(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-04
(45)【発行日】2022-02-15
(54)【発明の名称】電極合剤、電極合剤の製造方法、電極構造体、電極構造体の製造方法および二次電池
(51)【国際特許分類】
H01M 4/131 20100101AFI20220207BHJP
H01M 4/1391 20100101ALI20220207BHJP
H01M 4/525 20100101ALI20220207BHJP
H01M 4/62 20060101ALI20220207BHJP
【FI】
H01M4/131
H01M4/1391
H01M4/525
H01M4/62 Z
(21)【出願番号】P 2018094082
(22)【出願日】2018-05-15
【審査請求日】2020-12-15
(73)【特許権者】
【識別番号】000001100
【氏名又は名称】株式会社クレハ
(74)【代理人】
【識別番号】110000338
【氏名又は名称】特許業務法人HARAKENZO WORLD PATENT & TRADEMARK
(72)【発明者】
【氏名】五十嵐 民人
(72)【発明者】
【氏名】青木 健太
(72)【発明者】
【氏名】小林 正太
(72)【発明者】
【氏名】佐藤 宏
【審査官】冨士 美香
(56)【参考文献】
【文献】国際公開第2018/003448(WO,A1)
【文献】国際公開第2017/056974(WO,A1)
【文献】国際公開第2012/090876(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/00-4/62
(57)【特許請求の範囲】
【請求項1】
集電体上に設けられる電極活物質と、該電極活物質を該集電体に結着するためのバインダー組成物とを含有し、
上記バインダー組成物は、極性基を有するフッ化ビニリデン共重合体と、下記式(1)
【化1】
(式中、R
1、R
2およびR
3は、それぞれ独立に水素原子、塩素原子、フッ素原子、炭素数1~6のアルキル基または炭素原子1~6のフッ素置換アルキル基である。)
で表される単量体に由来する構成単位を有するアクリル系重合体とを含有し、
上記アクリル系重合体における
上記式(1)で表される単量体に由来する構成単位の割合は、60mol%以上であり、
上記電極活物質は、下記式(2)
Li
1+xMO
2 ・・・(2)
(Xは、-0.15<X≦0.15を満たす数である。Mは、NiまたはNiを含む2種以上の元素群であって、Niを含む2種以上の元素群である場合には、Niを50mol%以上含む。)
で表されるリチウム金属酸化物を含むことを特徴とする電極合剤。
【請求項2】
上記極性基がカルボキシル基であることを特徴とする請求項1に記載の電極合剤。
【請求項3】
上記フッ化ビニリデン共重合体は、フッ化ビニリデンに由来する構成単位と、下記式(3)
【化2】
(式中、R
4、R
5およびR
6は、それぞれ独立に水素原子または炭素数1~5のアルキル基であり、Xは、主鎖が原子数1~20で構成される分子量500以下の原子団である。)
で表される単量体に由来する構成単位と、を含有することを特徴とする請求項1または2に記載の電極合剤。
【請求項4】
上記バインダー組成物中の塩素量が1000ppm以下であることを特徴とする請求項1~3のいずれか1項に記載の電極合剤。
【請求項5】
上記バインダー組成物は、上記フッ化ビニリデン共重合体とは異なるフッ化ビニリデン系重合体を含むことを特徴とする請求項1~4のいずれか1項に記載の電極合剤。
【請求項6】
溶媒を含んでいる、請求項1~5のいずれか1項に記載の電極合剤。
【請求項7】
極性基を有するフッ化ビニリデン共重合体と、下記式(1)
【化3】
(式中、R
1、R
2およびR
3は、それぞれ独立に水素原子、塩素原子、フッ素原子、炭素数1~6のアルキル基または炭素原子1~6のフッ素置換アルキル基である。)
で表される単量体に由来する構成単位を有するアクリル系重合体と、電極活物質とを混練する工程を含み、
上記アクリル系重合体における
上記式(1)で表される単量体に由来する構成単位の割合は、60mol%以上であり、
上記電極活物質は、下記式(2)
Li
1+xMO
2 ・・・(2)
(Xは、-0.15<X≦0.15を満たす数である。Mは、NiまたはNiを含む2種以上の元素群であって、Niを含む2種以上の元素群である場合には、Niを50mol%以上含む。)
で表されるリチウム金属酸化物を含むことを特徴とする電極合剤の製造方法。
【請求項8】
集電体と、該集電体上に設けられた電極合剤層とを備えており、
上記電極合剤層は、請求項1~6のいずれか1項に記載の電極合剤を用いて形成された層である、電極構造体。
【請求項9】
請求項6に記載の電極合剤を集電体表面に塗布して乾燥させることによって該集電体表面上に塗膜を形成する工程と、
上記塗膜に熱処理を施す工程とを含むことを特徴とする電極構造体の製造方法。
【請求項10】
請求項8に記載の電極構造体を備えていることを特徴とする二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電極合剤に関し、さらに詳細には、リチウムイオン二次電池用の電極合剤に関する。
【背景技術】
【0002】
近年電子技術の発展はめざましく、小型携帯機器の高機能化が進み、これらに使用される電源には小型・軽量化(高エネルギー密度化)が求められている。高いエネルギー密度を有する電池として、リチウムイオン二次電池等に代表される非水電解質二次電池が広く使用されている。
【0003】
リチウムイオン二次電池の電極は、例えば、電極活物質および必要に応じて加えられる導電助剤等の粉末状電極材料にバインダー(結着剤)を混合し、適当な溶媒に溶解ないし分散して得られるスラリー状の電極合剤(以下、電極合剤スラリーともいう)を集電体上に塗布し、溶媒を揮散して電極合剤層として保持された構造を形成することにより得られる。
【0004】
リチウムイオン二次電池における高エネルギー密度化の手法として、電極における正極活物質自身の充放電容量を高める手法が用いられている。正極活物質の充放電容量を高める手法としては、例えば、正極活物質としてニッケル含有化合物を用いられることが知られている。また、ニッケル比率を高めた電極活物質を用いることで、放電容量を向上させることができることが知られている。
【0005】
しかしながら電極活物質中のニッケル比率が高まると、電極合剤スラリーがゲル化しやすくなるという問題があった。
【0006】
そこで、電極合剤スラリーのゲル化の抑制を目的とした電極合剤がこれまでに開発されている。このような電極合剤の一例として、極性基含有フッ化ビニリデン系重合体、塩素原子含有フッ化ビニリデン系重合体、電極活物質および有機溶剤を含有する非水電解質二次電池用負極合剤が知られている(特許文献1)。また、正極活物質として、ニッケルを含有する特定組成のリチウム含有複合酸化物を使用し、正極のバインダーとして、ポリフッ化ビニリデンとフッ化ビニリデン-クロロトリフルオロエチレン共重合体とを含有するものも提案されている(例えば、特許文献2)。
【先行技術文献】
【特許文献】
【0007】
【文献】国際公開第2010/074041号
【文献】特開2014-7088号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
従来の電極合剤、とりわけ放電容量を向上させるためにニッケル比率を高めた電極活物質を用いた電極合剤においては、電極合剤スラリーを一定期間保持したとき、ゲル化とは別に電極活物質が容器下部に沈むことが見出された。電極活物質が沈むと、電極合剤の固形分濃度が上昇するため電極合剤下部は増粘し、電極作製の際のハンドリング性の低下を引き起こすこととなる。
【0009】
そこで、本発明は上記の問題点に鑑みてなされたものであり、その目的は、スラリーにおける固形分濃度変化が抑制された電極合剤を提供することにある。
【課題を解決するための手段】
【0010】
本発明に係る電極合剤は、上記課題を解決するために、集電体上に設けられる電極活物質と、該電極活物質を該集電体に結着するためのバインダー組成物とを含有し、
上記バインダー組成物は、極性基を有するフッ化ビニリデン共重合体と、下記式(1)
【0011】
【0012】
(式中、R1、R2およびR3は、それぞれ独立に水素原子、塩素原子、フッ素原子、炭素数1~6のアルキル基または炭素原子1~6のフッ素置換アルキル基である。)
で表される単量体に由来する構成単位を有するアクリル系重合体とを含有し、
上記電極活物質は、下記式(2)
Li1+xMO2 ・・・(2)
(Xは、-0.15<X≦0.15を満たす数である。Mは、NiまたはNiを含む2種以上の元素群であって、Niを含む2種以上の元素群である場合には、Niを50mol%以上含む。)
で表されるリチウム金属酸化物を含む構成である。
【0013】
また、本発明に係る電極合剤の製造方法は、上記課題を解決するために、極性基を有するフッ化ビニリデン共重合体と、下記式(1)
【0014】
【0015】
(式中、R1、R2およびR3は、それぞれ独立に水素原子、塩素原子、フッ素原子、炭素数1~6のアルキル基または炭素原子1~6のフッ素置換アルキル基である。)
で表される単量体に由来する構成単位を有するアクリル系重合体と、電極活物質とを混練する工程を含み、
上記電極活物質は、下記式(2)
Li1+xMO2 ・・・(2)
(Xは、-0.15<X≦0.15を満たす数である。Mは、NiまたはNiを含む2種以上の元素群であって、Niを含む2種以上の元素群である場合には、Niを50mol%以上含む。)
で表されるリチウム金属酸化物を含む構成である。
【発明の効果】
【0016】
本発明に係る電極合剤によれば、スラリーの保存時における固形分濃度変化が抑制された電極合剤を提供することができる。
【図面の簡単な説明】
【0017】
【
図1】本発明の一実施形態に係る電極構造体の断面図である。
【
図2】本発明の一実施形態に係る二次電池の分解斜視図である。
【発明を実施するための形態】
【0018】
本発明に係る電極合剤、およびその利用の一実施形態について説明する。
【0019】
〔電極合剤〕
本実施形態に係る電極合剤は、集電体上に設けられる電極活物質と、該電極活物質を該集電体に結着するためのバインダー組成物とを含有してなるものであり、バインダー組成物は、フッ化ビニリデン共重合体と、アクリル系重合体とを含有する。また、電極活物質は、下記式(2)で表されるリチウム金属酸化物を含むものである。
Li1+xMO2 ・・・(2)
(Xは、-0.15<X≦0.15を満たす数である。Mは、NiまたはNiを含む2種以上の元素群であって、Niを含む2種以上の元素群である場合には、Niを50mol%以上含む。)
(バインダー組成物)
本実施形態におけるバインダー組成物は、電極活物質を集電体上に結着するための結着剤として用いられるものである。バインダー組成物は、上述の通り、フッ化ビニリデン共重合体と、アクリル系重合体とを含有する。
【0020】
本実施形態におけるフッ化ビニリデン共重合体は、極性基を有するフッ化ビニリデン共重合体であり、フッ化ビニリデンと極性基含有化合物との共重合体である。
【0021】
極性基含有化合物とは、例えば、カルボキシル基、エポキシ基、ヒドロキシル基、およびスルホン酸基等の極性基を含む化合物である。これらの中でも、極性基含有化合物は、カルボキシル基を含有する化合物であることが好ましい。すなわち、極性基を有するフッ化ビニリデン共重合体における極性基は、カルボキシル基であることが好ましい。フッ化ビニリデン共重合体がカルボキシル基を含むことにより、電極活物質と集電体または電極活物質間との良好な結着性を得ることができる。
【0022】
カルボキシル基を含有する化合物としては、アクリル酸、アクリル酸誘導体、マレイン酸モノメチルエステル、およびマレイン酸モノエチルエステル等を挙げることができる。アクリル酸誘導体としては、下記式(3)で表される化合物が挙げられる。
【0023】
【0024】
式(3)において、R4、R5およびR6は、それぞれ独立に水素原子または炭素数1~5のアルキル基である。重合反応の観点から、特にR4およびR5は立体障害の小さな置換基であることが望まれ、水素または炭素数1~3のアルキル基が好ましく、水素またはメチル基であることが好ましい。
【0025】
式(3)において、Xは、主鎖が原子数1~20で構成される分子量500以下の原子団である。原子団における分子量は、好ましくは200以下である。また、原子団における分子量の下限に特に限定はないが、通常は15である。原子団の分子量が上述の範囲内であることにより、当該電極合剤を用いて得られる電極合剤層の剥離強度を好適に高められる。ここで、「主鎖の原子数」とは、式(3)におけるXの右側に記載されたカルボキシル基と、Xの左側に記載された基(R3R4C=CR5-)とを、最も少ない原子数で結ぶ鎖の骨格部分の原子数を意味している。またXは、官能基を側鎖として含むことで分岐していてもよい。Xに含まれる側鎖は、1つであってもよく、複数含まれていてもよい。
【0026】
さらに、式(3)におけるXは、下記式(4)で示される構造であることが好ましい。
-COO-X’・・・(4)
式(4)において、X’は、主鎖が原子数1~18で構成される分子量456以下の原子団であるが、重合性の観点から、主鎖が原子数1~13で構成される原子団であることが好ましく、主鎖が原子数1~8で構成される原子団であることがさらに好ましい。また、X’で示される原子団の分子量は156以下であることが好ましい。またX’で示される原子団の分子量の下限としては特に限定はないが、通常は14である。なお、主鎖の原子数には、水素原子の数は含めない。
【0027】
カルボキシル基を含有する化合物としては、具体的には、アクリル酸、2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート、アクリロイロキシエチルコハク酸、アクリロイロキシプロピルコハク酸、マレイン酸モノメチルエステル、およびマレイン酸モノエチルエステル等を挙げることができる。
【0028】
本実施形態における極性基を有するフッ化ビニリデン共重合体は、極性基含有化合物に由来する構成単位を0.01~10mol%有することが好ましく、0.20~7mol%有することがより好ましく、0.30~4mol%有することが特に好ましい。また、フッ化ビニリデンに由来する構成単位を、90~99.99mol%有することが好ましく、93~99.75mol%有することがより好ましく、96~99.63mol%有することが特に好ましい。極性基含有化合物に由来する構成単位が0.01mol%以上であることにより、極性基の電極合剤スラリー内で占める割合が小さくなり過ぎず、当該電極合剤を用いて得られる電極合剤層の剥離強度を高め得る効果を得ることができる。また、極性基含有化合物に由来する構成単位が10mol%以下であることにより、電極合剤スラリーの粘度が高くなり過ぎず、電極合剤スラリーの塗工が困難になることを防ぐことができる。
【0029】
フッ化ビニリデン共重合体のフッ化ビニリデン単位の量、および極性基含有化合物単位の量は、通常は共重合体の1H NMRスペクトル、もしくは中和滴定により求めることができる。
【0030】
本実施形態におけるフッ化ビニリデン共重合体は、フッ化ビニリデンおよび極性基含有化合物以外の他の単量体の成分を有していてもよい。例えば、フッ化ビニリデンと共重合可能なフッ素系単量体、エチレンおよびプロピレン等の炭化水素系単量体、ならびに(メタ)アクリル酸および(メタ)アクリル酸メチルに代表される(メタ)アクリル酸アルキル化合物等が挙げられる。フッ化ビニリデンと共重合可能なフッ素系単量体としては、フッ化ビニル、トリフルオロエチレン、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、およびペルフルオロメチルビニルエーテルに代表されるペルフルオロアルキルビニルエーテル等を挙げることができる。
【0031】
本実施形態におけるフッ化ビニリデン共重合体が上述した他の単量体を有する場合には、他の単量体単位を0.01~10mol%有することが好ましい。
【0032】
本実施形態におけるフッ化ビニリデン共重合体は、フッ化ビニリデンと、極性基含有化合物とを従来公知の方法で重合させることによって得ることができる。重合方法については、特に限定されるものではないが、例えば、懸濁重合、乳化重合および溶液重合等の方法を挙げることができる。これらの中でも、後処理の容易さ等から、重合方法は、水系の懸濁重合または乳化重合であることが好ましい。また、重合に用いるフッ化ビニリデンおよび極性基含有化合物は、一般の市販品を用いてもよい。
【0033】
本実施形態におけるフッ化ビニリデン共重合体は、GPC(ゲルパミエーションクロマトグラフィー)で測定して求めた重量平均分子量が、5万から150万の範囲である。
【0034】
本実施形態におけるフッ化ビニリデン共重合体のインヘレント粘度ηiは、0.5dl/g~5.0dl/gであることが好ましく、1.0dl/g~4.5dl/gであることがより好ましく、1.5dl/g~4.0dl/gであることがさらに好ましい。インヘレント粘度が上記の範囲であれば、電極合剤スラリー固形分低下による生産性の悪化を防ぎ、電極合剤を塗工する際に電極の厚みムラを発生させることなく、電極作製を容易に行える点で好ましい。インヘレント粘度ηiは、重合体80mgを20mlのN,N-ジメチルホルムアミドに溶解して、30℃の恒温槽内でウベローデ粘度計を用いて次式により求めることができる。
【0035】
ηi=(1/C)・ln(η/η0)
上記式においてηは重合体溶液の粘度、η0は溶媒であるN,N-ジメチルホルムアミドの粘度、Cは0.4g/dlである。
【0036】
本実施形態におけるアクリル系重合体は、下記式(1)で表される単量体に由来する構成単位を有する重合体である。
【0037】
【0038】
式(1)において、R1、R2およびR3は、それぞれ独立に水素原子、塩素原子、フッ素原子、炭素数1~6のアルキル基または炭素原子1~6のフッ素置換アルキル基である。環境負荷への影響を考慮すれば、ハロゲン原子を用いないことが望ましく、水素原子または炭素数1~6のアルキル基であることが好ましい。さらに重合反応の観点から、R1、R2およびR3は立体障害の小さな置換基であることが望まれ、水素または炭素数1~3のアルキル基が好ましく、水素またはメチル基であることがより好ましい。
【0039】
本実施形態におけるアクリル系重合体は、式(1)で表される単量体に由来する構成単位のみを有する重合体、式(1)で表される単量体と共重合可能な単量体との共重合体のいずれでもあり得る。また、式(1)で表される単量体に由来する構成単位のみを有する重合体において、全ての構成単位が同じであるホモポリマーに限らず、式(1)で表される異なる種類の単量体から形成されるコポリマーであってもよい。式(1)で表される単量体と共重合可能な単量体としては、例えば、(メタ)アクリル酸および(メタ)アクリル酸メチルに代表される(メタ)アクリル酸アルキル化合物等が挙げられる。
【0040】
アクリル系重合体における式(1)で表される単量体に由来する構成単位の割合は、好ましくは60mol%以上であり、より好ましくは75mol%以上であり、さらに好ましくは90mol%以上である。本実施形態におけるアクリル系重合体の最も好ましい態様は、アクリル酸の単独重合体であるポリアクリル酸である。
【0041】
式(1)で表される単量体を重合させることによりアクリル系重合体を調製する方法は、当業者であれば、従来公知の方法を参考に容易に理解することができる。また、ポリアクリル酸など、市販されているアクリル系重合体を用いてもよい。
【0042】
バインダー組成物に含まれる重合体全体に占める、本実施形態のアクリル系重合体の割合は、5重量%以上であることが好ましく、10重量%以上であることがより好ましい。バインダー組成物におけるアクリル系重合体の含有量を上記の範囲とすることにより、電極合剤スラリーにおける固形分の変化を抑制する効果を好適に得ることができる。なお、一定期間保存した際の固形分の変化は、保存前の電極合剤スラリー中の固形分濃度と、所定の容器内で一定期間保存した後の容器下部から採取した電極合剤スラリー中の固形分濃度との比によって評価できる。
【0043】
本実施形態に係るバインダー組成物は、求められる効果を損なわない限り、他のフッ化ビニリデン系重合体を含んでいてもよい。バインダー組成物に含め得る他のフッ化ビニリデン系重合体としては、フッ化ビニリデン単独重合体、およびフッ化ビニリデンと、フッ化ビニリデンと共重合可能な他の単量体とのフッ化ビニリデン共重合体が挙げられる。なお、ここでの他の単量体とは、極性基を含有しない単量体である。このような他の単量体としては、上述したフッ化ビニリデンと共重合可能なフッ素系単量体、エチレンおよびプロピレン等の炭化水素系単量体、および(メタ)アクリル酸アルキル化合物等が挙げられる。
【0044】
また、環境への負荷を考慮して、本実施形態に係るバインダー組成物中の塩素量は、少ないことが望ましく、具体的には、1000ppm以下であることが好ましく、500ppm以下であることがより好ましく、300ppmであることが特に好ましい。
【0045】
バインダー組成物中の塩素量は、JIS K 7229に準拠し、バインダー組成物をフラスコ中の酸素雰囲気下で燃焼させ、発生した燃焼ガスを吸収液に吸収させ、この液をイオンクロマトグラフにかけて検量線法によって塩素濃度を算出することができる。
【0046】
(電極活物質)
本実施形態における電極活物質は、下記式(2)で表されるリチウム金属酸化物を含むものである。
Li1+xMO2 ・・・(2)
式(2)において、Xは、-0.15<X≦0.15を満たす数である。
【0047】
Mは、NiまたはNiを含む2種以上の元素群である。MがNiを含む2種以上の元素群である場合には、Mに含まれるNi以外の元素としては、例えば、Co、Mn、Ti、Cr、Fe、Cu、Zn、Al、Ge、Sn、Mg、Ag、Ta、Nb、B、P、Zr、Ca、SrおよびBaなどが挙げられる。なかでも、Co、MnおよびAlが好ましい。MがNiを含む2種以上の元素群である場合に、Mに含まれるNi以外の元素は、これらのうちの1種のみであってもよく、2種以上であってもよい。リチウム金属酸化物がNiを含有することは、容量密度を高めることによって二次電池を高容量化できる点において好ましい。またリチウム金属酸化物が、Niに加えて、さらにCo等を含有することは、充放電過程での結晶構造変化が抑えられることによって安定なサイクル特性を示す点において好ましい。
【0048】
式(2)で表されるリチウム金属酸化物におけるNiは、電極活物質において容量向上に寄与する成分である。よって、MがNiを含む2種以上の元素群である場合には、Mを構成する全元素数を100mol%としたとき、Niの割合は、50mol%以上であり、50mol%よりも多いことが好ましく、55mol%以上であることがより好ましく、60mol%以上であることがさらに好ましい。MがNiを含む2種以上の元素群である場合におけるNiの割合に上限はない
本実施形態における特に好ましいリチウム金属酸化物として、例えば下記式(4)
LiNiY1N1Y2O2・・・(4)
(式中、N1は、CoまたはMnを示し、0.5≦Y1<1、0<Y2≦0.5である。)
で表される二元リチウム金属酸化物、または、下記式(5)
LiNiY1CoY2N2Y3O2・・・(5)
(式中、N2は、MnまたはAlを示し、0.5≦Y1<1、0<Y2<0.5、0<Y3<0.5であり、かつY1/(Y1+Y2+Y3)≧0.5である。)で表される三元リチウム金属酸化物が挙げられる。
【0049】
三元リチウム金属酸化物は、充電電位が高く、かつ優れたサイクル特性を有することから、本実施形態における電極活物質として特に好ましく用いられる。
【0050】
本実施形態における二元リチウム金属酸化物の組成は特に限定されるものではなく、その組成として、例えば、Li1.0Ni0.8Co0.2O2を挙げることができる。
【0051】
また、本実施形態における三元リチウム金属酸化物の組成は特に限定されるものではなく、その組成として、例えば、Li1.00Ni0.52Co0.20Mn0.30O2(NCM523)、Li1.00Ni0.6Co0.2Mn0.2O2(NCM622)、Li1.00Ni0.83Co0.12Mn0.05O2(NCM811)、およびLi1.00Ni0.85Co0.15Al0.05O2(NCA811)を挙げることができる。
【0052】
さらに、本実施形態における電極活物質は、異なる複数種類のリチウム金属酸化物を含んでいてもよく、例えば、組成の異なるLiNiY1CoY2MnY3O2を複数含んでいてもよいし、LiNiY1CoY2MnY3O2とLiNiY1CoY2AlY3O2とを含んでいてもよい。
【0053】
さらに、本実施形態におけるリチウム金属酸化物は、リチウム金属酸化物1gに対し、超純水49gを加え、10分間撹拌したのち、当該水のpHを測定した際の当該水のpHは、11.3を超えるものであることがより好ましい。当該水のpHの上限値は特に限定されない。
【0054】
本実施形態において、電極活物質は、式(2)で表されるリチウム金属酸化物の他に、例えば不純物および添加剤等を含んでいてもよい。また、電極活物質に含まれる不純物および添加剤等の種類は特に限定されるものではない。
【0055】
(溶媒)
本実施形態における電極合剤は、溶媒を含んでいてもよい。溶媒は水であってもよく、非水溶媒であってもよい。非水溶媒としては、例えば、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N,N-ジメチルスルホキシド、ヘキサメチルフォスフォアミド、ジオキサン、テトラヒドロフラン、テトラメチルウレア、トリエチルホスフェイト、トリメチルフォスフェイト、アセトン、シクロヘキサン、メチルエチルケトン、およびテトラヒドロフラン等が挙げられる。これらの溶媒は電極合剤に1種または2種以上含まれていてもよい。溶媒は、バインダー組成物に添加されていてもよく、バインダー組成物とは別に添加されたものであってもよい。
【0056】
(他の成分)
本実施形態における電極合剤には、必要に応じて他の成分が含まれていてもよい。他の成分としては、例えば、導電助剤および顔料分散剤等が挙げられる。
【0057】
導電助剤は、電極合剤を用いて形成される電極合剤層の導電性を向上させる目的で添加するものである。導電助剤としては、例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛、黒鉛微粉末および黒鉛繊維等のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック等のカーボンブラック類、炭素繊維、およびカーボンナノナノチューブ等の炭素材料が挙げられる。また、NiおよびAl等の金属繊維等の導電性繊維類、金属粉末類、導電性金属酸化物、ならびに有機導電性材料等も挙げられる。
【0058】
また、顔料分散剤としては、例えば、ポリビニルピロリドン等を挙げることができる。
【0059】
本実施形態において、上述した他の成分は、電極合剤100重量部に対して、0~10重量部、好ましくは0~5重量部である。
【0060】
以上のように、本実施形態の電極合剤は、アクリル系重合体を含んでいることにより、電極合剤スラリーを比較的長い時間保存した場合であっても、保存期間中の固形分の沈降を抑制することができる。これにより、電極合剤スラリーが増粘することを防ぐことができ、電極作製の際にハンドリング性が低下することを防ぐことができる。さらに、本実施の形態の電極合剤では、ニッケルの含量の多い電極活物質を用いた場合であっても、電極合剤スラリーのゲル化を抑制することができる。とりわけ、比較的長い時間保存した場合であっても、電極合剤スラリーのゲル化が抑制されている。
【0061】
(電極合剤の製造方法)
本実施形態における電極合剤は、フッ化ビニリデン共重合体と、アクリル系重合体と、電極活物質とを混練することにより製造することができる。電極合剤の製造において、必要に応じて溶媒および他の成分を混練してもよく、その方法は特に限定されるものではない。また、混練する際の各種成分の添加の順序は特に限定されるものではない。さらに、溶媒を添加する場合には、先に電極活物質および溶媒を撹拌混合し、それからフッ化ビニリデン共重合体およびアクリル系重合体を加えてもよい。あるいは、電極活物質に対して、フッ化ビニリデン共重合体溶液およびアクリル系重合体溶液を添加してもよい。あるいは、フッ化ビニリデン共重合体およびアクリル系重合体の両方を含む重合体溶液を調製しておき、重合体溶液を電極活物質に加えるものであってもよい。
【0062】
(電極合剤のスラリー粘度)
本発明の電極合剤を用いた場合に、電極合剤スラリーのゲル化をどの程度抑制できるかについては、電極合剤のスラリー粘度によって判別することができる。なお、本明細書において、「ゲル化」とは、例えば、電極合剤スラリーを40℃、窒素雰囲気下、96時間保存した後に、当該電極合剤スラリーをミキサーを用いて30秒間撹拌した際に、電極合剤スラリーが均一なペースト状にならず、固形物が存在しているために、スラリー粘度が測定不可能な状態を指す。なお、固形物とは、目開き2.36mmのメッシュにスラリーを通し、1時間放置後、メッシュ上部に残るものを指す。また、ミキサーは特に限定されず、例えば(株)シンキー製 あわとり練太郎 ARE310(自転800rpm、公転2000rpm)を用いることができる。
【0063】
〔電極構造体〕
続いて、本実施形態の電極合剤を用いて形成される電極構造体の一実施形態について、
図1を参照しながら説明する。
図1は、本発明の一実施形態に係る電極構造体の断面図である。
【0064】
図1に示すように、電極構造体10は、集電体11、電極合剤層12aおよび12bを有する。
【0065】
集電体11は、電極構造体10の基材であり、電気を取り出すための端子である。集電体11の材質としては、鉄、ステンレス鋼、鋼、アルミニウム、ニッケル、およびチタン等を挙げることができる。集電体11の形状は、箔または網であることが好ましい。本実施形態において、集電体11としては、アルミニウム箔とすることが好ましい。
【0066】
集電体11の厚みは、5~100μmであることが好ましく、5~20μmであることが好ましい。
【0067】
電極合剤層12aおよび12bは、本実施形態の電極合剤からなる層である。電極合剤層12aおよび12bの厚みは、10μm~1000μm、より好ましくは20~250μm、さらに好ましくは20~150μmである。
【0068】
本実施形態における電極合剤層は、JIS K 5101-16-2に規定される抽出方法で常温(25℃)抽出した際に、当該水のpHが11以上となっていることが好ましい。pHの測定方法は、具体的には、電極合剤層を集電箔から剥がし、それを試料とする以外は、上述したリチウム金属酸化物のpHの測定方法と同様の方法で測定を行うものである。
【0069】
なお、電極構造体10は、
図1に示すように集電体11の上下面に電極合剤層12a、12bが形成されているが、これに限定されるものではなく、集電体11のいずれか一方の面に電極合剤層が形成されているもの、すなわち、電極合剤層12aおよび12bのいずれか一方が形成された電極構造体であってもよい。
【0070】
電極構造体10は、例えばリチウム二次電池の正極として用いることができる。
【0071】
次に、電極構造体の製造方法について説明する。
【0072】
本実施形態の電極構造体10は、フッ化ビニリデン共重合体と、アクリル系重合体と、リチウム金属酸化物と、溶媒と、を含むスラリー状の電極合剤(電極合剤スラリー)を集電体11の表面に塗布して乾燥させることによって、集電体11表面に塗膜を形成する工程と、塗膜に熱処理を施す工程とを経ることによって得ることができる。
【0073】
電極合剤スラリーの塗布方法としては、公知の方法を用いることができ、バーコーター、ダイコーターまたはコンマコーター等を挙げることができる。
【0074】
集電体11の上下面に塗布された電極合剤スラリーを乾燥させる際の乾燥温度としては、50~170℃、好ましくは50~150℃とすることができる。
【0075】
なお、本実施形態では、電極合剤スラリーを集電体11の上下面に塗布することで電極合剤層を形成する方法について説明したが、本実施形態の電極構造体の製造方法はこれに限定されず、電極合剤を集電体の少なくとも一方の面に塗布すればよい。
【0076】
〔二次電池〕
本実施形態の二次電池は、本実施形態の電極構造体を含む非水電解質二次電池である。本実施形態の二次電池について、
図2を参照しながら説明する。
図2は、本実施形態に係る二次電池の分解斜視図である。
【0077】
図2に示すように、二次電池100は、正極1および負極2の間にセパレータ3を配置積層したものを渦巻き状に巻き回した発電素子が、金属ケーシング5中に収容された構造を有する。正極1は、
図1における電極構造体10に対応する。
【0078】
セパレータ3としては、ポリプロピレン、ポリエチレン等の高分子物質の多孔性膜等の公知の材料を用いればよい。この他、二次電池100において用いられる部材は、本分野において通常用いられるものを適宜用いることができる。
【0079】
なお、二次電池100は円筒形電池であるが、もちろん本発明における二次電池100はこれに限定されるものではなく、例えばコイン形、角形またはペーパー形等の他の形状の二次電池であってもよい。
【0080】
〔まとめ〕
以上のとおり、本発明の電極合剤は、集電体上に設けられる電極活物質と、該電極活物質を該集電体に結着するためのバインダー組成物とを含有し、
上記バインダー組成物は、極性基を有するフッ化ビニリデン共重合体と、上述の式(1)で表される単量体に由来する構成単位を有するアクリル系重合体とを含有し、上記電極活物質は、下記式(2)
Li1+xMO2 ・・・(2)
(Xは、-0.15<X≦0.15を満たす数である。Mは、NiまたはNiを含む2種以上の元素群であって、Niを含む2種以上の元素群である場合には、Niを50mol%以上含む。)
で表されるリチウム金属酸化物を含むものである。
【0081】
また、本発明の電極合剤は、上記極性基がカルボキシル基であることが好ましい。
【0082】
また、本発明の電極合剤では、上記フッ化ビニリデン共重合体は、フッ化ビニリデンに由来する構成単位と、上述の式(3)で表される単量体に由来する構成単位と、を含有することが好ましい。
【0083】
また、本発明の電極合剤は、上記バインダー組成物中の塩素量が1000ppm以下であることが好ましい。
【0084】
また、本発明の電極合剤の一態様では、上記バインダー組成物は、上記フッ化ビニリデン共重合体とは異なるフッ化ビニリデン系重合体を含んでいる。
【0085】
また、本発明の電極合剤は、溶媒を含んでいることが好ましい。
【0086】
本発明の電極合剤の製造方法は、極性基を有するフッ化ビニリデン共重合体と、上述の式(1)で表される単量体に由来する構成単位を有するアクリル系重合体と、電極活物質とを混練する工程を含み、上記電極活物質は、下記式(2)
Li1+xMO2 ・・・(2)
(Xは、-0.15<X≦0.15を満たす数である。Mは、NiまたはNiを含む2種以上の元素群であって、Niを含む2種以上の元素群である場合には、Niを50mol%以上含む。)
で表されるリチウム金属酸化物を含む構成である。
【0087】
本発明の電極構造体は、集電体と、該集電体上に設けられた電極合剤層とを備えており、上記電極合剤層は、上述の電極合剤を用いて形成された層である。
【0088】
本発明の電極構造体の製造方法は、上述の電極合剤を集電体表面に塗布して乾燥させることによって該集電体表面上に塗膜を形成する工程と、上記塗膜に熱処理を施す工程とを含む構成である。
【0089】
本発明の二次電池は、上述の電極構造体を備えている構成である。
【0090】
以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。
【実施例】
【0091】
以下に示すように、様々なバインダー組成物を用いて、電極合剤、電極構造体を作製し、電極合剤スラリーの沈降性の確認試験、およびスラリー粘度の測定を行った。具体的な実施例の説明の前に、インヘレント粘度の測定、スラリー粘度の測定および固形分濃度変化試験の各方法について説明する。
【0092】
(リチウム金属酸化物のpH測定)
電極活物質であるリチウム金属酸化物のpHは、リチウム金属酸化物を水で常温(25℃)抽出したときの水のpHとした。リチウム金属酸化物の水への抽出はJIS K 5101-16-2に規定される抽出方法で行った。具体的には、リチウム金属酸化物の重量の50倍量の超純水にリチウム金属酸化物を入れ、マグネチックスターラーにて回転数:600rpmで10分間撹拌を行い、その溶液を(株)堀場製作所製pHメーターMODEL:F-21を用いてpH測定を行った。
【0093】
(インヘレント粘度ηiの算出)
インヘレント粘度ηiを算出するために、重合体80mgを20mlのN,N-ジメチルホルムアミドに溶解することによって重合体溶液を作製した。この重合体溶液の粘度ηを、30℃の恒温槽内においてウベローデ粘度計を用いて測定した。そして、インヘレント粘度ηiを、当該粘度ηを用いて下記式によって求めた。
【0094】
ηi=(1/C)・ln(η/η0)
上記式においてηは重合体溶液の粘度、η0は溶媒のN,N-ジメチルホルムアミドの粘度、Cは0.4g/dlである。
【0095】
(スラリー粘度の測定)
電極合剤のスラリー粘度は、東機産業(株)製 E型粘度計 RE-550 MODEL:R、RC-550を用いて、25℃、せん断速度2s-1で測定を行った。なお、粘度は、スラリーを測定装置に仕込んでから60秒待機し、その後ローターを回転させることで測定を行った。また、ローターの回転開始から300秒後の値を初期スラリー粘度とした。25℃、窒素雰囲気下、所定時間(1日、6日または9日)放置後のスラリー粘度を測定し、保存後スラリー粘度とした。
【0096】
(固形分濃度変化の測定)
作製した電極合剤スラリーをポリプロピレンチューブ(φ12×75mm)に、チューブ下部から5cmの高さまで流し込み、25℃20%RH環境下で4日間保管した。保管後、チューブ下部から高さ1cmまでの電極合剤スラリーを採取し、アルミカップに入れて秤量し、採取した電極合剤スラリーの重量を測定した。そのアルミカップを110℃、2時間加熱して溶媒を除去した後、秤量することで、採取した電極合剤スラリーの固形分量を測定した。ここで得られた乾燥前後の重量から下部固形分濃度(NVA)を算出した。仕込電極合剤スラリーの初期固形分濃度(NVB)に対する下部固形分濃度(NVA)の割合(NVA/NVB)を、指標として算出した。NVA/NVBの値が大きい程、保存中に電極活物質が容器下部に沈み堆積しやすいことを表している。
【0097】
(フッ化ビニリデンおよびコモノマーの構成単位量)
重合体粉末の1H NMRスペクトルを下記条件で求めた。
【0098】
装置:Bruker社製。AVANCE AC 400FT NMRスペクトルメーター
測定条件
周波数:400MHz
測定溶媒:DMSO-d6
測定温度:25℃
重合体のフッ化ビニリデンに由来する構成単位の量、およびコモノマーに由来する構成単位の量を、1H NMRスペクトルから算出した。具体的には、主としてコモノマーに由来するシグナルと、主としてフッ化ビニリデンに由来する2.24ppmおよび2.87ppmに観察されるシグナルとの積分強度に基づき算出した。
【0099】
〔実施例1〕
(バインダー組成物の調製)
内容量2リットルのオートクレーブに、イオン交換水1096g、メトローズ90SH-100(信越化学工業(株)製)0.2g、50wt%ジイソプロピルペルオキシジカーボネート-フロン225cb溶液2.2g、フッ化ビニリデン426g、およびアクリロイロキシプロピルコハク酸の初期添加量0.2gの各量を仕込み、26℃まで1時間で昇温した。その後、26℃を維持し、6wt%アクリロイロキシプロピルコハク酸水溶液を0.5g/minの速度で徐々に添加した。得られた重合体スラリーを脱水、乾燥してフッ化ビニリデン共重合体(VDF/APS)を得た。アクリロイロキシプロピルコハク酸は、初期に添加した量を含め、全量4.0gを添加した。
【0100】
(電極合剤の調製)
電極活物質としてのNCA811に導電助剤としてカーボンブラックを加え、粉体混合を行った。一方、フッ化ビニリデン共重合体(VDF/APS)およびポリアクリル酸(和光純薬工業株式会社製、和光一級、平均分子量25000)をN-メチル-2ピロリドン(以下、NMP)に溶解し、6重量%濃度の重合体溶液を作製した。NCA811およびカーボンブラックの混合物に対し、重合体溶液を2回に分けて添加し、混練をおこなった。具体的には、固形分濃度変化の測定では固形分濃度が84.2重量%となるように、スラリーの粘度変化測定では固形分濃度が81.5重量%となるように重合体溶液を添加し、2000rpmで2分間1次混練を行った。次いで、残りの重合体溶液を添加して、固形分濃度変化の測定では固形分濃度が72.0重量%となるように、スラリーの粘度変化測定では固形分濃度が75重量%となるようにし、2000rpmで3分間2次混練を行うことで、電極合剤を得た。得られた電極合剤における電極活物質、カーボンブラック、および重合体(フッ化ビニリデン共重合体およびポリアクリル酸の総量)の重量比は、固形分濃度変化の測定ではこの順で、100:2:1、スラリーの粘度変化測定ではこの順で、100:2:2である。また、フッ化ビニリデン共重合体(VDF/APS)とポリアクリル酸のブレンド比は、重量比で9:1である。
【0101】
(電極構造体の作製)
得られた電極合剤を、厚み15μmのアルミ箔上にバーコーターで塗布し、これを110℃で30分間、さらに130℃で2時間加熱乾燥して、乾燥状態における電極合剤の目付け量がおよそ200g/m2の電極構造体を作製した。
【0102】
(スラリー固形分濃度変化およびスラリー粘度変化の測定)
得られた電極合剤に関し、スラリー固形分濃度変化について測定を行った。結果を表1に示す。また、得られた電極合剤に関し、スラリー粘度を測定し、保存後の粘度変化を確認した。結果を表2に示す。
【0103】
〔実施例2〕
ポリアクリル酸(和光純薬工業株式会社製、和光一級、平均分子量5000)を使用した以外は、実施例1と同様にして電極合剤を調製し、スラリー固形分濃度変化およびスラリー粘度について測定を行った。
【0104】
〔実施例3〕
フッ化ビニリデン共重合体(VDF/APS)を、フッ化ビニリデンとマレイン酸モノメチルとの共重合体(VDF/MMM)に変更した以外は、実施例1と同様にして電極合剤を調製し、スラリー固形分濃度変化およびスラリー粘度について測定を行った。
【0105】
フッ化ビニリデン共重合体(VDF/MMM)は、次のように調製した。内容量2リットルのオートクレーブに、分散媒としてイオン交換水1040g、メチルセルロース0.8g、ジイソプロピルペルオキシジカーボネート2g、フッ化ビニリデン396gおよびマレイン酸モノメチルエステル4g(フッ化ビニリデン:マレイン酸モノメチルエステル=100:1.01)を添加して、28℃で懸濁重合した。重合完了後、重合体スラリーを脱水した後に、80℃20時間乾燥してフッ化ビニリデン共重合体(VDF/MMM)を得た。
【0106】
〔実施例4〕
電極活物質としてNCM523を用いた以外は、実施例2と同様にして電極合剤を調製し、スラリー固形分濃度変化およびスラリー粘度について測定を行った。
【0107】
〔比較例1〕
重合体として、ポリアクリル酸を混合せずにフッ化ビニリデン共重合体(VDF/APS)のみを使用したこと以外は、実施例1と同様にして電極合剤を調製し、スラリー固形分濃度変化およびスラリー粘度について測定を行った。
【0108】
〔比較例2〕
重合体として、ポリアクリル酸を混合せずにフッ化ビニリデン共重合体(VDF/APS)のみを使用し、電極活物資をNCM523に変更した以外は、実施例1と同様にして電極合剤を調製し、スラリー固形分濃度変化およびスラリー粘度について測定を行った。
【0109】
〔比較例3〕
ポリアクリル酸をポリビニルアルコール(PVA)に変更したこと以外は、実施例1と同様にして電極合剤を調製し、スラリー固形分濃度変化およびスラリー粘度について測定を行った。
【0110】
〔比較例4〕
ポリアクリル酸を、フッ化ビニリデンとクロロトリフルオロエチレンとの共重合体であるフッ化ビニリデン系共重合体(VDF/CTFE)に変更した以外は、実施例1と同様にして電極合剤を調製し、スラリー固形分濃度変化およびスラリー粘度について測定を行った。フッ化ビニリデン系共重合体(VDF/APS)と、フッ化ビニリデン共重合体(VDF/CTFE)との重量比は、5:5である。
【0111】
フッ化ビニリデン系共重合体(VDF/CTFE)は、次のように調製した。内容量2リットルのオートクレーブに、イオン交換水1040g、メチルセルロース0.4g、ジイソプロピルパーオキシジカーボネート1.6g、酢酸エチル2g、フッ化ビニリデン372g、およびクロロトリフルオロエチレン28gを仕込み、28℃で懸濁重合を行った。重合完了後、重合体スラリーを脱水し、脱水した重合体スラリーを水洗し、再度重合体スラリーを脱水した後に、80℃20時間乾燥してフッ化ビニリデン共重合体(VDF/CTFE)を得た。得られたフッ化ビニリデン共重合体(VDF/CTFE)のインヘレント粘度は、2.10dl/gであった。
【0112】
【0113】
【0114】
表1に示されるように、バインダー組成物にポリアクリル酸を含む電極合剤では、4日保存した後であっても、スラリーの固形分濃度変化が抑えられていた。ポリアクリル酸と構造が類似しているポリビニルアルコールを用いた場合には、このようなスラリーの固形分濃度変化の抑制は認められなかった。
【0115】
また、表2に示されるように、バインダー組成物にポリアクリル酸を含む電極合剤では、6日または9日保存した後であっても、電極合剤スラリーのゲル化が抑えられていた。
【産業上の利用可能性】
【0116】
本発明は、リチウムイオン二次電池に利用することができる。
【符号の説明】
【0117】
1 正極
2 負極
3 セパレータ
5 金属ケーシング
10 電極構造体
11 集電体
12a,12b 電極合剤層