(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-10
(45)【発行日】2022-02-21
(54)【発明の名称】光波長フィルタ
(51)【国際特許分類】
G02B 6/12 20060101AFI20220214BHJP
G02B 6/124 20060101ALI20220214BHJP
G02B 6/126 20060101ALI20220214BHJP
G02F 1/01 20060101ALN20220214BHJP
【FI】
G02B6/12 331
G02B6/12 311
G02B6/124
G02B6/126
G02F1/01 C
(21)【出願番号】P 2020083651
(22)【出願日】2020-05-12
【審査請求日】2020-05-12
【国等の委託研究の成果に係る記載事項】(出願人による申告)国等の委託研究の成果に係る特許出願(平成30年度国立研究開発法人新エネルギー・産業技術総合開発機構「超低消費電力型光エレクトロニクス実装システム技術開発」委託研究、産業技術力強化法第17条の適用を受ける特許出願)
(73)【特許権者】
【識別番号】000000295
【氏名又は名称】沖電気工業株式会社
(73)【特許権者】
【識別番号】513065077
【氏名又は名称】技術研究組合光電子融合基盤技術研究所
(74)【代理人】
【識別番号】100141955
【氏名又は名称】岡田 宏之
(74)【代理人】
【識別番号】100085419
【氏名又は名称】大垣 孝
(72)【発明者】
【氏名】岡山 秀彰
(72)【発明者】
【氏名】太縄 陽介
【審査官】井部 紗代子
(56)【参考文献】
【文献】特表平09-508723(JP,A)
【文献】特開2013-205742(JP,A)
【文献】特開平06-059293(JP,A)
【文献】特開平10-333105(JP,A)
【文献】特開2013-156512(JP,A)
【文献】特開2014-170056(JP,A)
【文献】特開2006-301501(JP,A)
【文献】米国特許出願公開第2015/0338577(US,A1)
【文献】OKAYAMA, H. et al.,Polarization conversion Si waveguide Bragg grating for polarization independent wavelength filter,11th International Conference on Group IV Photonics (GFP),IEEE,2014年08月29日,ThD5, pp. 145 - 146
【文献】NI, Bin et al.,Subwavelength-grating-based compact and broadband TE-pass polarizer for slot waveguides on a SOI platform,Journal of the Optical Society of America B,OSA,2019年07月18日,Vol. 36, No. 8,pp. 2126 - 2133
【文献】HALIR, Robert et al.,Subwavelength-Grating Metamaterial Structures for Silicon Photonic Devices,Proceedings of the IEEE,IEEE,2018年12月,Vol. 106, No. 12,pp. 2144 - 2157
【文献】LIU, Lu et al.,Subwavelength-grating-assisted broadband polarization-independent directional coupler,Optics Letters,OSA,2016年04月01日,Vol. 41, No. 7,pp. 1648 - 1651
【文献】OKAYAMA, Hideaki et al.,Asymmetric directional coupler type contra-directional polarization rotator Bragg grating: design,Japanese Journal of Applied Physics,The Japan Society of Applied Physics,2019年05月13日,Vol. 58, No. 068002,pp. 068002-1 - 068002-4
(58)【調査した分野】(Int.Cl.,DB名)
G02B 6/12 - 6/14
G02F 1/00 - 1/125
G02F 1/21 - 7/00
Scopus
(57)【特許請求の範囲】
【請求項1】
支持基板と、
前記支持基板上に形成されるクラッドと、
前記クラッド中に埋設され、前記支持基板の上面に平行に設けられる、光導波路コアとを備え、
前記光導波路コアは、所定の間隔で並列配列された、第1導波路コア及び第2導波路コアを備え、
前記第1導波路コアの幅と前記第2導波路コアの幅は、互いに異なっており、
前記第1導波路コアの、前記第2導波路コアと反対側の側面にグレーティングが設けられており、
前記第2導波路コアには、左右で反対称のグレーティングが設けられ、
前記第2導波路コアと、該第2導波路コアの周囲のクラッドとで構成される光導波路は、上下で非対称になるように構成されており、
前記光導波路コアは、所定の間隔で並列配列された、第1結合導波路及び第2結合導波路をさらに備え、
前記第1結合導波路は、前記第1導波路コアに接続されて
おり、
前記第1結合導波路を介して前記第1導波路コアに入力される入力光に含まれる、特定の波長帯域のTM(Transverse Magnetic)偏波光の0次モードを、TE(Transverse Electoric)偏波光の0次モードに変換して前記第2導波路コアの出力端から出力し、
前記入力光に含まれる、特定の波長帯域のTE偏波光の0次モードを、TE偏波光の1次モードに変換して前記第2結合導波路の出力端から出力する
ことを特徴とする光波長フィルタ。
【請求項2】
支持基板と、
前記支持基板上に形成されるクラッドと、
前記クラッド中に埋設され、前記支持基板の上面に平行に設けられる、光導波路コアとを備え、
前記光導波路コアは、所定の間隔で並列配列された、第1導波路コア、及び、第2導波路コアを備え、
前記第1導波路コアの幅と前記第2導波路コアの幅は、互いに異なっており、
前記第1導波路コアの、前記第2導波路コアと反対側の側面にグレーティングが設けられており、
前記第2導波路コアの、前記第1導波路コアと反対側の側面にグレーティングが設けられており、
前記第2導波路コアと、該第2導波路コアの周囲のクラッドとで構成される光導波路は、上下で非対称になるように構成されており、
前記光導波路コアは、所定の間隔で並列配列された、第1結合導波路及び第2結合導波路をさらに備え、
前記第1結合導波路は、前記第1導波路コアに接続されてされて
おり、
前記第1結合導波路を介して前記第1導波路コアに入力される入力光に含まれる、特定の波長帯域のTM偏波光の0次モードを、TE偏波光の0次モードに変換して前記第2導波路コアの出力端から出力し、
前記入力光に含まれる、特定の波長帯域のTE偏波光の0次モードを、TE偏波光の1次モードに変換して前記第2結合導波路の出力端から出力する
ことを特徴とする光波長フィルタ。
【請求項3】
前記第2結合導波路は、前記第1結合導波路及び前記第1導波路コアに対して、前記第2導波路コアと反対側に設けられている
ことを特徴とする請求項1又は2に記載の光波長フィルタ。
【請求項4】
前記第2結合導波路は、前記第1結合導波路及び前記第1導波路コアに対して、前記第2導波路コアと同じ側に設けられている
ことを特徴とする請求項1又は2に記載の光波長フィルタ。
【請求項5】
前記第2導波路コアより厚さが小さく、かつ、前記第2導波路コアと一体に形成されたスラブ導波路を
さらに備えることを特徴とする請求項1~
4のいずれか一項に記載の光波長フィルタ。
【請求項6】
前記第2導波路コアの側面が、前記支持基板の上面に対して傾いて形成されている
ことを特徴とする請求項1~
4のいずれか一項に記載の光波長フィルタ。
【請求項7】
前記クラッドの前記第2導波路コアの上側の部分が空気である
ことを特徴とする請求項1~
4のいずれか一項に記載の光波長フィルタ。
【請求項8】
支持基板と、
前記支持基板上に形成されるクラッドと、
前記クラッド中に埋設され、前記支持基板の上面に平行に設けられる、光導波路コアとを備え、
前記光導波路コアは、所定の間隔で並列配列された、第1導波路コア及び第2導波路コアを備え、
前記第1導波路コアの幅と前記第2導波路コアの幅は、互いに異なっており、
前記第1導波路コア及び前記第2導波路コアには、左右で対称のグレーティングが設けられ、
前記第1導波路コアと、該第1導波路コアの周囲のクラッドとで構成される光導波路は、上下で非対称になるように構成されており、
前記光導波路コアは、所定の間隔で並列配列された、第1結合導波路及び第2結合導波路をさらに備え、
前記第1結合導波路は、前記第1導波路コアに接続されて
おり、
前記第1結合導波路を介して前記第1導波路コアに入力される入力光に含まれる、特定の波長帯域のTE偏波光の0次モードを、前記第2導波路コアの出力端から出力し、
前記入力光に含まれる、特定の波長帯域のTM偏波光の0次モードを、TE偏波光の1次モードに変換して前記第2結合導波路の出力端から出力する
ことを特徴とする光波長フィルタ。
【請求項9】
前記第1導波路コアより厚さが小さく、かつ、前記第1導波路コアと一体に形成されたスラブ導波路を
さらに備えることを特徴とする請求項
8に記載の光波長フィルタ。
【請求項10】
前記第1導波路コアの側面が、前記支持基板の上面に対して傾いて形成されている
ことを特徴とする請求項
8に記載の光波長フィルタ。
【請求項12】
前記第1導波路コア及び前記第2導波路コアが設けられている領域の前記クラッド上に、ヒータ用の電極が設けられている
ことを特徴とする請求項1~
6及び8~10のいずれか一項に記載の光波長フィルタ。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、例えば、異なる複数の波長の光を1本の光ファイバで伝送するために用いることができる、光の合分波を行う光波長フィルタに関する。
【背景技術】
【0002】
近年、加入者系光アクセスシステムとして、受動光ネットワーク(PON:Passive Optcial Network)が主流となっている。PONでは、1つの局側装置(OLT:Optical Line Terminal)と複数の加入者側装置(ONU:Optical Network Unit)が、光ファイバ及びスターカプラを介して接続されていて、1つのOLTを複数のONUが共有する。PONでは、OLTからONUへ向けた下り通信とONUからOLTに向けた上り通信とが相互に干渉し合わないように、下り通信に使われる光信号波長と上り通信に使われる光信号波長とを違えている。
【0003】
従って、下り通信と上り通信のそれぞれに使われる互いに波長の異なる光信号を分波し、かつ合波するために合分波素子が必要である。一般に、OLTやONUは、波長の異なる光信号を送受信する機能を実現させるために、合分波素子としての光波長フィルタ、フォトダイオード(PD:Photodiode)、レーザーダイオード(LD:Laser Diode)を空間結合して構成される。
【0004】
空間結合させるためには、光波長フィルタ、PD、LD間で光軸を合わせるためのアライメント作業が必要となる。これに対し、この光軸合わせのための作業を不要とするため、導波路を利用して構成される光波長フィルタが開発されている。また、この光波長フィルタを形成するに当たり、小型化と量産性に優れることから、シリコン系素材を導波路材料として用いるシリコン(Si)導波路が注目されている(例えば、特許文献1参照)。
【0005】
Si導波路では、実質的に光の伝送路となる光導波路コアを、Siを材料として形成する。そして、Siよりも屈折率の低い例えばシリカ等を材料としたクラッドで、光導波路コアの周囲を覆う。このような構成により、光導波路コアとクラッドとの屈折率差が極めて大きくなるため、光導波路コア内に光を強く閉じ込めることができる。その結果、曲げ半径を例えば1μm程度まで小さくした、小型の曲線導波路を実現することができる。そのため、電子回路と同程度の大きさの光回路を作成することが可能であり、光デバイス全体の小型化に有利である。
【0006】
また、Si導波路では、CMOS(Complementary Metal Oxide Semiconductor)等の半導体装置の製造過程を流用することが可能である。そのため、チップ上に電子機能回路と光機能回路とを一括形成する光電融合(シリコンフォトニクス)の実現が期待されている。
【0007】
ところで、波長分割多重(WDM:Wavelength Division Multiplex)技術を利用したPONでは、ONUごとに異なる受信波長が割り当てられる。OLTは、各ONUへの下り光信号を、送り先のONUの受信波長に対応した送信波長でそれぞれ生成し、これらを多重して送信する。各ONUは、複数の波長で多重された下り光信号から、自身に割り当てられた受信波長の光信号を選択的に受信する。ONUでは、各々の受信波長の下り光信号を選択的に受信するために、光波長フィルタが使用される。そして、光波長フィルタを、上述したSi導波路によって構成する技術が実現されている。
【0008】
Si導波路を用いる光波長フィルタとしては、例えば、マッハツェンダー干渉器を用いたものやアレイ導波路回折格子(AWG:Arrayed Waveguide Grating)を用いたものがある。また、Si導波路を用いる光波長フィルタとして、リング共振器型、グレーティング型又は方向性結合器型の、出力波長を可変にでき、素子構造が簡単であるため使いやすいという利点を有する可変波長フィルタがある(例えば、特許文献2参照)。しかし、これらの光波長フィルタは、いずれも特定の偏波のみで動作するものである。
【0009】
さらに、TE(Transverse Electric)偏波及びTM(Transverse Magnetic)偏波の双方に対応すべく、光波長フィルタの前段に偏波分離素子及び偏波回転素子を設ける構造がある(例えば非特許文献1又は2参照)。
【先行技術文献】
【特許文献】
【0010】
【文献】米国特許第4,860,294号明細書
【文献】特開2003-215515号公報
【非特許文献】
【0011】
【文献】Optics Express vol.20,No.26,p.B493-B500,2012年12月10日
【文献】Optics Express vol.23,No.10,p.12840-12849,2015年5月18日
【発明の概要】
【発明が解決しようとする課題】
【0012】
上述したAWGや可変波長フィルタは、複数の異なる波長帯域の光を繰り返して出力する特性を持つため、複数の自由スペクトル領域(FSR:Free Spectral Range)を有している。従って、これらを用いて特定の波長の光を取り出すためには、単一の波長帯域のFSRを切り出す波長フィルタを別途用意する必要がある。
【0013】
また、これらAWGや可変波長フィルタには偏波依存性がある。このため、偏波無依存で使用するためには、例えば上述した偏波分離素子及び偏波回転素子を用いて、偏波を揃える必要がある。
【0014】
この発明は、上述の従来技術が有する問題点に鑑みてなされたものである。この発明の目的は、偏波を分離する素子を別途用意することなく、できるだけ少ない要素で、偏波無依存の波長分離を実現する光波長フィルタを提供することにある。
【課題を解決するための手段】
【0015】
上述した目的を達成するために、この発明の光波長フィルタは、支持基板と、支持基板上に形成されるクラッドと、クラッド中に埋設され、支持基板の上面に平行に設けられる、光導波路コアとを備えて構成される。光導波路コアは、所定の間隔で並列配列された、第1導波路コア及び第2導波路コアを備える。第1導波路コアの幅と第2導波路コアの幅は、互いに異なっており、第1導波路コアの、第2導波路コアと反対側の側面にグレーティングが設けられており、第2導波路コアには、左右で反対称のグレーティングが設けられ、第2導波路コアと、第2導波路コアの周囲のクラッドとで構成される光導波路は、上下で非対称になるように構成されている。光導波路コアは、所定の間隔で並列配列された、第1結合導波路及び第2結合導波路をさらに備え、第1結合導波路は、第1導波路コアに接続されている。
【0016】
この発明の光波長フィルタの他の実施形態によれば、第2導波路コアに左右で反対称のグレーティングを設ける替わりに、第2導波路コアの、第1導波路コアと反対側の側面にのみグレーティングが設けられる。
【0017】
上述の光波長フィルタでは、第1結合導波路を介して第1導波路コアに入力される入力光に含まれる、特定の波長帯域のTM偏波光の0次モードを、TE偏波光の0次モードに変換して第2導波路コアの出力端から出力し、入力光に含まれる、特定の波長帯域のTE偏波光の0次モードを、TE偏波光の1次モードに変換して第2結合導波路の出力端から出力する。
【0018】
また、この発明の光波長フィルタの他の実施形態によれば、上述の第1導波路コア及び第2導波路コアの構成に替えて、第1導波路コア及び第2導波路コアには、左右で対称のグレーティングが設けられ、第1導波路コアと、第1導波路コアの周囲のクラッドとで構成される光導波路は、上下で非対称になるように構成されている。
【0019】
この光波長フィルタでは、第1結合導波路を介して第1導波路コアに入力される入力光に含まれる、特定の波長帯域のTE偏波光の0次モードを、第2導波路コアの出力端から出力し、入力光に含まれる、特定の波長帯域のTM偏波光の0次モードを、TE偏波光の1次モードに変換して第2結合導波路の出力端から出力する。
【発明の効果】
【0020】
この発明の光波長フィルタによれば、偏波を分離する素子を別途用意することなく、偏波無依存の波長分離を実現できる。
【図面の簡単な説明】
【0021】
【
図1】第1光波長フィルタを説明するための模式図である。
【
図2】第2光波長フィルタを説明するための模式図である。
【
図3】第3光波長フィルタを説明するための模式図である。
【
図4】第4光波長フィルタを説明するための模式図である。
【
図5】第1光波長フィルタの特性を評価するシミュレーション結果を示す図である。
【
図6】第2光波長フィルタの特性を評価するシミュレーション結果を示す図である。
【発明を実施するための形態】
【0022】
以下、図を参照して、この発明の実施の形態について説明するが、各構成要素の形状、大きさ及び配置関係については、この発明が理解できる程度に概略的に示したものに過ぎない。また、以下、この発明の好適な構成例につき説明するが、各構成要素の材質及び数値的条件などは、単なる好適例にすぎない。従って、この発明は以下の実施の形態に限定されるものではなく、この発明の構成の範囲を逸脱せずにこの発明の効果を達成できる多くの変更又は変形を行うことができる。
【0023】
また、以下の説明及び各図では、グレーティングの幅及び周期が一定の例を示しているが、これは、グレーティングの構成を模式的に表現したものである。実際に光波長フィルタを設計・製造する場合は、グレーティングの幅及び周期が必ずしも一定である必要はない。
【0024】
(第1光波長フィルタ)
図1を参照して、この発明の第1実施形態に係る光波長フィルタ(以下、第1光波長フ
ィルタとも称する。)を説明する。
図1は、第1光波長フィルタを説明するための模式図である。
図1(A)は、第1光波長フィルタを示す概略平面図である。また、
図1(B)は、光波長フィルタの概略的な切断端面図である。ここで、
図1(A)では、光導波路コアの平面形状を示し、他の構成要素を省略して示してある。
【0025】
なお、以下の説明では、各構成要素について、光伝播方向に沿った方向を長さ方向とする。また、支持基板の上面に直交する方向を厚さ方向とする。また、長さ方向及び厚さ方向に直交する方向を幅方向とする。
【0026】
第1光波長フィルタは、支持基板10、クラッド20及び光導波路コア30を備えて構成されている。
【0027】
支持基板10は、例えば単結晶Siを材料とした平板状体で構成されている。
【0028】
クラッド20は、支持基板10上に、支持基板10の上面10aを被覆して形成されている。クラッド20は、例えば酸化シリコン(SiO2)を材料として形成されている。
【0029】
光導波路コア30は、支持基板10の上面10aに平行に、クラッド20中に埋設されている。光導波路コア30は、SiO2のクラッド20の屈折率(1.45)よりも高い屈折率(3.5)を有する、例えばシリコン(Si)を材料として形成されている。その結果、光導波路コア30は、光の伝送路として機能し、光導波路コア30に入力された光は、光導波路コア30の平面形状に応じた伝播方向に伝播する。
【0030】
光導波路コア30の厚みは、深さ方向でシングルモード条件を達成できる値である、200~400nmであることが望ましい。例えば、1550nmの波長帯域で使用する場合は、光導波路コア30の厚みを300nmにすることができる。ここで、光導波路コア30を伝播する光が支持基板10へ逃げるのを防止するために、光導波路コア30は、支持基板10から少なくとも1μm以上離間して形成されているのが好ましい。
【0031】
この第1光波長フィルタは、例えばSOI(Silicon On Insulator)基板を利用することによって、簡易に製造することができる。以下、
図1に示す光波長フィルタの製造方法の一例を説明する。
【0032】
先ず、支持基板層、SiO2層、及びSi層が順次積層されて構成されたSOI基板を用意する。次に、例えばドライエッチングを行い、Si層をパターニングする。この結果、支持基板10としての支持基板層上にSiO2層が積層され、さらにSiO2層上に光導波路コア30が形成された構造体を得ることができる。なお、後述するように、光導波路コア30には、厚みの大きい部分と、小さい部分とがある。従って、ドライエッチングは、例えば、2段階で行われる。
【0033】
次に、例えばCVD(Chemical Vapor Deposition)法を用いて、SiO2層上に、SiO2を、光導波路コア30を被覆して形成する。その結果、クラッド20によって光導波路コア30が包含され、光波長フィルタとして用いられる光導波路素子が得られる。
【0034】
なお、ここでは、Si導波路の例を説明したが、化合物半導体を用いても実現可能である。
【0035】
第1光波長フィルタは、光導波路コア30の部分として、所定の間隔で並列配列された、第1導波路コア40及び第2導波路コア50を備えている。この例では、第1導波路コ
ア40及び第2導波路コア50は、互いに平行に、近接して配置されている。
【0036】
第1導波路コア40には、グレーティングが形成されている。第1導波路コア40は、基部42と突出部44を一体的に含んで構成されている。基部42は、一定の幅で、光の伝播方向に沿って延在して形成されていて、突出部44は、基部42の、第2導波路コア50とは反対側の側面42aに、一定の周期Λ1で、周期的に複数形成されていて、いわゆるグレーティングを構成する。このグレーティングにより、第1導波路コア40を伝搬する、位相整合条件を満たす特定の波長帯域の、TE偏波光の0次モード(TE0)は、TE偏波光の1次モード(TE1)に変換される。
【0037】
第2導波路コア50には、グレーティングが形成されている。第2導波路コア50は、基部52と突出部54a及び54bとを一体的に含んで構成されている。基部52は、一定の幅で、光の伝播方向に沿って延在して形成されていて、突出部54a及び54bは、基部52の両側面52a及び52bに、一定の周期Λ2で、周期的に複数形成されていて、いわゆるグレーティングを構成する。
【0038】
基部52の一方の側面(この例では、52a)に形成された突出部54aと、他方の側面(この例では、52b)に形成された突出部54bとは、半周期(すなわちΛ2/2)ずらして配置されている。すなわち、長手方向のある位置について、一方の側面52aに突出部54aが配置されているとき、他方の側面52bに突出部54bが配置されておらず、一方の側面52aに突出部54aが配置されていないとき、他方の側面52bに突出部54bが配置されている。この結果、グレーティングは、左右で反対称となっている。また、基部52と、突出部54a及び54bとは、同じ厚さで形成されている。
【0039】
光の伝播方向に隣り合う突出部54a又は54bの間のグレーティング溝の底部には、スラブ導波路56として、基部52と、突出部54a及び54bより小さい厚さのSiが形成されている。この結果、第1導波路コア50とその周囲のクラッド20とで構成される、グレーティングを有する光導波路は、上下で非対称となっている。
【0040】
なお、
図1(A)では、突出部54a又は54bの間にのみスラブ導波路56が形成されている例を示しているが、これに限定されない。スラブ導波路56が、突出部54a又は54bの間以外の領域にも存在する構成にしても良い。
【0041】
グレーティングの上下非対称の構造が、TE偏波光とTM偏波光の間の回折に必要である。また、グレーティングを左右反対称に構成することで、基本モードのTE偏波光と、基本モードのTM偏波光の回折が起きるようにする。この基本モードのTE偏波光と、基本モードのTM偏波光の組み合わせを選ぶことで、他のモードへの回折が生じるのを抑制できる。
【0042】
ここでは、スラブ導波路56を備えることで、グレーティングを上下非対称にする構成を説明したが、これに限定されない。第2導波路コア50の側面が、支持基板10の上面10aに対して傾いて形成されている、斜め側壁構造にしてもよい。また、クラッドの、グレーティングが形成されている第2導波路コア50の上側の部分を空気にして、グレーティングを有する光導波路を、上下で非対称にしてもよい。
【0043】
また、第1光波長フィルタは、光導波路コア30の部分として、所定の間隔で並列配列された、第1結合導波路62及び第2結合導波路64を備えている。この例では、第1結合導波路62及び第2結合導波路64は、互いに平行に、近接して配置されている。第2結合導波路64の幅は、第1結合導波路66を伝搬するTE1と位相整合して、TE1を第2結合導波路64に移行させるように設定される。
【0044】
第1結合導波路62の一方の端部62aには、第1導波路コア40が接続されている。また、第1結合導波路62の他方の端部62bには、テーパ導波路72を介して入力導波路82が接続されている。
【0045】
第2導波路コア50の一方の端部50aには、テーパ導波路74を介して第1出力導波路84が接続されている。また、第2結合導波路64の一方の端部64aには、第2出力導波路86が接続されている。
【0046】
入力導波路82を経て第1光波長フィルタに入力された入力光は、第1結合導波路62及び第1導波路コア40を伝搬し、第1導波路コア40に設けられたグレーティングで、入力光のうち特定の波長帯域のTE0がTE1に変換され、第1結合導波路62に送られる。第1結合導波路62に送られたTE1は、第2結合導波路64に移行し、第2出力導波路86から出力される。
【0047】
一方、入力光のうちTM偏波光の0次モード(TM0)は、第1結合導波路62及び第1導波路コア40を伝搬し、第2導波路コア40に移行する。このとき、特定の波長帯域のTM0が、TE0に変換される。このTE0は、第1出力導波路84から出力される。
【0048】
このように、第1光波長フィルタは、特定の波長帯域の光を、偏波を揃えて取り出す機能を有する。
【0049】
ここで、第1導波路コア40と、第2導波路コア50とは、互いに幅が異なっている。ここでは、第1導波路コア40の幅を、第2導波路コア50の幅よりも広く設定している。なお、第1導波路コア40及び第2導波路コア50の幅の差が大きいほど、励起される導波路への光の集中度合いが大きくなる。これにより、第1導波路コア40を伝播する光が、第2導波路コア50に余分な固有モードを励起して、方向性結合作用で不要なパワー移行が生じることが抑制される。
【0050】
また、第1出力導波路84及び第2出力導波路86は、それぞれ、第2導波路コア50及び第2結合導波路64から離れるにつれて、徐々に、入力導波路82との間隔を大きくするのが良い。このように構成すると、第1出力導波路84及び第2出力導波路86に、余分な固有モードが励起されるのを抑制することができる。
【0051】
第1導波路コア40及び第2導波路コア50の上側のクラッド20上にヒータ用の電極(図示を省略する。)を形成してもよい。電極に電流を流すことで、ジュール熱を発生して、熱光学効果によって、グレーティングの屈折率を変化させることができる。その結果、第1導波路コア40及び第2導波路コア50のグレーティングにおいて位相整合条件を満たす波長を変化させることができる。なお、電極の配置箇所は、発熱によりグレーティングの屈折率を変化させる位置であればよく、光導波路コア30の構造等に応じて、任意好適な箇所に配置することができる。
【0052】
(第2光波長フィルタ)
図2を参照して、第2実施形態にかかる波長フィルタ(以下、第2光波長フィルタとも称する。)を説明する。
図2は、第2光波長フィルタを説明するための概略平面図である。ここで、
図2では、光導波路コアの平面形状を示し、他の構成要素を省略して示してある。
【0053】
第2光波長フィルタは、第1光波長フィルタと比べて、第2導波路コアに形成されているグレーティングの構造が異なる。他の構成は、
図1を参照して第1光波長フィルタと同
様なので、重複する説明を省略する。
【0054】
第2光波長フィルタでは、第2導波路コア51は、基部52と突出部54を一体的に含んで構成されている。基部52は、一定の幅で、光の伝播方向に沿って延在して形成されていて、突出部54は、基部52の、第1導波路コア40とは反対側の側面52cに、一定の周期Λ2で、周期的に複数形成されていて、いわゆるグレーティングを構成する。また、光の伝播方向に隣り合う突出部54の間のグレーティング溝の底部には、スラブ導波路56として、基部52と、突出部54より小さい厚さのSiが形成されている。この結果、第2導波路コア51とその周囲のクラッド20とで構成される、グレーティングを有する光導波路は、上下で非対称となっている。
【0055】
この第2光波長フィルタは、第1光波長フィルタ同様に動作する。
【0056】
(第3光波長フィルタ)
図3を参照して、第3実施形態にかかる波長フィルタ(以下、第3光波長フィルタとも称する。)を説明する。
図3は、第3光波長フィルタを説明するための模式図である。
図3は、第3光波長フィルタの概略平面図である。
図3では、光導波路コアの平面形状を示し、他の構成要素を省略して示してある。
【0057】
図3に示すように、第3光波長フィルタでは、第2導波路コア50と第2結合導波路65が、第1導波路コア40及び第1結合導波路63と同じ側に配置されている点が、
図1を参照して説明した第1光波長フィルタと異なっている。すなわち、第1光波長フィルタでは、第1出力導波路84及び第2出力導波路86が、入力導波路82の両側に配置されているのに対し、第3光波長フィルタでは、第1出力導波路84及び第2出力導波路86が、入力導波路82の片側に配置されている。他の構成は、
図1を参照して説明した第1光波長フィルタと同様なので、重複する説明を省略する。
【0058】
偏波無依存の波長分離光回路に光波長フィルタを用いる場合、第1出力導波路84及び第2出力導波路86が同じAWGに接続されることがある。この場合に、第3光波長フィルタでは、第1出力導波路84及び第2出力導波路86が、入力導波路82の同じ側に配置されているので、第3光波長フィルタとAWGとの接続が容易となる。
【0059】
また、第3光波長フィルタでは、複数の第3光波長フィルタを直列に接続することも容易となる。第3光波長フィルタを直列に接続する場合、例えば、1つの第3光波長フィルタ101の第1導波路コア40の入力端40aとは反対側の端部40bに、テーパ導波路78を介して、他の第3光波長フィルタ102の入力導波路82を接続すればよい。このようにして、第3光波長フィルタを容易に直列に接続できる。
【0060】
なお、第2導波路コアと第2結合導波路が、第1導波路コア及び第1結合導波路と同じ側に配置される構成は、第2光波長フィルタにも適用可能である。
【0061】
(第4光波長フィルタ)
図4を参照して、第4実施形態にかかる波長フィルタ(以下、第4光波長フィルタとも称する。)を説明する。
図4は、第4光波長フィルタを説明するための概略平面図である。ここで、
図4では、光導波路コアの平面形状を示し、他の構成要素を省略して示してある。
【0062】
第4光波長フィルタは、第1光波長フィルタと、第1導波路コア及び第2導波路コアの構成が異なっている。その他の構成は、第1光波長フィルタと同様なので重複する説明を省略する場合がある。
【0063】
第1導波路コア140には、グレーティングが形成されている。第1導波路コア140は、基部42と突出部44a及び44bを一体的に含んで構成されている。基部42は、一定の幅で、光の伝播方向に沿って延在して形成されていて、突出部44a及び44bは、基部42の両方の側面に、一定の周期Λ1で、周期的に複数形成されていて、いわゆるグレーティングを構成する。
【0064】
また、光の伝播方向に隣り合う突出部44a及び44bの間のグレーティング溝の底部には、スラブ導波路46として、基部42と、突出部44より小さい厚さのSiが形成されている。この結果、第1導波路コア41とその周囲のクラッド20とで構成される、グレーティングを有する光導波路は、上下で非対称となっている。
【0065】
グレーティングの上下非対称の構造が、TE偏波光とTM偏波光の間の回折に必要である。また、グレーティングを左右対称に構成することで、TM0とTE1の回折が起きる。
【0066】
なお、
図4では、突出部44a及び44bの間にのみスラブ導波路46が形成されている例を示しているが、これに限定されない。スラブ導波路46が、突出部44の間以外の領域にも存在する構成にしても良い。
【0067】
ここでは、スラブ導波路46を備えることで、グレーティングを上下非対称にする構成を説明したが、これに限定されない。第1導波路コア140の側面が、支持基板10の上面10aに対して傾いて形成されている、斜め側壁構造にしてもよい。また、クラッドの、グレーティングが形成されている第1導波路コア140の上側の部分を空気にして、グレーティングを有する光導波路を、上下で非対称にしてもよい。
【0068】
第2導波路コア150には、グレーティングが形成されている。第2導波路コア150は、基部52と突出部54a及び54bとを一体的に含んで構成されている。基部52は、一定の幅で、光の伝播方向に沿って延在して形成されていて、突出部54a及び54bは、基部52の両側面に、一定の周期Λ2で、周期的に複数形成されていて、いわゆるグレーティングを構成する。
【0069】
入力導波路82を経て第4光波長フィルタに入力された入力光は、第1結合導波路62及び第1導波路コア140を伝搬し、第1導波路コア140に設けられたグレーティングで、入力光のうち所定の波長帯域のTM0がTE1に変換され、第1結合導波路62に送られる。第1結合導波路62に送られたTE1は、第2結合導波路64に移行し、第2出力導波路86から出力される。一方、入力光のうちTE0は、第2導波路コア150に移行し、特定の波長帯域のTE0が、第1出力導波路84から出力される。
【0070】
このように、第4光波長フィルタは、特定の波長の光を、偏波を揃えて取り出す機能を有する。
【0071】
ここで、第1導波路コア140と、第2導波路コア150とは、互いに幅が異なっている。ここでは、第1導波路コア140の幅を、第2導波路コア150の幅よりも広く設定している。なお、第1導波路コア140及び第2導波路コア150の幅の差が大きいほど、励起される導波路への光の集中度合いが大きくなる。これにより、第1導波路コア140を伝播する光が、第2導波路コア150に余分な固有モードを励起して、方向性結合作用で不要なパワー移行が生じることが抑制される。
【0072】
また、第1出力導波路84及び第2出力導波路86は、それぞれ、第2導波路コア15
0及び第2結合導波路64から離れるにつれて、徐々に、入力導波路82との間隔を大きくするのが良い。このように構成すると、第1出力導波路84及び第2出力導波路86に、余分な固有モードが励起されるのを抑制することができる。
【0073】
なお、第3光波長フィルタと同様に、第2導波路コアと第2結合導波路を、第1導波路コア及び第1結合導波路と同じ側に配置してもよい。
【0074】
(特性評価)
図5及び
図6を参照して、3次元FDTD(Finite Difference Time Domain)を用いて行った、光波長フィルタの特性を評価するシミュレーションを説明する。
【0075】
図5(A)及び(B)、並びに、
図6(A)及び(B)では、横軸に波長(μm)を取って示し、縦軸に出力強度(a.u.)を取って示している。また、
図5は、第1光波長フィルタの構成に対するシミュレーション結果であり、
図6は、第2光波長フィルタの構成に対するシミュレーション結果である。
図5(A)及び
図6(A)は、入力光としてTE偏波光を入力したときの結果であり、
図6(A)及び(B)は、入力光としてTM偏波光を入力したときの結果である。
【0076】
図5(A)及び(B)、並びに、
図6(A)及び(B)では、第1導波路コア40を透過して、入力端40aとは反対側の端部40bから出力される透過光を曲線I、第1出力導波路84から出力されるTE0及びTM0をそれぞれ曲線II及び曲線III、並びに、第2出力導波路86から出力されるTE1を曲線IVで示している。
【0077】
ここでは、第1導波路コア40の幅を600nmとし、第2導波路コア50及び51の幅を340nmとした。また、第1導波路コア40と第2導波路コア50及び51とのギャップを300nmとした。なお、第1導波路コア40の幅は、側面の平均位置から与えられる。第2導波路コア50及び51の幅も同様である。第1導波路コア40と第2導波路コア50及び51のギャップについてもこれらの平均位置から与えられる。第1導波路コア40の基部及び突出部、並びに、第2導波路コア50及び51の基部及び突出部の厚みを220nmとし、スラブ導波路56の厚みを150nmとしている。
【0078】
第1導波路コア40のグレーティングの周期Λ1を384.6nm、第2導波路コア50及び51のグレーティングの周期Λ2を397.3nmとし、第1導波路コア40のグレーティングの掘り込み、すなわち、突出部の幅方向の長さを150nmとしている。第2導波路コア50及び51のグレーティングの掘り込みについては、第1光波長フィルタでは150nm、第2光波長フィルタでは225nmとした。第1導波路コア40並びに第2導波路コア50及び51の長さを70μmとした。
【0079】
なお、1.5~1.6μmの波長帯域で使用する場合は、第1結合導波路62の幅を590nmとしたとき、第2結合導波路64及び65を、幅150~400nmのテーパ形状とし、長さを20~40μmとすることができる。
【0080】
第1光波長フィルタにTE偏波光を入力した場合は、
図5(A)に示すように第2出力導波路86から出力されるTE1(IV)について、波長1.6μm付近に、きれいな波長選択ピークがみられる。また、第1光波長フィルタにTM偏波光を入力した場合は、
図5(B)に示すように第1出力導波路84から出力されるTE0(II)について、1.6μm付近に、きれいな波長選択ピークがみられる。また、
図5(A)のTE1及び
図5(B)のTE0の回折効率はほぼ同等である。
【0081】
同様に、第2光波長フィルタにTE偏波光を入力した場合は、
図6(A)に示すように第2出力導波路86から出力されるTE1(IV)について、波長1.6μm付近に、きれいな波長選択ピークがみられる。また、第2光波長フィルタにTM偏波光を入力した場合は、
図6(B)に示すように第1出力導波路84から出力されるTE0(II)について、1.6μm付近に、きれいな波長選択ピークがみられる。なお、
図6(A)のTE1に比べて、
図6(B)のTE0の回折効率は低くなっている。これは、第2導波路コア51のグレーティングが片側のみに形成されているためと考えられる。
【0082】
ただし、第2光波長フィルタは、スラブ導波路56が、第1導波路コア40及び第2導波路コア51の間にないため、作成が容易である。また、TE1とTE0の回折効率をそろえることはグレーティングの設計により可能である。
【0083】
このように、シミュレーションの結果は、この発明の光波長フィルタが、特定の波長の光を、偏波を揃えて取り出す機能を有することを示している。
【符号の説明】
【0084】
10 支持基板
20 クラッド
30 光導波路コア
40、140 第1導波路コア
42、52 基部
44、44a、44b、54、54a、54b 突出部
46、56 スラブ導波路
50、51、150 第2導波路コア
62、63 第1結合導波路
64、65 第2結合導波路
72、74、76、78 テーパ導波路
82 入力導波路
84 第1出力導波路
86 第2出力導波路
101、102 第3光波長フィルタ