(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-07
(45)【発行日】2022-02-16
(54)【発明の名称】日射遮蔽装置、日射遮蔽部材及び日射遮蔽装置の設計方法
(51)【国際特許分類】
E06B 9/386 20060101AFI20220208BHJP
E06B 9/28 20060101ALI20220208BHJP
E06B 5/00 20060101ALI20220208BHJP
【FI】
E06B9/386
E06B9/28
E06B5/00 D
(21)【出願番号】P 2017125549
(22)【出願日】2017-06-27
【審査請求日】2020-05-11
(73)【特許権者】
【識別番号】000000549
【氏名又は名称】株式会社大林組
(74)【代理人】
【識別番号】100105957
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【氏名又は名称】恩田 博宣
(72)【発明者】
【氏名】上田 博嗣
【審査官】鳥井 俊輔
(56)【参考文献】
【文献】特開2010-095876(JP,A)
【文献】特表2014-504426(JP,A)
【文献】米国特許出願公開第2012/0067340(US,A1)
【文献】中国特許出願公開第106285433(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
E06B 9/24-9/388
E06B 5/00
(57)【特許請求の範囲】
【請求項1】
水平方向に延在させた複数の日射遮蔽部材を、室内側が高くなるように傾斜させて、鉛直方向に並べて備える日射遮蔽装置であって、
前記日射遮蔽部材の室外側の表面には、入射した日射を、入射角度に対して所定範囲角度内で、天空の方向に反射させる性質を有する天空反射面を設けるとともに、
前記日射遮蔽部材の室内側の側面、上面及び下面には、前記日射を天空へ反射する天空反射面の作用を妨げない位置に拡散反射面を設けたことを特徴とする日射遮蔽装置。
【請求項2】
室内側が高くなるように傾斜させて、鉛直方向に複数、並べて日射遮蔽装置を構成し、水平方向に延在する日射遮蔽部材であって、
室外側の表面には、入射した日射を、入射角度に対して所定範囲角度内で、天空の方向に反射させる性質を有する天空反射面を設けるとともに、室内側の側面、上面及び下面には、前記日射を天空へ反射する天空反射面の作用を妨げない位置に拡散反射面を設けたことを特徴とする日射遮蔽部材。
【請求項3】
前記拡散反射面を設けた前記室内側の側面、上面及び下面と、前記室外側の側面とを構成する部材を備えた第1部材に、前記天空反射面の表面を構成する部材を備えた第2部材を嵌合させて構成されることを特徴とする請求項2に記載の日射遮蔽部材。
【請求項4】
前記上面の一部には、他の日射遮蔽部材と連結する連結部材が取り付けられる連結部が設けられていることを特徴とする請求項2又は3に記載の日射遮蔽部材。
【請求項5】
水平方向に延在させた複数の日射遮蔽部材を、室内側が高くなるように傾斜させて、鉛直方向に並べて備える日射遮蔽装置を、コンピュータを用いて設計する設計方法であって、
前記日射遮蔽部材は、室外側の表面には、入射した日射を、入射角度に対して所定範囲角度内で、天空の方向に反射させる性質を有する天空反射面を有し、室内側の側面、上面及び下面には、前記日射を天空へ反射する天空反射面の作用を妨げない位置に拡散反射面を有しており、
前記コンピュータが、
前記日射遮蔽部材の形状を決めるパラメトリックモデルにおいて、前記形状における天空反射面の角度及び長さを変更して、前記天空反射面における天空反射率と、前記日射遮蔽部材の開口率とを算出するシミュレーションを繰り返し、
前記シミュレーションに用いた天空反射面の角度及び長さと、算出した前記天空反射率と前記開口率とを関連付けた計算結果を記憶し、
前記計算結果における前記天空反射率及び前記開口率の大きさに基づいて、前記日射遮蔽部材の形状を決定することを特徴とする日射遮蔽装置の設計方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、日射を遮るための日射遮蔽装置、日射遮蔽部材及び日射遮蔽装置の設計方法に関する。
【背景技術】
【0002】
建築分野においては、建築物の年間のエネルギー収支をゼロにする「ZEB(Net Zero Energy Building)」が注力されている。このZEBの要素技術の1つとして日射遮蔽がある(例えば、非特許文献1)。この非特許文献1には、外皮負荷の削減設計として、日射遮蔽が挙げられている。
【0003】
また、夏季及び冬季の遮蔽効果や採光方向性を考慮した日射調整装置も検討されている(例えば、特許文献1参照)。この特許文献の日射調整装置は、複数のスラットを有し、各スラットが、平坦な表面を有する第一の主面と、第一の主面と反対側に第二の主面とを有し、複数のスラットの各々が、第一の主面側に第一の反射構造体を有し、かつ第二の主面側に第二の反射構造体を有する。そして、第一の反射構造体が、所定範囲の入射角で第一の主面側から入射する近赤外線を再帰反射する再帰反射特性を有し、第二の反射構造体が、第二の主面側から入射する近赤外線を正反射する正反射特性を有し、複数のスラットが、長手方向を平行にして長手方向と交差する方向に、第一の主面を同じ側にして配列されている。
【先行技術文献】
【特許文献】
【0004】
【非特許文献】
【0005】
【文献】伊藤剛、福田裕行、島岡宏秀著:大林組技術研究所報No80 2016、「ZEBの定義と大林組の取り組み」、[online]、[平成29年5月22日検索]、インターネット、<URL:https://www.obayashi.co.jp/technology/shoho/080/2016_080_14.pdf>
【発明の概要】
【発明が解決しようとする課題】
【0006】
日射遮蔽装置において、太陽光を反射させた場合、反射光の方向によっては、建物の外周において反射光による外気温の上昇が生じる。また、建物内において太陽光を取り込む場合、取り込む光量が多い場合には、建物内の気温が上がったり眩しかったりするという課題がある。
【課題を解決するための手段】
【0007】
・上記課題を解決するための日射遮蔽装置は、水平方向に延在させた複数の日射遮蔽部材を、傾斜させて、鉛直方向に並べて備える日射遮蔽装置であって、前記日射遮蔽部材の上辺側面及び下面には拡散反射面を設けるとともに、前記日射遮蔽部材の上面には天空反射面を設けた。これにより、日射遮蔽装置が受ける日射を天空へと反射させて、周辺建物や地上への反射を低減させるので、日射遮蔽装置を設ける建物の周囲の温熱環境を改善することができる。更に、人が居る室内側には、拡散反射面からの透過光が入るので、反射による眩しさを低減することができ、人に優しい視環境を実現することができる。ここで、天空反射面は、日射遮蔽装置に入射した日射を、所定範囲内で天空の方向に反射させる面を意味する。
【0008】
・上記課題を解決するための日射遮蔽部材は、傾斜させて、鉛直方向に複数、並べて日射遮蔽装置を構成し、水平方向に延在する日射遮蔽部材であって、上辺側面及び下面には拡散反射面を設けるとともに、上面には天空反射面を設けた。これにより、日射遮蔽部材が受ける日射を天空へと反射させて、周辺建物や地上への反射を低減させるので、ルーバーを設けた建物の周囲の温熱環境を改善することができる。更に、人が居る室内側には、拡散反射面からの透過光が入るので、反射による眩しさを低減することができ、人に優しい視環境を実現することができる。
【0009】
・上記日射遮蔽部材において、前記拡散反射面を備えた第1部材に、前記天空反射面を備えた第2部材を嵌合させて構成されることが好ましい。これにより、2つの部材を嵌合させて構成するので、上面と下面で、それぞれ別の反射特性を有する日射遮蔽部材を製作することができる。
【0010】
・上記日射遮蔽部材において、前記上面の一部には、他の日射遮蔽部材と連結する連結部材が取り付けられる連結部が設けられていることが好ましい。これにより、複数の日射遮蔽部材を確実に支持することができる。
【0011】
・上記日射遮蔽部材において、前記天空反射面は、前記日射遮蔽装置が設置される場所の太陽高度及び日射量と、光線追跡法で算出した光学特性とに基づく、前記天空反射面における天空反射率と前記日射遮蔽装置の開口率とが大きくなる形状によって構成されていることが好ましい。これにより、日射遮蔽部材が受ける日射を、天空に多く反射させる形状にすることができる。ここで、天空反射率は、所定範囲内で天空の方向に反射させた光量を入射した光量(日射量)で除算した割合である。
【0012】
・上記課題を解決するための日射遮蔽装置の設計方法は、水平方向に延在させた複数の日射遮蔽部材を、傾斜させて、鉛直方向に並べて備える日射遮蔽装置を、コンピュータを用いて設計する設計方法であって、前記日射遮蔽部材は、上辺側面及び下面に設けられた拡散反射面と、上面に設けられた天空反射面とを有しており、前記コンピュータが、前記日射遮蔽部材の形状を決めるパラメトリックモデルにおいて、前記形状における天空反射面の角度及び長さを変更して、前記天空反射面における天空反射面率と、前記日射遮蔽部材の開口率とを算出するシミュレーションを繰り返し、前記シミュレーションに用いた天空反射面の角度及び長さと、算出した前記天空反射率と前記開口率とを関連付けた計算結果を記憶し、前記計算結果における前記天空反射率及び前記開口率の大きさに基づいて、前記日射遮蔽部材の形状を決定する。これにより、日射遮蔽装置に用いられる日射遮蔽部材が受ける日射を、天空に多く反射させる形状を設計することができる。
【発明の効果】
【0013】
本発明によれば、建物の内外の温熱環境を改善するとともに、人に優しい視環境を実現することができる。
【図面の簡単な説明】
【0014】
【
図1】本実施形態における東京に設置されるルーバーの斜視図。
【
図3】実施形態における羽板の形状を設計する形状設計システムの概略構成図。
【
図4】ルーバーの形状設計の前処理の作業のフロー図。
【
図5】ルーバーの形状設計の前処理に用いたプロトタイプの断面図。
【
図6】実施形態における光線追跡シミュレーションのフロー図。
【
図7】実施形態における羽板の形状設計処理のフロー図。
【
図8】実施形態におけるパラメトリックモデルを説明する説明図。
【
図9】実施形態における形状最適化のパレート解を示す表。
【
図10】実施形態における最適化前後の反射光軌跡を説明する図であり、(a)は最適化前の入射角30°、(b)は最適化前の入射角50°、(c)は最適化前の入射角70°、(d)は最適化後の入射角30°、(e)は最適化後の入射角50°、(f)は最適化後の入射角70°のときの反射光軌跡を示す。
【
図11】最適化前後の直達日射に対する入射角度毎のルーバー光学特性を説明するグラフであって、(a)は反射率、(b)は透過率を示す。
【
図12】本実施形態における各地域に設置されるルーバーの断面外形状を示す図。
【発明を実施するための形態】
【0015】
以下、
図1~
図12を用いて、日射遮蔽装置、日射遮蔽部材及び日射遮蔽装置の設計方法を具体化した一実施形態を説明する。本実施形態の日射遮蔽装置及び日射遮蔽部材は、設置される場所の緯度及び方位に応じた形状を有する。
【0016】
図1に示すように、本実施形態のルーバー10(日射遮蔽装置)は、建物躯体の外壁に設けられた開口部に配置される。このルーバー10は、東京(地域)において、南方位に設置される。このルーバー10は、鉛直方向にそれぞれ離間した複数の羽板20(日射遮蔽部材)を備える。羽板20は、水平方向に延在する長尺物である。これら羽板20は、両端において、上下方向に貫通されている連結棒15によって連結される。各羽板20は、建物の内側が高い位置に、建物の外側が低い位置になるように、同じ角度で傾斜して配置される。
【0017】
図2は、
図1のルーバー10に用いられる羽板20の断面図である。本実施形態の羽板20は、側面部と裏面部(下面部)を構成する第1部材30と、上面部(表面部)を構成する第2部材40とを備える。本実施形態の羽板20は、第2部材40が第1部材30に内嵌されている。
【0018】
第1部材30は、拡散反射性を有する表面(拡散反射面)の素材で構成される。本実施形態では、第1部材30拡散反射面は、A6063材の表面に木目調フィルムを貼付することによって構成される。
【0019】
第2部材40は、天空反射性を有する表面(天空反射面)の素材で構成される。天空反射性は、日射遮蔽装置に入射した日射を、入射角度に対して所定範囲角度内で(天空の方向に)反射させる性質を意味する。本実施形態では、水平面の入射角度に対して、0~-10度の範囲で、天空反射性を生じさせる。本実施形態では、第2部材40の天空反射面は、A6063材の表面を(バフ研摩なしの)電解研磨することによって構成される。
【0020】
<第1部材30の形状>
次に、
図2を用いて、第1部材30の形状の詳細について説明する。
第1部材30は、下端側面部31、底部32、第1拡散面部33、連結部35、第2拡散面部36、上側側面部37、上面部38、補強部39を備える。第1拡散面部33及び第2拡散面部36は、下方に配置された羽板20の第1部材30によって反射された光が入射される面を有している。本実施形態では、第1拡散面部33及び第2拡散面部36の傾斜角度は、それぞれ異なっている。
【0021】
下端側面部31は、垂直方向に延在され、第1部材30の下側辺の側面を構成する。この下端側面部31の上端辺は、連結棒15側に屈曲して、第2部材40の下端辺に係合する下端係合部31aを構成する。
【0022】
底部32は、下端側面部31の下辺に接続し、水平方向に延在する。底部32の第1拡散面部33と接合する部分の上面側には、上面に突出した突条部32aが設けられている。
第1拡散面部33は、底部32の端辺と連結部35の端辺とを連結する傾斜部を構成する。
【0023】
連結部35には、羽板20同士を連結する連結棒15が貫通される。
第2拡散面部36は、連結部35の端辺と上側側面部37の下側の端辺を連結する傾斜部である。第2拡散面部36の連結部35側の端部の上面側は、固定部36aと嵌合部36bを備える。
【0024】
上側側面部37は、垂直方向に延在され、上側の側面部を構成している。この上側側面部37の中央領域には、開口部37aが設けられており、キャップ21が挿入される。このキャップ21は、皿ビス(図示せず)によって、第1部材30の補強部39及び第2部材40の後述する上端係合部47に固定されている。皿ビスは、上側側面部37側の面から補強部39に向けて挿入される。そして、キャップ21は、補強部39に当接し、上側側面部37と面一となるように固定されている。
上面部38は、上側側面部37の上端部に連接される。この上面部38は、上面部38と第2拡散面部36とを連接する補強部39よりも突出した先端部38aを有している。
【0025】
<第2部材40の形状>
次に、第2部材40の形状の詳細について説明する。
第2部材40は、第1天空反射部41、支持部43、連結部45、接続部44、中央係合部46、第2天空反射部42、上端係合部47を備えている。本実施形態では、第1天空反射部41及び第2天空反射部42は、太陽光が入射される面を有している。本実施形態では、第1天空反射部41及び第2天空反射部42の傾斜角度は、それぞれ異なっている。
第1天空反射部41の先端部41aは、第1部材30の下端側面部31の下端係合部31aに係合する。
【0026】
第2部材40の支持部43は、第1天空反射部41の裏面の一部から下方に突出して、L字形状を有する。この支持部43の先端部は、第1部材30の突条部32aに係合する。
第1天空反射部41の上側端部は、連結部45に接続されている。連結部45は、第1部材30の連結部35の上方に配置され、連結棒15が貫通される部分である。連結部45は、垂直方向に延在する接続部44を介して、第2天空反射部42と接続される。
【0027】
接続部44の下端部は、第2天空反射部42側に屈曲された中央係合部46が接続される。中央係合部46は、第1部材30の固定部36aの上に載置され、嵌合部36bの下側で嵌合される。
【0028】
第2天空反射部42の上側端部は、上端係合部47と一体化されており、第1部材30の上面部38と嵌合する。
上端係合部47は、第2部材40が第1部材30に嵌合した際に、第1部材30の補強部39に固定される。
【0029】
<形状設計システムの構成>
次に、
図3を用いて、上述した羽板20の形状を設計する形状設計システム50の構成について説明する。
【0030】
図3に示すように、形状設計システム50は、入力部56、気象情報サーバ57及び出力部58に接続されている。
入力部56は、キーボードやポインティングデバイス等で構成され、各種指示や情報を入力するための入力手段から構成される。
【0031】
気象情報サーバ57は、緯度に関連付けて実際に過去に測定された太陽高度及び日射量に関するデータを提供する。
出力部58は、ディスプレイ等で構成され、情報処理結果を出力するための出力手段から構成される。
【0032】
また、形状設計システム50は、制御部51、パラメトリックモデル記憶部53を備えている。
パラメトリックモデル記憶部53は、3次元CADにおいて、寸法値として定義された変数の値や拘束条件を指定して形状を作成するためのパラメトリックモデル情報を記憶している。このパラメトリックモデル情報は、羽板20の各部の各水平長さ(X1~X6)と高さ(Y1~Y7)について、定数又は変数、算出式に関するデータを含む。更に、この変数に対応して、変数範囲及び変数刻みに関するデータが含まれている。
【0033】
更に、制御部51は、条件特定部511、シミュレーション部512及び形状最適化部513を備えている。
条件特定部511は、ルーバー10の設置条件や日射条件を取得し、期間重み係数を算出する。期間重み係数は、評価対象の期間及び時間帯の鉛直面直達日射量をプロファイル角毎に集計した値を、鉛直面直達日射量の積算値で除算した値(比率)である。
【0034】
シミュレーション部512は、上述した光線追跡シミュレーションを実行する。このため、光線追跡シミュレーションに用いる反射モデル式や反射日射量の評価に用いる計算式等のデータを記憶している。
【0035】
形状最適化部513は、形状最適化処理を実行する。本実施形態では、パラメトリックモデルの各変数を変更して、「天空反射率が最大かつ開口率が最大」を満たすパレート解を、近傍培養型遺伝的アルゴリズム(多目的最適化アルゴリズム)を用いて算出する。そして、複数のパレート解から、天空反射率が最も高い解を最適解として特定する。ここで、メタヒューリスティクスによる最適化は、試行回数が多く、評価期間の解析を全て実行すると効率が悪いため、上述した期間重み係数を用いて、評価期間中の平均光学特性を評価する。具体的には、光線追跡法で算出した光学特性に対して重み係数を乗じ、評価期間中の平均光学特性として評価する。
【0036】
<羽板20の形状設計の前処理>
次に、
図4~
図6を用いて、上述した羽板20における具体的な形状設計の前処理について説明する。
【0037】
まず、
図4に示すように、羽板20のプロトタイプを作成する(ステップS11)。
ここでは、
図5に示すように、上述した羽板20のプロトタイプPTとして、第1部材PT30及び第2部材PT40を備えた構成を用いる。第1部材PT30は、上述した羽板20の第1部材30の第1拡散面部33及び第2拡散面部36と水平長さと高さとが異なる第1拡散面部PT33及び第2拡散面部PT36を有する。また、第2部材PT40は、上述した羽板20の第2部材40の第1天空反射部41及び第2天空反射部42と水平長さと高さとが異なる第1天空反射部PT41及び第2天空反射部PT42を有する。更に、このプロトタイプPTは、第1天空反射部PT41及び第2天空反射部PT42の表面を階段状に形成して入射光を2回反射させることにより、天空反射面を構成する。第1部材PT30及び第2部材PT40は、その他の部分については、第1部材30及び第2部材40と同じ構成を有する。
【0038】
次に、
図4に示すように、羽板に用いられる表面素材を選定する(ステップS12)。このために、羽板20に使用する各種表面素材の反射率の測定を行なう。表面素材のそれぞれについて5cm角の試験体を用意し、紫外可視近赤外分光光度計を用いて測定した。ここで、測定波長帯は300~2500nmとした。測定した分光反射率に対し、「JIS R 3106:1998」の基準太陽光の重価係数を乗じた後、標準白色板の同波長帯における絶対反射率を乗じた値を平均し、各波長域における全反射率として評価した。
【0039】
本実施形態では、選定候補の表面素材のうち、各種金属素材の可視光及び日射反射率を表1、各種焼付塗装素材の可視光及び日射反射率を表2、各種木目調素材の日射及び可視光の反射率を表3に示す。
【0040】
【0041】
【0042】
【0043】
表1の金属素材では、日射反射率は0.65~0.78であり、表面処理による差異は限定的であった。その代わりに、視覚的には光沢感(艶有り素材、光輝材)による違いが際立った。特に、光輝材の場合は、アルミ材特有の金属感が強く、A6063材は白みを帯びていた。表2の焼付塗装素材では、日本塗料工業会2015年H版塗料用標準色N1.0(黒)~N9.5(白)の範囲で、日射反射率は0.04~0.85であった。その他、中間色のN6.5(灰)や木目近似色の茶系色では約0.3であった。視覚的には、耐候性を保持するための3部艶による光沢感がやや感じられた。表3は木目調素材では、屋外仕様の木目調フィルムTypeA~Cの日射反射率は、0.23~0.42、再生木の日射反射率は0.18であった。視覚的には、ほとんど光沢感は感じられなかった。
【0044】
以上の結果から、本実施形態では、拡散反射面を有する第1部材30には、人からの視点に接するため、拡散性があり、かつ反射率が比較的高い木目調フィルムTypeAを用いることに決定した。また、天空反射面を有する第2部材40には、太陽視点に接する面は光沢感が比較的小さく、かつ指向性があり、反射率が比較的高い電解研磨(A6063材+バフなし)を用いることに決定した。
【0045】
次に、光線追跡シミュレーションを実行する(ステップS13)。ここでは、所定形状のプロトタイプPTに対して、順方向のモンテカルロ光線追跡法を用いる。このモンテカルロ光線追跡法を用いることにより、複雑形状、鏡面反射、拡散反射が混在する系に対して、柔軟に対応できる。また、モンテカルロ光線追跡法は、計算負荷の観点から2次元で行なう。なお、羽板20は押出成形を用いて形成されるため、2次元のシミュレーションを用いても実用上支障はないと考えられる。この光線追跡シミュレーションのフローの詳細については後述する。
【0046】
次に、所定形状のプロトタイプPTを用いて、反射日射量の実測を行なう(ステップS14)。ここでは、所定形状のプロトタイプPTを作製して、反射日射量を実測する。この場合、鉛直面全天日射量の測定、法線面直達日射量、水平面天空日射量の測定を行なった。
【0047】
ここで、プロトタイプPTからの鉛直面反射日射量の上向き成分を測定するため、四半球状のマスクを日射計の上半分に被せて測定した。更に、通常は遮られるルーバー設置面反対側からの天空光を排除するため、入射側の反対側に遮光箱を設置した。また、地物反射によるルーバー面以外からの反射日射熱を除外するため、床面に黒布を敷き、反射測定用日射計周辺で短波長成分の反射が生じないように配慮した。実測は晴天日の夏期(9月初旬)と中間期(9月下旬)に行なった。この場合、方位は真南、比較時間帯の各プロファイル角は、それぞれ62°及び52°であった。
【0048】
次に、シミュレーション結果と実測値との比較を行なう(ステップS15)。具体的には、羽板のプロトタイプPTを用いて算出した光線追跡シミュレーションの反射日射量と、実測した反射日射量とを比較する。この場合、光線追跡シミュレーションにおいて、プロトタイプPTの第1部材PT30は、後述する完全拡散モデル、第2部材PT40は、後述する正反射モデルを用いた。比較した結果、平均誤差率は夏期2%、中間期4%と小さく、挙動も概ね一致していた。以上より、光線追跡シミュレーション手法は高い再現性があると確認できた。
【0049】
そして、パラメトリックモデルを設定する(ステップS16)。このパラメトリックモデルは、プロトタイプPTの羽板の形状に基づいて設定される。このパラメトリックモデルの詳細については、後述する。
【0050】
<光線追跡シミュレーションのフロー>
上述した光線追跡シミュレーションのフローについて説明する。
まず、形状設計システム50の制御部51は、光源の設定処理を実行する(ステップS21)。具体的には、制御部51のシミュレーション部512は、光源はプロトタイプPT(又は羽板20)の入射側間口に対して設定する。詳細には、上方のプロトタイプPT(又は羽板20)の第1部材PT30(30)の下端側面部(31)と底部(32)との接続辺(P1)から、下方のプロトタイプPT(又は羽板20)の第1部材PT30(30)の下端側面部(31)の上端部までの鉛直面を光源として設定する。
【0051】
次に、形状設計システム50の制御部51は、入射ベクトルの設定処理を実行する(ステップS22)。具体的には、制御部51のシミュレーション部512は、入射ベクトルとして、直達日射の場合はプロファイル角のベクトルを用い、拡散日射の場合は、完全拡散をモンテカルロ法で模擬したベクトルを用いる。
【0052】
次に、形状設計システム50の制御部51は、分割要素毎の順次光線追跡処理を実行する(ステップS23)。具体的には、制御部51のシミュレーション部512は、光源をN要素に分割し、1要素毎に順次光線追跡を実行する。これは、光源面における全エネルギーをN本の光線に離散化したことに相当する。
【0053】
次に、反射ベクトル及び反射強度の計算処理を実行する(ステップS24)。具体的には、制御部51のシミュレーション部512は、各要素からの光線が入射ベクトルに応じて衝突した面の反射率に応じて反射強度を決定し、衝突した面の反射性状(正反射、指向性反射、完全拡散)に応じて反射ベクトルを特定する。この反射ベクトルの反射性状を有する反射モデルの詳細は後述する。なお、本来のモンテカルロ法では反射率に応じて、衝突した面からの光線を出射確率で表現するが、本実施形態の光線追跡シミュレーションは、2次元反射解析であり、可視化を優先することを勘案し、出現確率は用いない。
【0054】
次に、形状設計システム50の制御部51は、多重反射計算処理を実行する(ステップS25)。具体的には、ステップS24の過程を各反射面に対して行ない、最終的に、ルーバー10の入射面及び室内側面のどちらかの面に到達するまで繰り返して計算する。最終的に光線は、ルーバー10の入射面に到達した反射光又は室内側へと向かう透過光のいずれかになるためである。
【0055】
次に、形状設計システム50の制御部51は、透過率、反射率及び吸収率の算出処理を実行する(ステップS26)。具体的には、制御部51のシミュレーション部512は、透過あるいは反射方向の面における値を光線毎に集計し、透過率、反射率として算出する。そして、エネルギー保存則から、1に対する透過率及び反射率の差分を吸収率として算出する。なお、集計次第で、指向性毎の特性を算出することもできる。
【0056】
<反射モデル>
次に、上述した反射ベクトルを算出するために用いる反射モデルについて説明する。
光線追跡法の特徴として、反射性状は放射光度を基に立体角に対応したベクトルを乱数で表現し、反射エネルギーはエネルギー保存の観点から反射光線1本に集約させている。このため、反射率は表1~3にて測定した日射波長帯の平均全反射率を使用し、各反射性状を用いて、以下の式(1)~(8)を用いて反射ベクトルを算出する。
【0057】
ここで、極座標からXY座標への変換に用いる式として、以下の式(1)及び式(2)を用いる。
X=sinθcosφ …(1)
Y=cosθ …(2)
また、完全拡散反射モデルとしては、以下の式(3)及び式(4)を用いる。
【0058】
【0059】
また、正反射モデルとしては、以下の式(5)を用いる。
R=L-2(L・N)・N …(5)
更に、指向性反射モデル(ガウス関数近似モデル)としては、以下の式(6)~式(8)を用いる。
R=L-2(L・H)・H …(6)
【0060】
【0061】
ここで、Rは反射ベクトル、Lは入射ベクトル、Nは法線ベクトル、Hは入射ベクトル(L)と反射ベクトル(R)のハーフベクトルである。ζ1~ζ4は乱数、σは標準偏差である。θrは法線ベクトル(N)と反射ベクトル(R)のなす角、φrは反射ベクトル(R)の方位角である。θhは法線ベクトル(N)とハーフベクトル(H)のなす角、φhはハーフベクトル(H)の方位角である。
【0062】
上述した式(1)~式(8)におけるベクトルは単位ベクトルである。また、指向性反射は、ガウス関数近似のみの他、ガウス関数近似と完全拡散反射モデルとして用いることもできる。
【0063】
<反射日射量の評価方法>
上述したステップS14における反射日射量の評価においては、以下の式(9)~式(12)を用いる。
【0064】
【0065】
ここで、Iν_all*は鉛直面全天日射量[W/m2]、Iν_sky*は水平面全天日射量[W/m2]、In_dir*は法線面直達日射量[W/m2]、hはプロファイル角[deg]、Iν_rup*は鉛直面上向き反射日射量[W/m2]である。なお、ここで*は実測値の項目を示している。更に、In_dirは鉛直面直達反射日射量[W/m2]、Iν_skyは天空反射日射量[W/m2]、Iν_groは地物反射日射量[W/m2]である。更に、ρdは鉛直面直達反射成分の上向き日射反射率、ρsは天空反射成分の上向き日射反射率、ρgは地物反射成分の上向き日射反射率である。
【0066】
<ルーバー10の羽板20の形状の設計>
次に、
図7を用いて、上述した形状設計システム50を用いたルーバー10の羽板20の形状を設計する方法について説明する。ここでは、羽板20のパラメトリックモデルの形状の各変数を変更して、最適形状を模索する。
【0067】
<パラメトリックモデル>
まず、
図8を用いて、ステップS15で設定したパラメトリックモデルについて説明する。
羽板20の水平方向の全長をRWとする。また、羽板20の水平方向の各寸法(水平長さ)を、X1,X2,X3,X4,X5,X6と定義する。X1は羽板20の第1部材30の底部32の水平長さ、X2は第1拡散面部33の水平長さ、X3は連結部35,45の水平長さ、X4は第2天空反射部42の水平長さ、X5は第1部材30の上面部38の水平長さである。なお、水平長さX4,X5の和は、第1部材30の第2拡散面部36の長さに相当する。また、X6は第1部材30の下端係合部31aの水平長さ(羽板20の端部から第1天空反射部41の最下位置までの水平長さ)である。
【0068】
X1,X3,X5は定数であり、X2,X4,X6は、以下の式で表される。
X2=(RW-X1-X3-X5)×δ …(21)
X4=RW-(X1+X2+X3+X5) …(22)
X6=X1×m …(23)
ここで、δは変数、mは拡散面巻上げ率である。
【0069】
また、羽板20の垂直方向の寸法(高さ)を、Y1,Y2,Y3,Y4,Y5,Y6,Y7と定義する。Y1は第1部材30の第1拡散面部33の高さ、Y2は第2拡散面部36の高さ、Y3は第2部材40の連結部45から第2天空反射部42の下端までの高さ、Y4は第2天空反射部42の高さである。Y5は第1部材30の下端側面部31の垂直部の高さ、Y6は第1部材30の下端側面部31の垂直部の最上位置から第1天空反射部41の最下位置までの高さ、Y7は第1部材30の上側側面部37の高さである。
【0070】
Y5,Y7は定数であり、Y1~Y4,Y6は、以下の式で表される。
Y1=RW×tanθ×α …(24)
Y2=RW×tanθ×(1-α)×β …(25)
Y3=RW×tanθ×(1-α)×(1-β)×γ …(26)
Y4=RW×tanθ-(Y1+Y2+Y3) …(27)
Y6=(Y1+Y2-Y5)×m …(28)
【0071】
また、羽板20の傾斜角θは、水平面に対して、第1部材30の底部32と下端側面部31との接続辺P1と、第1部材30の上面部38と上側側面部37との接続辺P2とを羽板20内で結んだ線L1が成す角度である。
【0072】
更に、羽板20同士の距離は、羽板20の水平方向の全長RWと許容入射角φとを用いて定義される。許容入射角φは、水平面に対して、第1部材30の底部32と下端側面部31との接続辺P1と、第1部材30の上面部38と上側側面部37との接続辺P2とを空間で結んだ線L2が成す角度である。
上述した寸法のうち、本実施形態において、羽板20を設計する際に用いる設定定数を表4に示し、設計変数と、変数の範囲及び刻みを、表5に示す。なお、
図8におけるsp3,sp4は、sp1,sp2と同様、対応する面の反射率及び反射特性の設計変数を示している。
【0073】
【0074】
【0075】
<形状設計方法>
次に、
図7を用いて、上述した形状設計システム50を用いたルーバー10の羽板20の形状を設計する方法について説明する。
【0076】
まず、形状設計システム50の制御部51は、ルーバーの設置情報の取得処理を実行する(ステップS31)。具体的には、制御部51の条件特定部511は、ルーバー10の設置場所に関する情報(設置場所の緯度及び方位)を取得する。更に、条件特定部511は、評価対象の期間及び時間帯を特定する。本実施形態では、評価対象の期間として夏期及び中間期(春期又は秋期)を設定し、評価対象の時間帯として11時から15時を設定する。
【0077】
次に、形状設計システム50の制御部51は、日射条件の取得処理を実行する(ステップS32)。具体的には、制御部51の条件特定部511は、評価対象の期間及び時間帯における設置場所の緯度に応じた太陽高度及び日射量を、気象情報サーバ57から取得する。そして、公知のモデル(Udagawaモデル+Isotropicモデル)によって、取得した日射量及び太陽高度から、水平面全天日射量を直散分離して、各入射ベクトルを生成する。
【0078】
次に、形状設計システム50の制御部51は、期間重み係数を算出する処理を実行する(ステップS33)。具体的には、制御部51の条件特定部511は、評価対象の期間及び時間帯の鉛直面直達日射量をプロファイル角毎に集計し、鉛直面直達日射量の積算値に対する比(重み係数)を算出する。
【0079】
次に、形状設計システム50の制御部51は、光線追跡シミュレーション処理を実行する(ステップS34)。具体的には、制御部51のシミュレーション部512は、
図6に示す光線追跡シミュレーションを実行する。
【0080】
次に、形状設計システム50の制御部51は、期間平均光学特性の評価処理を実行する(ステップS35)。具体的には、制御部51の形状最適化部513は、ステップS33で算出した光学特性に対して重み係数を乗じ、評価期間中の平均光学特性として評価する。
【0081】
次に、形状設計システム50の制御部51は、形状最適化処理を実行する(ステップS36)。具体的には、制御部51の形状最適化部513は、上述したパラメトリックモデルにおいて、多目的遺伝的アルゴリズムを用いて、変数範囲内において、設計変数を変数刻みで変更する。ここでは、探索条件として、「天空反射率が高い」かつ「開口率が高い」パレート解探索を行なう。このパレート解探索においては、設計変数の変更毎に、形状設計システム50の制御部51は、ステップS34以降の処理を繰り返して実行する。
【0082】
図9においては、ルーバー10を東京で南の方位に設置した場合のパレート解を濃い色の丸で表示している。なお、この
図9において、探索条件を満たさない解を劣解として薄い灰色の丸で表示している。
【0083】
そして、形状最適化部513は、設計変数の変数範囲内において複数のパレート解が得られた場合、パレート解の中で天空反射率が最も高い解を最適解と特定する。
そして、形状設計システム50の制御部51は、最適化後の形状の出力処理を実行する(ステップS37)。具体的には、制御部51の形状最適化部513は、最適解と特定した値を設計変数として有した羽板20の形状を生成し、出力部58の表示画面に表示する。なお、この場合に画面に表示された形状が、
図2の羽板20の形状である。
【0084】
<最適化前後の反射光軌跡及び光学特性>
図10(a)~(c)には、最適化する前の羽板のプロトタイプPTの入射角別の反射光軌跡を、
図10(d)~(f)には、最適化した後の羽板20の入射角別の反射光軌跡を示す。なお、
図10(a)~(f)において、羽板20の入射側間口間の太い直線は、設定した光源である。
また、最適化後は多重反射ではなく、1回反射による反射性能が向上するように、形状が変化していることがわかる。
【0085】
図11には、最適化前後における直達日射の光学特性を示す。
図11(a)は反射成分、
図11(b)は透過成分の光学特性を示している。ここで、光学特性は鉛直面基準としている。
図11(a)に示す反射成分では、夏期の入射角度が高い場合(入射角60°以上)の再帰成分が約3.2倍、上向き成分が約5.6倍に増加した。
図11(b)に示す透過成分では、上向き成分が大幅に低下し、遮熱主体になっていた。また、計算条件で許容入射角を30°としたため、それ以下の透過率は急激に増加していた。
【0086】
<設置場所に応じたルーバー10の羽板20の形状>
図12は、沖縄、鹿児島、大阪、東京、仙台、札幌の各地に、ルーバー10を設置する羽板20の断面外形状を示している。これら羽板20の形状は、上述した形状設計システム50を用いて設計した結果である。
【0087】
このような羽板20の断面外形状は、評価対象期間における入射角度別直達日射重み係数(積算日射量の割合)の分布に起因している。
ここで、以下の表6に、各地域における夏期・中間期(評価対象期間)における入射角度別直達日射重み係数を示す。
【0088】
【0089】
表6に示すように、沖縄においては、入射角度40度~50度、60度~65度の入射角度別直達日射重み係数が高くなっている。このため、沖縄においては、主に、太陽高度40度~50度、60度~65度における直達日射を天空反射させる形状となる。具体的には、
図12に示すように、羽板20の第2部材40の第2天空反射部42の勾配が急で、羽板20の第2部材40の第1天空反射部41が長い形状となる。
【0090】
表6に示すように、鹿児島においては、入射角度50度を中心として幅広い範囲で入射角度別直達日射重み係数が高くなっている。このため、鹿児島においては、太陽高度50度を中心として幅広く直達日射を天空反射させる形状となる。具体的には、
図12に示すように、羽板20の第2部材40の第1天空反射部41及び第2天空反射部42の勾配がほぼ同じ角度で平坦の形状となる。
【0091】
また、大阪、東京及び仙台においては、入射角度が30度~45度と65度~75度との2つの範囲で入射角度別直達日射重み係数が高くなっており、二極化している。このため、羽板20の上面の左側と右側でバランスよく反射させることが望ましい。従って、羽板20の左側及び右側の両方において反射させる形状となる。
【0092】
更に、札幌においては、入射角度が高い範囲(50度~70度)において入射角度別直達日射重み係数が高くなっている。このため、これらの地域においては、ルーバーの右側へは日射があまり届かないため、左側のみで反射させることが望ましい。従って、羽板20の左側が短い形状となる。
また、札幌における羽板20の第2天空反射部42は、焼付塗装(白色)によって構成することが好ましい。この第2天空反射部42は、ほぼ平坦に近い勾配の形状になるため、焼付塗装(白色)を用いて拡散反射させることにより、天空反射率を増加させることができる。
【0093】
本実施形態によれば、以下のような効果を得ることができる。
(1)本実施形態のルーバー10は、水平方向に延在する複数の羽板20を、傾斜させて、鉛直方向に並べて備える。この羽板20の第1部材30には、拡散反射面を有する第1拡散面部33、第2拡散面部36、上側側面部37、上面部38を備える。羽板20の第2部材40には、天空反射面を有する第1天空反射部41及び第2天空反射部42を備える。これにより、ルーバー10が受ける日射を天空へと反射させて、周辺建物や地上への反射を低減させるので、ルーバー10を設けた建物の周囲の温熱環境を改善することができる。更に、室内側には、上側側面部37や上面部38の拡散反射面からの透過光が入るので、反射による眩しさを低減することができ、人に優しい視環境を実現できる。
【0094】
(2)本実施形態の羽板20は、異なる2つの反射特性を有する第1部材30及び第2部材40を備える。これにより、それぞれ別の反射特性を有する羽板20を作製することができる。
【0095】
(3)本実施形態の羽板20は、ルーバー10が設置される場所の太陽高度及び日射量と、光線追跡法で算出した光学特性とに基づく、天空反射面における天空反射率と日射遮蔽装置の開口率とが大きくなる形状によって構成されている。これにより、羽板20に入射される日射を、天空に多く反射させることができる。
【0096】
(4)本実施形態の羽板20は、下端側面部31の表面を拡散反射面で構成する。これにより、建物の外側の人にも優しい視環境を実現することができる。
(5)本実施形態の羽板20は、上側側面部37、上面部38を備える第1部材30に第2部材を内嵌させている。これにより、2つの部材を一体化して羽板20を構成することができる。
【0097】
(6)本実施形態の羽板20の第1部材30及び第2部材40は、羽板20同士を連結する連結棒15が貫通される連結部35,45を備える。これにより、複数の羽板20を確実に支持することができる。
【0098】
(7)本実施形態の形状設計システム50の制御部51は、ルーバーの設置情報の取得処理(ステップS31)、日射条件の取得処理(ステップS32)を実行する。この場合、羽板20の形状を決めるパラメトリックモデルにおいて、形状における天空反射面の角度及び長さを変更して、天空反射面における天空反射率と、前記日射遮蔽部材の開口率とを算出するシミュレーションを繰り返し、前記天空反射率及び前記開口率が大きくなる羽板20の形状を決定する。これにより、ルーバーの設置地域や設置場所に応じて、日射状況は異なる場合にも、天空反射性や開口率を考慮した形状を設計することができる。
【0099】
(8)本実施形態の形状設計システム50の制御部51は、多目的遺伝的アルゴリズムを用いて形状最適化処理を実行する。これにより、羽板20の形状を効率的に設計することができる。
【0100】
(9)本実施形態の形状設計システム50の制御部51は、期間重み係数を用いて形状最適化処理を実行する。これにより、評価期間の平均光学特性を考慮して評価することができる。
【0101】
また、上記実施形態は、以下のように変更してもよい。
・上記実施形態のルーバー10は、鉛直方向に並んだ羽板20の中央部に貫通する連結棒15によって、複数の羽板20を支持した。各羽板20の支持方法は、これに限定されず、上側端部や下側端部において連結棒を配置して、各羽板20を連結してもよい。また、連結棒で連結する場合に限られず、柔軟性のある部材で連結してもよい。
【0102】
・上記実施形態の羽板20の第1部材30は、A6063材の表面に木目調フィルムを貼付することによって構成し、第2部材40は、A6063材の表面を(バフ研摩なしの)電解研磨することによって構成した。第1部材30は、拡散反射性を有する表面(拡散反射面)で構成されていれば、この材質(素材)や形状に限定されず、第2部材も、天空反射性を有する表面(天空反射面)で構成されていればよい。
【0103】
・上記実施形態の羽板20は、第2部材40の支持部43を第1部材30の突条部32aに係合させ、第2部材40の中央係合部46を第1部材30の固定部36aと嵌合部36bに係合させ、第2部材40の上端係合部47を第1部材30の補強部39に係合させた。第2部材40を第1部材30に係合させる構成は、これらに限定されない。
【0104】
・上記実施形態の羽板20は、
図8に示した形状で、表4の設計定数及び表5の設計変数を設定したパラメトリックモデルを用いて設計した。羽板20の形状に用いるパラメトリックモデルの形状や設計定数、設計変数は、上記パラメトリックモデルに限定されず、任意の形状、定数、変数を用いてもよい。
【0105】
・上記実施形態の形状設計システム50の制御部51は、多目的最適化アルゴリズムとして近傍培養型遺伝的アルゴリズムを用いて形状最適化処理を実行した。制御部51は、他のアルゴリズムを用いて最適形状を特定してもよい。
【符号の説明】
【0106】
θ…傾斜角、φ…許容入射角、P1,P2…接続辺、PT…プロトタイプ、RW…全長、PT30,30…第1部材、PT33,33…第1拡散面部、PT36,36…第2拡散面部、PT40,40…第2部材、PT41,41…第1天空反射部、PT42,42…第2天空反射部、10…ルーバー、15…連結棒、20…羽板、21…キャップ、30…第1部材、31…下端側面部、31a…下端係合部、32…底部、32a…突条部、35,45…連結部、36a…固定部、36b…嵌合部、37…上側側面部、37a…開口部、38…上面部、39…補強部、41a…先端部、43…支持部、44…接続部、46…中央係合部、47…上端係合部、50…形状設計システム、51…制御部、53…パラメトリックモデル記憶部、56…入力部、57…気象情報サーバ、58…出力部、511…条件特定部、512…シミュレーション部、513…形状最適化部。