IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アイシーティー インテグレーテッド サーキット テスティング ゲゼルシャフト フィーア ハルプライタープリーフテヒニック エム ベー ハーの特許一覧

特許7020775静電多極デバイス、静電多極配置、および静電多極デバイスを製造する方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-07
(45)【発行日】2022-02-16
(54)【発明の名称】静電多極デバイス、静電多極配置、および静電多極デバイスを製造する方法
(51)【国際特許分類】
   H01J 37/12 20060101AFI20220208BHJP
   H01J 9/14 20060101ALI20220208BHJP
【FI】
H01J37/12
H01J9/14 Z
【請求項の数】 16
【外国語出願】
(21)【出願番号】P 2016225666
(22)【出願日】2016-11-21
(65)【公開番号】P2017107849
(43)【公開日】2017-06-15
【審査請求日】2019-11-20
(31)【優先権主張番号】14/947,241
(32)【優先日】2015-11-20
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】501493587
【氏名又は名称】アイシーティー インテグレーテッド サーキット テスティング ゲゼルシャフト フィーア ハルプライタープリーフテヒニック エム ベー ハー
(74)【代理人】
【識別番号】100086771
【弁理士】
【氏名又は名称】西島 孝喜
(74)【代理人】
【識別番号】100088694
【弁理士】
【氏名又は名称】弟子丸 健
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100067013
【弁理士】
【氏名又は名称】大塚 文昭
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100109335
【弁理士】
【氏名又は名称】上杉 浩
(74)【代理人】
【識別番号】100120525
【弁理士】
【氏名又は名称】近藤 直樹
(74)【代理人】
【識別番号】100141553
【弁理士】
【氏名又は名称】鈴木 信彦
(72)【発明者】
【氏名】ベンジャミン ジョン クック
(72)【発明者】
【氏名】ディーター ウィンクラー
【審査官】鳥居 祐樹
(56)【参考文献】
【文献】特表2010-527135(JP,A)
【文献】特開2001-273861(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/12
H01J 37/147
H01J 37/153
H01J 37/28
H01J 37/30
G21K 1/087
(57)【特許請求の範囲】
【請求項1】
光軸に沿って伝搬する荷電粒子ビームに影響を与える静電多極デバイスであって、
前記荷電粒子ビームに対する少なくとも1つの開孔開口部を有する基板であり、前記少なくとも1つの開孔開口部が前記光軸に沿って前記基板を通って延びる、基板と、
前記開孔開口部を通って伝搬する前記荷電粒子ビームに影響を与えるように前記基板の第1の主表面上に形成される4つ以上の電極であり、それぞれ前記開孔開口部のビーム制限エッジから半径方向の距離をあけて配置される4つ以上の電極とを備え
前記基板が、前記第1の主表面を含む少なくとも1つの絶縁体層を備え、前記第1の主表面上に前記電極が形成され、
前記基板が、前記第1の主表面とは反対側に前記基板の第2の主表面を含むさらなる層を備え、前記さらなる層が導体層または半導体層である、静電多極デバイス。
【請求項2】
前記開孔開口部が丸いまたは円形の横断面形状を有する、請求項1に記載の静電多極デバイス。
【請求項3】
前記開孔開口部の最小半径が、前記光軸と前記4つ以上の電極のそれぞれとの間の最小距離より小さ、請求項1または2に記載の静電多極デバイス。
【請求項4】
前記開孔開口部の前記最小半径と、前記光軸と前記4つ以上の電極のそれぞれとの間の前記最小距離との間の比が、1/2未満、1/3未満、または1/5未満である、請求項に記載の静電多極デバイス。
【請求項5】
前記基板の前記第1の主表面上で前記光軸の周りに均等に隔置された角度位置で8つ、12個、または20個の電極が形成される、請求項1からまでのいずれか1項に記載の静電多極デバイス。
【請求項6】
前記4つ以上の電極が、シリコンまたはドープされたシリコンを含む、請求項1からまでのいずれか1項に記載の静電多極デバイス。
【請求項7】
記4つ以上の電極が、前記絶縁体層上に配置された半導体含有頂層からの材料除去によって形成される、請求項1からまでのいずれか1項に記載の静電多極デバイス。
【請求項8】
記さらなる層が、SOIウエハのシリコン含有底層である、請求項1から7のいずれか1項に記載の静電多極デバイス。
【請求項9】
前記開孔開口部が、第1の直径を有する前記絶縁体層と、前記開孔開口部の前記ビーム制限エッジを形成するように前記第1の直径より小さい第2の直径を有する前記少なくとも1つのさらなる層とを通って延びる、請求項に記載の静電多極デバイス。
【請求項10】
前記4つ以上の電極の少なくとも2つの間の電流の流れを可能にするように前記第1の主表面の少なくとも一部分を覆う高抵抗層をさらに備える、請求項1からまでのいずれか1項に記載の静電多極デバイス。
【請求項11】
少なくとも第1の光軸に沿って伝搬する荷電粒子の第1のビームレットおよび第2の光軸に沿って伝搬する荷電粒子の第2のビームレットに個々に影響を与える静電多極配置であって、
基板であり、前記第1の光軸に沿って前記基板を通って延びる前記第1のビームレットを生成する第1の開孔開口部および前記第2の光軸に沿って前記基板を通って延びる前記第2のビームレットを生成する第2の開孔開口部を有する基板と、
前記第1のビームレットに影響を与えるように前記基板の第1の主表面上に形成される4つ以上の第1のビームレット電極であり、それぞれ前記第1の開孔開口部のビーム制限エッジから半径方向の距離をあけて配置される4つ以上の第1のビームレット電極と、
前記第2のビームレットに影響を与えるように前記基板の前記第1の主表面上に形成される4つ以上の第2のビームレット電極であり、それぞれ前記第2の開孔開口部のビーム制限エッジから半径方向の距離をあけて配置される4つ以上の第2のビームレット電極とを備え
前記基板が、前記第1の主表面を含む少なくとも1つの絶縁体層を備え、前記第1の主表面上に前記電極が形成され、
前記基板が、前記第1の主表面とは反対側に前記基板の第2の主表面を含むさらなる層を備え、前記さらなる層が導体層または半導体層である、静電多極配置。
【請求項12】
光軸に沿って伝搬する荷電粒子ビームに影響を与える静電多極デバイスを製造する方法であって、
第1の導体または半導体層とさらなる導体または半導体層との間に配置された絶縁体層を有する多層基板を設けるステップと、
前記光軸に沿って前記多層基板を通って延びる前記荷電粒子ビームに対する少なくとも1つの開孔開口部を形成するステップと、
前記第1の導体または半導体層を部分的に除去し、それにより前記導体または半導体層の残り部分が、前記開孔開口部を通って伝搬する前記荷電粒子ビームに影響を与える4つ以上の電極を前記絶縁体層の第1の主表面上に形成するステップとを含み、
前記4つ以上の電極がそれぞれ、前記開孔開口部のビーム制限エッジから半径方向の距離をあけて配置される、方法。
【請求項13】
記多層基板が、前記第1の導体または半導体層と前記さらなる導体または半導体層との間に挟まれた前記絶縁体層を含むSOIウエハとして設けられる、請求項12に記載の方法。
【請求項14】
前記絶縁体層の少なくとも一部をエッチングするステップをさらに含み、その結果、前記開孔開口部が、第1の直径を有する前記絶縁体層と、前記開孔開口部の前記ビーム制限エッジを形成するように前記第1の直径より小さい第2の直径を有する前記さらなる導体または半導体層とを通って延び、特にエッチングするステップが、前記4つ以上の電極より下の前記絶縁体層の少なくとも一部をエッチングしてアンダカットを作製することを含む、請求項13に記載の方法。
【請求項15】
前記第1の導体または半導体層を部分的に除去するステップが、前記導体または半導体層上にマスクを配置して前記導体または半導体層をエッチングし、前記4つ以上の電極を形成することを含む、請求項12から14までのいずれか1項に記載の方法。
【請求項16】
前記多層基板を高抵抗層で少なくとも部分的にコーティングするステップ
をさらに含む、請求項12から15までのいずれか1項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書に記載する実施形態は、たとえば検査システムの適用分野、試験システムの適用分野、欠陥レビューまたはクリティカルディメンショニングの適用分野、表面撮像の適用分野(SEM)など向けに、荷電粒子ビーム、たとえば電子ビームに影響を与える静電多極デバイス、ならびに静電多極デバイスを製造する方法に関する。実施形態はまた、2つ以上の静電多極デバイスを含む静電多極配置に関する。本明細書に開示する実施形態による静電多極デバイスおよび静電多極配置は、マルチビームシステムとして構成された荷電粒子ビーム装置内で使用することができる。さらなる実施形態は、静電多極デバイスを製造する方法に関する。
【背景技術】
【0002】
最新の半導体技術では、ナノメートルまたはさらにサブナノメートル規模の標本を体系化して精査することが強く求められている。マイクロメートルおよびナノメートル規模のプロセス制御、検査、または体系化は、電子顕微鏡または電子ビームパターンジェネレータなどの荷電粒子ビーム装置内で生成、成形、偏向、および集束された荷電粒子ビーム、たとえば電子ビームを用いて行われることが多い。検査の目的で、荷電粒子ビームは、たとえば光子ビームと比較すると、光線の波長より波長が短いため、優れた空間分解能を提供する。
走査電子顕微鏡(SEM)などの荷電粒子ビームを使用する検査デバイスは、それだけに限定されるものではないが、製造中の電子回路、リソグラフィ用の露出システム、検出デバイス、欠陥検査ツール、および集積回路用の試験システムの検査を含む複数の産業分野において、多くの機能を有する。そのような粒子ビームシステムでは、電流密度の高い微細なプローブを使用することができる。たとえば、SEMの場合、1次電子(PE)ビームが、2次電子(SE)および/または後方散乱電子(BSE)のような粒子を生成し、これらの粒子を使用して、標本を撮像および分析することができる。
【0003】
電子ビームに基づくシステムの1つの欠点は、集束スポット内のプローブ電流が制限されることである。分解能が増大する(スポットサイズが減少する)につれて、収差を制御するために必要とされる開孔角も低減されるため、プローブ電流はさらに減少する。光源の輝度が高ければ高いほど、電子間相互作用のため、プローブ電流に対して制限された改善しか提供することができない。電子ビームシステム内の電子間相互作用を低減させるために、多くの手法が採られてきた。たとえば、コラム長さを低減させかつ/またはコラムエネルギーをより大きくすることと、後にサンプル直前で電子ビームを最終的な入射エネルギーまで減速させることとを組み合わせることが挙げられる。しかし、必要とされる分解能における単一電子ビームのスループットの改善はますます困難になりつつある。そのような問題を解決する1つの手法は、1つのコラム内で複数のビームを使用することであり、これらは単一の光源によって生成することができるが、ビームの数だけスループットが低減する。
【0004】
しかし、そのような多重ビームシステムの個々のビームレットを個々に誘導、偏向、成形、補正、および集束することは困難である。この目的のため、静電8極デバイスなどの静電多極偏向器および補正器を使用することができる。しかし、静電多極デバイスを十分に小型化すると同時に優れたビーム影響特性および電界特性を維持することは困難である。小型化された静電双極デバイス、たとえばブランキングデバイスは、管理可能な労力で製造することができるのに対して、優れた電界品質を生成するのに適した4極または8極デバイスなどの小型化された多極デバイスを提供することは特に困難である。
さらに、単一荷電粒子ビームシステム向けの多極デバイスもまた、静電界の品質が不十分になる可能性があり、スポットサイズが増大し、荷電粒子ビーム装置の実現可能な空間分解能が損なわれる可能性がある。したがって、荷電粒子ビームを偏向および/または補正するために使用される優れた電界品質を提供することができる静電多極デバイスが必要とされている。
【発明の概要】
【課題を解決するための手段】
【0005】
上記に照らして、独立請求項によれば、光軸に沿って伝搬する荷電粒子ビームに影響を与える静電多極デバイスおよび2つ以上の静電多極デバイスを有する静電多極配置が提供される。さらなる態様によれば、荷電粒子ビームに影響を与える静電多極デバイスを製造する方法が提供される。実施形態のさらなる態様、利点、および特徴は、従属請求項、説明、および添付の図面から明らかになる。
本明細書に記載する実施形態によれば、光軸に沿って伝搬する荷電粒子ビームに影響を与える静電多極デバイスが提供され、この静電多極デバイスは、荷電粒子ビームに対する少なくとも1つの開孔開口部を有する基板であり、少なくとも1つの開孔開口部が光軸に沿って基板を通って延びる、基板と、開孔開口部を通って伝搬する荷電粒子ビームに影響を与えるように基板の第1の主表面上に形成される4つ以上の電極であり、それぞれ開孔開口部のビーム制限エッジから半径方向の距離をあけて配置される4つ以上の電極とを含む。
【0006】
本明細書に記載するさらなる態様によれば、少なくとも第1の光軸に沿って伝搬する荷電粒子の第1のビームレットおよび第2の光軸に沿って伝搬する荷電粒子の第2のビームレットに個々に影響を与える静電多極配置が提供され、この静電多極配置は、基板であり、第1の光軸に沿って基板を通って延びる第1のビームレットを生成する第1の開孔開口部および第2の光軸に沿って基板を通って延びる第2のビームレットを生成する第2の開孔開口部を有する基板と、第1のビームレットに影響を与えるように基板の第1の主表面上に形成される4つ以上の第1のビームレット電極であり、それぞれ第1の開孔開口部のビーム制限エッジから半径方向の距離をあけて配置される4つ以上の第1のビームレット電極と、第2のビームレットに影響を与えるように基板の第1の主表面上に形成される4つ以上の第2のビームレット電極であり、それぞれ第2の開孔開口部のビーム制限エッジから半径方向の距離をあけて配置される4つ以上の第2のビームレット電極とを含む。
【0007】
本明細書に記載するさらなる態様によれば、光軸に沿って伝搬する荷電粒子ビームに影響を与える静電多極デバイスを製造する方法が提供され、この方法は、絶縁体層および絶縁体層上に配置された導体または半導体層を有する多層基板を設けるステップと、光軸に沿って多層基板を通って延びる荷電粒子ビームに対する少なくとも1つの開孔開口部を形成するステップと、導体または半導体層を部分的に除去し、それにより導体または半導体層の残り部分が、開孔開口部を通って伝搬する荷電粒子ビームに影響を与える4つ以上の電極を絶縁体層の第1の主表面上に形成するステップとを含み、4つ以上の電極がそれぞれ、開孔開口部のビーム制限エッジから半径方向の距離をあけて配置される。
【0008】
実施形態はまた、開示する方法を実施する装置を対象とし、個々の方法動作を実行する装置部品を含む。この方法は、ハードウェア構成要素、適当なソフトウェアによってプログラムされるコンピュータ、これら2つの任意の組合せ、または任意の他の方法によって実行することができる。さらに、本発明による実施形態はまた、記載する装置を動作させる方法を対象とする。
本明細書に記載する実施形態と組み合わせることができるさらなる利点、特徴、態様、および詳細は、従属請求項、説明、および図面から明白である。
本発明の上記の特徴を詳細に理解することができるように、上記で簡単に要約した本発明に関するより具体的な説明は、実施形態を参照することによって得ることができる。添付の図面は、1つまたは複数の実施形態に関し、以下に説明する。
【図面の簡単な説明】
【0009】
図1】本明細書に記載する実施形態による静電多極デバイスを示す概略断面図である。
図2A】本明細書に記載する実施形態による静電多極デバイスを示す概略断面図である。
図2B図2Aの静電多極デバイスを示す正面図である。
図3A】本明細書に記載する実施形態による静電多極デバイスを示す概略断面図である。
図3B図3Aの静電多極デバイスを示す正面図である。
図3C図3Aの静電多極デバイスを示す背面図である。
図4A】本明細書に記載する実施形態による静電多極デバイスを示す概略断面図である。
図4B図4Aの静電多極デバイスを示す正面図である。
図4C図4Aの静電多極デバイスを示す背面図である。
図5】本明細書に記載する実施形態による静電多極デバイスを示す概略断面図である。
図6】本明細書に記載する実施形態による静電多極デバイスを示す概略断面図である。
図7】本明細書に記載する実施形態による静電多極配置を示す概略正面図である。
図8】本明細書に記載する実施形態による静電多極配置を示す概略断面図である。
図9】本明細書に記載する実施形態による静電多極配置を有する荷電粒子ビーム装置を示す概略図である。
図10A-E】本明細書に記載する実施形態による静電多極デバイスを製造する方法の様々なプロセスを示す図である。
【発明を実施するための形態】
【0010】
本発明の様々な実施形態を詳細に次に参照する。実施形態の1つまたは複数の例は、図に示されている。以下の図面の説明では、同じ参照番号は同じ構成要素を指す。概して、個々の実施形態に対する違いについてのみ説明する。各例は、説明のために提供されるものであり、限定を意味するものではない。さらに、一実施形態の一部として図示または記載する特徴を他の実施形態で、または他の実施形態と関連して使用し、さらなる実施形態を得ることができる。本説明は、そのような修正形態および変形形態を含むことが意図される。
【0011】
静電4極デバイスまたは静電8極デバイスなどの静電多極デバイスは、荷電粒子のビームの収差を補正するために使用することができる。たとえば、例示的な形状寸法では、たとえば円の円周上で、荷電粒子ビームの伝搬経路の周りに、8つの電極を配置することができる。たとえば、これらの電極は、互いから45°等しく隔置することができる。荷電粒子ビームに与える所望の影響に応じて、これらの電極に+Vおよび-Vの電位を交互に印加して、荷電粒子ビームの非点収差を補正するための8極界を提供することができる。別法として、たとえば+V、+√2/2V、0、-√2/2V、-V、-√2/2V、0、+√2/2Vの電圧を円周方向にこの順序で電極に印加して、荷電粒子ビームを偏向するのに適した双極界を提供することができる。別の例では、たとえば円の円周上で、荷電粒子ビームの伝搬経路の周りに、4つの電極を配置することができる。たとえば、これらの電極は、静電4極デバイスを提供するために、互いから90°等しく隔置することができる。これらの電極に+Vおよび-Vの電位を交互に印加して、四重極場を提供することができる。
たとえば絶縁材料から作られた支持構造に導電性材料から作られた電極を加えることによって、静電多極デバイスを構築することができる。たとえば、荷電粒子ビームにとって十分に大きい隙間を偏向器電極間に設けるように、荷電粒子ビームの両側に2つの平板電極または湾曲電極を配置することによって、小型の双極デバイスを製造することができる。したがって、荷電粒子ビームを光軸に対して所定の偏向角度で偏向する良好な品質の電気偏向場を、荷電粒子ビームに印加することができる。
【0012】
いくつかの場合、双極デバイスを提供するだけでは十分でないことがある。たとえば、球面収差または非点収差などのビーム収差を補正するには、4極デバイスまたは8極デバイスが必要とされることがある。しかし、小さい横方向の寸法を有する4極デバイスまたは別のより高次の多極デバイスの製造は、たとえば光軸の周りに延びる円形の線上で荷電粒子ビームに対して様々な角度位置で電極が配置されるべきであるため、困難になることがある。荷電粒子ビームの荷電粒子は、これらの電極の1つに近接して伝搬し、電気補正場のエッジ領域を通って伝搬することがあり、電界の品質は、光軸付近の電界の品質と比較すると劣ることがある。
荷電粒子が電極間の中心領域のみに入ることを確実にするには、小さい開孔開口部を有する開孔板を静電多極デバイスから上流に配置して、開孔板から下流に配置された電極に対して荷電粒子ビームを中心に位置合わせすることができる。しかし、小型化されたデバイスの場合、空間寸法が小さいため、開孔板および多極デバイスの相対的なアライメントは困難になることがある。前述の問題を解決するために、本明細書に記載する実施形態によれば、小型化された形で製造するのが容易であると同時に電極間の中心領域内に高品質の電界を提供するように構成された静電多極デバイスが提供される。さらに、特に電極に対するシステム内の荷電粒子の位置を制御することができる。
【0013】
本明細書に記載する実施形態による静電多極デバイス100を、図1に概略断面図で示す。静電多極デバイス100は、光軸に沿って開孔開口部120を通って伝搬する荷電粒子ビーム、たとえば電子ビームに影響を与えるように構成される。静電多極デバイス100は、光軸Aに沿って基板を通って延びる荷電粒子ビームに対する少なくとも1つの開孔開口部120を有する基板110と、開孔開口部120を通って伝搬する荷電粒子ビームに影響を与えるように基板の第1の主表面112上に形成された4つ以上の電極130、132、134、136とを含む。4つ以上の電極のうち開孔開口部120の両側に配置することができる2つ(130、134)を、図1の断面図に示す。
【0014】
4つ以上の電極は、それぞれ開孔開口部のビーム制限エッジ122から半径方向の距離(M)をあけて配置される。言い換えれば、電極自体が、荷電粒子ビームに対するビーム制限エッジを形成するのではなく、これらの電極は、開孔開口部のビーム制限エッジに対して半径方向に外側に配置される。したがって、光軸に対して平行に開孔開口部を通って伝搬する荷電粒子ビームの荷電粒子は、電極から距離をあけて通過する。その結果、荷電粒子は、電界が光軸上の電界から逸れることのある電界のエッジ領域を通って伝搬しない。開孔開口部のビーム制限エッジ122は、開孔開口部のうち隙間幅が最も小さいまたは隙間直径が最も小さい部分とすることができ、開孔開口部を通って伝搬する荷電粒子ビームの半径方向の延長を制限する。
【0015】
たとえば、開孔開口部120は、図1に示すように、本質的に一定の幅または直径Dで、基板110を通って延びることができる。この場合、光軸に対して平行に伝搬するコリメートされた荷電粒子ビームの幅が、開孔開口部120に入るときに制限されるため、開孔開口部のビーム制限エッジ122は、開孔開口部120の入口エッジに対応する。ビーム制限エッジ122と電極130との間の半径方向の距離Mは、ビーム制限エッジと電極を接続する接続線の半径方向の成分の長さに対応する。本明細書では、「半径方向」とは、光軸に対して垂直方向に光軸から半径方向外方に延びる方向を指すことができる。
いくつかの実装形態では、開孔開口部120の幅は、開孔開口部の上流側から開孔開口部の下流側へ段階的または連続的に、少なくとも部分的に変動、たとえば増大することができる。図3A図5、および図6に、いくつかの例を示す。またこの場合、荷電粒子ビームの幅が、開孔開口部120に入るときに制限されるため、開孔開口部のビーム制限エッジ122は、開孔開口部の入口エッジに対応することができる。ビーム制限エッジ122と電極130との間の半径方向の距離Mは、ビーム制限エッジと電極を接続する接続線の半径方向の成分の長さに対応する。したがって、光軸に対して平行に開孔開口部を通って伝搬する荷電粒子は、各電極から距離をあけて通過する。
【0016】
電界が半径方向に外側のエッジ領域と比較するとより良好な品質を有することができる電極間の中心領域のみを荷電粒子が伝搬することを確実にするには、距離Mは、10μm以上、特に50μm以上、さらに100μm以上、またはさらに500μm以上とすることができる。いくつかの実装形態では、電極のそれぞれに対して、距離Mと、電極と光軸との間の半径方向の距離である距離Xとの間の比(M/X)は、0.5以上、特に0.6以上、さらに0.8以上とすることができる。
【0017】
いくつかの実施形態によれば、基板110は、荷電粒子ビームに対する開孔開口部120を提供し、かつ開孔開口部から下流に位置するその第1の主表面上で電極を保持するように構成される。荷電粒子ビームは、開孔開口部と電極との間の空間関係が固定されるため、2つの対向する電極間で自動的に中心に位置合わせされる。したがって、開孔開口部および電極を備える単一のモジュールが提供されるとき、開孔板と電極との間の相対的な空間配置を調整する必要はない。いくつかの実装形態では、電極は、たとえば接合接続で基板の第1の主表面に固定される。いくつかの実装形態では、電極は、基板と一体的に製造される。
【0018】
4つ以上の電極130、132、134、136は、光軸に対してそれぞれの角度位置で基板110の第1の主表面上に配置することができる。静電多極デバイスが4極デバイスとして提供される場合、電極は、0°(±5°)、90°(±5°)、180°(±5°)、および270°(±5°)の角度で配置することができ、光軸は、中心位置に配置される。図1に示すように、それぞれ開孔開口部120の両側に、2つの電極を配置することができる。
基板は、平板な基板、たとえば多層ウエハなどのウエハとすることができる。たとえば、基板は、少なくとも1つの絶縁体層を有する多層基板とすることができ、電極は絶縁体層上に形成される。
【0019】
本明細書に開示する他の実施形態と組み合わせることができるいくつかの実施形態では、開孔開口部は、丸いまたは円形の横断面形状を有することができる。したがって、光軸に沿って開孔開口部を通って広い角度の荷電粒子ビームを誘導することによって、荷電粒子の丸いまたは円形のビームレットを生成することができる。開孔開口部は、1mm以下、特に500μm以下、さらに200μm以下、またはさらに100μm以下の最小直径D(隙間直径)を有することができる。
いくつかの実装形態では、開孔開口部の最小半径(D/2)は、より小さくすることができ、特に光軸Aと4つ以上の電極との間の半径方向の距離Xの1/2未満、さらに1/3未満、さらに1/5未満とすることができる。いくつかの実装形態では、4つ以上の電極の内側電極表面は、光軸Aの周りに延びる円形の線上に配置することができ、円形の線の半径は、開孔開口部の最小半径(D/2)より2倍大きくことができる。いくつかの実装形態では、開孔開口部120の最小直径Dは、4つ以上の電極のうちそれぞれ開孔開口部120の両側に配置された2つ電極130、134間の最小距離より小さくすることができる。いくつかの実装形態では、光軸からの半径方向の距離Xは、電極のそれぞれに対して同じである。
本明細書に開示する実施形態による静電多極デバイス100の製造は、電極のいくつかまたはすべてがたとえばシリコンまたはドープされたシリコンを含むとき、簡略化することができる。平坦な基板上に配置されるシリコン電極は、SOI基板(シリコンオンインシュレータ)から小型化された形で特に容易に形成することができる。さらに、結晶シリコンまたはドープされたシリコンの導電率は、静電多極デバイスの電極を形成するのに十分である。さらに導電率の高い材料、たとえば金属から作られた電極は、必要とされないことがある。他の実装形態では、電極は、金属を含むことができ、または金属から作ることができる。それでもなお、さらに他の材料系が、SOIウエハに類似の絶縁体または半導体を有する多層ウエハ構造を提供するのに適していることもある。
【0020】
図2Aは、本明細書に記載する実施形態による静電多極デバイス200を概略断面図に示す。図2Bは、静電多極デバイス200を正面図に示し、静電多極デバイス200の下流側が示されている。静電多極デバイス200は、本質的に、図1に示す静電多極デバイス100に対応し、したがって上記の説明を参照することができる。この説明について、ここでは繰り返さない。図1の実施形態に対する違いについてのみ、以下で詳述する。
【0021】
静電多極デバイス200は、少なくとも1つの絶縁体層212を備える多層基板110を含み、4つ以上の電極130、132、134、136が、絶縁体層212上に形成される。これらの電極は、絶縁体層212の材料と比較するとより高い導電率を有する材料から形成される。たとえば、電極130、132、134、136は、金属またはシリコンなどの導体または半導体材料から形成され、絶縁体層の第1の主表面112上に配置される。
【0022】
これらの電極は、それぞれの電位に接続可能に構成することができる。たとえば、各電極をそれぞれの電圧に接続するために電圧供給を設けることができる。いくつかの場合、各電極は、電極を電圧供給に接続するそれぞれの接続線175に接続することができる。接続線は、絶縁体層212内に少なくとも部分的に一体化することができる。いくつかの実施形態では、接続線175は、少なくとも部分的に基板の第1の主表面112上に設けることができ、第1の主表面112上には電極も形成される(図2Aに示すように)。たとえば、電極をそれぞれの電位に接続する接続線175は、電極と同じ材料から作られ、かつ/または絶縁体層上、すなわち基板の第1の主表面上を、電極から半径方向外方に延びる。
【0023】
図2Bに示すように、平坦な基板110の第1の主表面112上に、光軸Aに対してそれぞれの角度位置で4つの電極130、132、134、136を配置して、4極デバイスを提供する。4極デバイスは、光軸Aに対して荷電粒子ビームを偏向すること、および荷電粒子ビームの収差を補正することの少なくとも1つのために使用することができる。さらに、図2Bに示すように、4つの電極130、132、134、136はそれぞれ、光軸Aから同じ距離Xをあけて形成され、距離Xは、開孔開口部の最小半径より大きい。言い換えれば、4つ以上の電極はそれぞれ、開孔開口部120のビーム制限エッジ122から半径方向の距離Mをあけて配置される。距離Xは、荷電粒子ビームが電極から距離をあけて伝搬することを確実にするために、開孔開口部の最小半径より2倍大きくことができる。
図2Aに示す実施形態では、基板110は、絶縁体層212を含み、電極は絶縁体層212上に形成される。基板は、半導体または導体材料を有するさらなる層214を含み、さらなる層は、絶縁体層212より下に配置される。さらなる層214は、電極が形成される第1の主表面112に対して絶縁体層212の反対側に配置することができる。さらなる層214は、基板の第2の主表面114を備えることができ、第2の主表面114は、静電多極デバイス200の上流側に向けられる。
さらなる層214は、分離層212より高い導電率を有する材料、たとえば金属または半導体、特にシリコンから作ることができる。いくつかの実装形態では、電極とさらなる層はどちらも、シリコンから作ることができるのに対して、絶縁体層は、SiO2またはサファイアなどの別の絶縁体を含むことができる。第2の主表面114が導体または半導体表面であるとき、基板110の第2の主表面114に当たった荷電粒子ビームの荷電粒子は、第2の主表面114上に蓄積しない。
【0024】
電極130、132、134、136は、導電層区分として絶縁体層212上に提供することができる。これらの電極は、多層基板上にマスクを施し、当初均一の頂層のいくつかの部分を除去することによって、絶縁体層212上に形成することができ、したがって頂層の残り部分が電極を形成する。
これらの電極は、シリコンを含むことができ、またはシリコンからなることができる。電極を製造するために、SOIウエハの頂層とすることができる当初均一のシリコン層を部分的に除去し、たとえばエッチングすることができ、したがってシリコン層の残り部分が電極を形成する。これらの電極は、図2Bに示すように、正面図で台形に成形することができ、均等に隔置された角度位置で配置することができる。いくつかの実装形態では、電極は、台形の形状とは異なる形状を有することができる。たとえば、電極の内面を湾曲させることができる。別法として、電極は、本質的に光軸に対して半径方向に延びることができる導電線として提供することができる。本明細書に記載する他の実施形態と組み合わせることができるいくつかの実施形態では、電極は、30°未満、特に15°未満の角度範囲にわたって延びることができる。たとえば、12極または20極デバイスの場合、個々の電極は、10°未満または5°未満の角度範囲にわたって延びることができる。
【0025】
図3Aは、本明細書に記載する実施形態による静電多極デバイス300を概略断面図に示す。図3Bは、静電多極デバイス300を正面図に示し、静電多極デバイス300の下流側が示されている。図3Cは、静電多極デバイス300を背面図に示し、静電多極デバイス300の上流側が示されている。静電多極デバイス300は、本質的に、図2Aに示す静電多極デバイスに対応し、したがって上記の説明を参照することができる。この説明について、ここでは繰り返さない。図2Aの実施形態に対する違いについてのみ、以下で詳述する。
【0026】
静電多極デバイス300は、8極デバイスとして構成され、合計8つの電極340が、開孔開口部120の周りに円周方向に均等に隔置された角度位置で配置される。8極デバイスは、荷電粒子ビームを所定の偏向角度で偏向すること、および荷電粒子ビームの収差、たとえば球面収差、非点収差、または他のより高次のビーム収差を補正することの少なくとも1つのために使用することができる。別法として、多極デバイスは、12極または20極デバイスとして構成することができ、合計12または20個の電極を、さらに高次の収差を補正するために使用することができる。
電極340は、分離層212を含む多極基板である基板110の第1の主表面112上に形成され、分離層212上には、電極340と、さらなる層214とが形成される。さらなる層214は、開孔開口部120のビーム制限エッジ122を備える。
【0027】
本明細書に記載する他の実施形態と組み合わせることができるいくつかの実施形態では、開孔開口部120は、第1の直径を有する絶縁体層212と、開孔開口部のビーム制限エッジ122を形成するように第1の直径より小さい第2の直径を有するさらなる層214とを通って延びる。したがって、開孔開口部120を通って伝搬する荷電粒子ビームの荷電粒子は、電極から距離をあけて通過するだけでなく、絶縁体層212からも距離をあけて通過する。その結果、絶縁体層が荷電粒子ビームに露出され得る開孔開口部の内面上に蓄積する表面電荷がより少なくなる。
図3A~3Cに示す静電多極デバイス300は、次のように製造することができる。第1に、導体または半導体層とすることができる2つのさらなる層同士の間に挟まれた絶縁体層212を有する多層基板が設けられる。多層基板は、2つのシリコン層同士の間に挟まれた絶縁体層212を有するSOIウエハとすることができる。荷電粒子ビームに対する少なくとも1つの開孔開口部が、たとえばエッチングによって形成され、光軸Aに沿って多層基板を通って延びる。2つの導体または半導体層の一方が部分的に除去され、残りの層の部分が、絶縁体層の第1の主表面上に電極を形成する。これらの電極は、開孔開口部を通って伝搬する荷電粒子ビームに影響を与えるように構成される。導体または半導体層を部分的に除去することは、各電極340が開孔開口部120のビーム制限エッジ122から半径方向の距離をあけて配置されるように導体または半導体層のいくつかの部分を除去することを含むことができる。
【0028】
任意選択で、絶縁体層は、たとえばエッチングによって、開孔開口部の内側部分から少なくとも部分的に除去することができ、その結果、絶縁体層212内に形成される開孔開口部の第1の直径が、多極デバイスの上流層を構成するさらなる層214内に形成される開孔開口部の第2の直径より大きくなる。したがって、荷電粒子ビームの荷電粒子は、主にビーム制限エッジを備えるさらなる層214に接触し、その結果、絶縁体表面上の表面電荷の蓄積を回避することができる。
【0029】
したがって、絶縁体層212上に配置されたSOIウエハのシリコン含有頂層からの材料除去によって、4つ以上の電極を形成することができる。したがって、電極は、絶縁体層と一体形成され、その結果、容易に製造できる非常に小型で頑丈な構成の多極デバイスを提供することができる。別法または追加として、絶縁体層の上流側に配置されたさらなる層214は、SOIウエハの底層とすることができ、やはり絶縁体層212と一体形成される。
【0030】
多極デバイスを製造する前述の方法によれば、静電多極デバイスの基本構造を作製するために、SOIウエハは、材料が除去される最小の数の処理動作で処理される。たとえば、1つまたは2つのマスキングおよびエッチング動作で、典型的な平坦なSOIウエハから小型化された静電多極デバイスを十分に製造することができる。第1のマスキングおよびエッチング動作を実行して、SOIウエハを通って開孔開口部をエッチングすることができ、第2のマスキングおよびエッチング動作を実行して、SOIウエハの頂層から電極を形成することができ、または逆も同様である。原則的には、この段階で終了することもできる。しかし、それでもなお迷走電子が絶縁体層に当たって絶縁体層を帯電させ、ビームの歪みを引き起こすこともある。
【0031】
この問題を解決するために、開孔開口部の内面から絶縁体層をエッチバックすることができる。たとえば、図3Aに示すように、露出した絶縁体表面が存在し得る絶縁体層212を、開孔開口部の内側から部分的に除去することができる。その結果、電子が分離表面に当たる確率をさらに低減させることができる。
別法または追加として、本明細書に開示する他の実施形態と組み合わせることができるいくつかの実施形態では、静電多極デバイスは、その外面上を高抵抗層で少なくとも部分的にコーティングすることができる。高抵抗層は、絶縁表面の帯電を防止するために、絶縁表面の露出部分を少なくとも部分的に覆うことができる。
基板の外面上および/または電極上に高抵抗層がコーティングとして設けられた静電多極デバイス400の一例を、図4A図4B、および図4Cに示す。静電多極デバイス400は、本質的に、図3A~3Cに示す静電多極デバイスに対応し、したがって上記の説明を参照することができる。この説明について、ここでは繰り返さない。静電多極デバイス400は、高抵抗層を備える。
いくつかの実施形態では、高抵抗層の第1の部分407が、それぞれ2つの隣接する電極340間で光軸Aの周りに少なくとも部分的に延び、電極340間で電流の流れを可能にするように構成される。
【0032】
高抵抗層は、電極340間の領域内で絶縁体層212の第1の主表面112を少なくとも部分的に覆うコーティングとすることができる。いくつかの実装形態では、高抵抗層の第1の部分407は、絶縁体層212上に形成される電極340と、絶縁体層212のうち電極間の部分との両方を覆う。たとえば、図4A~4Cに示す実施形態では、静電多極デバイス400の下流表面全体が、高抵抗層の第1の部分407で覆われる。
【0033】
高抵抗層は、炭素層とすることができる。別法または追加として、高抵抗層は、円周方向に互いに隣接する2つの電極340が互いから完全には電気的に分離されないように構成することができる。逆に、1nA以上、特に10nA以上および/または10μA以下、特に1μA以下のわずかな電流が、異なる電位に設定された隣接する電極間を流れることができる。別法または追加として、高抵抗層407は、0.1nm以上、特に10nm以上の厚さおよび/または100μm以下、特に10μm以下の厚さを有することができる。別法または追加として、高抵抗層は、互いに円周方向に隣接する2つの電極間で1MΩを超え100GΩ未満、特に10MΩを超え10GΩ未満の電気抵抗が得られるように、所定の厚さおよび形状寸法を備えることができ、所定の材料から作ることができる。
【0034】
本明細書に開示する他の実施形態と組み合わせることができるいくつかの実施形態では、開孔開口部120の内面上、特に開孔開口部内の絶縁体層212の露出部分上に、高抵抗層の第2の部分406を設けることができる。
本明細書に開示する他の実施形態と組み合わせることができるいくつかの実施形態では、絶縁体層212より下に配置されたさらなる層214の露出した主表面上、すなわち絶縁体層の上流側に、高抵抗層の第3の部分405を設けることができる。
分離層212上に高抵抗層を設けることによって、静電補正器の絶縁体表面が露出されることを回避することができ、隣接する補正器電極間で本質的に連続する電位の降下または上昇を実現することができる。したがって、電気補正場の空間特性をさらに改善することができる。
【0035】
図5は、光軸Aに沿って伝搬する荷電粒子ビームに影響を与える静電多極デバイス500を示し、基板110は、少なくとも部分的に円錐形の開孔開口部502を含む。開孔開口部のビーム制限エッジ122は、荷電粒子ビームが開孔開口部に入ることができる開孔開口部の入口側に配置される。4つ以上の電極がそれぞれ、開孔開口部のビーム制限エッジから半径方向の距離Mをあけて配置される。半径方向の距離Mは、100μmより大きくすることができ、かつ/または開孔開口部の最小半径より大きくすることができる。
図6は、光軸Aに沿って伝搬する荷電粒子ビームに影響を与える静電多極デバイス600を示す。多極デバイス600の基板110は、分離層212を含み、分離層212上には、電極と、さらなる層214とが形成される。さらなる層214は、導体または半導体材料から作られ、開孔開口部のビーム制限エッジ122を備える。開孔開口部は、第1のより大きい直径を有する絶縁体層と、第2のより小さい直径を有するさらなる層214とを通って延びる。開孔開口部120の内面上では、露出した絶縁体表面上に表面電荷が蓄積するのを防止するために、分離層212はさらなる層に対して半径方向に除去される。いくつかの実装形態では、第1の直径は、2つの対向して配置された電極間の距離より大きくすることができ、その結果、アンダカット602が電極より下に設けられる。
本明細書に開示する他の実施形態と組み合わせることができるいくつかの実施形態では、開孔開口部120は、ビーム制限開口部として構成することができる。言い換えれば、静電多極デバイスから上流の荷電粒子ビームの直径は、開孔開口部120の最小直径Dより大きくすることができ、その結果、ビームは、開孔開口部120のビーム制限エッジ122によって部分的に阻止することができ、電極から半径方向の距離をあけて電極間を円形のビームレットとして中心を通って入ることができる。補正精度を増大させることができる。絶縁体層212の上流側に配置された導体または半導体層(さらなる層214)は、阻止されたビーム部分の表面電荷が静電多極デバイスの第2の主表面114上に蓄積するのを防止することができる。
【0036】
本明細書に記載する実施形態による4つ以上の電極を有する静電多極デバイスは、1つまたは複数のさらなる静電偏向器によって引き起こされるビーム収差、荷電粒子ビームの非点収差、荷電粒子ビームの球面収差、および荷電粒子ビームの6極またはより高次の収差の少なくとも1つを補正するように構成することができる。
図7は、本明細書に記載する実施形態による静電多極配置700を概略正面図に示す。静電多極配置700は、主伝搬方向に沿って並んで伝搬する荷電粒子の少なくとも第1のビームレットおよび第2のビームレットに個々に影響を与えるように構成される。図7に示す実施形態は、荷電粒子の合計3つのビームレットに影響を与えるように構成される。これらのビームレットは、互いに対して平行に伝搬することができる。いくつかの場合、ビームレットは、互いに対して角度をなして、たとえば100ミリラジアン未満、特に20ミリラジアン未満の角度をなして伝搬することができる。たとえば、ビームレットは、単一のビーム源から来ることができる。この場合、主伝搬方向は、ビーム源の主放出方向に対応することができる。
【0037】
本明細書に記載する実施形態のいずれかによれば、多極配置700は、多極アレイまたは「多極デバイスのアレイ」と呼ぶこともでき、第1の多極デバイス702、第2の多極デバイス704、および第3の多極デバイス706を含む。多極デバイス702、704、706は、単一の共通の基板110を含むことができ、基板110は、基板110を通って延びるいくつかの開孔開口部を含む。図7に示す実施形態では、基板110は、基板110内に所定のアレイまたはパターンで配置された合計3つの開孔開口部を含む。
【0038】
第1の静電多極デバイス702は、第1の光軸A1に沿って伝搬する荷電粒子の第1のビームレットに影響を与えるように構成することができ、第2の静電多極デバイス704は、第2の光軸A2に沿って伝搬する荷電粒子の第2のビームレットに影響を与えるように構成することができ、第3の多極デバイス706は、第3の光軸A3に沿って伝搬する荷電粒子の第3のビームレットに影響を与えるように構成することができる。
静電多極配置700は、4つ以上の静電多極デバイス、たとえば5つ、10個、またはそれ以上の静電多極デバイスを含むことができ、これらの静電多極デバイスは、所与の1次元または2次元のパターンまたはアレイで配置することができる。たとえば、多極配置は、2次元多極アレイの形で設けることができる。いくつかの実施形態では、静電多極配置700は、第1の主表面を有する単一の共通の基板を含むことができ、第1の主表面上に多数の電極が形成される。
【0039】
このアレイの2つの隣接する開孔開口部の中心間の平均距離は、5mm未満、特に3mm未満、さらに2mm未満とすることができる。
いくつかの実施形態では、多極配置は、所定のアレイパターンで基板を通って延びる2つ以上の開孔開口部、たとえば丸いまたは円形の開孔開口部を有する基板を含むことができる。各開孔開口部は、ビーム源、たとえば電子源によって放出される広い角度の荷電粒子ビームから、荷電粒子ビームのビームレット、たとえば丸いまたは円形のビームレットを生成するように構成することができる。基板の上流表面は、導電性または半導電性の表面とすることができ、その結果、前記表面に当たる荷電粒子は前記表面上に蓄積しない。本明細書に記載する他の実装形態と組み合わせることができるいくつかの実装形態では、電極は、絶縁体表面である基板の第1の主表面上に保持される。
4つ以上の第1のビームレット電極701が、第1のビームレットに影響を与えるように基板の第1の主表面112上に形成され、4つ以上の第1のビームレット電極701はそれぞれ、第1の開孔開口部のビーム制限エッジから半径方向の距離Mをあけて配置される。4つ以上の第1のビームレット電極は、第1の開孔開口部の周りにそれぞれの角度位置で配置することができる。同様に、4つ以上の第2のビームレット電極705が、第2のビームレットに影響を与えるように基板の第1の主表面112上に形成され、4つ以上の第2のビームレット電極705はそれぞれ、第2の開孔開口部のビーム制限エッジから半径方向の距離Mをあけて配置される。4つ以上の第2のビームレット電極は、第2の開孔開口部の周りにそれぞれの角度位置で配置することができる。
【0040】
基板110、開孔開口部、および基板の第1の主表面上に形成される電極の構成は、図1~6に関して上記で説明した構成に適宜任意の組合せで部分的または全体的に対応することができ、したがって上記の実施形態を参照することができる。特に、基板は、絶縁体層212と、導体または半導体材料を含むさらなる層214とを有することができ、さらなる層214内の開孔開口部の直径は、絶縁体層212内の開孔開口部の直径より小さくすることができる。
【0041】
図8は、静電多極デバイス802、804、806の線形アレイとして設けられた静電多極配置800を概略断面図に示す。多極配置800は、頂層と、絶縁体層と、導体または半導体材料を含むさらなる層とを有する単一の3層ウエハから製造することができ、絶縁体層は、他の2つの層同士の間に挟まれる。頂層のいくつかの部分は、たとえばエッチングによって除去することができ、その結果、頂層の残り部分は、様々な静電多極デバイス802、804、806の電極を形成する。
図8に示すように、開孔開口部の両側に配置された2つの電極間の距離は、それぞれの開孔開口部の直径より大きく、その結果、各電極は、それぞれの開孔開口部のビーム制限エッジから半径方向の距離をあけて配置される。したがって、それぞれの開孔開口部を通って伝搬する荷電粒子ビームの荷電粒子は、電極から距離をあけて通過し、高品質の電気偏向または補正場を提供することができる。
図9は、本明細書に記載する実施形態による2つの静電多極デバイス6Aおよび6Bを有する荷電粒子ビーム装置1を示す。他の実施形態では、単一の多極デバイスのみ、または2次元アレイで配置することができる3つ以上の多極デバイスを、設けることができる。
【0042】
図9に示す実施形態では、静電多極デバイス6A、6Bは、主伝搬方向Mに沿って並んで伝搬する荷電粒子の2つのビームレット4A、4Bに影響を与えるように構成することができる。ビームレットに影響を与えることは、ビームレットの収差を補正すること、および基板110の第1の主表面上に配置された電極3によって提供される電界を介してビームレットを偏向させることの少なくとも1つを含むことができる。
【0043】
本明細書に記載する実施形態による荷電粒子ビーム装置1は、光軸Aに沿って伝搬する荷電粒子ビームを生成する少なくとも1つのビーム源2と、本明細書に記載する実施形態による少なくとも1つの静電多極デバイス6A、6Bまたは静電多極配置とを含むことができる。
ビーム源2は、荷電粒子ビーム14を放出するように構成することができる。本明細書に記載するように、たとえばスループットを増大させるために、冷電界エミッタ(CFE)、ショットキーエミッタ、TFE、または別の高電流電子ビーム源を設けることができる。高い電流とは、100ミリラジアン以上で10μA、たとえば最高5mA、たとえば100ミリラジアンで30μA~100ミリラジアンで1mAであると考えられる。典型的な実装形態によれば、電流は、特に線形または方形アレイの場合、たとえば±10%の偏差で本質的に均一に分布される。本明細書に記載する他の実施形態と組み合わせることができるいくつかの実施形態によれば、線源または仮想線源は、2nm~40nmの直径を有することができ、かつ/または5ミリラジアン以上、たとえば50ミリラジアン~200ミリラジアンの典型的な放出半値角を有することができる。
【0044】
本明細書に記載する他の実施形態と組み合わせることができるさらなる実施形態によれば、大きいビーム電流を提供することが可能なTFEまたは別の還元輝度の大きい線源、たとえば電子ビーム源は、10μA~100μA、たとえば30μAという最大値を提供するように放出角を増大させたときに輝度が最大値の20%を超えて低下しない線源である。ショットキーまたはTFEエミッタは、現在、5・107Am-2(SR)-1-1の測定還元輝度で利用可能であり、CFEエミッタは、最大5・109Am-2(SR)-1-1の測定還元輝度を有する。システムはまた、約1・1011Am-2(SR)-1-1の還元輝度を有することができるHfCなどの炭化物エミッタとともに作用することができる。たとえば、少なくとも5・107Am-2(SR)-1-1を有するビームが有益である。
【0045】
荷電粒子源2を離れた後、生成された荷電粒子ビーム14は、基板110内に設けられた開孔開口部5A、5Bを通過することができる。これらの開孔開口部は、基板上のリングに沿って、または線、長方形、もしくは正方形などの任意の他の配置もしくはアレイに沿って位置することができる。基板の開孔開口部5A、5Bを通過することによって、複数の荷電粒子ビームまたはビームレット4A、4Bが作られる。静電多極デバイス6A、6Bの電極3は、基板の下流側に形成することができる。電極3は、電気補正または偏向場を提供するように構成される。電気補正場を通って伝搬することによって、ビームレット収差を補償することができる。
【0046】
その後、荷電粒子ビームまたはビームレット4A、4Bは、ビーム分離器アセンブリ13を通過することができ、ビーム分離器アセンブリ13は、1次ビームを2次ビームまたは後方散乱ビーム、すなわち信号ビームから分離するように構成することができる。
その後、ビームレット4A、4Bは、走査偏向器12を通過することができ、走査偏向器12は、たとえば、ビームレット4A、4Bを標本8の表面上のラスタ内で動かすために使用される。走査偏向器12後、ビームレット4A、4Bは対物レンズ10に入り、対物レンズ10は、ビームレット4A、4Bを標本8上へ集束させる。対物レンズ10は、ビームレット4A、4Bを集束させるだけでなく、ビームレット4A、4Bを回転させる。しかし、2次元の図面に示すのが困難であり、この追加の作用は当業者にはよく知られているため、この作用は図示しない。静電多極デバイス6A、6Bおよび対物レンズ10の作用を組み合わせるため、それぞれビームレット4A、4Bの1つに対応する複数のスポット(粒子源2の画像)が、標本8上に作られる。
【0047】
ビームレット4A、4Bが標本8の表面に当たるとき、これらのビームレットは、標本の原子の原子核および電子との一連の複雑な相互作用を受ける。こうした相互作用は、異なるエネルギーの電子、X線、熱、および光などの様々な2次生成物をもたらす。これらの2次生成物の多くを使用して、サンプルの画像を作成し、追加のデータを収集する。標本の調査または画像形成にとって非常に重要な2次生成物は、比較的低いエネルギー(1~50eV)で標本8から様々な角度で逃げる2次電子である。標本から対物レンズ10を通って抽出された信号電子は、ビーム分離器アセンブリ13内の1次ビームから分離され、検出器アセンブリ9に到達する。検出器アセンブリ9は、検出器要素9A、9Bを含むことができ、検出器要素9A、9Bは、検出された信号電子に対応する測定信号、たとえば電子信号を生成するように構成される。
標本8上でビームレット4A、4Bを走査し、検出器アセンブリ9または検出器要素9A、9Bの出力を表示/記録することによって、標本8の表面の複数の独立した画像が生成される。各画像は、標本の表面の異なる部分に関する情報を含む。したがって、従来の単一ビームの場合に比べて、データ取得の速度が増大する。標本8は、ステージ7(標本支持体)上で支持することができ、ステージ7は、ビームレット4A、4Bが調査すべき標本上のターゲット区域に到達することを可能にするように、あらゆる方向に水平に可動である。ステージはまた、ビームが第2の方向に走査される間、第1の方向に動くことができる。これにより、ステージ設定時間が必要とされないため、スループットがさらに改善される。
【0048】
システムの性能を改善するために、図9に示す実施形態は、磁気レンズと静電レンズの組合せである対物レンズ10を含むことができる。したがって、対物レンズ10は、磁気-静電複合レンズである。磁気-静電複合レンズ10の静電部分は、静電抑制レンズとすることができる。そのような磁気-静電複合レンズ10を使用することで、SEMの場合に数百電子ボルトなどの低入射エネルギーで優れた分解能が得られる。特に最新の半導体産業では、放射の影響を受けやすい標本の帯電および/または損傷を回避するために、そのような低入射エネルギーが望ましい。しかし、いくつかの場合、磁気レンズのみまたは静電レンズのみを使用することもできる。
【0049】
本明細書に記載する実施形態によれば、単一の荷電粒子ビームを有する単一ビームコラムを設けることができる。いくつかの実施形態によれば、マルチビームレットコラムが、2つ以上、または5つ以上、または8つ以上、いくつかの例によれば最大200個など、複数のビームを備えることができる。マルチビームレットコラムは、マルチビームレットコラムをマルチコラムシステムで配列することもできるように構成される。このとき、複数のコラムを配列することで、同じサンプル(たとえば、ウエハまたはマスク)上で作用するさらに多数のビームレットが提供される。
【0050】
本明細書に記載する実施形態によれば、1次電子ビームおよび2次または信号電子ビームは分離される。特に、信号電子の検出は軸外で、すなわち対物レンズによって画定される光軸に対して軸外で行われる。異なる信号間のクロストークが無視できるほどであり、1次ビームの性能に与える影響がほとんどまたはまったくない、効率的な検出を提供することができる。本明細書に記載する他の実施形態と組み合わせることができるさらなる実施形態によれば、サンプル上の1次ビームのピッチは、クロストークがないまたは少なくとも無視できるほどの信号電子検出を実行することができるのに十分な信号電子ビームレットのピッチになるように、十分に大きい。たとえば、標本、たとえばウエハ上のピッチ、すなわち標本上の2つの1次ビームレット間の最小距離は、10μm以上、たとえば40μm~100μmとすることができる。したがって、実施形態は、クロストークが低減された1つの電子光コラム内に妥当な数の1次電子ビームレットを生成するマルチビームデバイスを提供し、任意選択で、マルチビームデバイスのいくつか、すなわちコラムの複数を配列する機会を提供する。したがって、マルチコラムモジュール(MCM)内にマルチビームレットコラムを配列する選択肢を有することがさらに所望される。
【0051】
本明細書に記載するさらなる態様によれば、光軸Aに沿って伝搬する荷電粒子ビームに影響を与える静電多極デバイスを製造する方法が記載される。静電多極デバイスは、MEMSモジュール(微小電子機械システム)として製造することができる。
図10A図10Eは、本明細書に記載する実施形態による方法の様々な動作を示す。この方法は、図10Aに参照符号1010によって示すように、絶縁体層1012と絶縁体層1012上に配置された導体または半導体層1013とを有する多層基板1011を設けるステップを含む。基板は、SOIウエハ(シリコンオンインシュレーター)とすることができる。いくつかの実施形態では、導体または半導体層1013は、シリコンもしくはドープされたシリコンを含み、またはシリコンもしくはドープされたシリコンから作られる。シリコンは、低抵抗とすることができ、言い換えれば導電性を有することができる。
【0052】
図10Bに参照符号1020によって示すように、光軸Aに沿って多層基板を通って延びる荷電粒子ビームに対する少なくとも1つの開孔開口部1015が形成される。開孔開口部1015は、基板平面に対して垂直方向に延びることができる。開孔開口部は、多層基板をエッチングすることによって形成することができる。いくつかの実装形態では、絶縁体層1012と導体または半導体層1013の両方をエッチングするには、2つのエッチングステップが妥当である。丸いまたは円形の開孔開口部をエッチングすることができる。いくつかの実装形態では、500μm未満または100μm未満の最小直径を有する開孔開口部が有用である。
図10Cに参照符号1030によって示すように、導体または半導体層1013は部分的に除去され、それにより導体または半導体層1013の残り部分は、開孔開口部1015を通って伝搬する荷電粒子ビームに影響を与えるように、絶縁体層1012の第1の主表面1017上に4つ以上の電極1016を形成する。いくつかの実施形態では、開孔開口部は、電極1016を形成した後に形成することができる。しかし、開孔開口部1015を形成した後に電極1016を形成するとき、この開孔開口部を、形成すべき4つ以上の電極の中心に配置された基準点として使用することができる。
【0053】
導体または半導体層1013上にマスクを提供し、この層をエッチングすることによって、導体または半導体層1013のいくつかの部分を除去することができる。
4つ以上の電極1016は、開孔開口部のビーム制限エッジから半径方向の距離をあけて配置することができる。次いで、開孔開口部を通って伝搬する荷電粒子ビームは、電極1016から距離をあけて通過する。2つの対向して配置された電極1016間の距離は、開孔開口部1015の最小直径の2倍または5倍を超えることができる。
【0054】
本明細書に開示する他の実施形態と組み合わせることができるいくつかの実施形態では、多層基板1011は3層基板として設けられ、導体または半導体層1013とさらなる導体または半導体層1014との間に絶縁体層1012が配置される。導体または半導体層1013とさらなる導体または半導体層1014はどちらも、シリコンもしくはドープされたシリコンを含むことができ、またはシリコンもしくはドープされたシリコンから作ることができる。多層基板1011は、3層SOIウエハとして設けることができ、2つのシリコン層同士の間に絶縁体層が配置される。絶縁体層は、たとえば、SiO2層またはサファイア層とすることができる。
【0055】
図10Dは、開孔開口部1015を形成した後に実行される任意選択の動作を示す。すなわち、荷電粒子が絶縁体層の露出表面部分に接触するのを防止するために、絶縁体層1012を半径方向に開孔開口部の内側で部分的に除去することができる。
いくつかの実施形態では、開孔開口部1015は、第1の直径を有する絶縁体層1012と、開孔開口部のビーム制限エッジを形成するように第1の直径より小さい第2の直径を有するさらなる導体または半導体層1014とを通って延びることができる。たとえば、絶縁体層の直径が2つの対向して配置された電極間の距離より大きい場合、アンダカットを形成することができる。絶縁体層は、エッチング、たとえばアンダカットエッチングによって除去することができる。分離層1012をエッチングすることは、4つ以上の電極より下の絶縁体層の少なくとも一部をエッチングしてアンダカットを作製することを含むことができることを、図10Dに参照符号1040によって示す。
本明細書に開示する他の実施形態と組み合わせることができるいくつかの実施形態では、この方法は、多層基板を高抵抗層で少なくとも部分的にコーティングするステップをさらに含む。コーティングは、開孔開口部を形成した後に開孔開口部の内面のコーティング、4つ以上の電極のうちの少なくとも2つの間の電流の流れを可能にするための4つ以上の電極間に露出した第1の層の第1の主表面のコーティング、およびさらなる導体または半導体層1014の露出した第2の主表面のコーティングの少なくとも1つのコーティングを含むことができる。さらなる導体または半導体層が設けられない場合、絶縁体層の露出した上流側をコーティングすることができる。高抵抗層は、炭素層とすることができる。2つの電極間の表面を高抵抗層でコーティングすることで、2つの隣接する電極間に数GΩの電気抵抗を得ることができる。表面電荷が高抵抗層上に蓄積することがなくなり、その結果、電極1016によって生成される電界は妨げられなくなる。
【0056】
本明細書に記載する他の実施形態と組み合わせることができるさらなる実施形態では、さらなる導体または半導体層1014も部分的に除去され、その結果、さらなる導体または半導体層1014の残り部分は、少なくとも1つのさらなる電極を形成する。部分的にエッチングされたさらなる導体または半導体層1014を示す図10Eの参照符号1050を参照されたい。たとえば、さらなる導体または半導体層から、個々にアドレス指定可能なレンズレット電極1035を形成することができる。レンズレット電極1035は、開孔開口部のビーム制限エッジを備えることができる。
たとえばエッチングによって層1012および1014の一方を部分的に除去した後、多層基板は、たとえば同じエッチング装置内で層1012および1014の他方を部分的に除去する位置になるように、180°ひっくり返すことができる。
【0057】
図10Cに示すように、導体または半導体層1013を部分的に除去するとき、電極1016に加えて、電極と電位を接続する接続線を構成することができる導電性または半導電性部分を絶縁体層1012上に残すことができる。たとえば、導体または半導体層1013をエッチングするとき、各電極1016から半径方向外方に延びる接続線を絶縁体層上に残すことができる。したがって、電圧供給に接続されるように構成されたそれぞれのコンタクトと電極を接続するためのさらなる処理動作が必要とされない。したがって、本明細書に記載する製造方法をさらに簡略化することができる。
【0058】
本明細書に記載する他の実施形態と組み合わせることができるいくつかの実施形態によれば、荷電粒子ビームの直径より小さい直径を有する1つまたは複数の開孔開口部(ビーム制限開孔)を有する基板を通って荷電粒子ビームを送ることによって、荷電粒子の1つまたは複数のビームレットが荷電粒子ビームから作られる。次いで、各ビームレットは、電極によって提供される電界による影響を受ける荷電粒子ビームまたはビームレットを構成することができる。
上記は本発明の実施形態を対象とするが、本発明の基本的な範囲から逸脱することなく、本発明の他のさらなる実施形態も考案することができ、本発明の範囲は、以下の特許請求の範囲によって決定される。
【符号の説明】
【0059】
1 荷電粒子ビーム装置
2 ビーム源
3 電極
4A ビームレット
4B ビームレット
5A 開孔開口部
5B 開孔開口部
6A 静電多極デバイス
6B 静電多極デバイス
7 ステージ
8 標本
9 検出器アセンブリ
9A 検出器要素
9B 検出器要素
10 対物レンズ、磁気-静電複合レンズ
12 走査偏向器
13 ビーム分離器アセンブリ
14 荷電粒子ビーム
100 静電多極デバイス
110 基板
112 第1の主表面
114 第2の主表面
120 開孔開口部
122 ビーム制限エッジ
130 電極
132 電極
134 電極
136 電極
175 接続線
200 静電多極デバイス
212 絶縁体層
214 さらなる層
300 静電多極デバイス
340 電極
400 静電多極デバイス
405 高抵抗層の第3の部分
406 高抵抗層の第2の部分
407 高抵抗層の第1の部分
500 静電多極デバイス
502 開孔開口部
600 静電多極デバイス
602 アンダカット
700 静電多極配置
701 第1のビームレット電極
702 第1の多極デバイス
704 第2の多極デバイス
705 第2のビームレット電極
706 第3の多極デバイス
800 静電多極配置
802 静電多極デバイス
804 静電多極デバイス
806 静電多極デバイス
1011 多層基板
1012 絶縁体層
1013 導体または半導体層
1014 さらなる導体または半導体層
1015 開孔開口部
1016 電極
1017 第1の主表面
1035 レンズレット電極
A 光軸
A1 第1の光軸
A2 第2の光軸
A3 第3の光軸
D 開孔開口部の最小直径
M ビーム制限エッジ122と電極130との間の半径方向の距離
X 電極と光軸との間の半径方向の距離
図1
図2A
図2B
図3A
図3B
図3C
図4A
図4B
図4C
図5
図6
図7
図8
図9
図10A-E】