IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ オプトチューン アクチェンゲゼルシャフトの特許一覧

特許7022109特に光フィードバックによって装置のレンズの焦点距離を調整するための光学装置
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-08
(45)【発行日】2022-02-17
(54)【発明の名称】特に光フィードバックによって装置のレンズの焦点距離を調整するための光学装置
(51)【国際特許分類】
   G02C 7/08 20060101AFI20220209BHJP
   G02C 7/04 20060101ALI20220209BHJP
   G02C 13/00 20060101ALI20220209BHJP
   G02B 3/14 20060101ALI20220209BHJP
【FI】
G02C7/08
G02C7/04
G02C13/00
G02B3/14
【請求項の数】 23
【外国語出願】
(21)【出願番号】P 2019238404
(22)【出願日】2019-12-27
(62)【分割の表示】P 2016570348の分割
【原出願日】2015-06-03
(65)【公開番号】P2020064320
(43)【公開日】2020-04-23
【審査請求日】2020-01-27
(31)【優先権主張番号】14170996.4
(32)【優先日】2014-06-03
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】516049342
【氏名又は名称】オプトチューン アクチェンゲゼルシャフト
(74)【代理人】
【識別番号】100120891
【弁理士】
【氏名又は名称】林 一好
(74)【代理人】
【識別番号】100165157
【弁理士】
【氏名又は名称】芝 哲央
(74)【代理人】
【識別番号】100126000
【弁理士】
【氏名又は名称】岩池 満
(72)【発明者】
【氏名】アシュヴァンデン マヌエル
(72)【発明者】
【氏名】ニーデラー ダヴィド
(72)【発明者】
【氏名】パシェイダー ローマン
(72)【発明者】
【氏名】ボラー ダニエル
(72)【発明者】
【氏名】ラニング クリストファー
(72)【発明者】
【氏名】ビュエラー ミヒャエル
【審査官】植野 孝郎
(56)【参考文献】
【文献】特開2006-330321(JP,A)
【文献】特開2006-72267(JP,A)
【文献】米国特許出願公開第2010/0108765(US,A1)
【文献】特開2011-248211(JP,A)
【文献】米国特許出願公開第2013/0208347(US,A1)
【文献】国際公開第2011/052770(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G02C 1/00-13/00
A61F 9/013
A61F 2/16
G02B 3/00- 3/14
G01B11/24
(57)【特許請求の範囲】
【請求項1】
光学装置であって、
- 調節可能な焦点距離(f)を有するレンズ(10)と、
- 前記レンズ(10)によって影響され、それに当たる光の強度に対応する第1の出力信号(O1)を生成するように設計された少なくとも第1の感光素子(30)に当たる光(51)を放射するように構成された光源(50)と、
を備え、
- 前記第1の感光素子(30)は、放射された前記光(51)の強度分布の一部分のみを計測するように構成され、
- 前記光源(50)、前記レンズ(10)及び前記第1の感光素子(30)は、前記レンズ(10)の前記焦点距離(f)の変化が、前記第1の感光素子(30)に当たる放射された前記光(51)の前記強度分布を変化させるように構成され、その結果、前記レンズ(10)の各焦点距離(f)が、前記第1の感光素子(30)によって生成される特定の第1の出力信号(O1)に関連付けられ、
前記光学装は、前記光源(50)によって放射された前記光(51)を、それが前記第1の感光素子(30)に当たる前に、反射するように構成された第1の光学素子(80)をさらに備え、前記第1の光学素子(80)は、前記レンズ(10)の第1のカバー素子であり、前記第1のカバー素子と前記レンズ(10)の弾性変形可能な膜(11)とが、流体(F)で満たされる前記レンズ(10)の体積(V)を定める、ことを特徴とする光学装置。
【請求項2】
前記光学装は第2の感光素子(40)を備え、前記第2の感光素子(40)は前記放射された光の前記強度分布の一部分のみを計測するように構成され、前記光源(50)は、前記レンズ(10)によって影響され、前記第1の感光素子(30)及び/又は前記第2の感光素子(40)に当たる光(51)を放射するように構成され、前記第2の感光素子(40)は、前記第2の感光素子(40)に当たる前記光(51)の強度に対応する第2の出力信号(O2)を生成するように設計され、前記光源(50)、前記レンズ(10)及び前記感光素子(30、40)は、前記レンズ(10)の前記焦点距離(f)の変化が、前記第1の感光素子(30)及び/又は前記第2の感光素子(40)に当たる、放射された前記光(51)の前記強度分布を変化させるように構成され、その結果、前記レンズ(10)の各焦点距離(f)が、前記第1の感光素子(30)によって生成される特定の第1の出力信号(O1)及び前記第2の感光素子(40)によって生成される特定の第2の出力信号(O2)に関連付けられる、ことを特徴とする、請求項1に記載の光学装置。
【請求項3】
前記レンズ(10)は第1の焦点距離及び異なる第2の焦点距離を備え、前記レンズ(10)が前記第1の焦点距離を備えるように調節されるとき、前記強度分布のピーク(P)が前記第1の感光素子(30)に命中し、前記レンズ(10)が前記第2の焦点距離を備えるように調節されるとき、前記ピーク(P)が前記第2の感光素子(40)に命中することを特徴とする、請求項2に記載の光学装置。
【請求項4】
前記光学装は、前記レンズ(10)の前記焦点距離(f)の変化が、前記第1の感光素子(30)及び/又は前記第2の感光素子(40)に当たる放射された前記光(51)の前記強度分布の幅(W)を変化させるように、及び/又は、前記レンズ(10)の前記焦点距離(f)の変化が、前記第1の感光素子(30)及び/又は前記第2の感光素子(40)に当たる、放射された前記光(51)の前記強度分布の前記ピーク(P)の、前記第1の感光素子(30)及び/又は前記第2の感光素子(40)に対する位置を移動させるように、構成されることを特徴とする、請求項に記載の光学装置。
【請求項5】
前記レンズ(10)の前記焦点距離(f)を所定の焦点距離に調節するために、前記光学装は、前記レンズ(10)の前記焦点距離(f)を調節するための手段(20)を制御するように設計された制御ユニット(60)を備え、前記制御ユニット(60)は前記手段(20)を、前記手段(20)が前記レンズ(10)の前記焦点距離(f)を、前記第1及び/又は第2の出力信号(O1、O2)が基準出力信号に近づくように、或は、前記第1及び第2の出力信号(O1、O2)から決定されるさらなる出力信号(X)が基準出力信号に近づくように変化させる、ように制御するように設計され、前記基準出力信号は前記所定の焦点距離に関連付けられることを特徴とする、請求項2~4のいずれか1項に記載の光学装置。
【請求項6】
前記光学装は、複数の基準出力信号と複数の焦点距離(f)が格納されるメモリ(70)を備え、基準出力信号は、それぞれの焦点距離に割当てられていることを特徴とする、請求項~5のいずれか1項に記載の光学装置。
【請求項7】
前記光学装は、前記光源(50)によって放射された前記光(51)を、それが前記第1及び/又は第2の感光素子(30、40)に当たる前に、反射するように構成された第2の光学素子(90)を備えることを特徴とする、請求項~6のいずれか1項に記載の光学装置。
【請求項8】
前記第2の光学素子(90)は前記レンズ(10)の第2のカバー素子であり、前記膜(11)は、前記第1及び第2のカバー素子の間に配置されることを特徴とする、請求項7に記載の光学装置。
【請求項9】
前記第2の光学素子(90)は、前記第1の光学素子(80)又は前記レンズ(10)に対して傾けられ、前記光源(50)によって放射された前記光(51)を、前記第1及び/又は第2の感光素子(30、40)の方向に反射するように、主光信号(100)を透過するように、設計されることを特徴とする、請求項7に記載の光学装置。
【請求項10】
前記光学装は、さらなる光源(52)を備え、前記さらなる光源(52)は、前記レンズ(10)によって影響され、前記第1の感光素子(30)及び/又は第2の感光素子(40)に当たる光(53)を放射し、その結果、前記光源(50)から前記感光素子(30、40)のうちの1つまでの各光路(T11、T12)が、前記さらなる光源(52)から前記感光素子(30、40)のうちの1つまでの対応する光路(T21、T22)に対して対称的となるように、構成されることを特徴とする、請求項2~9のいずれか1項に記載の光学装置。
【請求項11】
前記光学装は、第1の及び/又は第2の光源(50、52)の光が、前記光学装置及び/又はレンズ(10)から出ること又はそれらに再度入ることを防ぐように構成された少なくとも1つの光学フィルタ(54)を備えることを特徴とする、請求項10に記載の光学装置。
【請求項12】
前記光学装、前記レンズ(10)は、光散乱及び/又は屈折によって放射された前記光(51、53)に影響を及ぼすように構成され、前記光学装、前記レンズ(10)は、前記光散乱を起こすための少なくとも1つの回折素子(55)を備え、前記少なくとも1つの回折素子(55)は前記膜(11)の上に配置され、又は前記膜(11)によって構成されることを特徴とする、請求項10に記載の光学装置。
【請求項13】
前記光学装は、前記第1及び/又は第2の感光素子(30、40)に熱的に接触する少なくとも1つの温度センサ(56)を備え、前記光学装は、前記第1及び/又は第2の感光素子(30、40)の温度依存感度を補償するために、前記少なくとも1つの温度センサ(56)を用いるように構成されることを特徴とする、請求項2~12のいずれか1項に記載の光学装置。
【請求項14】
前記レンズ(10)は、前記レンズ(10)の光軸(A)に沿って前記レンズ(10)を透過する主光信号(100)を集束又は発散させるように設計され、前記光源(50)、前記第1及び/又は第2の感光素子(30、40)、並びに前記第1及び/又は第2の光学素子(80、90)は、前記主光信号(100)が前記第1及び/又は第2の出力信号(O1、O2)に影響を及ぼさないように、前記レンズ(10)に対して構成されることを特徴とする、請求項7に記載の光学装置。
【請求項15】
前記光学装は、前記第1及び/又は第2の感光素子(30、40)によって生成される背景ノイズを、前記光源(50)が光を放射しないときに計測し、前記第1の感光素子(30)によって計測された前記背景ノイズを前記第1の出力信号(O1)から差し引き、及び/又は前記第2の感光素子(40)によって計測された前記背景ノイズを前記第2の出力信号(O2)から差し引くように設計されることを特徴とする、請求項2~14のいずれか1項に記載の光学装置。
【請求項16】
前記第1及び/又は第2の出力信号(O1、O2)の中の外部ノイズを減らすために、前記光学装は、前記光源(50)が変調された光(500)を放射するように構成され、前記光学装は、生成された前記第1及び/又は第2の出力信号(O1、O2)を復調し、バンドパス・フィルタ又はローパス・フィルタ(110)によって外部ノイズを除去するようにさらに構成されることを特徴とする、請求項~15のいずれか1項に記載の光学装置。
【請求項17】
前記光学装は、ユーザの眼(300)の表面(300a)の上に直接配置されるように構成されたコンタクトレンズであることを特徴とする、請求項~16のいずれか1項に記載の光学装置。
【請求項18】
前記レンズ(10)は、前記コンタクトレンズ(1)の焦点距離を調節するように構成された機構(303)、及び前記機構(303)を制御するための制御ユニット(304)を備え、前記制御ユニット(304)は、前記第1及び/又は第2の出力信号(O1、O2)を用いて前記機構を制御するように構成されることを特徴とする、請求項17に記載の光学装置。
【請求項19】
前記光源(50)、前記レンズ(10)及び前記第1の感光素子(30)は、放射された光(51)が前記第1の感光素子(30)に当たる前に前記ユーザの前記眼(300)のレンズ(301)により又は前記ユーザの前記眼(300)の網膜(300b)によって反射されるようにさらに構成され、その結果、前記第1の感光素子(30)に当たる放射された前記光(51)の前記強度分布が、前記眼(300)の前記レンズ(301)の形状が変化するとき、又は前記眼(300)の前記表面(300a)の上の前記コンタクトレンズ(1)の位置が変化するとき、変化することを特徴とする請求項17又は18に記載の光学装置。
【請求項20】
前記光学装は、ユーザの眼(300)の前に、前記レンズ(10)が前記ユーザの前記眼(300)の前に配置されるように、着用されるように構成されることを特徴とする、請求項~19のいずれか1項に記載の光学装置。
【請求項21】
前記レンズ(10)は、前記レンズ(10)又は光学装の前記焦点距離を調節するための機構(303)、及び前記機構(303)を制御するための制御ユニット(304)を備え、前記制御ユニット(304)は、前記第1及び/又は第2の出力信号(O1、O2)を用いて前記機構(303)を制御するように構成されることを特徴とする、請求項20に記載の光学装置。
【請求項22】
前記光源(50)、前記レンズ(10)及び前記第1の感光素子(30)は、放射された光(51)が前記第1の感光素子(30)に当たる前に前記ユーザの前記眼(300)の前記レンズ(301)又は前記ユーザの前記眼(300)の前記網膜(300b)により、或は前記ユーザの前記眼(300)の角膜(300c)によって反射されるようにさらに構成され、その結果、前記第1の感光素子(30)に当たる、放射された前記光(51)の前記強度分布が、前記眼(300)の前記レンズ(301)の形状が変化するとき、又は前記光学装に対する前記眼(300)の位置が変化するとき、変化することを特徴とする請求項19に記載の光学装置。
【請求項23】
レンズ(10)の焦点距離(f)を、請求項1~22のいずれか1項に記載の光学装を用いて、調節する方法であって、
- 光源(50)によって光(51)を放射するステップであって、前記光(51)が前記レンズ(10)によって影響され、前記光(51)の一部だけが少なくとも第1の感光素子(30)に当たり、前記一部は、
○ 前記レンズ(10)の前記焦点距離(f)、
○ コンタクトレンズ(1)として形成される前記光学装置に接触するユーザの眼(300)のレンズ(301)の現在の形状、及び/又は前記ユーザの前記眼(300)の表面(300a)の上の前記コンタクトレンズ(1)の現在の位置、
○ 前記光学装に面するユーザの眼(300)のレンズ(301)の現在の形状、及び/又は前記ユーザの前記眼(300)に対する前記光学装の位置、
のうちの1つに依存し、
前記第1の感光素子(30)は、前記光(51)の前記一部が前記第1の感光素子(30)に当たるとき第1の出力信号(O1)を生成し、前記第1の出力信号(O1)は前記第1の感光素子(30)に当たる前記光(51)の前記一部の強度に対応する、
放射するステップと、
- 前記光学装置の前記レンズ(10)の前記焦点距離(f)を、前記第1の出力信号を制御信号として用いて所定の焦点距離に、或は、前記第1の出力信号(O1)、又は前記第1の出力信号(O1)を補助として決定されたさらなる出力信号が、前記所定の焦点距離に関連付けられる基準出力信号に近づくように、調節するステップと、
を含む方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、請求項1による光学装置、請求項25による方法、並びに請求項26の特徴を有するコンタクトレンズ、及び光学装置、具体的には請求項29の特徴を有するめがね(眼鏡とも呼ばれる)に関する。
【背景技術】
【0002】
そのような光学装置は、例えば、レンズの表面又は膜が複数の異なる曲率であって、各々のそれら曲率がレンズの異なる焦点距離に対応する曲率を取ることができるようなレンズの変形可能な表面又は膜のために、或は、調節可能な焦点のレンズが、レンズの屈折率を調節できる(例えば、局所的に)ように設計されたレンズであることのために、レンズが複数の異なる焦点距離を取ることができる、調節可能な焦点距離を有するレンズを備える。これらのレンズはまた焦点調整可能レンズとも呼ばれる。さらに、光学装置は、レンズの焦点距離を調節するため(例えば、レンズの前記表面/膜を、表面/膜が前記曲率のうちの1つを取るように変形させるため、又は屈折率を局所的に変化させるため)に設計された(例えば、作動)手段又は機構を備えることができる。上記の種類のレンズは、例えば、特許文献1、特許文献2又は特許文献3に記載されている。
【先行技術文献】
【特許文献】
【0003】
【文献】米国特許仮出願第61/160,041号
【文献】国際公開第2010/104904号
【文献】国際公開第2009/021344(A1)号
【発明の概要】
【発明が解決しようとする課題】
【0004】
レンズの表面の形状/曲率及びレンズの屈折率は、レンズ自体又はレンズの環境の変化する温度の影響を受ける可能性があるので、レンズの焦点距離は変化することがある。従って、原理的に、焦点調整可能レンズの実際の焦点距離を簡単且つ堅固な仕方で決定できることが望ましい。さらに、焦点距離を簡単且つ堅固な方法で制御できることが特に望ましい。
【課題を解決するための手段】
【0005】
上記の課題は、請求項1の特徴を有する光学装置によって解決される。本発明の好ましい実施形態は従属請求項に記載され、又は以下に説明される。
【0006】
請求項1によれば、光学装置は、前記レンズによって影響され(例えば、変調又は屈折され)、少なくとも第1の感光素子(例えば、フォトダイオード又は類似の装置、例えば、感光性熱電発生器、位置検出素子(PSD:position sensitive device)、フォトダイオード・アレイ(PDA:photodiode array)、クワドラント・ダイオード(QPD:quadrant diode)、又は電荷結合素子(CCD:charge coupled device))に当たる光を放射するように構成された少なくとも1つの光源(例えば、発光ダイオード(LED:light emitting diode)又はレーザ)をさらに備え、ここで、第1の感光素子は、それに当たる光の強度に対応する出力信号を生成するように設計され、具体的には、第1の感光素子は、前記放射された光の強度分布の一部分のみ、即ち、少なくとも1つの第1の感光素子に実際に命中する前記分布の一部分(即ち、前記光の一部)のみを計測するように構成され、光学装置(例えば、光源、レンズ及び少なくとも1つの第1の感光素子並びに結局は他の光学素子、以下を参照されたい)は、前記レンズの焦点距離の変化が、第1の感光素子に当たる放射された光の強度分布を変えるように構成され、その結果、レンズの各焦点距離が、第1の感光素子によって(又はその助けにより)生成される特定の(即ち、一意的な)第1の出力信号に対応する。
【0007】
本発明のこの原理は、本発明による光学装置/システムを、例えば、全ての信号がフォトダイオードによって集められる乱視用レンズの手法によるよりも、より小型にすることを可能にする。
【0008】
さらに、本発明は、(少なくとも1つの)第1の感光素子(例えば、フォトダイオード)を前記放射された光の(例えばガウス型)強度分布(放射された光は、前記強度分布、即ち、中心にピーク又は極大があり、外側に向かって減少する強度を有する光ビームと見なすことができる)の中心に配置する必要がないので、許容差にあまり敏感ではない計測方法に対応する。有利なことに、本発明による光学装置は、具体的には、焦点距離の変化が、(少なくとも1つの)第1の感光素子に当たる光の前記強度分布の幅(例えば、半値全幅(full width half maximum))を変化させるように設計される。さらに、本発明による光学装置は、具体的には、焦点距離の変化が、前記放射された光の強度分布の中心(例えば、ピーク又は極大)、及びそれゆえに(少なくとも1つの)第1の感光素子に当たる光の強度分布を移動させるように設計される。換言すれば、焦点距離の変化が、第1の感光素子によって所与の点又は範囲に集められる光の強度を変化させる。
【0009】
本発明の一実施形態によれば、光学装置は第2の感光素子(又はさらに2つより多くのそのような素子)を備え、光源は、前記レンズによって影響され(例えば、変調又は屈折され)、第1の感光素子及び/又は第2の感光素子に当たる光を放射するように構成され、第2の感光素子は、第2の感光素子に当たる光の強度に対応する第2の出力信号を生成するように設計され、光源、レンズ及び前記感光素子は、前記レンズの焦点距離の変化が、第1の感光素子及び/又は第2の感光素子に当たる放射された光の強度分布を変化させるように構成され、その結果、レンズの各焦点距離が、第1の感光素子によって生成される特定の第1の出力信号及びさらなる第2の感光素子によって生成される特定の第2の出力信号に関連付けられる。
【0010】
本発明の好ましい実施形態によれば、光学装置のレンズは、第1の焦点距離及び異なる第2の焦点距離(例えば、極小及び極大焦点距離)を備え、レンズが前記第1の焦点距離を備えるように調節されるとき、強度分布のピークが第1の感光素子に命中し、レンズが第2の焦点距離を備えるように調節されるとき、前記ピークが第2の感光素子に命中する。
【0011】
換言すれば、強度分布の部分だけ、即ち、前記光源から発する光ビームの断面の部分だけが感光素子によって計測/検出されるので、反射された光の強度分布のピークが一度第1の感光素子に命中し、例えば、別の極値の調整状態において第2の感光素子に一度命中するように光学系を設計することによって、出力信号を強化することができる。
【0012】
本発明の好ましい実施形態によれば、光学装置は、前記レンズの焦点距離の変化が、第1の感光素子及び/又は第2の感光素子に当たる前記放射された光の強度分布の幅を変化させるように構成される。代替的に又はさらに、本発明のさらに別の好ましい実施形態により、光学装置は、前記レンズの焦点距離の変化が、第1の感光素子及び/又は第2の感光素子に当たる前記放射された光の強度分布の極大(ピーク)の位置を、第1及び/又は第2の感光素子に対して変化/移動させるように構成される(さらに上記を参照されたい)。レンズの焦点距離を変化させる(例えば、レンズの曲率及び/又はその屈折率を変えることによって)と、光源の光がレンズによって異なるように屈折/変調されるので、感光素子に異なるように当たる。従って、前記出力信号は、実際的に、レンズの現在の焦点距離を原理的に決定することを可能にする。レンズの焦点距離を決定するためのさらに別の方法を用い、それぞれの焦点距離に対する前記第1及び第2の出力信号を計測することによって、焦点距離とそれぞれの第1及び/又は第2の出力信号との間の対応関係を確立する較正を容易に行うことができる。出力信号は、それらそれぞれの電流強度を用いて定量化することができる電流とすることができる。
【0013】
数個の感光素子(例えば、2つのそのような素子)が存在する場合、光学装置は、個々の(例えば、第1及び第2の)出力信号O1、O2から、さらに別の信号X、例えば、X=(O1―O2)/(O1+O2)を生成するように適合されることが好ましく、焦点距離がXに対して較正されることが好ましい。しかし、O1及びO2に対する較正を行うこともできる。1つのみの(即ち、第1の)感光素子が存在する場合、焦点距離はO1に対して較正される。焦点距離を制御するとき、O1(単一の第1の感光素子に関する)が、調節されるべき個々の焦点距離に対応する基準値に近づくようにされ、これに対して、2つの感光素子の場合には、さらに別の出力信号(例えば、電流)X(上記参照)が自動的に決定され、調節されるべき個々の焦点距離に対応する基準値に近づくようにされることが好ましい。
【0014】
本発明の一実施形態によれば、焦点距離を制御するために、光学装置は、レンズの焦点距離を変化させるための手段又は機構(例えば、作動手段)を備えることができる。
【0015】
さらに、本発明による光学装置の好ましい実施形態によれば、レンズの焦点距離の所定の焦点距離への調節を制御するために、光学装置は、前記(作動)手段を、該手段がレンズの焦点距離を変化させ(例えば、レンズの前記表面/膜を変形させ、又はレンズの屈折率をある程度変化させ)、その結果、第1及び/又は第2の出力信号、或は、第1及び第2の出力信号から生成されたさらに別の出力信号が基準出力信号に近づくように、制御するように適合された制御ユニットを備え、ここで前記基準出力信号は前記所定の焦点距離に対応する(較正)。
【0016】
本発明による光学装置の好ましい実施形態によれば、光学装置は、複数の焦点距離、並びに各焦点距離に対する基準出力信号が格納されるメモリを備える。従って、メモリは基準出力信号(例えば、前記さらに別の出力信号或は第1及び/又は第2の出力信号に対する基準値)を検索するためのルック・アップ・テーブルを含む。例えば、焦点距離が、ユーザ又はアプリケーションによって要求される特定の焦点距離に(自動的に)調節される場合、前記要求される焦点距離に対応する基準出力信号が前記テーブルから取り出され、レンズの焦点距離(又は曲率)が前記(作動)手段によって、現在の出力信号(或は第1及び/又は第2の出力信号)がそれぞれの基準値に近づくように、調節される。これは、本発明の構成において光フィードバックと呼ばれる。
【0017】
本発明の好ましい実施形態によれば、前記光学装置は、レーザ加工装置、例えば、レーザ・マーキング装置の焦点スポットを変えるのに使用できる焦点調整可能レンズ装置であり、ここで、加工用レーザは、走査ミラー及び加工されるべき試料に命中する前に、本発明による装置によって変調される。さらに、本発明による光学装置は、レーザ加工装置又はレーザ・マーキング装置とすることができる。
【0018】
本発明の別の好ましい実施形態によれば、光学装置は顕微鏡の一部(例えば、顕微鏡の対物レンズ又は接眼レンズの一部)であり、又はそのような顕微鏡を形成する。
【0019】
本発明の別の好ましい実施形態によれば、光学装置はカメラの一部(例えば、対物レンズの一部)であり、又はそのようなカメラを形成する。
【0020】
本発明による光学装置の好ましい実施形態によれば、光学装置は、光源によって放射された前記光を、第1及び/又は第2の感光素子に当たる前に、反射するように構成された第1の光学素子をさらに備える。さらに、この第1の光学素子は、主光信号が、基本的に前記光フィードバックに影響せずに、第1の光学素子によって透過されるように構成されることが好ましい(以下も参照されたい)。
【0021】
本発明による光学装置の好ましい実施形態によれば、光学素子はレンズの第1のカバー素子(例えば、ガラス又はプラスチック製、或は主信号の光路内に配置されないときは研磨された金属表面)であり、ここで、前記第1のカバー素子とレンズの前記表面を形成する弾性変形可能な膜とが、流体で満たされるレンズの体積(又は容器)を定める。ここで、レンズの前記膜は、透明(少なくとも主光信号に対して)且つ弾性的に拡張可能な、延長面に沿って延びる(基本的に2次元的に)(膜の延長面/表面に垂直な厚さは、前記延長面に沿った膜の寸法よりも著しく小さい)薄い素子である。膜は、以下の材料、即ち、ガラス、ポリマ、エラストマ、プラスチック又は任意の他の透明且つ伸縮性若しく可撓性材料のうちの少なくとも1つで作製することができる。例えば、膜は、PDMSとしても知られているポリ(ジメチルシロキサン)などのシリコーン・ベースのポリマ、又はPET即ち二軸配向ポリエチレンテレフタレート(例えば「マイラ(Mylar)」)などのポリエステル材料から作製することができる。さらに、前記流体は、液体金属、ゲル、液体、気体、又は変形可能な任意の透明な吸収性若しくは反射性材料であるか又はそれらを含む。例えば、流体はシリコーン油(例えば、ビス-フェニルプロピルジメチコン)とすることができる。さらに、流体はペルフルオロポリエーテル(PFPE:perfluorinated polyether)不活性流体のようなフッ素化ポリマを含むことができる。
【0022】
本発明による光学装置の一実施形態によれば、レンズの曲率(例えば、前記表面/膜の曲率)は流体内の圧力に比例する。前記圧力及びそれと共にレンズの曲率/焦点距離を調節するために、前記作動手段は、対応する圧力をレンズの体積(容器)に加えるように設計される。例えば、作動手段は、磁石と相互作用するコイルであって、レンズの前記体積に圧力を加えるのに使用されるコイルを備えた電磁アクチュエータ(例えば、ボイスコイル・モータ)とすることができる。従って、レンズの焦点距離は、アクチュエータのコイルを流れる電流によって制御される。作動手段はまた、ステッパ・モータ、或はピエゾ・モータ又は電気活性ポリマ・アクチュエータなどの静電アクチュエータによって形成することができる。作動手段はまた、レンズの表面又は膜の曲率を変えるために体積に磁気抵抗力を加える磁気抵抗アクチュエータとして設計することもできる。さらに作動手段は、1つ又は複数のアクチュエータで構成することができる。さらに、作動手段は、実際には手で作動される(例えば、作動手段によりレンズの表面の変形に変換される回転によって)ことも考えられる。
【0023】
さらに、本発明による光学装置の好ましい実施形態によれば、光学装置は、光源によって放射された前記光を、第1及び/又は第2の感光素子に当たる前に、反射するように構成された第2の光学素子を備える(やはり、第2の光学素子は、前記主光信号が、具体的には基本的に光フィードバックに悪影響を及ぼさずに、第2の光学素子によって透過されるように構成されることが好ましい。以下も参照されたい)。
【0024】
本発明による光学装置の好ましい実施形態によれば、前記第2の光学素子もまた、レンズの(第2の)カバー素子とすることができ、ここで、レンズの前記表面又は膜は、第1のカバー素子と第2のカバー素子との間に配置される。前記カバー素子は、互いに平行に配向されることが好ましい。第2の光学素子は第1の光学素子/カバー素子と同じ材料で作製することができる(上記も参照されたい)。
【0025】
本発明による光学装置の好ましい代替的実施形態によれば、第2の光学素子は、第1の光学素子又は前記レンズに対して傾けられ、光源により放射された前記光を第1及び/又は第2の感光素子の方向に反射し、主光信号を透過させるように設計された部分反射ミラーである。ここで、さらにレンズの第2のカバー素子が存在することができるが、しかし、この第2のカバー素子は光源からの光を感光素子の方向に直接又は間接に反射するようには構成されない。
【0026】
さらに、本発明の一実施形態によれば、光学装置はさらに別の光源を備え、ここで、さらに別の光源は、前記レンズによって影響され、第1の感光素子及び/又は第2の感光素子に当たる光を、前記光源から1つの感光素子に至る各光路が、さらに別の光源から1つの感光素子に至る対応する光路に対して実質的に対称的、具体的に対称的となるように、放射するように構成される。具体的には、これは、全ての感光素子及び光源の効率/感度の正規化を可能にする。例えば、1つの光源(例えば、LED)がオンにされ、2つの感光素子が存在する場合、2つの感光素子(例えば、フォトダイオード)の間の相対信号を用いて、レンズの偏向を測定することができる(LEDの絶対強度に無関係に)。1つのみの感光素子と、しかし2つの光源(例えば、LED)とが使用される場合も同様である。
【0027】
さらに、本発明の一実施形態によれば、光学装置は、第1及び/又は第2の光源の光が、光学装置及び/又はレンズを出ること又はそれらに再度入ることを防ぐように構成された少なくとも1つの光学フィルタを備える。
【0028】
さらに、本発明の一実施形態によれば、一貫性のある(例えば、線型又は単調)フィードバック信号を、光源(例えば、LED)を光学装置の機械的構成要素(例えば、レンズ又は筐体)に対して直接機械的に照合し、柔軟性ケーブル、ワイヤ・ボンディング接続又は成形相互接続装置を介して電流源などのエネルギー源に接続することにより、及び/又は組み立て中に光源/LEDを能動的に位置整合させることによって、得ることができる。
【0029】
さらに、本発明の一実施形態によれば、光学装置、特にレンズは、前記放射された光に、光散乱及び/又は屈折及び/又は内部全反射によって影響を及ぼすように構成され、具体的には、光学装置、特にレンズは、前記光散乱を起こすための少なくとも1つの回折素子を備え、具体的には、前記少なくとも1つの回折素子は光学装置のレンズの膜の上に配置されるか又はその膜で構成される。
【0030】
さらに、本発明の一実施形態によれば、光学装置は、第1及び/又は第2の感光素子(30、40)に熱的に接触する少なくとも1つの温度センサ(このために、センサは感光素子の近傍に配置することができる)を備え、具体的には、光学装置は、第1及び/又は第2の感光素子の温度依存感度を補償するために前記少なくとも1つの温度センサを使用するように構成される。
【0031】
具体的には、一実施形態において、光学装置は、第1及び/又は第2の出力信号の温度依存性(例えば、熱的に誘起される屈折率の変化及び/又はレンズの1つ若しくは幾つかの材料の熱膨張に起因する)を、前記少なくとも1つの温度センサを用いてレンズの温度を計測し、第1及び/又は第2の出力信号の温度により決められたオフセットを仮定することによって、補償するように構成される。
【0032】
さらに、具体的には、一実施形態において、光学装置は、第1及び/又は第2の出力信号の温度依存性(例えば、熱的に誘起される屈折率の変化及び/又はレンズの1つ若しくは幾つかの材料の熱膨張に起因する)を、1つより多くの基準温度においてレンズを特徴付け、前記特徴付けをメモリ内に格納し、レンズ内の前記少なくとも1つの温度センサを基準として用いることによって補償するように構成される。
【0033】
さらに、具体的には、一実施形態において、光学装置は、レンズの焦点距離などのレンズの光学的特性の温度誘起変化を減らすためにレンズの温度を安定化するように構成された加熱手段をさらに備え、ここで、具体的には、温度は、レンズが特徴付けられた又は設計されたのと同じ温度において安定化される。
【0034】
さらに、レンズの温度の検知に関して、本発明の一態様は、本発明による光学装置のレンズの温度を、レンズの温度をレンズが特徴付けられた又は設計されたのと同じ温度において安定化するためにレンズを定電力方式で駆動することによって、制御することに関する。
【0035】
本発明による光学装置の好ましい実施形態によれば、レンズは、レンズの光軸に沿ってレンズを透過する主光信号を集束又は発散させるようにさらに設計され、ここで、光源、前記感光素子、及び特に前記第1及び/又は第2の光学素子は、前記主光信号が前記第1及び/又は第2の出力信号(又は前記さらに別の出力信号)に影響を及ぼさないように、即ち、前記光源からの前記光の光路内に結合しないように、レンズに対して配置される。
【0036】
さらに、本発明による光学装置の好ましい実施形態によれば、光学装置は、光源がオフにされるときに、第1及び/又は第2の感光素子によって生成される背景ノイズを計測し、第1の感光素子によって計測された前記背景ノイズを第1の出力信号から差し引き、及び/又は第2の感光素子によって計測された前記背景ノイズを第2の出力信号から差し引くように設計される。
【0037】
代替的に又はさらに、第1及び/又は第2の出力信号(又はさらに別の出力信号)中の(そのような)外部ノイズを減らすために、光学装置は、光源が変調された光を放射するように構成され(光学装置は光源から放射される光が変調されるように、光源と相互作用する変調器を備えることができる)、ここで変調周波数は、レンズの表面又は膜の形状/曲率の揺らぎ/調節の周波数よりも大きい。前記望ましくないノイズを除去するために、装置は出力信号(単数又は複数)を復調するように、及びバンドパス・フィルタ又はローパス・フィルタが最終的に前記ノイズを除去した信号(単数又は複数)を出力するように適合されることが好ましい。
【0038】
さらに、本発明の一実施形態によれば、光学装置は、ユーザの眼の表面上に直接配置されるように構成されたコンタクトレンズ、又は眼の前に着用される光学装置(例えば、1つのめがね又は単一のめがねレンズ又は仮想ディスプレイ)又は眼内レンズである。
【0039】
さらに、本発明の一実施形態によれば、前記光学装置は、少なくとも1つの光源、少なくとも1つの感光素子及び膜レンズ(変形可能膜及び流体を備えたレンズ)、液晶、エレクトロウェッティングに基づく又は別の焦点調節可能レンズを備える。
【0040】
さらに、本発明の一実施形態によれば、光源、レンズ及び第1の感光素子は、放射された光が、第1の感光素子に当たる前に、ユーザの眼のレンズによって反射されるようにさらに構成され、その結果、第1の感光素子に当たる放射された光の強度分布が、前記ユーザが、対象物(例えば、彼の手)を接近して見ることにより又は見下ろすことによって行われ得る、彼の眼のレンズを変形させる(例えば、合焦するとき)か又はめがね若しくは眼の表面上のコンタクトレンズに対して眼の位置を変える(例えば、半径方向に)ときに、変化する。
【0041】
さらに、本発明の下にある課題は、レンズの焦点距離を、具体的には、本発明による光学装置、具体的には、コンタクトレンズ、ユーザの眼の前に着用される光学装置(例えば、めがね)又はさらに眼内レンズを用いることによって、調節する方法によって解決される。
【0042】
請求項25によれば、本発明による方法は、光源(例えば、LED又はレーザ)を用いて光を放射するステップであって、前記光が前記レンズによって(例えば、前記レンズの表面/膜によって)影響され(例えば、屈折又は変調され)、前記光の一部(即ち、前記光の強度分布の一部分)だけが少なくとも第1の感光素子に当たり、その一部(又は一部分)はレンズの焦点距離(上記も参照されたい)に、又は光学装置(例えば、コンタクトレンズ又はめがね)を着用しているユーザの眼のレンズの形状に、又はユーザの眼の表面上のコンタクトレンズの位置に、又は光学装置/めがねに対する眼の位置に依存し、ここで、第1の感光素子は、前記光の前記一部が第1の感光素子に当たるとき、第1の感光素子に当たる光の前記一部の強度に対応する第1の出力信号を生成する、光を放射するステップと、第1の出力信号を制御信号(例えば、焦点距離を所望の焦点距離に調節するアクチュエータを始動するための)として用いて焦点距離を所望の又は所定の焦点距離に好ましくは自動的に調節するステップであって、前記第1の出力信号(又は第1の出力信号を用いて決定されるさらに別の出力信号)が、前記所定の焦点距離に関連付けられる基準出力信号に近づくようにする、調節するステップと、を含む。
【0043】
少なくともさらに別の(第2の)感光素子が使用され、それにより以下のステップ、即ち、光源を用いて光を放射するステップであって、前記光がレンズによって(例えば、前記レンズの表面/膜によって)影響され(例えば、屈折又は変調され)、第1及び/又は第2の感光素子に当たるようにし、ここで、第1の感光素子が、光の一部(だけ)が第1の感光素子に当たるときに、第1の感光素子に当たる光の一部の強度に対応する第1の出力信号を生成し、第2の感光素子が、前記光の別の一部(だけ)が第2の感光素子に当たるときに、第2の感光素子に当たる光の一部の強度に対応する第2の出力信号を生成する、光を放射するステップと、
焦点距離を所定の焦点距離に調節する(例えば、レンズの変形可能表面/膜の曲率又はレンズの屈折率を調節することにより)ステップであって、前記第1及び/又は第2の出力信号、或は第1及び/又は第2の出力信号から生成されたさらに別の出力信号(例えば、上記のさらに別の出力信号Xを参照されたい)が、前記所定の焦点距離に対応する基準出力信号に近づくようにする、調節するステップと、
が実行されることが好ましい。
【0044】
複数の基準出力信号(上記も参照されたい)が、複数の焦点距離の各焦点距離に対応する基準出力信号(上記も参照されたい)を割当てるルック・アップ・テーブルの中に、事前格納されることが好ましく、その基準出力信号は、それぞれの焦点距離がさらに別の方法を用いて決定され、それぞれの焦点距離と、それぞれの焦点距離が設定されるときに予測される第1及び/又は第2の出力信号或はさらに別の出力信号との間の対応関係をもたらす較正手続きによって、決定されることが好ましい。
【0045】
さらに、本発明による方法の好ましい形態によれば、第1及び第2の感光素子によって生成される背景ノイズは、光源が光を放射しないときに計測され、ここで、第1の感光素子によって計測される前記背景ノイズが第1の出力信号から差し引かれ、及び/又は第2の感光素子によって計測される前記背景ノイズが第2の出力信号から差し引かれる。
【0046】
さらに又は代替として、第1及び/又は第2の出力信号の中(又は前記さらに別の出力信号の中)の外部ノイズを減らすために、前記放射される光が変調された光として放射され、生成された第1及び/又は第2の出力信号(又はさらに別の出力信号)が次にそれに応じて復調され、バンドパス・フィルタ又はローパス・フィルタによってフィルタされて第1及び第2の出力信号の中の外部ノイズが除去されるようにすることができる(上記も参照されたい)。
【0047】
請求項26に記載の本発明のさらに別の態様によれば、視力矯正のためのコンタクトレンズが開示され、ここで、このコンタクトレンズは、ユーザ(例えば、コンタクトレンズを着けているユーザ)の眼の表面に直接に配置されるように構成され、このコンタクトレンズは、コンタクトレンズの焦点距離を調節するために制御されるように構成されたレンズを備え、このコンタクトレンズは、光を放射するための少なくとも1つの光源(好ましくはIR光を放射するLEDが好ましい)と、光源によって放射された光を検出するための、及び感光素子に当たる放射された光の強度分布に依存する出力信号をもたらすための少なくとも1つの感光素子(好ましくはフォトダイオード)と、をさらに備え、ここで、前記光源及び前記感光素子は、コンタクトレンズがユーザの眼の表面上に目的通りに配置されるとき、光源から放射された光が、前記感光素子に当たる前に、ユーザの眼のレンズ又はユーザの網膜によって反射されるように、構成される。
【0048】
さらに、コンタクトレンズの好ましい実施形態によれば、光源及び感光素子は、感光素子に当たる放射された光の強度分布が、ユーザの前記眼のレンズの形状が変化するとき及び/又は眼の表面上のコンタクトレンズの位置が変化(例えば、半径方向の移動)するとき変化し、その結果前記出力信号も変化するように、さらに構成される。
【0049】
さらに、本発明によるコンタクトレンズの好ましい実施形態によれば、コンタクトレンズは、コンタクトレンズの焦点距離を調節するための機構(例えば、変形又は屈折率変化)、及び前記機構を制御するための制御ユニットを備え、ここで、制御ユニットは前記出力信号を用いて(例えば、フィードバック信号として、又は前記焦点調節機構を作動及び/又は停止させるための制御信号として)前記機構を制御するように構成される。
【0050】
コンタクトレンズのレンズは、透明で弾性伸張可能な膜を備えた(少なくとも部分的に)透明な容器であって、透明流体で充填され、その結果、前記膜及び前記流体を介して光がコンタクトレンズを透過できる容器で形成されることが好ましい。代替的に、コンタクトレンズのレンズは液晶レンズで形成される。
【0051】
さらに、膜は、レンズ/コンタクトレンズの焦点距離を調節するために前記機構によって調節できる曲率を備えた曲率調節可能範囲を備えることが好ましい。
【0052】
本発明のさらに別の態様によれば、視力矯正又は仮想若しくは拡張現実のための光学装置(例えば、めがね)が開示され、ここで、光学装置はユーザの眼の前、例えば、ユーザ(例えば、めがねの形態の光学装置を着用する人)の鼻の上に配置又は着用されるよう構成され、光学装置は、少なくとも1つのレンズ又は光学装置の焦点距離を調節するために制御されるように構成された少なくとも1つのレンズを備え、光学装置は、光を放射するための少なくとも1つの光源(好ましくはIR光を放射するLEDが好ましい)と、光源によって放射された光を検出するため及び感光素子に当たる放射された光の強度分布に応じた出力信号を生じるための少なくとも1つの感光素子(好ましくはフォトダイオード)と、をさらに備え、ここで、前記光源及び前記感光素子は、ユーザがめがねを着用するとき、光源によって放射された光が、前記感光素子に当たる前に、ユーザの眼のレンズ又はユーザの眼(この眼の前に前記レンズが配置される)の網膜によって反射されるように、構成される。
【0053】
さらに、光学装置(例えば、めがね)の好ましい実施形態によれば、光源及び感光素子は、感光素子に当たる放射された光の強度分布が、ユーザの前記眼のレンズの形状が変化するとき及び/又は眼の位置が変化する(例えば、内側又は下側を見る)とき、変化し、その結果前記出力信号も変化するように、さらに構成される。
【0054】
さらに、本発明によるめがねの好ましい実施形態によれば、めがねは、めがねの焦点距離を調節するための機構(例えば、変形又は屈折率変化)と、前記機構を制御するための制御ユニットとを備え、ここで、制御ユニットは、前記出力信号を(例えば、フィードバック信号として、又は前記焦点調節機構を作動及び/又は停止するための制御信号として)用いて前記機構を制御するように構成される。
【0055】
さらに、一実施形態において、光学装置は片側の眼だけの視力矯正をもたらすことができ、従って、前記1つのレンズのみを備えることができる。別の実施形態において、前記光学装置は両眼の視力矯正をもたらし、一方の眼のためのレンズ及び他方の眼のためのさらに別のレンズを備えることができる。それゆえに、各レンズが関連付けられる眼の前に配置される。
【0056】
さらに別のレンズもまた焦点調節可能とすることができ、上記のように構成することができる。さらに別のレンズの焦点距離もまた上記の手段によって(例えば、前記レンズの焦点距離と同時に)調節することができる。各々のレンズの焦点距離を独立に調節することができる(例えば、各レンズが上記の焦点距離を調節するための手段を備える)ことも考えられる。
【0057】
光学装置のレンズは、透明で弾性伸張可能な膜を備え、透明流体で充填された(少なくとも部分的に)透明な容器で形成され、その結果、光が前記膜及び前記流体を介してめがねを透過できることが好ましい。代替的に、めがねのレンズは液晶レンズによって形成される。
【0058】
さらに、膜は、レンズ/めがねの焦点距離を調節するために前記機構によって調節することができる曲率を備えた、曲率調節可能範囲を備えることが好ましい。
【0059】
本発明の全ての実施形態において行うことができる光源(単数又は複数)を変調することによって、システムの電力消費を著しく減らすことができる。
【0060】
本発明のさらに詳細な説明及び他の態様が以下に与えられる。本発明は、以下のその詳細な説明を考慮すると、より良く理解され、上で説明した以外の目的が明確になるであろう。そのような説明は添付の図面について言及する。
【図面の簡単な説明】
【0061】
図1】本発明による光学装置及び方法の実施形態を概略的に示す。
図2】光源によって、感光素子の方向に放射された光信号(強度分布)並びに感光素子によって生成された対応する出力信号を概略的に示す。
図3】本発明による光学装置のさらに別の実施形態の概略的な断面図を示す。
図4】本発明による光学装置のさらに別の実施形態の概略的な断面図を示す。
図5】レンズによって影響され(例えば、反射され)、感光素子に当たる計測されたフィードバック信号(即ち、光源からの光)を示す。
図6図3及び図4に示す実施形態の修正物を示す。
図7図6に示す実施形態に関する第1及び第2の光学素子並びに感光素子のカバー素子の反射率及び透過率を示す。
図8図6に示す実施形態に関する第1及び第2の光学素子並びに感光素子のカバー素子の反射率及び透過率を示す。
図9図6に示す実施形態に関する第1及び第2の光学素子並びに感光素子のカバー素子の反射率及び透過率を示す。
図10】本発明による光学装置の、光源によって放射された光の第1及び第2の光学素子(ここではカバー素子/めがね)の上での反射を含む、さらに別の実施形態の斜視断面図を示す。
図11】本発明による光学装置の、光源によって放射された光の第1の光学素子(ここではカバー素子/めがね)の上での単一反射のみを含む、さらに別の実施形態の斜視断面図を示す。
図12】本発明による光学装置の、光源によって放射された光の第1及び第2の光学素子(ここではカバー素子/めがね)の上での無反射を含む、さらに別の実施形態の斜視断面図を示す。
図13】本発明による光学装置の、光源によって放射された光の第1及び第2の光学素子(ここではカバー素子/めがね)の上での無反射を含む、さらに別の実施形態の斜視断面図を示す。
図14】光源から放射される光を変調することによって出力信号からノイズを除去するためのブロック図を示す。
図15】本発明による装置の、レーザ光加工システムの光路中の位置を概略的に示す。
図16】本発明による光学装置の、光源及び感光素子がレンズの筐体の外部に配置される、さらに別の実施形態の概略図を示す。
図17】2つの光源及び2つの感光素子を用いる光学装置の概略的構成を示す。
図18】本発明による光学装置のさらに別の実施形態の別の斜視断面図を示す。
図19】本発明による、コンタクトレンズの形態の光学装置を示す。コンタクトレンズ内に配置された光源によって放射された光が、その上に前記コンタクトレンズが配置されたユーザの眼のレンズによって反射され、次いで感光素子に当り、この感光素子が、例えば、コンタクトレンズの焦点距離を制御するための出力信号をもたらす。
図20】本発明による、コンタクトレンズの形態の光学装置を示す。コンタクトレンズ内に配置された光源によって放射された光が、その上に前記コンタクトレンズが配置されたユーザの眼のレンズによって反射され、次いで感光素子に当り、この感光素子が、例えば、コンタクトレンズの焦点距離を制御するための出力信号をもたらす。
図21】本発明による、コンタクトレンズの形態の光学装置を示す。コンタクトレンズ内に配置された光源によって放射された光が、その上に前記コンタクトレンズが配置されたユーザの眼のレンズによって反射され、次いで感光素子に当り、この感光素子が、例えば、コンタクトレンズの焦点距離を制御するための出力信号をもたらす。
図22】本発明による、コンタクトレンズの形態の光学装置を示す。コンタクトレンズ内に配置された光源によって放射された光が、その上に前記コンタクトレンズが配置されたユーザの眼のレンズによって反射され、次いで感光素子に当り、この感光素子が、例えば、コンタクトレンズの焦点距離を制御するための出力信号をもたらす。
図23】本発明による、コンタクトレンズの形態の光学装置を示す。コンタクトレンズ内に配置された光源によって放射された光が、その上に前記コンタクトレンズが配置されたユーザの眼の網膜によって反射され、次いで感光素子に当り、この感光素子が、例えば、コンタクトレンズの焦点距離を制御するための出力信号をもたらす。
図24】本発明による、コンタクトレンズの形態の光学装置を示す。コンタクトレンズ内に配置された光源によって放射された光が、その上に前記コンタクトレンズが配置されたユーザの眼の網膜によって反射され、次いで感光素子に当り、この感光素子が、例えば、コンタクトレンズの焦点距離を制御するための出力信号をもたらす。
図25】本発明による、コンタクトレンズの形態の光学装置を示す。コンタクトレンズ内に配置された光源によって放射された光が、その上に前記コンタクトレンズが配置されたユーザの眼の網膜によって反射され、次いで感光素子に当り、この感光素子が、例えば、コンタクトレンズの焦点距離を制御するための出力信号をもたらす。
図26】本発明による、ユーザの眼の前に着用されるように設計された光学装置(例えば、めがね)を示す。光学装置の中に配置された光源によって放射された光が、ユーザの眼のレンズ又はユーザの眼の網膜によって反射され、次いで感光素子に当たり、この感光素子が、例えば、光学装置の焦点距離を制御するための出力信号をもたらす。
図27】本発明による、ユーザの眼の前に着用されるように設計された光学装置(例えば、めがね)を示す。光学装置の中に配置された光源によって放射された光が、ユーザの眼のレンズ又はユーザの眼の網膜によって反射され、次いで感光素子に当たり、この感光素子が、例えば、光学装置の焦点距離を制御するための出力信号をもたらす。
図28】本発明による、ユーザの眼の前に着用されるように設計された光学装置(例えば、めがね)を示す。光学装置の中に配置された光源によって放射された光が、ユーザの眼のレンズ又はユーザの眼の網膜によって反射され、次いで感光素子に当たり、この感光素子が、例えば、光学装置の焦点距離を制御するための出力信号をもたらす。
【発明を実施するための形態】
【0062】
図1及び図2は、本発明による光学装置1の略図を示す。具体的には、光学装置1は主光信号(例えば、レーザ光ビームなどの光ビーム)100を集束又は発散させるように設計される。このために、光学装置1は、変形可能な表面10aであって、図1の左側に示すように、各々がレンズ10の異なる焦点距離に対応する複数の異なる曲率をとることができる表面10aを有する焦点調整可能なレンズ10を備える。
【0063】
前記表面10aは、主光信号100に対して透明な、レンズ10の弾性変形可能な膜11によって形成することができる。膜11は、光学装置1/レンズ10の筐体2の中に配置され、(透明な)カバー素子80の形態の第1の光学素子80と(光軸Aの方向で)向き合い、ここで膜11(上記のように設計することができる)及び前記カバー素子80は、レンズ10の、流体Fで満たされる体積Vを定める(これは上記のように設計することができる)。
【0064】
例えば、作動手段20によって、前記体積に圧力が加えられる場合、基本的に一定体積Vの流体Fのために流体Fの圧力が増加して膜11を膨張させ、膜11/表面10aの前記曲率を増加させる。同様に、前記体積Vに加わる圧力が減少すると、流体Fの圧力が減少し、図1の右側に示すように、膜11/表面10aを収縮させ、第1の膜の前記曲率を減少させる。ここで、曲率の増加は、膜11/表面10aがより顕著な凸型膨らみを発現すること、又は膜11/表面10aが凹型若しくは平面状態から凸型に変化することを意味する。同様に、曲率の減少は、膜11/表面10aが顕著な凸状態からあまり顕著でない凸状態又はさらに平面若しくは凹状態に変化すること、或は平面若しくは凹状態からさらにより顕著な凹状態へ変化することを意味する。
【0065】
従って、レンズ10の膜11/表面10aの曲率は作動手段20によって調節することができ、それによりレンズ10の焦点距離fを調節することができる。
【0066】
図1に示すように、光学装置1は、同じくカバー素子90として形成された、第1の光学素子と平行に延びる第2の(透明な)光学素子90を備え、その結果膜11/表面10aがこれら2つの光学素子80、90の間に配置される。
【0067】
さらに、レンズ10の前記焦点距離fを計測及び/又は制御するために、光学装置1は光源50(例えば、LEDなど)をさらに備え、ここで、前記光源50は、例えば、レンズ10の筐体2の横周壁の内側に配置されて光51を放射し、前記光51が第2の光学素子によってレンズ10の表面10aの方向に反射され、次いでレンズ10によって第1の光学素子80の方向に屈折され、次いでレンズ10の表面10aの方向に後方反射され、レンズ10によって屈折され、最後に第2の光学素子90によって(表面10aの実際の曲率に応じて)、例えば、やはり前記周壁の内側(例えば、光源50に向き合う)に互いに隣接/接近して配置されたフォトダイオード30、40の形態の第1及び/又は第2の感光素子30、40の上に反射されるように、構成される。
【0068】
第1のフォトダイオード30は、第1のフォトダイオード30に当たる光51の強度に対応する第1の出力信号O1(例えば、電流の形態で)を生成するように設計され、第2のフォトダイオード40は、第2のフォトダイオード40に当たる光51の強度に対応する第2の出力信号O2を生成するように設計される。
【0069】
図2及び図5に示すように、感光素子30、40のそのような構成は、レンズ10の焦点距離fを決定することを可能にし、その理由は、表面10a又は膜11の各々の曲率が特定の第1及び第2の出力信号O1、O2を生成するので曲率/焦点距離fを区別することができるからである。換言すれば(図5参照)光51(フィードバック信号)が2つのフォトダイオード30、40に、レンズ10の表面10a又は膜11の曲率に応じて異なる仕方で当たる。
【0070】
しかし、本発明はまた単一の感光素子(例えば、フォトダイオードなど)30によっても機能する。例えば、光源50の(LED)信号のあらゆる可能な変化を説明するために、2つのそのような素子(例えば、フォトダイオード)30、40が使用されることが好ましい。換言すれば、あらゆる経年劣化効果を防ぐために。2つの感光素子が存在するとき、第1及び第2の出力信号O1、O2から、X=(O1-O2)/(O1+O2)となるさらに別の出力信号Xが生成されることが好ましい。
【0071】
光学装置1の構成により、レンズ10の異なる焦点距離fに関して図2に示す光源50の光51の強度分布は、焦点距離が変化するときその幅を変化させるだけでなく、分布51のピークPの位置も焦点距離が変化するとき移動する。感光素子30、40は、本発明の全ての実施形態において、それらが光源50からの光51の強度分布の一部のみを検出するように一般に構成されているので、検出された光51の強度は、レンズ10の焦点距離を変化させることによって著しく変化する。分布の幅のみを変化させることが、レンズ10の異なる焦点距離を識別することを可能にするが、光学装置1を、それぞれの素子30、40に当たる(反射された)光51のピークPが移動するようにさらに構成することができるという特徴は、さらに信号差を大きくする。本発明のこれらの特徴はさらに図5に示され、この図は、レンズ10によって集束又は発散されるが、光源50からの光51(フィードバック信号)とは明らかに干渉しない主光信号100を示す。図5の左側のパネルにおいては、図5の右側のパネルに比べて、レンズ10の異なる焦点距離が調節されている。それに対応して、感光素子(例えば、フォトダイオード)30、40には、これらの2つのパネルにおいて、信号51が異なる仕方で命中する。
【0072】
さらに、図5からに推測できるように、前記光源50、前記感光素子30、40、並びに特に前記第1及び/又は第2の光学素子80、90は互いに、主光信号(主レーザ)100がフォトダイオード30、40に当たらないように、即ち、前記第1及び第2の出力信号O1、O2に影響を及ぼさないように、配置される。
【0073】
次に、レンズ10の焦点距離fを制御して、レンズ10を所定の焦点距離に自動的に調節することができるようにするために、光学装置1は、図1に示すように制御ユニット60を備え、この制御ユニット60は、前記作動手段20がレンズ10の前記表面10aを第1及び/又は第2の出力信号O1、O2が基準出力信号に近づくように変形させるように、前記作動手段20を制御するように適合され、ここで、レンズ10の前記表面10aは、前記さらに別の出力信号Xが基準出力信号に近づくように変形されることが好ましい。これらの基準出力信号は較正されており、即ち、調節されるべきそれぞれの所定の焦点距離fに対応する。
【0074】
光学装置1は、複数の焦点距離並びに複数の対応する基準出力信号がその中に格納されるメモリ70を備えることが好ましく、ここで、基準出力信号は各焦点距離に割当てられる。
【0075】
一方の側の第1及び/又は第2の出力信号O1、O2或は前記さらに別の出力信号Xと、他方の側の焦点距離との間の対応関係は、レンズ10の焦点距離を決定するための別の方法(例えば、シャック・ハルトマン(Shack-Hartman)センサ)を用いて確立することができる。次いで個々の焦点距離を調節することができ、対応する第1及び第2の出力信号O1、O2或はさらに別の出力信号Xが計測され、後に、例えば、メモリ70内の前記ルック・アップ・テーブル内に格納される。
【0076】
図3及び図4は、本発明による光学装置1のさらに別の実施形態を示し、ここで、レンズ10は図1に示すように構成され、第1のカバー素子80の形態の第1の光学素子80と、第2のカバー素子81(図1のカバー素子90に対応する)と、レンズ10及び透明カバー素子80、81に対して傾いた光学窓(光51に対する)であり、レンズ10を通る光軸に沿って延びる主光信号100に対して部分的に透過性である第2の光学素子90とを有し、ここで、第2の光学素子90によって反射された主光信号100の光は、前記反射された光を吸収するためのレーザ・ダンプ120の中に集められる。第1のカバーガラス80及び第2の光学素子90は主光信号100に対して透明であり、信号光51に対して反射性である。カバーガラス81は両方の光信号に対して透明であり、省略することもできる。図3および図4の両方は、膜11の2つの異なる状態を示すことに留意されたい。
【0077】
次に、図1に示す実施形態とは対照的に、光源(例えばLED)50は、光源50によって生成された光51が第2の光学素子90によってレンズ10の方向へ反射され、第2のカバー素子81及びレンズ10に入り、第1のカバー素子80の上で、第2の光学素子90の方向へ反射され、次いで、焦点距離f又は膜11/表面10aの曲率に応じて第1及び/又は第2の感光素子(例えば、フォトダイオード)30、40の上に反射される(例えば、図4の破線)、ように配置される。
【0078】
ここで、2つの感光素子30、40はプリント回路基板に組み込まれ、この基板はさらに、図1に示す制御ユニット60及び特にメモリ70へのインタフェースを備える。
【0079】
図6(やはり膜11の2つの異なる状態を示す)は図4に示す実施形態の修正物を示し、ここでは図4とは対照的に、光源50もプリント回路基板に組み込まれ、それゆえに前記感光素子30、40に隣接して配置される。両方の実施形態(図3図4図6)において、プリント回路基板は、光軸Aに平行に延びるレンズ10の筐体2の横内側の上に配置される。さらに、プリント回路基板はさらにレンズ10及び光源50のための接続部を有する。
【0080】
図6と関連して、図7は、光源50の当たる光51に対する第1の光学素子80(第1のカバー素子)の好ましい反射率を示す。それによると、反射率は、光源50の光51に関して用いられることが好ましい750nmから900nmまでの範囲の波長を有する光51に対して基本的に100%であることが好ましい。さらに、図9に示すように、750nmから950nmまでの範囲の光に対する第2の光学素子90の好ましい反射率は、光51の良好な反射を確保できるように、やはり非常に高い(ほぼ100%)。さらに、図6に示す実施形態のフォトダイオード30、40を覆うカバー素子83は、光51が確実に前記感光素子30、40に実際に達するように、図8に示すような非常に良好な透過率を有することが好ましい。さらに、これは、主光信号の典型的な波長、具体的には532nmと1064nmに対して100%に近い反射率を有する。
【0081】
図10は、本発明による光学装置1のさらに別の実施形態であって、基本的に図1に示すように構成され、即ち、透明カバー素子80、90の形態の第1及び第2の光学素子80、90を有するレンズ10を備え、表面10aを定める変形可能膜11が前記2つのカバー素子80、90の間に配置される、実施形態を示す。レンズ10/光学装置1の筐体2は、膜11を囲む周壁201を備え、ここで、第1の環状部材202が前記壁201に結合され、この第1の環状部材202が(円形の)第1の光学素子80を保持し、第2の光学素子90を保持する第2の環状部材204も同様に前記壁201に結合される。さらに、前記第1の環状部材202は円周縁部領域203を備え、これに前記膜11が固定される。同様に、第2の管状部材204は円周縁部領域205を備える。光学的に機能しない外膜部分12を押す(例えば、作動手段20によって)ことにより、流体Fが外側領域から中央の流体体積区域に押され、レンズ10がより凸形になる(又は圧力を減らすと凸形の程度が小さくなる)。これは、レンズ10の焦点距離fを調節することを可能にする。
【0082】
図10に示すように、感光素子30、40並びに光源50は、膜11/表面10aの同じ側、即ち第2の環状部材204の上に配置され、その結果光51は、図1に関して説明したように、反射され、ここで、具体的には2つの感光素子30、40は、第2の管状部材204の円周方向に、互いに隣接して配置され、それらは、第2の管状部材204の(or)向かい側に配置された光源50と向き合う。
【0083】
さらに、光学装置1は、第1の光源50の(特にまた、存在するときはさらに別の光源52の)光が光学装置1及び/又はレンズ10を出るか又は再度入るのを防止するように構成された少なくとも1つの光学フィルタ54を備えることができる。具体的には、第2の光学素子90にそのようなフィルタ54を備えることができる。そのようなフィルタはまた、本明細書で説明する他の実施形態において使用することもできる。図11は、図10に示す実施形態の修正物を示し、ここで、感光素子30、40及び光源50は、光51が感光素子30、40に向かって進むとき、第1の光学素子80によって単に反射される(及びレンズ10によって屈折される)ように配置される。具体的には、感光素子30、40はここでは、第1及び第2の光学素子80、90に垂直に走る光軸の方向において互いに隣接して配置される。さらに、この実施形態において、光源50及び感光素子30、40は、調整可能レンズ10の流体Fを有しない側にあり、組み立てプロセスをより簡単にする。さらに、光51は膜11/表面10aを2回横切り、より強い光学効果及びそれゆえにより強いフィードバック信号を生じる。
【0084】
図12及び図13は、図10に示す実施形態の修正物を示し、ここで、感光素子30、40及び光源50は、光51が感光素子30、40に向かって進むとき、レンズ10によって単に屈折されるように、配置される。このため、図11とは対照的に、光源50は、ここでは、図11に関して説明したように配置される感光素子30、40に対して、膜11の反対側に配置される。
【0085】
さらに、図12及び図13において、レンズ10は、前記放射された光51に、光散乱及び/又は屈折によって影響を及ぼすように構成され、ここで具体的には、光学装置1、具体的にはレンズ10は、前記光散乱を起こすための少なくとも1つの回折素子を備えることができ、ここで具体的には、前記少なくとも1つの回折素子55は膜11の上に配置されるか又は膜11で構成される。そのような素子55は、他の実施形態においても使用することができる。
【0086】
図16は、本発明による光学装置1の、光源50並びに第1及び第2の感光素子(例えば、フォトダイオード)30、40が、図1に示す原理で構成されたレンズ10の筐体2の外部に配置された、さらに別の実施形態の略図を示す。ここで、光源50及びフォトダイオード30、40は、第1の光学素子80(例えば、カバーガラス)の一方の側に配置され、その側に感光素子30、40もまた配置され、即ち、カバーガラス80に平行に走る平面内で互いに隣接して配置され、ここで、第1の感光素子30は、第2の感光素子40が第1の感光素子30と光軸の間に配置されるように、第2の感光素子40の上方に配置される。レンズ10の膜11は、第1及び第2のカバーガラス80、90の間に配置され(流体Fが第1のカバーガラス80と膜11の間に配置される)、ここで、第2の光学素子(第2のカバーガラス)90は光51に対して反射性である。光源50からの光51を、最終的に感光素子30、40の上に後方反射するためにミラー88が存在し、このミラー88は、素子30、40及び光源50もまた配置されるカバーガラス80の前記側のカバーガラスの面に平行に延びる。
【0087】
図16において、上記の構成が、レンズ10の3つの異なる焦点距離に関して示される。下の並びのそれぞれのパネルは、素子30、40に当たる光51の対応する強度分布を示す。
【0088】
さらに、図14に示すように、外部ノイズの低減(全ての実施形態において行うことができる)のために、光源50によって生成された光51が変調器300によって変調され、その結果、光51の強度Sは、例えば、

=V・sin(ω・t)

の形をとり、ここでωは変調周波数である。適合光学素子、即ちレンズ10が、曲率を調節するとき、前記強度を以下のように修正する:

=f(x)・V・sin(ω・t)

ここで、外部ノイズf(y)がこの信号に加えられて以下のようになる。

=f(x)・V・sin(ω・t)+f(y)

この強度が感光素子30、40によって検出される。
【0089】
ノイズf(y)を除去するために、復調器301は、この信号を、関数sin(ω・t)を検出された強度Sに掛けて

de=f(x)・V・sin(ω・t)・sin(ω・t)+f(y)・sin(ω・t)

を得ることによって、復調するように構成され、この式は、

de=(1/2)・f(x)・VI-f(x)・V・(1/2)・cos(2・ω・t)+f(y)・sin(ω・t)

に対応する。
【0090】
次に、周波数2・ω及びωによって変化する部分を、対応するバンドパス・フィルタ又はローパス・フィルタ110によって除去することができる。その結果、滑らかな出力信号

=(1/2)・f(x)・V

が残る。
【0091】
最終的に図15が、本発明による光学装置1のレーザ光加工システムにおける可能な用途を示す。これに関して、図15は、装置1のレーザ400によって生成されたレーザ光ビーム100を、対象物404の3次元表面の上に集束させるように設計されたレーザ・マーキング機器1の形態の光学システム1を示す。このために、生成されたレーザ光ビーム100は、レーザ光ビーム100の直径を広げる(例えば、直径5mmまで)ための随意のビーム・エクスパンダ401を通して送られる。ここで、レーザ光ビーム100を収束/集束させるために、本明細書で説明する本発明による、調節可能な焦点f(例えば、+400mmから-600mmまでの範囲において)を有するレンズ10を、光路中、ビーム・エクスパンダ401の前、ビーム・エクスパンダ401の中、又はビーム・エクスパンダ401の後(前記対象物404の表面上にレーザ光ビーム100を屈折するためのミラー手段402の前)に配置することができる。レンズ10によってレーザ光ビーム100を集束/収束させた後、レーザ光ビーム100はミラー手段402によってFシータ・レンズ403の方向に屈折され、次いで前記対象物404の表面に集束される。ミラー手段402及び焦点調節可能なレンズ10のために、レーザ光ビーム100は、図15に示すように、3次元x、y,zにおいて集束させることができる。ミラー手段402(例えば、x-yガルボスキャナ(Galvo-scanners)の上に取付けられたミラー)は、2つの独立した軸の周りに枢動する(2次元において)ことができる単一ミラーとすることができ、又は互いに直交する2つの軸のそれぞれの軸の周りで枢動可能な2つのミラーで構成することができる。そのような光学システム1において、Fシータ・レンズを省略することもでき、又は、例えば小さいスポット・サイズを得るためにレーザ光ビーム100の光路内に付加的なレンズを加えることができる。
【0092】
さらに、図17は、2つの光源50、52(例えば、LED)及び2つの感光素子(30、40)を用いた構成を示す。この構成は、本明細書で説明する全ての実施形態と共に用いることができる。ここで、具体的には、光源50から感光素子30、40のうちの1つまでの各光路T11、T12は、さらに別の光源52から感光素子30、40のうちの1つまでの対応する光路T21、T22に対して対称的である。有利なことに、これは全ての感光素子30、40及び光源の効率/感度の正規化を可能にする。
【0093】
さらに、図18は、本発明による、透明なカバー素子80、90の形態の第1及び第2の光学素子80、90を有するレンズ10を備え、表面10aを定める変形可能膜11が前記2つのカバー素子80、90の間に配置された、光学装置1のさらに別の実施形態を示す。さらに、光学装置1は、膜11を囲む周壁201を有する筐体2を備え、ここで、第1の環状部材202が前記壁201に結合され、この第1の環状部材202が(円形の)第1の光学素子80を保持し、第2の光学素子90を保持する第2の環状部材204も同様に前記壁201に結合される。さらに、前記第1の環状部材202は、前記膜11がそれに固定される円周縁部領域203を備える。
【0094】
さらに、図17及び18に示すように、光学装置1は、第1及び/又は第2の感光素子30、40に熱的に接触する少なくとも1つの温度センサ56(又は、各感光素子(例えば、フォトダイオード)30、40に対する数個のそのようなセンサ56)を備えることができ、ここで、具体的には光学装置1は、第1及び/又は第2の感光素子30、40の温度依存感度を補償するために、前記少なくとも1つの温度センサ56を用いるように構成される。これらの種類の温度センサ56及び補償手段は、他の実施形態においても存在することができる。
【0095】
光学的に機能しない外側膜部分12の上を押す(例えば、作動手段20によって)ことにより、流体Fが外側領域から中央の流体体積区域内に押され、レンズ10(即ち、膜11の内側部分)がより凸形(圧力が減少するときはより程度の小さい凸形)になる。これは、レンズ10の焦点距離を調節することを可能にする。
【0096】
図18に示すように、感光素子30、40はレンズ10の外側に配置され、他方光源50は、放射された光51が素子30、40に当たる前に第2のカバー素子90の上で反射されるように、膜11を通して感光素子30、40を照射する。
【0097】
さらに、図19図22は、本発明による態様及び実施形態の断面図を示す。ここで、光学装置は、ユーザの眼300(301)の表面300a、即ち、眼300の瞳孔の上に直接配置されるように構成されたコンタクトレンズ1を形成する。コンタクトレンズ1は、コンタクトレンズの焦点距離を調節するために修正されるように構成された少なくとも1つのレンズ10を備える。
【0098】
さらに、コンタクトレンズ1は、光51(具体的には、眼に支障のないIR光)を放射するための光源50と、光源50から放射された光51を検出するため及び感光素子30に当たる放射された光51の強度に応じた出力信号をもたらすためのフォトダイオードとすることができる感光素子30とを備える。
【0099】
本発明によれば、前記光源50及び前記感光素子30は、ユーザがコンタクトレンズを適切に着用するとき、光源50によって放射された光51が、前記感光素子30に当たる前にユーザの眼300のレンズ301によって反射されるように、コンタクトレンズ1の上に配置される。
【0100】
光源50及び感光素子30は、ユーザの前記眼300のレンズ301の形状が変化するとき及び/又は眼300の表面300a上のコンタクトレンズ1の位置が変化する(即ち、コンタクトレンズが半径方向に中心を外れるようなコンタクトレンズ1の半径方向の移動による)とき、感光素子30に当たる放射された光51の強度分布が変化し、その結果、前記出力信号も変化するように、さらに構成されることが好ましい。
【0101】
光源50及び素子30のそのような配置は、例えば、図19図22に示す放射された光をシミュレートすることによって見出すことができる。
【0102】
さらに、コンタクトレンズ1は、レンズ10の焦点距離を調節するための機構303、及び前記機構303を制御するための制御ユニット304を備えることが好ましく、ここで、制御ユニットは、前記出力信号を用いて前記機構303を制御するように構成される。
【0103】
図19は、詳細に、眼300の0D(ジオプタ)への調節の状況を示し、ここで、感光素子の出力信号は光源強度(即ち、光源50によって放射される光51の強度)の0.68%の光強度に対応する。
【0104】
さらに、図20においては、眼300の調節は2Dであり、ここで感光素子の出力信号は光源強度の0.63%の光強度に対応する。
【0105】
最後に、図21は、今度は、コンタクトレンズが眼300の表面300a上で半径方向に、すぐ近くの対象物に合焦することによってユーザが達成し得る0.5mmの量だけ、移動した際の、眼300の0Dの調節に対応する。コンタクトレンズは、例えば、ユーザが見下ろすか又は鼻の方を見るときに、レンズが移動するように設計することができる。ここで、出力信号は、光源強度の0.39%の光強度に対応する。
【0106】
従って、感光素子30からの出力信号は、コンタクトレンズ1、具体的にはコンタクトレンズ1の焦点距離を制御するのに有利に用いることができる。
【0107】
比較として、図22は光源50から延びる全ての光線を示す。
【0108】
図23図25はさらに、ユーザ(例えば、コンタクトレンズ1を着用している個人)の眼300の表面300aの上に配置されるコンタクトレンズの形態の光学装置1を示し、ここで今度は、光源50及び感光素子30は、光源50によって放射された光51が、コンタクトレンズ1が配置された眼300のレンズ301を透過し、具体的には前記レンズ301によって屈折され、次いで前記眼の網膜300b上で反射され、レンズ301(そこで光51が具体的には再び屈折される)を介して感光素子30に戻る、ように構成される。
【0109】
ここで、図23は、網膜300b上で反射された放射された光51が感光素子30に命中する状況を示し、他方図24においては、コンタクトレンズ1のユーザによってレンズ301が変形される(例えば、それを合焦することにより)ために、より少ない放射された光51が感光素子30に当たる。さらに、感光素子上のより少ない光51はまた、眼300の表面300a上のコンタクトレンズの位置を移動させることによって実現され、このことを図25に示す。そのような移動は上記のようにユーザによって実現することができる。従って、放射された光が網膜300bによって誘導される場合にも、上記のようにコンタクトレンズ1を制御するために感光素子30の出力信号を用いることができる。
【0110】
さらに、図26図28は、本発明の態様及び実施形態の断面図を示し、ここでは、光学装置1が、ユーザの眼300の前に、例えば、ユーザの鼻の上に配置されるように構成されためがね1の形態で着用されるように設計される。光学装置1は、光学装置(例えば、めがね)の焦点距離を調節するために修正されるように構成された少なくとも1つのレンズ10を備える。
【0111】
さらに、光学装置1は、光51(具体的には、眼に支障のないIR光)を放射するための光源50と、光源50からの放射された光51を検出するため及び感光素子30に当たる放射された光51の強度に応じた出力信号をもたらすための、フォトダイオードとすることができる感光素子30とを備える。
【0112】
本発明によれば、前記光源50及び前記感光素子30は、光学装置1(例えばめがね)がユーザによって適切に着用されるとき、光源50によって放射された光51が、前記感光素子30に当たる前に、ユーザの眼300、具体的には眼300のレンズ301、角膜300c又は網膜300bによって反射されるように、光学装置1又はめがね1のフレームの上或はめがね1の上に配置される。
【0113】
光源50及び感光素子30は、感光素子30に当たる放射された光51の強度分布が、ユーザの前記眼300のレンズ301の形状が変化するとき、及び/又は光学装置1に対するユーザの眼300の位置が変化する(即ち、下方又は内側を見ることにより)とき、変化し、その結果前記出力信号も変化するように、さらに構成される。
【0114】
光源50及び素子30のそのような配置は、例えば、図26図28に示すように放射された光をシミュレートすることによって見出すことができる。
【0115】
さらに、光学装置(例えば、めがね)1は、レンズ10の焦点距離を調節するための機構303、及び前記機構303を制御するための制御ユニット304を備えることが好ましく、ここで、制御ユニット304は、前記出力信号を用いて前記機構303を制御するように構成される。
【0116】
詳細には、図26が眼300の0D(ジオプタ)への調節の状況を示す。
【0117】
さらに、図27においては、眼300の調節は2Dである。
【0118】
最後に、図28は、今度は眼球が光学装置1又はそれぞれのめがねレンズに対して回転した場合の眼300の0Dの調節に対応する。
【0119】
従って、感光素子30からの出力信号は、光学装置又はめがね1を、具体的には光学装置又はめがね1の焦点距離を制御するために有利に用いることができる。

図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28