502を取り付けるために用いられる。
【0030】
具体的には、本発明の実施例では、風速計502プローブ及び降雨ノズル301の取り付けを容易にするために、風室10の上表面には、貫通孔103が設けられる。
【0031】
図1を参照して、さらに、選択的な実施形態として、降雨ノズル301は、引張組立体20中心点の真上に配置されている。
【0032】
具体的には、本発明の実施例では、降雨ノズル301を引張組立体20中心点の真上に配置することにより、降雨が均一で、且つ膜面全体を効果的に覆うことができる。
【0033】
図1を参照して、さらに、選択的な実施形態として、風速計502は、降雨ノズル301が風室10の吸風口101に近い側に配置されている。
【0034】
具体的には、本発明の実施例では、風速計のプローブを降雨ノズル301と吸風口101との間に設け、即ち、被試験膜構造70の風上面の上方に位置することにより、膜面のリアルタイム風速を正確に測定することができる。
【0035】
図1を参照して、さらに、選択的な実施形態として、送風組立体40は、送風機401と、導流カバー402とを含み、送風機401の出口は、導流カバー402を介して風室10の吸風口101と連通し、送風機401は、さらに制御組立体60と通信接続されている。
【0036】
具体的には、本発明の実施例では、制御組立体60を介して送風機401の動作を制御し、送風機401は、羽根の回転により気流を発生させ、且つ送風機401の出口を導流カバー402により風室10の吸風口101に接続されて密閉の安定した風場を形成し、後続試験のために必要な風場を提供する。
【0037】
さらに、選択的な実施形態として、風室10は、有機ガラス風室10である。
【0038】
具体的には、風室10本体は、透明有機ガラスで作られ、風室10の外周全体は透明であり、試験過程において観察調整を容易にする。
【0039】
選択的に、レーザー変位センサ501は、膜表面測点の真下に配置され、同時に、透明有機ガラスは、両者を効果的に分離し、且つセンサレーザーの位置決めに影響を与えず、さらに、試験過程におけるセンサが風及び雨の影響を受けないことを保証し、測定データを正確且つ有効にする。
【0040】
選択的に、制御組立体60は、制御スイッチと信号処理システムから構成され、各部品に対する制御を実現するために、制御スイッチは、電線又は無線通信を介して送風機401、マイクロポンプ302、レーザー変位センサ501及び風速計502に接続されている。信号処理システムは、風速計502によって収集されたリアルタイム風速、レーザー変位センサ501によって収集された膜面変位に対して関連処理を行い、予め設定された降雨強度と結合して被試験建築膜の動力応答データを算出する。
【0041】
本発明の実施例の制御組立体60は、各制御スイッチ及び関連信号収集、処理を集積し、試験過程における操作、統計、調整を容易にし、試験の効率を大幅に向上させ、不必要な人員増加、時間経費損耗を回避する。
【0042】
選択的に、本発明の実施例の引張組立体20は、鋼骨格によって溶接作製され、、材料は表面が滑らかで、リブ付けない鉄筋を選択し、その寸法は実際のモデル膜面境界支持に応じて等比縮小してもよく、作製する時には、鋼骨格の空間関係を注意しなければならず、膜面を引張する際に把持装置が膜面を固定できないことを避ける。作製が完了した後、鋼骨格の表面とノードを滑らかにして、とげ突起がないように、膜面を損傷しないように研磨する必要がある。
【0043】
選択的に、試験効果の正確性を保証するために、建築膜構造モデルが風室10に占める断面面積は、大きすぎず、且つ試験精度範囲に抑えるべきである。このため、モデルの寸法を等比縮小した後、風室10の寸法を予め推定し、風室10の長さ、幅及び高さを決定してから、モデルの風上面面積と風室10の断面寸法の比を逆計算し、所要の要求に調整し、その後、予め保留孔位の位置を設計し、後期試験の風速計502プローブと人工模擬降雨装置プローブの固定を容易にする。
【0044】
選択的に、本発明の実施例は、被試験膜構造70を寸法要求に応じて裁断し、試験所要のABCD四点をマーキングし、把持装置を介して膜面の四つの引張辺を固定し、予め作製された引張組立体20に取り付けられ、ホットメルトガンを用いて引張組立体20を風室10に固定し、レーザー変位センサ501のレーザヘッドを膜面下方に配置することで、レーザヘッドから出射されるレーザ光を予めマーキングされたABCD四点に正対させる。
【0045】
認識すべきことは、現在、中国国内で比較的有名な風洞実験室の多くは、航空航天学院で製造されたものであり、建設コストが数百万乃至数千万人民元に達し、場所要求が高く、施工周期が長く、多くは2年~5年である。多くの省では、さらに試験に使用できる普通の風洞実験室もないが、既存の風洞実験室で試験を行うことは、事前予約し、風洞の基本操作原理を学習し、関連する注意事項を理解し、1時間あたり数千人民元の試験費用を支払う必要がある。
【0046】
特に高精度の試験データが必要ない場合又は建築膜構造の風雨負荷作用下での一般規律を知るだけ場合では、風洞実験室で試験を行うことは、多すぎる時間、経費の浪費を招く。本発明の実施例の動力応答試験装置は、必要に応じて作製することができ、作製コストが低く、且つ作製周期が短く、同時に試験場所も大きな制約を受けることなく、各項目コストを大幅に節約する。これに対応して、各項目コストの大幅節約により、この装置を用いて試験を行う条件を大幅に低下させることができ、現在の多くの省市で関連する風雨試験を行うことができる場所がないという難題を解決し、また、試験モデルと装置は何度も繰り返し使用することができ、浪費を大幅に低減できる。
【0047】
以上、本発明の実施例の動力応答試験装置の構造について説明したが、以下、本発明の実施例の動力応答試験方法について説明する。
【0048】
図3を参照して、本発明の実施例は、膜構造の風雨負荷作用下での動力応答試験方法を提供する。被試験膜構造70は、上記膜構造の風雨負荷作用下での動力応答試験装置に固定され、引張組立体20を介して、被試験膜構造70を引張し、安定予備張力を有する第一の膜面を形成する。この動力応答試験方法は、以下のステップS101~ステップS105を含む。
【0049】
S101、降雨組立体30を介して、予め設定された降雨強度で第一の膜面に雨滴を滴下させ、送風組立体40を介して風室10のために安定した風場を提供する。
【0050】
S102、風速計502により風速パラメータを取得し、風速パラメータに基づいて風速経時推移曲線を決定する。
【0051】
S103、レーザー変位センサ501により第一の膜面の変位パラメータを取得し、変位パラメータに基づいて変位経時推移曲線を得る。
【0052】
S104、降雨強度、風速経時推移曲線及び変位経時推移曲線に基づいて、被試験膜構造70の風雨負荷作用下での第一の動力応答データを算出して得る。
【0053】
S105、被試験膜構造と実際膜構造との相似比パラメータを取得し、前記第一の動力応答データと前記相似比パラメータに基づいて、実際膜構造の風雨負荷作用下での第二の動力応答データを決定する。
【0054】
具体的には、本発明の実施例の建築膜構造の風雨負荷作用下での動力応答について研究は、実際工事の基礎上で行われることであり、その基本原理は、以下のとおりである。実際膜構造の等比縮小モデル(即ち、被試験膜構造70)を作製し、予め設計作製された等比縮小風室10に入れて固定し、風室10の頂部に降雨組立体30と風速計502とを接続するとともに、風洞の吸風口101に送風組立体40を接続し、降雨組立体30及び送風組立体40に対する制御は、制御組立体60によって実現される。試験開始前に、制御組立体60を介して試験過程に必要な降雨強度を予め設定し、試験過程において、風速計502により試験過程におけるリアルタイム風速を知り、風速経時推移曲線を導出するとともに、膜面真下に配置された非接触型レーザー変位センサ501により建築膜面の変位を測定し、その変位経時推移曲線を導出することができる。次に、被試験膜構造70の風雨負荷下での変位、振幅及び速度などの動力応答データを計算して得、さらに、実際膜構造と被試験膜構造との相似比パラメータを結合して実際膜構造の動力応答データを得る。
【0055】
以下、本発明の実施例の基本原理及び計算プロセスに対して推定説明を行う。本発明の実施例の被試験膜構造の理論構造モデルは、鋼骨格支持式膜構造とする。膜材料は、弾性材料であり、四辺は単純支持とし、その直交方法xとyは、ヤング弾性率が異なる二つの主繊維方向であり、aとbはそれぞれxとy方向膜の長さを表し、NoxとNoyはそれぞれxとy方向上の予備張力を表し、f1とf2はそれぞれyとx軸上のスパン中央アーチであり、理論推定は薄膜大撓み板理論と運動量保存の法則に基づく。
【0056】
vonKarman’s大撓み板理論とダランベールの原理に基づいて、骨格支持式膜の動的運動方程式(1)及び適合方程(2)を得た。
【数1】
【数2】
式中、ρ0は膜材料表面密度を表し、cは粘性抵抗係数を表し、NxとNyはそれぞれxとy方向の応力増分であり、NoxとNoyはそれぞれxとy方向の予備張力を表し、Nxyはせん断力を表し、wは変位関数w(x,y,t)を表し、hは膜材料の厚さを表し、E1とE2はそれぞれxとy方向のヤング弾性率であり、Gはせん断弾性率を表し、k0xはx方向の初期主曲率を表し、μ1とμ2はxとy方向上のポアソン比であり、PWは空気動力負荷を表し、PRは雨負荷を表す。
【0057】
動的運動方程式(1)及び適合方程(2)は共に鋼骨格支持式膜構造の風雨負荷作用下での制御方程を構成する。
【0058】
相応な四辺単純支持の変位境界条件(3)と応力境界条件(4)は、それぞれ以下のとおりである。
【数3】
【数4】
【0059】
変位境界条件(3)と応力境界条件(4)を満たすと仮定すると、数(1)と数(2)を簡略化して解き、それぞれ数(5)と数(6)を得た。
【0060】
【数5】
式中、Wは決められたモード関数であり、T(t)は時間の関数であり、mとnはそれぞれxとy方向上の正弦半波数で、正の整数である。
【0061】
【数6】
【0062】
数(6)をガラーキン法で次の数(7)に変換する。
【数7】
【0063】
次に、数(7)を次の微分方程式(8)に変換する。
【数8】
【0064】
そのうち、一部パラメータの式は、以下のとおりである。
【数9】
【0065】
空気力負荷の式は、
【数10】
である。
【0066】
そのうち、一部パラメータの式は、以下のとおりである。
【数11】
【0067】
式中、ξとηは、気流が膜面に沿ってアーチする時の位置座標を表し、
【数12】
であり、積分領域S∈{0≦ξ≦a,0≦η≦b}、ρaはガス密度であり、wは膜面の変位関数であり、z0は膜面の曲面関数である。
【0068】
雨負荷の式は、
【数13】
である。
【0069】
そのうち、一部パラメータの式は、以下のとおりである。
【数14】
【0070】
式中、ρwは水の密度(一般的に、ρw=1.0×103kg・m-3)であり、ρaは空気の密度(一般的に、ρa=1.293kg・m-3)であり、ηは空気の粘性抵抗係数(一般的に、η=17.1×10-6kg・m-1・s-1)であり、Vは異なる風速等級によって決定され、降雨強度Iは予め決定してもよい。
【0071】
数(9)と数(10)を数(8)に代入し、簡略化計算を行うと、膜面振動の微分方程式(11)を得ることができる。
【0072】
【数15】
【0073】
そのうち、一部パラメータの式は、以下のとおりである。
【数16】
【0074】
その後、4階Runge-Kutta法を用いて微分方程式(11)を解き、微分方程式(11)を解くことにより、鋼骨格支持式膜構造の風雨負荷下での変位、振幅及び速度などの動力応答データを得ることができる。
【0075】
膜構造膜面の空力弾性と風雨モデル設計を行う時、薄膜構造が可撓性構造に属し、その振動周波数が低く、且つプロトタイプ試験に要する周期が長く、費用が多いことを考慮すると、本発明の実施例は、相似理論に基づいて、実際膜構造の代わりに被試験膜構造を採用し、最後に、実際膜構造の動力応答データに換算する時に、対応するパラメータの相似比に合わせて計算する必要がある。本発明の実施例では、密度相似比λρは1をとり、他の相似理論は、以下のとおりである。
【0076】
1)幾何相似、試験モデルと実物プロトタイプの幾何形状上の相似を指す。即ち、
【数17】
そのうち、Lmは被試験膜構造の幾何長さを表し、Lpは実際膜構造の幾何長さを表す。本発明の実施例では、実際工事で常用の膜材料寸法に基づいて、幾何相似をλL=1/20とする。
【0077】
2)フルード数相似、慣性力と重力との比の平方根を指す。即ち、
【数18】
そのうち、Frはフルード数を表し、ρは物体の密度を表し、Vは物体運動速度を表し、gは重力加速度を表し、Lは物体の特徴長さである。本発明の実施例では、被試験膜構造と実際膜構造のフルード数は同じである。
【0078】
体積相似比は、
【数19】
であり、
そのうち、λLは体積相似比を表す。
【0079】
3)オイラー数相似、物体表面に作用する圧力と慣性力との比を指す。即ち、
【数20】
そのうち、Pは物体表面に作用する圧力強さを表し、
【数21】
は被試験膜構造のオイラー数を表し、
【数22】
は実際膜構造のオイラー数を表す。本発明の実施例では、被試験膜構造と実際膜構造のオイラー数は同じである。
【0080】
圧力強さ相似比は、
【数23】
であり、
そのうち、λPは圧力強さ相似比を表す。
【0081】
4)ストルーハル数相似、非定常運動慣性力と慣性力との比を指す。即ち、
【数24】
そのうち、Srはストルーハル数を表す。本発明の実施例では、被試験膜構造と実際膜構造のストルーハル数は同じである。
【0082】
時間縮尺比λTは、
【数25】
である。
【0083】
周波数縮尺比λωは、
【数26】
である。
【0084】
5)弾性パラメータ相似
【数27】
そのうち、
【数28】
は被試験膜構造と実際膜構造との弾性パラメータ相似比を表す。
【0085】
6)初期予備張力数相似
【数29】
そのうち、λNは被試験膜構造と実際膜構造との初期予備張力数相似比を表す。
【0086】
7)質量数相似
【数30】
そのうち、λMは被試験膜構造と実際膜構造との質量数相似相似比を表す。
【0087】
8)変位数相似
【数31】
そのうち、λwは被試験膜構造と実際膜構造との変位数相似比を表す。
【0088】
9)雨強度相似比
【数32】
そのうち、λRは被試験膜構造と実際膜構造との雨強度相似比を表す。
【0089】
以上、本発明の実施例における被試験膜構造と実際膜構造との各相似比パラメータを紹介し、これらの相似比パラメータと得られた第一の動力応答データに基づいて、実際膜構造の風雨負荷作用下での第二の動力応答データを求めることができる。
【0090】
さらに、選択的な実施形態として、降雨強度、風速経時推移曲線及び変位経時推移曲線に基づいて、被試験膜構造70の風雨負荷作用下での第一の動力応答データを算出して得るステップS104は、具体的には、ステップS1041~ステップS1043を含む。
【0091】
S1041、風速経時推移曲線に基づいて、空力的負荷を決定する。
【0092】
S1042、降雨強度と風速経時推移曲線に基づいて、雨負荷を決定する。
【0093】
S1043、空力的負荷、雨負荷及び変位経時推移曲線に基づいて、被試験膜構造70の風雨負荷作用下での第一の動力応答データを算出して得る。
【0094】
具体的には、空力的負荷と雨負荷の式は、前述で説明したが、風速経時推移曲線と降雨強度に基づいて、空力的負荷と雨負荷を決定し、その後、被試験膜構造の風雨負荷作用下での動力応答データを求め、最後に、前述の相似準則と結合して、実際工事膜構造の動力応答データに換算することができる。
【0095】
本発明の実施例は、建築膜構造の風雨負荷作用下での動力応答を測定するためのより経済的で、便利迅速で、適用性が強い装置及び方法を提供する。従来技術に比べて、本発明の実施例は、以下の利点を有する。
【0096】
1)この試験装置は、構造が簡単で、装置の製造コストが比較的低く、試験場所の要求が低く、且つ必要な動力装置も簡単で安定である。常規の低速試験風洞の建設費用は数百万人民元を超え、また建設場所の要求が高く、施工周期が比較的長く、既存の風洞内で試験全体を行うことは、往々に数万人民元が必要である。一方、本発明は、試験可能な装置を比較的低いコストで製造することができ、試験経費を大幅に節約することができる。
【0097】
2)この試験方法は、簡単で、あまり多くの理論的基礎と追加的操作教育練習を必要とせず、試験過程において関連する人員が比較的少なく、資源の浪費を回避する。
【0098】
3)この測定装置の測定精度が高く、建設膜材料の実際工事における客観規律をよく反映することができ、且つ、測定過程において、測定装置が膜材料に直接接触する必要がなく、試験器材を高効率に保護することができ、それによって、複数回、繰り返し利用できる目的を達成する。
【0099】
本発明の実施例は、コンピュータハードウェア、ハードウェアとソフトウェアの組み合わせ、又は非一時的なコンピュータ可読メモリに記憶されたコンピュータ命令によって実現又は実行することができる。上記方法は、標準プログラミング技術(コンピュータプログラムが配置された非一時的なコンピュータ可読記憶媒体を含む)を利用してコンピュータプログラム内で実現してもよく、そのうち、このように配置された記憶媒体は、特定の実施例に記載された方法及び図面に従って、コンピュータを特定及び予め定義された方式で動作させる。各プログラムは、コンピュータシステムと通信するために、高レベルのプロセス又はオブジェクト指向プログラミング言語で実現されてもよい。しかしながら、必要であれば、該プログラムは、アセンブリ又は機械言語で実現されてもよい。いずれの場合でも、該言語は、コンパイル又は解釈される言語であってもよい。また、この目的のために、該プログラムは、プログラミングされた専用集積回路上で動作することができることを認識すべきである。
【0100】
さらに、本明細書に別に指示されていないか、または他の方式で文脈と明らかに矛盾しない限り、本明細書に記載のプロセスの動作が任意の適切な順序で実行されてもよい。本明細書で記載されるプロセス(又は変形及び/又はそれらの組み合わせ)は、実行可能な命令が配置された一つ又は複数のコンピュータシステムの制御により実行されてもよく、かつ一つ又は複数のプロセッサ上で共通に実行されるコード(例えば、実行可能な命令、一つ又は複数のコンピュータプログラム、又は一つ又は複数のアプリケーション)、ハードウェア又はそれらの組み合わせによって実現されてもよい。上記コンピュータプログラムは、一つ又は複数のプロセッサによって実行可能な複数の命令を含む。
【0101】
さらに、上記方法は、動作可能に接続されている適切な任意のタイプのコンピューティングプラットフォームに実現されてもよく、パーソナルコンピュータ、ミニコンピュータ、メインフレームワーク、ワークステーション、ネットワーク又は分散コンピュータ処理環境、単独又は集積化コンピュータプラットフォーム、又は帯電粒子ツールや他の撮像装置と通信することなどを含むが、これらに限定されない。本発明の諸態様は、非一時的な記憶媒体又は機器に記憶された機械可読コードによって実現されてもよく、プログラム可能コンピュータによって読み取ることができるように、移動可能であるか、コンピュータプラットフォームに集積化されてもよく、例えば、ハードディスク、光学読み取り及び/又は書き込み記憶媒体、RAM、ROMなどであり、記憶媒体又は機器がコンピュータによって読み取られるときに、ここで記載されるプロセスを実行するために、コンピュータを配置及び動作させるために用いられることができる。さらに、機械可読コード又はその一部は、有線又は無線ネットワークを介して送信されてもよい。このような媒体は、マイクプロセッサ又は他のデータプロセッサに結合して上述したステップを実現する命令又はプログラムを含む場合、本明細書で記載される発明は、これら及び他の異なるタイプの非一時的コンピュータ可読記憶媒体を含む。本発明に記載の方法及び技術に基づいて、プログラミングされるとき、本発明は、コンピュータ自体をさらに含む。
【0102】
コンピュータプログラムは、本明細書に記載の機能を実行するために入力データに適用されてもよく、入力データを変換して不揮発性メモリに記憶される出力データを生成する。出力情報は、また、ディスプレイなどの一つ又は複数の出力装置に適用されてもよい。本発明の好ましい実施例では、変換されたデータは、ディスプレイ上で生成される物理的及び有形的なオブジェクトの特定の視覚的描写を含む物理的と有形的なオブジェクトを表す。
【0103】
上記は、本発明の好ましい実施例に過ぎず、本発明は、上述した実施形態に限定されるものではなく、同じ手段で本発明の技術的効果を達すれば、、本発明の技術的思想及び原則内で行われる任意の修正、同等置換、改善など、いずれも本発明の保護範囲内に含まれるべきである。本発明の保護範囲内のその技術案及び/又は実施形態は、多様な異なる修正又は変化を有することができる。
【符号の説明】
【0104】
10、風室
101、吸風口
102、風出口
103、貫通孔
20、引張組立体
30、降雨組立体
301、降雨ノズル
302、マイクロポンプ
40、送風組立体
401、送風機
402、導流カバー
50、信号収集組立体
501、レーザー変位センサ
502、風速計
60、制御組立体
70、被試験膜構造
【要約】      (修正有)
【課題】膜構造の風雨負荷作用下での動力応答試験装置及び方法を提供する。
【解決手段】風室10と、風室10内に配置され、被試験膜構造70を引張し、安定予備張力を有する膜面を形成するための引張組立体20と、風室10内に位置されるとともに、引張組立体20の上方に配置されている降雨組立体と、風室10の吸風口101に配置され、風室10のために安定した風場を提供するための送風組立体と、レーザー変位センサと、風速計とを含む信号収集組立体であって、レーザー変位センサが風室10外に位置されるとともに、引張組立体20の下方に配置され、風速計502が風室10内に位置されるとともに、引張組立体20の上方に配置されている。
【選択図】図1
図1
図2
図3