(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-04
(45)【発行日】2022-02-15
(54)【発明の名称】心臓弁プロテーゼ
(51)【国際特許分類】
A61F 2/24 20060101AFI20220207BHJP
【FI】
A61F2/24
(21)【出願番号】P 2018514858
(86)(22)【出願日】2016-10-05
(86)【国際出願番号】 US2016055585
(87)【国際公開番号】W WO2017062515
(87)【国際公開日】2017-04-13
【審査請求日】2019-10-01
(32)【優先日】2015-10-09
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】511126109
【氏名又は名称】メドトロニック ヴァスキュラー インコーポレイテッド
(74)【代理人】
【識別番号】100107489
【氏名又は名称】大塩 竹志
(72)【発明者】
【氏名】ロバートソン, スコット
(72)【発明者】
【氏名】ハワード, エリオット
【審査官】寺澤 忠司
(56)【参考文献】
【文献】米国特許出願公開第2013/0190861(US,A1)
【文献】米国特許出願公開第2014/0249622(US,A1)
【文献】米国特許出願公開第2014/0222136(US,A1)
【文献】国際公開第2014/170463(WO,A1)
【文献】米国特許出願公開第2012/0022640(US,A1)
【文献】米国特許出願公開第2011/0137397(US,A1)
【文献】特表2014-522678(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61F 2/24
(57)【特許請求の範囲】
【請求項1】
患者における、血管系内に送達するための圧縮構成と、天然心臓弁内で展開するための拡張構成と、を有する心臓弁プロテーゼであって、
フレームを備え、前記フレームが、
第1の端及び第2の端を有する弁支持体であって、その中に人工弁構成部品を維持するように構成されている、弁支持体と、
前記弁支持体の前記第2の端から延在する複数の支持アームと、を含み、前記心臓弁プロテーゼが前記拡張構成にあるとき、
前記複数の支持アームが、前記天然心臓弁の弁輪下面と係合するために前記弁支持体の前記第1の端に向かって延在するように構成されており、
前記複数の支持アームのうちの1つ以上が、曲線形状の支持アームを含み、前記曲線形状の支持アームが、対向する第1の弓状領域及び第2の弓状領域を有するように形成されており、前記第1の弓状領域及び前記第2の弓状領域が、それらの間に延在する直線領域によって長手方向に分離されており、前記第1の弓状領域が、前記第2の端に近接する前記弁支持体に向かって湾曲するように形成されており、前記直線領域が、前記第1の弓状領域と前記第2の弓状領域とを接合しながら、前記弁支持体に向かって傾斜するように形成されており、前記第2の弓状領域が、前記第1の端に近接する前記弁支持体から離れて湾曲するように形成されており、
前記曲線形状の支持アームの前記第2の弓状領域は、前記天然心臓弁における組織と非外傷的に係合するように構成された着地ゾーンを画定し、
前記フレームは、半径方向に延在するセグメントをさらに備え、前記心臓弁プロテーゼを前記天然心臓弁に固定するために、前記心臓弁プロテーゼが前記拡張構成にあるとき、前記半径方向に延在するセグメントが、前記曲線形状の支持アームの前記着地ゾーンから長手方向に離間されており、かつ前記着地ゾーンに対向して
おり、
前記着地ゾーンの幅が、前記曲線形状の支持アームの残りの幅よりも大きい、心臓弁プロテーゼ。
【請求項2】
前記曲線形状の支持アームの前記第1の弓状領域及び前記第2の弓状領域並びに前記直線領域が、実質的にS字形状を有する、請求項1に記載の心臓弁プロテーゼ。
【請求項3】
前記着地ゾーンが、1つ以上の組織把持特徴部を含む、請求項1に記載の心臓弁プロテーゼ。
【請求項4】
前記半径方向に延在するセグメントが、前記天然心臓弁の弁輪上面と係合するために、前記弁支持体の前記第1の端から半径方向に延在する、請求項1に記載の心臓弁プロテーゼ。
【請求項5】
前記曲線形状の支持アームの前記第1の弓状領域が第1の曲率半径を有し、前記曲線形状の支持アームの前記第2の弓状領域が第2の曲率半径を有し、前記第2の曲率半径が前記第1の曲率半径と実質的に等しい、請求項1に記載の心臓弁プロテーゼ。
【請求項6】
前記曲線形状の支持アームの前記第1の弓状領域が第1の曲率半径を有し、前記曲線形状の支持アームの前記第2の弓状領域が第2の曲率半径を有し、前記第2の曲率半径が前記第1の曲率半径よりも大きい、請求項1に記載の心臓弁プロテーゼ。
【請求項7】
前記曲線形状の支持アームの前記第1の弓状領域が第1の曲率半径を有し、前記曲線形状の支持アームの前記第2の弓状領域が第2の曲率半径を有し、前記第2の曲率半径が前記第1の曲率半径よりも小さい、請求項1に記載の心臓弁プロテーゼ。
【請求項8】
前記天然心臓弁が弁輪を有する僧帽弁であり、前記曲線形状の支持アームの前記第2の弓状領域が、前記僧帽弁の前記弁輪の弁輪下面及び左心室の壁と係合するように構成されている、請求項1に記載の心臓弁プロテーゼ。
【請求項9】
心臓の天然弁領域に埋め込むための心臓弁プロテーゼであって、前記プロテーゼが、
上流部分及び下流部分を有する弁支持体であって、その中に人工弁構成部品を保持するように構成されている、弁支持体と、
前記弁支持体の前記下流部分から延在する複数の支持アームであって、前記心臓弁プロテーゼが拡張構成にあるとき、各支持アームが、前記下流部分から前記上流部分に向かって延在するように構成されており、前記拡張構成で、前記複数の支持アームが各々、曲線形状を有し、前記曲線形状が、
第1の曲率半径を有する第1の湾曲領域、
第2の曲率半径を有する第2の湾曲領域、及び
前記第1の湾曲領域と前記第2の湾曲領域との間に延在する細長い領域を有する、複数の支持アームと、を備え、前記複数の支持アームの前記曲線形状が、前記天然弁領域によってその上に及ぼされる歪み力を吸収するように構成されており、
前記心臓弁プロテーゼは、前記弁支持体の前記上流部分に連結された半径方向に延在するセグメントをさらに備え、
前記拡張構成で、前記複数の支持アームの前記第2の湾曲領域の非外傷的着地ゾーンが、前記半径方向に延在するセグメントに対向するように構成されており、これにより、圧縮力が前記非外傷的着地ゾーン及び前記半径方向に延在するセグメントによって前記天然弁領域における弁輪に及ぼされて、前記心臓弁プロテーゼの動きを阻止するようにな
り、
前記非外傷的着地ゾーンの幅が、前記曲線形状の残りの幅よりも大きい、心臓弁プロテーゼ。
【請求項10】
前記曲線形状が、実質的にS字形状である、請求項
9に記載の心臓弁プロテーゼ。
【請求項11】
前記複数の支持アームの第1の湾曲領域が、前記弁支持体の下流端を越えて下流方向に延在する、請求項
9に記載の心臓弁プロテーゼ。
【請求項12】
前記心臓弁プロテーゼが前記拡張構成にあるとき、前記半径方向に延在するセグメントが、前記天然弁領域の弁輪上面と係合するように構成されている、請求項
9に記載の心臓弁プロテーゼ。
【請求項13】
前記天然弁領域が僧帽弁であり、前記弁輪が僧帽弁輪であり、前記複数の支持アームの前記第2の湾曲領域の前記非外傷的着地ゾーンが前記半径方向に延在するセグメントから長手方向に離間されており、これにより、前記僧帽弁輪がそれらの間に位置付けられるようになり得る、請求項
10に記載の心臓弁プロテーゼ。
【請求項14】
前記半径方向に延在するセグメント、前記弁支持体、又はそれらの両方にわたって延在する密封材料であって、弁傍漏れを阻止するように構成されている、密封材料を更に備える、請求項
12に記載の心臓弁プロテーゼ。
【発明の詳細な説明】
【技術分野】
【0001】
本技術は、概して、心臓弁プロテーゼ及び関連方法に関する。具体的には、いくつかの実施形態は、僧帽弁などの天然心臓弁の経皮置換のための経カテーテル心臓弁装置を対象とする。
【背景技術】
【0002】
人間の心臓は、心周期中に身体を通って血液循環を提供する4つの室のある筋肉性器官である。4つの主要な室としては、肺循環を供給する右心房及び右心室、並びに肺から受け取った酸素化血液を身体の他の部位に供給する左心房及び左心室が挙げられる。心臓を通って確実に一方向に血液が流れるようにするために、心房と心室との接合部間に房室弁(三尖弁及び僧帽弁)が存在し、半月弁(肺動脈弁及び大動脈弁)が、肺及び他の身体の他の部位に繋がる心室の出口を管理する。これらの弁は、心室の収縮及び弛緩によって引き起こされる血圧の変化に応答して開閉する弁尖を含む。弁尖は互いに離れて移動して開き、血液を弁の下流に流すことができ、接合して閉鎖し、上流様式でバックフロー又は逆流を防止する。
【0003】
損傷又は欠陥によって引き起こされるものなどの心臓弁に関連する疾患としては、狭窄及び弁の不全又は逆流を挙げることができる。例えば、弁狭窄は、弁の狭小及び硬化を引き起こし、下流の心室への血流が適切な流量で生じることを妨げる場合があり、心臓がより激しく働いて、罹患弁を通る血液の圧送を引き起こす場合がある。弁が完全に閉まらないときに弁閉鎖不全又は逆流が生じ、血液が逆行して流れることになり、これにより心臓の効率の低下を引き起こす。先天性、加齢性、薬物誘発性、又は場合によっては感染症によって引き起こされる可能性のある罹患又は損傷した弁は、弾力性及び効率を失い、拡大し、肥厚した心臓となり得る。心臓弁疾患のいくつかの症状としては、衰弱、息切れ、めまい、失神、動悸、貧血及び浮腫、並びに血栓を挙げることができ、これらは、脳卒中又は肺塞栓症の可能性を高め得る。症状は、多くの場合、衰弱させ、かつ/又は生命を脅かすのに十分なほど深刻な場合がある。
【0004】
人工心臓弁が、罹患した及び/又は損傷した心臓弁の修復及び置換に向けて開発されている。このような弁は、カテーテルベースのシステムを通して罹患した心臓弁の部位に経皮的に送達され、展開され得る。このような人工心臓弁は、人工弁が送達カテーテルのシース構成部品内に収容され、患者の血管系を通って前進することができるように、薄型又は圧縮/収縮配置の状態にある間に送達され得る。一旦治療部位に位置付けられると、人工弁は、拡張されて、罹患心臓弁領域において組織と係合し、例えば人工弁を所定の位置に維持することができる。これらの人工弁は、心臓弁の修復及び/又は置換を行うための低侵襲方法となるが、埋め込まれた人工弁と周辺組織との間の漏れ(弁傍漏れ)を防止し、かつ心周期中に起こり得る人工弁の動き及び/又は移動を防止するための人工弁を提供するにあたっての課題は、依然として存在している。例えば、僧帽弁は、人工弁の離脱、又は腱索及び残りの弁尖が存在し、弁の衝突に至ることによる不適切な配置など、多数の問題を呈する。更なる課題としては、天然解剖学的構造によって付与された歪み力に供されたとき及び心周期中に生じ得る様々な構成部品の早期破損に抵抗する人工弁を提供することを挙げることができる。僧帽弁の治療に関連する更なる解剖学的課題としては、楕円形状又は腎臓の形状に適合するような人工弁を提供することが挙げられる。更に、腎臓形状の僧帽弁輪は、弁の外壁に沿ってのみ筋肉を有し、僧帽弁と大動脈弁とを分離する薄い血管壁のみを有する。この解剖学的筋肉の分布は、左心室収縮で経験する高圧と共に、僧帽弁プロテーゼにとって問題となり得る。
【発明の概要】
【課題を解決するための手段】
【0005】
本明細書の実施形態は、心臓弁プロテーゼ及びその経皮埋め込み方法に関する。心臓弁プロテーゼは、血管系又は他の体内管腔を介して患者の天然心臓弁に送達するための圧縮構成と、天然心臓弁内で展開するための拡張構成とを有する。一実施形態では、心臓弁プロテーゼは、フレームを備えてもよく、フレームは、弁支持体であって、その中に人工弁構成部品を維持するように構成されている、弁支持体と、弁支持体から延在する複数の支持アームとを有し、心臓弁プロテーゼが拡張構成にあるとき、複数の支持アームは、弁支持体の第1の端に向かって延在し、天然心臓弁の弁輪下面と係合するように構成されている。複数の支持アームのうちの1つ以上は、曲線形状の支持アームを備え、曲線形状の支持アームは、対向する第1及び第2の弓状領域を有するように形成されており、第1及び第2の弓状領域は、それらの間に延在する直線領域によって長手方向に分離されており、第1の弓状領域は、その下流部分に近接する弁支持体に向かって湾曲するように形成されており、直線領域は、第1の弓状領域と第2の弓状領域とを接合しながら、弁支持体に向かって傾斜するように形成されており、第2の弓状領域は、その上流部分に近接する弁支持体から離れて湾曲するように形成されている。
【0006】
別の実施形態では、天然心臓弁領域に埋め込むための心臓弁プロテーゼは、上流部分及び下流部分を有する弁支持体を備え、弁支持体は、その中に人工弁構成部品を保持するように構成されており、かつ弁支持体の下流部分から延在する複数の支持アームを有する。心臓弁プロテーゼが拡張構成にあるとき、各支持アームは、下流部分から上流部分に向かって延在しており、かつ第1の湾曲領域、第2の湾曲領域、及び細長い領域を有する曲線形状を有するように構成されており、第1の湾曲領域は第1の曲率半径を有し、第2の湾曲領域は第2の曲率半径を有し、細長い領域は第1の湾曲領域と第2の湾曲領域との間に延在している。このような支持アームでは、曲線形状は、天然弁領域によってその上に及ぼされる歪み力を吸収するように構成されている。
【0007】
別の実施形態では、患者の天然僧帽弁を治療するための心臓弁プロテーゼが開示される。心臓弁プロテーゼは、上流部分、下流部分、及び第1の断面寸法を有する円筒状支持体を備え、円筒状支持体は、逆行性血流を阻止する人工弁構成部品を維持するように構成されている。複数のS字形状支持アームが円筒形支持体の下流部分から延在し、これにより、心臓弁プロテーゼが拡張構成にあるとき、S字形状の支持アームが上流方向に延在し、天然僧帽弁の弁輪上又は下の心臓組織と係合するように構成されている。半径方向に延在するセグメントは、円筒状支持体の上流部分から延在し、第1の断面寸法よりも大きい第2の断面寸法を有する。半径方向に延在するセグメントは、天然僧帽弁の弁輪上又は上方の心臓組織と係合するように構成されており、心臓弁プロテーゼが拡張構成にあり、かつ天然僧帽弁で展開されたとき、弁輪は、S字形状の支持アームの上流湾曲セグメントと半径方向に延在するセグメントとの間に位置付けられる。
本発明は、例えば、以下を提供する。
(項目1)
患者における、血管系内に送達するための圧縮構成と、天然心臓弁内で展開するための拡張構成と、を有する心臓弁プロテーゼであって、
フレームを備え、前記フレームが、
第1の端及び第2の端を有する弁支持体であって、その中に人工弁構成部品を維持するように構成されている、弁支持体と、
前記弁支持体の前記第2の端から延在する複数の支持アームと、を含み、前記心臓弁プロテーゼが前記拡張構成にあるとき、
前記複数の支持アームが、前記天然心臓弁の弁輪下面と係合するために前記弁支持体の前記第1の端に向かって延在するように構成されており、
前記複数の支持アームのうちの1つ以上が、曲線形状の支持アームを含み、前記曲線形状の支持アームが、対向する第1の弓状領域及び第2の弓状領域を有するように形成されており、前記第1の弓状領域及び前記第2の弓状領域が、それらの間に延在する直線領域によって長手方向に分離されており、前記第1の弓状領域が、前記第2の端に近接する前記弁支持体に向かって湾曲するように形成されており、前記直線領域が、前記第1の弓状領域と前記第2の弓状領域とを接合しながら、前記弁支持体に向かって傾斜するように形成されており、前記第2の弓状領域が、前記第1の端に近接する前記弁支持体から離れて湾曲するように形成されている、心臓弁プロテーゼ。
(項目2)
前記曲線形状の支持アームの前記第1の弓状領域及び前記第2の弓状領域並びに前記直線領域が、実質的にS字形状を有する、項目1に記載の心臓弁プロテーゼ。
(項目3)
前記曲線形状の支持アームの前記第2の弓状領域が、前記天然心臓弁における組織と非外傷的に係合するように構成された着地ゾーンを画定する、項目1に記載の心臓弁プロテーゼ。
(項目4)
前記着地ゾーンの幅が、前記曲線形状の支持アームの残りの幅よりも大きい、項目3に記載の心臓弁プロテーゼ。
(項目5)
前記着地ゾーンが、1つ以上の組織把持特徴部を含む、項目3に記載の心臓弁プロテーゼ。
(項目6)
前記フレームが、前記天然心臓弁の弁輪上面と係合するために、前記弁支持体の前記第1の端から半径方向に延在する、半径方向に延在するセグメントを更に備え、前記心臓弁プロテーゼを前記天然心臓弁に固定するために、前記心臓弁プロテーゼが前記拡張構成にあるとき、前記半径方向に延在するセグメントが、前記曲線形状の支持アームの前記着地ゾーンから長手方向に離間されており、前記着地ゾーンに対向している、項目3に記載の心臓弁プロテーゼ。
(項目7)
前記曲線形状の支持アームの前記第1の弓状領域が第1の曲率半径を有し、前記曲線形状の支持アームの前記第2の弓状領域が第2の曲率半径を有し、前記第2の曲率半径が前記第1の曲率半径と実質的に等しい、項目1に記載の心臓弁プロテーゼ。
(項目8)
前記曲線形状の支持アームの前記第1の弓状領域が第1の曲率半径を有し、前記曲線形状の支持アームの前記第2の弓状領域が第2の曲率半径を有し、前記第2の曲率半径が前記第1の曲率半径よりも大きい、項目1に記載の心臓弁プロテーゼ。
(項目9)
前記曲線形状の支持アームの前記第1の弓状領域が第1の曲率半径を有し、前記曲線形状の支持アームの前記第2の弓状領域が第2の曲率半径を有し、前記第2の曲率半径が前記第1の曲率半径よりも小さい、項目1に記載の心臓弁プロテーゼ。
(項目10)
前記天然心臓弁が弁輪を有する僧帽弁であり、前記曲線形状の支持アームの前記第2の弓状領域が、前記僧帽弁の前記弁輪の弁輪下面及び左心室の壁と係合するように構成されている、項目1に記載の心臓弁プロテーゼ。
(項目11)
心臓の天然弁領域に埋め込むための心臓弁プロテーゼであって、前記プロテーゼが、
上流部分及び下流部分を有する弁支持体であって、その中に人工弁構成部品を保持するように構成されている、弁支持体と、
前記弁支持体の前記下流部分から延在する複数の支持アームであって、前記心臓弁プロテーゼが拡張構成にあるとき、各支持アームが、前記下流部分から前記上流部分に向かって延在するように構成されており、前記拡張構成で、前記複数の支持アームが各々、曲線形状を有し、前記曲線形状が、
第1の曲率半径を有する第1の湾曲領域、
第2の曲率半径を有する第2の湾曲領域、及び
前記第1の湾曲領域と前記第2の湾曲領域との間に延在する細長い領域を有する、複数の支持アームと、を備え、前記複数の支持アームの前記曲線形状が、前記天然弁領域によってその上に及ぼされる歪み力を吸収するように構成されている、心臓弁プロテーゼ。
(項目12)
前記曲線形状が、実質的にS字形状である、項目11に記載の心臓弁プロテーゼ。
(項目13)
前記複数の支持アームの第1の湾曲領域が、前記弁支持体の下流端を越えて下流方向に延在する、項目11に記載の心臓弁プロテーゼ。
(項目14)
前記弁支持体の前記上流部分に連結された半径方向に延在するセグメントを更に備え、前記心臓弁プロテーゼが前記拡張構成にあるとき、前記半径方向に延在するセグメントが、前記天然弁領域の弁輪上面と係合するように構成されている、項目11に記載の心臓弁プロテーゼ。
(項目15)
前記拡張構成で、前記複数の支持アームの前記第2の湾曲領域の非外傷的着地ゾーンが、前記半径方向に延在するセグメントに対向するように構成されており、これにより、圧縮力が前記非外傷的着地ゾーン及び前記半径方向に延在するセグメントによって前記天然弁領域における弁輪に及ぼされて、前記心臓弁プロテーゼの動きを阻止するようになる、項目14に記載の心臓弁プロテーゼ。
(項目16)
前記天然弁領域が僧帽弁であり、前記弁輪が僧帽弁輪であり、前記複数の支持アームの前記第2の湾曲領域の前記非外傷的着地ゾーンが前記半径方向に延在するセグメントから長手方向に離間されており、これにより、前記僧帽弁輪がそれらの間に位置付けられるようになり得る、項目15に記載の心臓弁プロテーゼ。
(項目17)
前記半径方向に延在するセグメント、前記弁支持体、又はそれらの両方にわたって延在する密封材料であって、弁傍漏れを阻止するように構成されている、密封材料を更に備える、項目14に記載の心臓弁プロテーゼ。
(項目18)
患者の天然僧帽弁を治療するための心臓弁プロテーゼであって、
上流部分、下流部分、及び第1の断面寸法を有する円筒状支持体であって、逆行性血流を阻止する人工弁構成部品を維持するように構成されている、円筒状支持体と、
前記円筒状支持体の前記下流部分から延在する複数のS字形状の支持アームであって、前記心臓弁プロテーゼが拡張構成にあるとき、前記S字形状の支持アームが、上流方向に延在して、前記天然僧帽弁の弁輪上又は下の心臓組織と係合するように構成されている、S字形状の支持アームと、
前記円筒状支持体の前記上流部分から延在し、前記第1の断面寸法よりも大きい前記第2の断面寸法を有する半径方向に延在するセグメントであって、前記天然僧帽弁の前記弁輪上又は上方の心臓組織と係合するように構成されている、半径方向に延在するセグメントと、備える、プロテーゼ。
(項目19)
前記心臓弁プロテーゼが前記拡張構成にあり、かつ前記天然僧帽弁で展開されたとき、前記弁輪が、前記S字形状の支持アームの上流湾曲セグメントと前記半径方向に延在するセグメントとの間に位置付けられる、項目18に記載の心臓弁プロテーゼ。
(項目20)
各S字形状の支持アームが、その上流湾曲セグメント上に着地ゾーンを含み、前記着地ゾーンが、前記天然僧帽弁の前記弁輪上又は下の心臓組織と非外傷的に係合するように構成されている、項目19に記載の心臓弁プロテーゼ。
【0008】
本技術の前述及び他の特徴及び態様は、以下の実施形態の説明及び添付の図面に例解されるように、よりよく理解することができる。添付の図面は、本明細書に組み込まれ、本明細書の一部を形成し、本技術の原理を例解する役割を更に果たす。図面内の構成部品は、必ずしも原寸に比例していない。
【図面の簡単な説明】
【0009】
【
図1】天然弁構造体を有する哺乳類の心臓の概略断面図である。
【
図2A】解剖学的構造及び天然僧帽弁を示す哺乳類の心臓の左心室の概略断面図である。
【
図2B】弁尖が十分に接合せず、かつ本技術による人工心臓弁の様々な実施形態との置換に好適である、逸脱僧帽弁を有する心臓の左心室の概略断面図である。
【
図3】周囲の心臓構造から隔離された僧帽弁の上面概略図であり、弁輪及び天然弁尖を示す。
【
図4A】本技術の一実施形態による、展開又は拡張された構成(例えば、展開状態)での心臓弁プロテーゼの側面図である。
【
図4B】本技術の一実施形態による、
図4Aの心臓弁プロテーゼの上面図である。
【
図4C】本技術の一実施形態による
図4Aの線4C-4Cに沿って切り取られた心臓弁プロテーゼの上面図である。
【
図5A】本技術の実施形態による天然僧帽弁に埋め込まれた心臓弁プロテーゼの部分側面図を示す心臓の切り欠き図を例解する。
【
図5B】本技術の実施形態による展開された構成(例えば、拡張状態)で示された
図5Aの心臓弁プロテーゼの拡大断面図である。
【
図5C】本技術の別の実施形態による展開された構成(例えば、拡張状態)で示された心臓弁プロテーゼの一部の拡大断面図である。
【
図6A】本技術の追加の実施形態による様々な支持アーム構成の側面図である。
【
図6B】本技術の追加の実施形態による様々な支持アーム構成の側面図である。
【
図6C】本技術の追加の実施形態による様々な支持アーム構成の側面図である。
【
図7】本技術の一実施形態による、支持アーム上の複数の可撓性領域を示す心臓弁プロテーゼの部分側面図である。
【
図8A】本技術の更なる実施形態による歪み力に応答して屈曲する様々な支持アームの側面図である。
【
図8B】本技術の更なる実施形態による歪み力に応答して屈曲する様々な支持アームの側面図である。
【
図8C】本技術の更なる実施形態による歪み力に応答して屈曲する様々な支持アームの側面図である。
【
図8D】本技術の更なる実施形態による歪み力に応答して屈曲する様々な支持アームの側面図である。
【
図8E】本技術の更なる実施形態による歪み力に応答して屈曲する様々な支持アームの側面図である。
【
図8F】本技術の更なる実施形態による歪み力に応答して屈曲する様々な支持アームの側面図である。
【
図8G】本技術の更なる実施形態による歪み力に応答して屈曲する様々な支持アームの側面図である。
【
図8H】本技術の更なる実施形態による歪み力に応答して屈曲する様々な支持アームの側面図である。
【
図9】本技術の一実施形態による送達構成(例えば、薄型又は半径方向に圧縮された状態)で示された
図5A~5Bの心臓弁プロテーゼの拡大断面図である。
【
図10】本技術の別の実施形態による経中隔的アプローチを使用して心臓弁プロテーゼを埋め込む方法のステップを例解する心臓の断面図である。
【発明を実施するための形態】
【0010】
本技術の特定の実施形態が、図面を参照して本明細書に記載され、同様の参照番号は、同一又は機能的に類似の要素を示す。用語「遠位」及び「近位」は、治療医師に対して又は人工心臓弁装置に関する位置又は配向に関して、以下の説明で使用される。例えば、「遠位」又は「遠位に」は、送達手技に言及するとき、又は血管系に関連して、臨床医から離れているか、又は臨床医から離れる方向に離れた位置である。同様に、「近位」及び「近位に」は臨床医に近い、又は臨床医に向かう方向である。人工心臓弁装置に関して、用語「近位」及び「遠位」は、血流の方向に対する装置の部分の位置の場所を指すことができる。例えば、近位は上流位置又は血液流入位置を指し、遠位は下流位置又は血液流出位置を指すことができる。
【0011】
以下の詳細な説明は、事実上単なる例示であり、本技術又は本技術の用途及び使用を限定することを意図するものではない。本明細書の実施形態の説明は、心臓弁、特に僧帽弁の治療の文脈にあるが、本技術は、有用であると考えられる任意の他の身体通路においても使用され得る。更に、先行技術分野、背景、簡単な要約、又は以下の詳細な説明に提示された明示又は暗示された理論に拘束されることを意図するものではない。
【0012】
本明細書に記載の本技術の実施形態は、多くの方法で組み合わせて、僧帽弁などの心臓弁を含む身体の多くの弁のうちの1つ以上を治療することができる。本技術の実施形態は、多くの既知の外科手術及び手技と治療上組み合わせることができる。例えば、このような実施形態は、順行又は逆行アプローチによる僧帽弁、及びそれらの組み合わせなど、心臓弁にアクセスする既知の方法と組み合わせることができる。
【0013】
図1は、4つの心室(右心房RA、右心室RV、左心房LA、左心室LV)及び天然弁構造体(三尖弁TV、僧帽弁MV、肺動脈弁PV、大動脈弁AV)を描写する哺乳類の心臓10の概略断面図である。
図2Aは、解剖学的構造及び天然僧帽弁MVを示す哺乳類の心臓10の左心室LVの概略断面図である。
図1及び
図2Aを併せて参照すると、心臓10は、肺静脈を介して肺から酸素化血液を受け取る左心房LAを含む。左心房LAは、心室拡張期中に、酸素化血液を、僧帽弁MVを通して、左心室LVに圧送する。左心室LVは収縮期に収縮し、血液は大動脈弁AVを通って大動脈及び身体の残り部分に外向きに流れる。
【0014】
健常な心臓では、僧帽弁MVの弁尖LFは自由縁で均一に合わさるか、又は「接合」して閉じて、左心室LVの収縮の間に血液の逆流を防止する(
図2A)。
図2Aを参照すると、弁尖LFは、弁輪ANと呼ばれる結合組織の線維輪を介して周囲の心臓構造体を取設する。僧帽弁尖LFの可撓性弁尖組織は、乳頭筋PMに接続されており、これは、脊髄腱CTと呼ばれる分岐腱を介して、左心室LVの下部壁及び心室中隔IVSから上方に延在している。弁尖LFが十分に接合しない又は合わさらない逸脱僧帽弁MVを有する心臓10では、
図2Bに示すように、左心室LVから左心房LAへの漏れが生じる。いくつかの構造的欠陥が、腱索CTの破裂、乳頭筋PMの障害(例えば、虚血性心疾患による)、及び心臓及び/又は僧帽弁輪ANの拡大(例えば、心筋症)など、僧帽弁尖LFの逸脱及び逆流を引き起こし得る。
【0015】
図3は、周囲の心臓構造から隔離されている僧帽弁MVの上位図であり、弁尖LF及び弁輪ANの形状及び相対的サイズを更に例解している。示されるように、僧帽弁MVは、一般に、「D字」又は腎臓形状を有する。僧帽弁MVは、閉じられたときに接合ラインで後弁尖PLと合わさる前弁尖ALを含む。前弁尖AL及び後弁尖PLが合わない場合、弁尖AL、PL間又は弁尖間の角での横連合Cでの逆流が起こり得る。
【0016】
本技術による人工心臓弁装置及び関連方法の実施形態を、
図4A~10を参照して本項に記載する。本明細書に記載され、
図4A~
図10については、実施形態の特定の要素、部分構造、使用、利点、及び/又は他の態様は、本技術の追加の実施形態に従って、互いに適切に交換、置換、又は他の方法で構成され得ることは明らかであろう。
【0017】
本明細書において、患者の心臓における経皮送達及び人工心臓弁の埋め込みに好適なシステム、デバイス及び方法が提供される。いくつかの実施形態では、人工(artificial)又は人工(prosthetic)心臓弁の低侵襲性埋め込みによる弁疾患の治療のための方法及び装置が提示される。例えば、本明細書に記載された実施形態による人工心臓弁装置は、患者において(
図2Aに例解する逸脱僧帽弁を患う患者において、など)、罹患した若しくは損傷した天然僧帽弁又は先に埋め込まれた人工僧帽弁を置換するために埋め込むことができる。更なる実施形態では、本装置は、他の罹患した若しくは損傷した心臓弁、又は先に埋め込まれた人工心臓弁(三尖弁、肺動脈弁、及び心臓大動脈弁など)の埋め込み及び置換に好適である。
【0018】
図4Aは、本技術の一実施形態による、半径方向に拡張又は展開された構成(例えば、展開状態)の心臓弁プロテーゼ又は人工心臓弁装置100の側面図である。
図4Bは、
図4Aにおいて構成された心臓弁プロテーゼ100の上面図であり、
図4Cは、
図4Aの線C-Cに沿って切り取られたプロテーゼ100の上面図である。
図4A~4Cを併せて参照すると、心臓弁プロテーゼ100は、フレーム又はステント様支持構造体110を備え、これらは、内腔121を画定する管状部分又は構造的弁支持体120を含み、その中に人工弁構成部品130を保持、維持、及び/又は固定している。弁支持体120は、略円筒形状であってもよく、第1の端125に上流部分124を有し、第2の端127に下流部分126を有し、これらの部分は弁支持体120の長手方向軸L
Aに沿って配向されている(
図4A)。フレーム110は、1つ以上の支持アーム140を更に備え、これらの支持アームは、弁支持体120から半径方向外側に、かつ弁支持体120の下流部分126から概して上流方向に(例えば、僧帽弁の天然弁尖の後ろに到達して、左心室内の弁輪下領域内の心臓組織と係合するように)延在している。支持アーム140のうちの少なくともいくつかは、曲線形状141を有し得、曲線形状は、天然弁輪と非外傷的に係合して、歪み力を実質的に吸収するように構成されており、これにより、収縮期中に人工弁構成部品130が閉じているとき、プロテーゼ100が弁輪によって支持されるようになる。
【0019】
いくつかの実施形態では、また、
図4Aの半径方向拡張構成に示すとおり、フレーム110は、半径方向に延在するセグメント又は半径方向伸長部分150を更に含み、その少なくとも一部分が弁支持体120の上流部分124を取り囲み、かつそこから延在している。半径方向に延在するセグメント150は、複数の自己拡張型ストラット(strut)152を備えることができ、これらのストラットは、プロテーゼ100を拡張構成に展開させるとき、半径方向に拡張するように構成されている。いくつかの配置では、半径方向に延在するセグメント150は、天然僧帽弁腔内に埋め込む場合、弁輪上又は弁輪上方で組織と係合し得る。本実施形態では、半径方向に延在するセグメント150は、天然弁領域内の所望の位置(例えば、天然の弁尖と僧帽弁の弁輪との間)で弁支持体120を保持し得る。
図4Bを参照すると、半径方向に延在するセグメント150及び/若しくは弁支持体120は、密封材料160を含んでもよく、密封材料は、半径方向に延在するセグメント150の上部若しくは上流表面154又は下部若しくは下流表面155(
図4A)の周りに、並びに/又は弁支持体120の内壁122若しくは外壁123の周りに延在し、埋め込まれたプロテーゼ100と天然心臓組織との間の血液の漏れ(例えば、弁傍漏れ)を防止し得る。
【0020】
図4Bを参照すると、半径方向に延在するセグメント150及び弁支持体120が、略円形の断面形状を有するように示されており、半径方向に延在するセグメント150は、弁支持体120の断面寸法D
2よりも大きい断面寸法D
1を有する。いくつかの実施形態では、半径方向に延在するセグメント150、弁支持体120、又はその両方は、他の断面形状を有し得、D形状又は腎臓の形状の僧帽弁に適合するようになる。例えば、半径方向に延在するセグメント150及び/又は弁支持体120は、僧帽弁又は他の弁に適合するために不規則な、非円筒形の、又は楕円の形状構成に拡張し得る。更に、天然弁(例えば、僧帽弁、大動脈弁)は、独自にサイズ決めされ得、かつ/又は患者間で変化する他の独自の解剖学的形状及び特徴部を有することができ、こうした弁の置換又は修復のためのプロテーゼ100は、こうした天然弁のサイズ、幾何学的形状及び他の解剖学的特徴部に適応するために好適であり得る。例えば、半径方向に延在するセグメント150は、天然心臓弁領域内で拡張することができ、同時に、可撓性であり、これにより半径方向に延在するセグメント150によって係合されている領域に一致させ得る。
【0021】
また、
図4A及び
図4Bは、弁支持体120の第1の端125において外壁123から外向きに延在する複数のストラット152を有する半径方向に延在するセグメント150を示す。一実施形態では、ストラット152は、弁支持体120の周辺部の周りに比較的均一に配置され、個々のストラット152は、クラウン156において隣接するストラット152に接合させる。一実施形態では、クラウン156は、展開中及び全心周期にわたって心臓組織への損傷を防止する非外傷的先端157を有する。好適な半径方向に延在するセグメント150の例は、参照により全体が本明細書に組み込まれる米国特許公開第2015/0119982号に記載されている。
【0022】
ここで
図4A及び
図4Cを参照すると、複数の支持アーム140が、弁支持体120の下流部分126から延在し、弁支持体120の外壁123周辺部の周りに概ね均一に離間されている(
図4C)。図示されていない代替的配置では、支持アーム140は、周辺部の周りなどに不均一に離間され、グループ化され、不規則に離間されてもよい。特定の例では、支持アーム140は、展開したときに僧帽弁の前弁尖及び後弁尖と概ね整列する位置で、互いにより近くに一緒にグループ化され、弁支持体120から延在してもよい。
図4Cに示す実施形態は、弁支持体120周辺部の周りに均一に離間された12個の支持アーム140を有する。代替的な配置では、プロテーゼ100は、12個未満の支持アーム140、例えば2個の支持アーム、2~6個の支持アーム、6個以上の支持アーム、9個の支持アームなど、又は12個以上の支持アーム140を備え得る。
【0023】
図4Aを参照すると、支持アーム140は、弁支持体120から第2の端127に又はその近傍に延在してもよく、また、弁支持体120の外壁123に沿って、又は並行して上流部分124に概ね向かって延在するように記載してもよい。図示されているように、支持アーム140は、略曲線形状141又は類似の幾何学的形状を有することができる。曲線形状141は、対向する弓状又は湾曲領域142、144を含み、これらの領域は、これらの間に延在する傾斜した細長い、又は直線の領域143によって長手方向に分離されている。天然の僧帽弁内で使用するために位置付けられるとき、曲線形状の支持アーム140の弓状領域142は、下流湾曲セグメント142と称されてもよく、曲線形状の支持アーム140の弓状領域144は、上流湾曲セグメント144と称されてもよい。
【0024】
いくつかの実施形態では、曲線形状141は、第1の弓状(例えば、湾曲)領域142を含み、この第1の弓状領域は、外壁123に向かう方向に湾曲し、天然心臓弁の少なくとも1つの弁尖の一部分又は心臓腱索などの心臓弁領域内の他の構造体と係合するように形成されている。一実施形態では、第1の弓状領域142は、天然弁尖の下流縁の周りに延在してもよい。支持アーム140の内側区分において、支持アームは、第1の弓状領域142に追従し、かつ弁支持体120の中間又は中央部分170において外壁123に向かう方向に傾斜するように構成された直線領域143を含む。弁支持体120の第1の端125に最も近く、曲線形状141に沿って直線の又は細長い領域143に追従する支持アーム140の自由端区分においては、支持アーム140は、第2の弓状(例えば、湾曲した)領域144を更に含み、第2の弓状領域は、弁支持体120の外壁123から離れる方向に湾曲し、かつ埋め込まれたときに天然心臓弁で又は近接して、組織と係合するように形成されている。特定の例では、第2の弓状領域144は、非外傷的事態においては、弁輪下組織及び/又は心室の壁、例えば心室壁、の一部分(複数可)と係合することができる。
図4Aに言及すると、又は特定の実施形態では、第1の弓状領域142は、直線又は細長い領域143によって第2の弓状領域144から長手方向に分離されており、実質的にS字形の輪郭を形成又は画定している。
【0025】
図4A及び
図4Cに示す実施形態では、本明細書に更に記述するように、支持アーム140の各々の第2の弓状領域144が、接触領域又は着地ゾーン145を提供又は画定しており、接触領域又は着地ゾーンが弁輪下組織で又はその近傍で組織と非外傷的に係合するように構成されており、心室収縮期中、組織侵食を阻止する、かつ/又はプロテーゼ100の上流方向への動きに抵抗するようにしている。例解されているとおり、第2の弓状領域144は、着地ゾーン145を形成している拡幅部分及び/又は平坦部分446を含む。
図4Aに示すように、拡幅部分446は、支持アーム140の第1の弓状領域142における幅W
2よりも大きい第1の幅W
1を有する。プロテーゼ100を展開し、拡幅部分446を介して組織(例えば、弁輪下組織、天然弁尖、心室壁など)と接触すると、着地ゾーン145により、天然組織の接触がより大きい表面積にわたって効率よく分散され、組織侵食を阻止し、かつ支持アーム140への負荷応力を分散する。
図4A及び
図4Cに示す実施形態では、着地ゾーン145は、溝447を備え、溝は、拡幅部分446に沿って形成されており、これにより接触組織に対する着地ゾーン145の動きに対して付加的な障壁を提供することができる。代替的配置では、着地ゾーン145は、一旦展開されると、接触組織に対して付加的な動きへの抵抗を提供する隆起部、突出部、切込み部及び他の特徴部を含むことができる。様々な配置において、接触した天然組織に対する着地ゾーン145の動きに抵抗することによって、支持アーム140は、プロテーゼ100の埋め込み後に組織の侵食及び/又は摩耗を制限又は阻止する様式で非外傷的接触を提供する。ある実施形態では、
図4A及び
図4Cに示すとおり、支持アーム140は、アーム先端148を含み、アーム先端は、丸みをつけることができるか、又は展開中又は完全に埋め込まれたときのいずれかにおいてアーム先端148によって係合される心臓組織に対して非外傷性であり得る。例解された実施形態では、アーム先端148は、穴448を含み、穴は、半径方向に圧縮された構成において、支持アーム140を標的部位に送達するための送達カテーテル(図示せず)に取設するためのものである。加えて、又は代替的に、穴448のうちの1つ以上は、第2の材料(例えば、タンタル、プラチナ、金)が充填されていてもよく、これにより、X線透視誘導送達中、可視性が改善される。代替的配置では、支持アーム140は、本明細書の範囲から逸脱することなく、穴448及び/又は他の着地ゾーン特徴部(例えば、溝447)を含んでいなくてもよい。
【0026】
本明細書に記載のいくつかの実施形態では、初期の圧縮構成(例えば、図示していない送達状態)と展開構成(
図4A)との間で変形又は自己拡張するために、フレーム110は、ニッケルチタン合金(例えば、ニチノール)などの弾性材料又は展開又は拡張構成に戻るための機械的記憶を有する形状記憶材料から形成されている。一実施形態では、フレーム110は、プロテーゼ100の流入部分の半径方向に延在するセグメント150、弁支持体120、及び複数の支持アーム140を画定している一体構造であってよく、このように記載されているフレーム110は、ステンレス鋼、ニッケルチタン合金若しくはニチノールなどの擬似弾性金属、又はニッケル、コバルト、クロム若しくは他の金属の卑金属を有し得るいわゆる超合金から製造されてもよい。いくつかの配置では、フレーム110は、例えば、レーザ切断された、有窓性のニチノール又は他の金属管から一体構造として形成されてもよい。機械的記憶は、熱処理によってフレーム110を形成している構造体に対して付与され、例えば、ステンレス鋼においてばねのある調質度を達成するか、又は、ニチノールなど感受性の高い金属合金に形状記憶を設定することができる。フレーム110はまた、ポリマー、又は金属、ポリマー若しくは他の材料の組み合わせを含み得る。
【0027】
一実施形態では、フレーム110は、可撓性金属フレーム又は支持構造であってもよく、これらは、複数のリブ及び/又はストラット(例えばストラット128、152)を有し、これらのリブ及び/又はストラットは、格子を提供するように幾何学的に配置され、格子は半径方向に圧縮して、標的天然弁部位へ送達することができ(例えば、図示していないが、送達状態)、かつ格子は半径方向に拡張して、標的の天然弁部位において(例えば、
図4Aに示される半径方向に拡張された構成に)展開及び埋め込みを行うことができる。
図4Aに示す弁支持体120を参照すると、リブ及びストラット128は、複数の幾何学的パターンで配置することができ、これらのパターンは、十分な弾力性及び強度を提供しながら、膨張又は撓ませて収縮され、内部に格納された人工弁構成部品130の完全性を維持することができるようになる。例えば、ストラット128は、長手方向軸LAの周りに周方向パターンで配置することができ、周方向パターンとしては、一連のダイヤモンド、ジグザグ、正弦波、又は他の幾何学的形状が挙げられる。
【0028】
他の実施形態では、フレーム110は、別途製造された構成部品を含むことができ、これらの構成部品は、互いに連結、連接、溶接、又は他の方法で互いに機械的に取設され、フレーム110を形成している。例えば、半径方向に延在するセグメント150は、弁支持体120の上流部分124(例えば、弁支持体120のダイヤモンド形状の幾何学的形状によって画定されたストラット128上の取設点129a)に連結され得る。同様に、支持アーム140は、弁支持体120の下流部分126(例えば、弁支持体120のダイヤモンド形状の幾何学的形状によって画定されるストラット128上の取設点129b)に連結され得る。支持アーム140のうちの1つ以上及び半径方向に延在するセグメント150を弁支持体120に連結するために、他の配置及び取設点が意図される。特定の実施形態では、
図4Aに示すように、支持アーム140は、アーム支柱146を介して弁支持体120に連結され得る。一実施形態では、アーム支柱146は、フレーム110と一体化されてもよく、このため、アーム支柱146は、1つ以上のストラット128の伸長部である。別の実施形態では、アーム支柱146及び弁支持体120は、はんだ付け、溶接、接着、リベット若しくは他の締結具、機械的インターロック、又はこれらの任意の組み合わせなど、当該技術分野で公知の様々な方法によって連結され得る。一実施形態では、弁支持体120は、バルーン拡張可能な管状金属ステントであってもよく、フレーム110の半径方向に延在するセグメント150及び支持アーム140は、上述のように自己拡張するような材料から、及び方法によって形成されてもよい。本明細書による別の実施形態では、支持アーム140は、本明細書の範囲から逸脱することなく、弁支持体120の中間170又は中央部分170から延在するか、又はそれに連結されてもよい。
【0029】
図4B~
図4Cを参照すると、人工弁構成部品130は、弁支持体120の内壁122に連結されて、心臓弁プロテーゼ100を通る血流を支配してもよい。例えば、人工弁構成部品130は、複数の弁尖132(個々に132a~bとして示す)を含んでもよく、複数の弁尖が、接合して、プロテーゼ100を通る下流方向へ(例えば、第1の端125から第2の端127へ)の血流を可能にし、かつ上流方向へ(例えば、第2の端127から第1の端125へ)の血流を阻止するように構成されている。人工弁構成部品130が二尖弁の配置を有するように示されている場合、人工弁構成部品130は、3つの弁尖132(三尖弁の配置、図示なし)又は4つ以上の弁尖132を有し得、これらが接合して、人工弁構成部品130を閉じていると理解する。一実施形態では、弁尖132は、ウシ心膜又は他の天然材料(例えば、ヒト又は動物の心臓弁、大動脈根、大動脈壁、大動脈弁尖、心膜パッチなどの心膜組織、バイパス移植片、血管、腸粘膜下組織、臍帯組織などから得られる)から形成されてもよく、これらは、弁支持体120の内壁122に取り付けられる。別の実施形態では、弁尖132として使用するために好適な合成材料としては、DACRON(登録商標)ポリエステル(Invista North America S.A.R.L.(Wilmington、DE)から市販)、他の布材料、ナイロンブレンド、ポリマー材料、及び真空蒸着ニチノール製造材料が挙げられる。更に別の実施形態では、弁尖132は、Royal DSM(オランダ)から商品名DYNEEMAで市販されている超高分子量ポリエチレン材料で製造されてもよい。特定の弁尖材料では、弁尖の片面又は両面を、過成長を防止又は最小限に抑える材料で被覆することが望ましい場合がある。弁尖材料に耐久性があり、また、弁尖材料が伸張、変形、又は疲労を受けないことが更に望ましい場合もある。
【0030】
図5Aは、本技術の一実施形態による、心臓10の天然僧帽弁領域に埋め込まれたプロテーゼ100の部分側面図を示す概略図である。例解のみの目的でわずかに2個の支持アーム140を有するプロテーゼ100が
図5Aに示されている。プロテーゼ100は、いくつかの配置において、3個以上の支持アーム140など、例えば6個以上などの支持アーム140などを有し得ることが理解される。一般に、埋め込まれるとき、弁支持体120の上流部分124は、第1の心室、例えば、僧帽弁MV置換のための左心房LA、大動脈弁置換のための左心室などからの血液流入を受け入れるように配向され、下流部分126は、僧帽弁MV置換のための左心室LV、大動脈弁置換のための大動脈などの第2の心室又は構造への血液流出を放出するように配向される。
【0031】
動作中、心臓弁プロテーゼ100は、半径方向に圧縮された構成(図示せず)で、送達カテーテル(図示せず)内にある間に、僧帽弁MVの近くなど、心臓10の所望の天然弁領域まで血管内送達することが可能である。
図5Aを参照すると、プロテーゼ100は、支持アーム140及び弁支持体120の下流部分126が送達カテーテルから解放される天然僧帽弁輪AN内又はその下流の位置まで前進させることができる。次に、送達カテーテルは、弁支持体120の上流部分124及び半径方向に延在する部分150を、天然僧帽弁MV内又はその上流の位置で解放させ、半径方向に拡張された構成に向かって拡大し、天然心臓弁領域内で天然組織と係合するようにする。プロテーゼ100は、一旦送達カテーテルから解放されると、半径方向に延在するセグメント150が左心房内に存在し、かつ弁輪上領域で又はその近傍で組織と係合するように位置付けられ得る。プロテーゼ100は、支持アーム140が天然弁尖LFの外向き表面と係合し、支持アーム140と弁支持体120の外壁123との間で弁尖を捕捉するように、更に位置付けられる。支持アーム140の各々の接触領域又は着地ゾーン145は、本明細書に更に記述するように、弁輪下組織で又はその近傍で組織と係合するように構成されており、心室収縮期中に上流方向へのプロテーゼ100の動きに抵抗するようにする。
【0032】
図5Bは、半径方向に拡張された構成(例えば、展開状態)で示され、本技術の一実施形態による、
図5Aの心臓弁プロテーゼ100の拡大断面図である。
図5Bでは、プロテーゼ100は、例解図の右側の僧帽弁MVに位置付けられ、概略的に示される。心臓弁プロテーゼ100は、展開され、埋め込まれると、天然僧帽弁MV内の所望の位置及び方向に、弁支持体120内に保持又は維持される人工弁構成部品130を位置付けるように構成されている。
図5A及び5Bを併せて参照すると、プロテーゼ100のいくつかの特徴部は、半径方向に拡張された構成で埋め込まれたときに、プロテーゼ100の動きに対する抵抗をもたらし、組織の内植を促し、弁傍漏れを最小限に抑える若しくは防止するか、かつ/又は天然組織の侵食を最小限に抑える。例えば、半径方向に延在するセグメント150は、僧帽弁の上方の心房空間内で拡張し、心房空間内の心臓組織と係合するように位置付けられ得る。特に、弓状又はS字形状ストラット152の少なくとも下面又は頂点153は、弁輪上組織に接触するための組織係合領域を提供し得る。これより、例えば、弁傍漏れに対する密封を提供すること、及び天然弁輪に対するプロテーゼ100の下流への移動を阻止することができるようになる。
【0033】
いくつかの実施形態では、クラウン156を形成するために起立するストラット152の上方に配向されたリップ部分158は、更なる組織接触域を提供し得る。これにより、天然弁輪に対するプロテーゼ100の下流の動きを更に阻止し、かつ心周期中の天然弁内でのプロテーゼ100の揺動又は側方回転を阻止し、これにより、弁傍漏れを阻止し、天然弁輪内の人工弁構成部品130を確実に整列させ得る。他の実施形態では、半径方向に延在するセグメント150は、フランジ、鍔、リング、指状突出部又は心房空間への他の突出部であってもよく、これにより、弁輪上領域で又はその上方で組織を少なくとも一部分係合させるようにする。
【0034】
図5A及び
図5Bを併せて参照すると、支持アーム140は、曲線形状141を有し、弁支持体120の下流部分126から延在しているように示す。支持アーム140は、心室空間内の天然弁尖(存在する場合)及び/又は僧帽弁MVの弁輪下領域の両方と係合するように構成されている。一実施形態では、支持アーム140は、弁尖の外面(例えば、心室に面する側)と係合するように構成されており、これにより、天然弁尖が支持アーム140と弁支持体120の外壁123との間に捕捉されるようになる。このような一実施形態では、例えば第2の弓状領域144の移行頂点144aにおける支持アーム140の予め形成された曲線形状141は、弁支持体120の外壁123に向かって付勢させてもよく、これにより、圧縮力F
c1は、支持アーム140と弁支持体120の外壁123との間の空間105内に弁尖を狭持するか、把持するか、クリンプするか、又は別様に拘束する様式で、弁尖LFを外壁123に対して押し付けるようになる。
【0035】
天然弁の弁輪ANに対するプロテーゼ100の上流移動を更に阻止するために、第2の弓状領域144は、接触領域又は着地ゾーン145を介して、弁輪下領域(例えば、弁尖LFの後ろ)と係合するように構成されている。追加の実施形態では、第2の弓状領域144は、心室壁などの弁輪ANの下方の組織に接触することができる(
図5Cに示されるように)。弁輪下領域(例えば、
図5A及び
図5B)並びに/又は弁輪AN(
図5C)の下方の組織を、アーム先端148まで延在している例えば拡幅部分446(
図4A及び4C)を介して接触させることによって、着地ゾーン145は、より大きい領域にわたって表面接触を分散させて組織侵食を阻止し、かつ支持アーム140への負荷応力を非外傷的様式で分散させる。
【0036】
様々な配置において、支持アーム140の曲線形状141は、実質的にS字形状の輪郭を形成し得る。特定の配置では、支持アーム140は、より可撓性であってもよく(例えば、フレーム110の他の部分よりも)、かつ/又は、弾性材料(例えば、形状記憶材料、超弾性材料など)で製造されていてもよく、これにより、心臓10に埋め込まれたとき及び心周期中、支持アーム140上に及ぼされる力を吸収することができる。例えば、これらの力は、実質的にS字形状の輪郭の一時的変形、反屈、又は他の変形を引き起こし得る。同様に、支持アームの曲線形状141は、上流方向(例えば、接触ゾーン145)及び弁輪組織に対して圧縮力Fc
2を提供することができる。一実施形態では、半径方向に延在するセグメント150の頂点153(例えば、下面)は、間隙106によって第2の弓状領域の着地ゾーン145から長手方向に分離され得る。埋め込まれると、間隙106は、その中に弁輪組織を受け入れるようにサイズが決定され得る。一実施形態では、弓状ストラット152の頂点153は、間隙106にわたって圧縮力Fc
2に対向している弁輪の接触組織上に下向きの圧縮力Fc
3を提供することができる。したがって、圧縮力Fc
2及びFc
3は、互いに対して整列及び/又は対向させて、半径方向に延在するセグメント150と予め形成された曲線形状141を有する支持アーム140との間に弁輪状組織が捕捉されるようにすることができる。いくつかの実施形態では、ストラット152は、支持アーム140の第2の弓状領域144と円周方向及び半径方向に整列させ、これにより、圧縮力Fc
1を圧縮力Fc
3(
図5Bに示す)と直接対向させて、これらの間で弁輪ANを効率よく挟持するようにさせ得る。
【0037】
いくつかの実施形態では、プロテーゼ100の一部分(半径方向に延在するセグメント150、弁支持体120及び/又は支持アーム140)に、密封部材160(
図4B)を提供し、プロテーゼ100の少なくとも一部分を覆うことができる。密封材料160は、弁傍漏れを防止することができ、加えて埋め込み後の組織内殖のための媒体をもたらすことができ、天然心臓弁領域内の所望の展開場所においてプロテーゼ100の生体力学的保持を更に提供することができる。いくつかの実施形態では、密封材料160又はその一部分は、ポリエステル、DACRON(登録商標)ポリエステルなどの低多孔性の織布、又はポリテトラフルオロエチレン(PTFE)であってもよく、これらは、フレーム110に取設されたときに一方向流体通路を形成する。一実施形態では、密封材料160又はその一部分は、ポリエステル又はPTFEニットなど、より緩みのあるニット又は織布であってもよく、これらは、組織の内植成長のための媒体及び織布を曲面に適合して伸張させる能力を提供することが望ましい場合に利用され得る。別の実施形態では、一方の側に組織の内植成長のための媒体、他方の側に滑らかな表面を提供することが望ましい場合など、ポリエステルベロア織布は、密封材料160の少なくとも一部分のために代替として使用され得る。これら及び他の適切な心臓血管織布は、例えば、Bard Peripheral Vascular、Inc.(Tempe,AZ)から市販されている。別の実施形態では、密封材料160又はその一部は、心膜又は他の膜組織などの天然移植材料であってもよい。
【0038】
図6Aから
図6Cは、本技術の追加の実施形態による様々な支持アーム構成の側面図である。
図6A~
図6Cを共に参照すると、一実施形態では、支持アーム140は、概して、長手方向軸601と実質的に平行に、一緒延在している(例えば、弁支持体120の長手方向軸線L
aと概ね整列している(
図5B))曲線形状141を有し、曲線形状141は、第1及び第2の弓状領域142、144を有し、これらの領域は、細長い、又は実質的に直線である領域143によって分離されている。いくつかの実施形態では、支持アーム140はS字形状の輪郭を有する。
図6A~6Cに例解するとおり、第1の弓状領域142は、第1の曲率半径R
1を有し得、第2の弓状領域144は、第2の曲率半径R
2を有し、ある実施形態では、第2の曲率半径R
2は、(a)第1の曲率半径R
1(
図6A)と実質的に等しいか、(b)実質的に第1の曲率半径R
1(
図6B)未満であるか、又は(c)実質的に第1の曲率半径R
1(
図6C)よりも大きい。
【0039】
図5B及び
図6A~6Cを併せて参照すると、第2の弓状領域144は、展開中及び/又は展開後に、弁輪下又は他の心臓組織と係合するための組織係合部分又は接触領域145を有することができる。
図6A~
図6Dに示す実施形態では、支持アーム140は、第1の端140aにアーム支柱146を備え、第1の弓状領域142は、そこから長手方向軸線L
A 601の外側方向に概して延在し、弁支持体120の下流部分126と半径方向に整列している(
図5B)。第1の弓状領域142は、第1の曲率中心C
C1を中心として湾曲している。
図6Aに示すように、実質的に直線であるか、細長い部分143が、第1の弓状領域142と第2の弓状領域144との間に延在する。第2の弓状領域144は、上流部分124と下流部分126(
図5B)との間の弁支持体120の中間又は中央部分170と半径方向に整列している。一実施形態では、第2の弓状領域144は、第2の曲率中心C
C2を中心として湾曲する。
図5B及び
図6A~
図6Cに例解する実施形態では、第1の曲率中心C
C1を通って引かれた第1の軸線(図示せず)は、第2の曲率中心C
C2を通って引かれた第2の軸線(図示せず)と平行である。第1及び第2の軸線は、長手方向軸LA、601(
図6A)に対して実質的に垂直である。
【0040】
図6Aを参照し、いくつかの実施形態では、アーム支柱146は、略線形であり、弁支持体120への接続部(図示せず)から下流の、所望の距離、第1の弓状領域142を延在させるために好適な長さL
1を有し得る。いくつかの実施形態では、アーム支柱146は、プロテーゼ100及び/又は弁支持体120の長手方向軸L
A(
図5Bに示す)に略平行であり得る。
図6Aに示す第1の弓状領域142の一般的な曲率に続いて、領域142の第1の湾曲セグメント610は、アーム支柱146から半径方向外側に延在する。より具体的には、第1の湾曲セグメント610は、第1の弓状領域142の移行頂点142aに到達するまで、弓状又は概して外向き及び下流方向に湾曲するように記載されてもよい。その後、第1の弓状領域142の第2の湾曲セグメント614は、湾曲輪郭を引き継ぎ、移行頂点142aから外向きかつ概ね上流方向に延在する。
【0041】
図6Aに示すように、第1の移行点616から支持アーム140の細長い領域143が開始し、細長い領域143は、弁支持体120の長手方向軸線L
Aに対して上向き及び内向きに傾斜して第2の移行点618の端まで延在する。同様の方式で、第2の弓状領域144の一般的な曲率は、第2の移行点618として開始し、第2の弓状領域144の曲率に続いて、第3の湾曲のセグメント620が、概ね外側及び上流方向に湾曲し、第2の弓状領域144の移行頂点144aに到達するように画定されるようにする。第2の弓状領域144の第4の湾曲セグメント622は、引き続き湾曲輪郭であり、外向き方向に移行頂点144aから(例えば長手軸LAに対して)延在し、自由端又はアーム先端148に向かってわずかに下流に湾曲することもあり得る。支持アーム140の第2の弓状領域144と第1の弓状領域142との間の開口部624は、一般に、第3の移行部618と支持アーム140の第1の端140aとの間の空間内に作製され、その中に天然先尖LF及び/又は腱索を受け入れるように構成され得る。支持アーム140の他の実施形態は、より小さい曲率又はより大きい曲率を有する湾曲セグメント610、614、620及び622を有し得る。更に、
図5B及び
図6A~6Dに示す支持アーム140の実施形態は、弁支持体120の高さH2よりも低い全体的な高さH1(
図5B及び
図6A)を有することができる。他の配置及び高さも意図される。したがって、第1及び第2の弓状領域142、144及び/又は他の幾何学的特徴/変形の曲率半径R
1、R
2に加えて、支持アーム140の全体の高さH
1は、心臓弁の所望の標的場所での解剖学的構造に適合するように選択され得る。
【0042】
再び
図6Aを参照すると、支持アーム140の第1及び第2の弓状領域142、144は、例えば、収縮期及び拡張期中に心臓内に存在する歪み力を吸収し、並進及び/又は緩和するように構成することができる。特定の配置では、支持アーム140は、歪み力(例えば、支持アーム140の外形に及ぼし、その輪郭を変化させることができる物理的力)に対するばね式応答を有する。本明細書でより詳細に記載されるように、支持アーム140は、そのような歪みの力を撓ませるか又は吸収するための複数のヒンジ点を有することができる。例えば、第1の歪み力は、支持アーム140の非付勢構成を弾性的又は可逆的にかつ一時的に歪ませる様式で、個々の支持アーム140のばね式応答の結果として吸収され得る。第1の歪み力が散逸するとき(例えば、心周期中)、ばね式運動により、支持アーム外形の移行が、歪んだ位置から非付勢構成に戻るまで続く。したがって、支持アーム140のばね式応答は、第1の歪み力に反する様式で生じる。これらの配置では、支持アーム140が圧縮及び/又は伸長する範囲は、支持アーム上に及ぼされる歪み力に比例する。支持アーム140は、距離又は歪みデルタ(例えば、圧縮、膨張)に対して定数を提供する選択された剛性を有することができる。特定の配置では、支持アーム140は、支持アームの全長に沿って、かつ複数のヒンジ点のすべてを覆う一定の剛性を有し得る。他の配置では、支持アーム140は、支持アームの長さに沿って、かつ様々なヒンジ点を包含する可変の剛性を有し得る。このような個々の支持アーム140の剛性における選択性は、天然僧帽弁領域によって及ぼされる可変の歪み力に適合するように、独自かつ可変の天然構造に適合するプロテーゼ設計を提供することができる。可変剛性は、i)支持アームの断面積の差、ii)従来の弾性プラスチック金属(例えば、ステンレス鋼、チタン合金、コバルト-クロム系合金)の場合、選択した支持アームの可変冷間加工、及び/又はiii)1つ以上の支持アームの選択的加熱又は熱処理の提供(他の熱処理は行わない)、など、様々な方法で達成され得る。
【0043】
特定の実施形態では、第1及び第2の弓状領域142、144の形状及び/又はサイズは、例えば天然弁輪及び/又は弁尖Fa、長手方向の拡張期Fd力、収縮期Fs力及びフープストレスなどによって及ぼされる半径方向の圧縮力などの力に適合するように選択され得る。歪み力の吸収は、これらの力の弁支持体120への並進を防止し、それによって人工弁構成部品130の接合を保存するのに役立ち得る。また、
図7に更に示すように、支持アーム140全体に沿って、及び/又はいくつかのヒンジ点又は場所701(例えば、移行部140a、142a、616、618及び144a)での歪み力の吸収は、力によって引き起こされる応力を分散し、これにより支持アーム140の疲労を実質的に防止し、かつ/又は天然の解剖学的構造の接触部分における組織侵食を最小にすることができる。本技術によれば、支持アーム140は、弁支持体120がその剛性及び/又は元の形状(例えば、略円形形状)を実質的に維持しながら、歪み力の下で屈曲する、曲がる、回転する、又は捻転してもよい。
【0044】
図8A~
図8Hは、本技術の更なる実施形態による歪み力に応答して屈曲する様々な支持アーム140の側面図である。個々の支持アーム140の可撓度は、プロテーゼ100のすべての支持アーム140の間で一致してもよく、あるいは、いくつかの支持アーム140は、同じプロテーゼ100上の他の支持アーム140よりも可撓性であってもよい。同様に、個々の支持アーム140の可撓度は、支持アーム140の全長又は第1及び第2の弓状領域142、144の湾曲に全体で一致していてもよい。しかし、他の実施形態では、可撓度は、各支持アーム140の長さ及び/又は曲率に沿って変化し得る。
【0045】
図8A~
図8Hに示すとおり、支持アーム140の第1及び第2の弓状領域142、144は、プロテーゼ100を埋め込む間又はその後に周辺組織によって加わる可能性のある歪み力Fの変化に応答して、アーム支柱146、弁支持体120(破線で示す)に対して屈曲してもよく、かつ/又は弓状形状(複数可)を変えるように構成されてもよい。第1の弓状領域142は、静的位置(
図8A)から、例えば腱の負荷に起因する(例えば、第1の弓状領域142と係合する腱索からの)下向きの力F
1に応答して、形状/位置842b(
図8B)に対して下方向に屈曲してもよい。別の実施形態では、第2の弓状領域144は下向きに屈曲してもよく、第1の弓状領域142は、例えば、(例えば、左心室圧から生じる)先端の負荷によって引き起こされる下向きの力F
2に応答して、静止位置から、それぞれ、形状/位置844c及び842c(
図8C)に圧縮されてもよい。同様に、第1及び第2の弓状領域142、144は、例えば心室壁の負荷(例えば、左心室壁の負荷)によって引き起こされる横方向の内向きの力F
3a、F
3bに応答して、形状/位置842d、844d(
図8D)左室収縮から)となるように内向きに屈曲又は圧縮されてもよい。第2の弓状領域144による天然弁輪の係合は、力F
4となり、第2の弓状領域144が内向きに屈曲、圧縮して形状/位置844eとなってもよく、これにより第1の弓状領域において、位置842eへの位置の変化が促進され得る(
図8E)。いくつかの実施形態では、第1及び第2の弓状領域142、144は、内向き/外向きに、屈曲、回転してもよく、かつ/又は横方向の力F
3a、F
3b、F
4に応答して変形してもよく、又は略垂直方向の力F
1、F
2に応答して下向きであってもよい。
【0046】
他の配置では、
図8F~
図8Hに示すように、
図8Fの静的位置に示す第1及び第2の弓状領域142、144は、例えば、中心線802から離れた独自のかつ可変の角度にて、1つ以上の移行部140a、142a、616、618、及び144a(
図6A)で曲げることによって、例えば、横方向の力F
5に応答して、位置842g/844g(
図8G)又は842h/844h(
図8H)まで横方向に屈曲及び/回転させてもよく、これにより、アーム先端148を互いに離間して扇形に広げられ得る。
【0047】
図9は、本技術の一実施形態に従って構成された圧縮された送達構成(例えば、薄型又は半径方向に圧縮された状態)で示された
図5A~5Bの心臓弁プロテーゼ100の拡大断面図である。プロテーゼ100は、
図9に示す半径方向に圧縮された構成で、送達カテーテルシース(図示せず)内で送達するように構成することができる。より具体的には、半径方向に圧縮された構成では、半径方向に延在するセグメント150は、弁支持体120から実質的に直線の状態で長手方向に延在するように、細長くするか、折り畳まれるか、又は別の手段で配置されてもよい。また、複数の支持アーム140は、長手方向に延在し、標的の天然心臓弁への経皮的送達のために実質的に直線の状態で配置される。
図9に示されているように、支持アーム140は、弁支持体120の第2の端127を越えて延在することができ、これにより、第1の弓状領域142が実質的に直線であり、かつ長手方向軸線L
Aに実質的に平行であると同時に、第2の弓状領域144が湾曲輪郭のままであるようなる。半径方向の拘束を解除すると、支持アーム140を外側に付勢した位置に移動させることができる。これは、送達カテーテルシース(図示せず)が引き抜かれ、半径方向に延在するセグメント150が自己拡張して、半径方向に拡張された構成(
図5B)となり得るためである。更に、埋め込み後に心臓弁プロテーゼ100の再配置、除去及び/又は交換を必要とするときには、半径方向に延在するセグメント150及び弁支持体120は、カテーテルデバイス又は他の横方向に保持するシースを用いて、半径方向に拡張された構成(例えば、展開状態)(
図5B)から移行して、半径方向に格納した構成(
図9)に戻すことができる。
【0048】
僧帽弁又は他の房室弁へのアクセスは、患者の血管系を通して経皮様式で達成することができる。血管のアクセス点に応じて、僧帽弁へのアプローチは順行性であってもよく、心房中隔を横切ることによる左心房への進入に依存してもよい。あるいは、僧帽弁へのアプローチは、左心室が大動脈弁を通って又は経腸的穿刺を介して進入する場合に逆行性であってもよい。一旦経皮的アクセスが達成されると、介入性ツール及び支持カテーテル(複数可)は、血管内で心臓まで進めてもよく、様々な様式で標的心臓弁に隣接して位置付けられ得る。例えば、心臓弁プロテーゼ100は、経中隔アプローチ(
図10に示す)、大動脈弁を通る逆行性アプローチ、又は経腸的穿刺を介して天然弁の修復又は交換のために天然僧帽弁領域に送達してもよい。本明細書に記載の心臓弁プロテーゼ100と共に使用するために適合され得る好適な経内殖及び/又は心房移植手技は、2012年8月13日に出願された米国特許出願第13/572,842号(Igor Kovalsky)、米国特許出願公開第2011/0208297号(Tuvalら)、及び米国特許出願公開第2012/0035722号(Tuvalら)に開示されており、これらは各々、参照によりその全体が本明細書に組み込まれる。
【0049】
図10は、本技術の別の実施形態による経中隔的アプローチを使用して、心臓弁プロテーゼ100を埋め込む方法のステップを例解している心臓10の断面図である。
図5A、
図9及び
図10を併せて参照すると、プロテーゼ100は、送達カテーテル20内で僧帽弁MVの近位に前進させ得る。任意で、送達カテーテル20をその上方にわたって摺動可能に前進させ得るガイドワイヤ(図示せず)を使用することができる。
図10に示すように、半径方向に圧縮された構成(
図9に示す)でプロテーゼ100を収容している送達カテーテル20のシース22は、天然弁尖LFの間の僧帽弁輪ANを通って前進する。
図10を参照すると、次にシース22が近位に後退し、プロテーゼ100の拡張が可能になり、これにより、支持アーム140が長手方向軸L
Aから空間的に離れた外側位置にあって、弁支持体120が半径方向に収縮したままになる。この展開段階では、支持アーム140の外側への動きは、第1の弓状領域142の形状記憶による付勢によって容易になる。この移行段階において、第1の弓状領域142は、第1の曲率半径R
1よりも大きい第3の曲率半径R
3を有してもよく、第2の弓状領域144は、引き続き第2の曲率半径R
2を有する。第2の弓状領域144は、(
図10に示すように)僧帽弁MV内での全展開段階の間に心臓組織の非外傷的係合を提供する。例えば、第2の弓状領域144は、半径方向に収縮した構成と半径方向に拡張した構成との間を移行するときに腱索CTとの接触に応答して撓むように構成されている。第2の弓状領域144は、展開中、及び支持アーム140が天然弁尖LFの後で移動するか、又は振動するとき、非外傷的に左心室LVの壁にも係合し得る。支持アーム140が、完全に展開され(例えば、
図5A)、支持アーム140が、長手方向軸L
Aに対して更に内向き位置付けられ、これにより、弁尖LFが支持アーム140と弁支持体120との間に係合されるようになる。シース22は、(例えば、左心房LAの空間内で)弁支持体120及び半径方向に延在するセグメント150を解放するように更に格納されてもよい。
【0050】
シース22が除去され、プロテーゼ100が展開状態に戻ることができた後、送達カテーテル20は依然としてプロテーゼ100に接続され得(例えば、図示していないシステムのアイレットがプロテーゼのアイレットに接続される)、これにより操作者は、プロテーゼ100が半径方向に拡張された構成に向かって膨張するときに、プロテーゼ100の配置を更に制御することができる。例えば、プロテーゼ100は、標的場所の上流又は下流で拡張させてもよく、その後、プロテーゼ100を送達カテーテル20から解放する前に、それぞれ下流又は上流を所望の標的位置に押し込むことができる。一旦プロテーゼ100が標的部位に位置付けられると、送達カテーテル20は近位方向に格納され得、プロテーゼ100は天然標的弁(例えば、僧帽弁MV)において半径方向に拡張された構成で取り外される。
【0051】
様々な実施形態を上記で記載したが、これらは本技術を限定するものではなく、例解及び例示として提示されたものであることを理解されたい。当業者には、本技術の趣旨及び範囲から逸脱することなく、形式及び詳細の様々な変更が可能であることは明らかであろう。したがって、本技術の広さ及び範囲は、上記の実施形態のいずれによっても限定されるべきではなく、添付の特許請求の範囲及びそれらの同等物に従ってのみ定義されるべきである。本明細書で論じられた各実施形態の各特徴部及び本明細書で引用された各参考文献は、他の実施形態の特徴部と組み合わせて使用し得ることも理解されたい。本明細書で論じるすべての特許及び刊行物は、参照によりそれらの全体が本明細書に組み込まれる。