(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-15
(45)【発行日】2022-02-24
(54)【発明の名称】磁場検出装置および電流検出装置
(51)【国際特許分類】
G01R 33/09 20060101AFI20220216BHJP
G01R 15/20 20060101ALI20220216BHJP
H01L 43/02 20060101ALI20220216BHJP
H01L 43/08 20060101ALI20220216BHJP
【FI】
G01R33/09
G01R15/20 B
H01L43/02 Z
H01L43/08 P
H01L43/08 U
(21)【出願番号】P 2020030876
(22)【出願日】2020-02-26
【審査請求日】2020-11-12
(31)【優先権主張番号】P 2019224096
(32)【優先日】2019-12-11
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003067
【氏名又は名称】TDK株式会社
(74)【代理人】
【識別番号】110001357
【氏名又は名称】特許業務法人つばさ国際特許事務所
(72)【発明者】
【氏名】太田 憲和
(72)【発明者】
【氏名】牧野 健三
(72)【発明者】
【氏名】平林 啓
【審査官】田口 孝明
(56)【参考文献】
【文献】特開2008-111801(JP,A)
【文献】特開2016-001118(JP,A)
【文献】国際公開第2017/094336(WO,A1)
【文献】国際公開第2017/094889(WO,A1)
【文献】米国特許出願公開第2014/0353785(US,A1)
【文献】特開2002-350136(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
IPC G01R 33/00-33/26、
15/00-17/22、
H01L 27/22、
29/82、
43/00-43/14
(57)【特許請求の範囲】
【請求項1】
第1の軸方向に延在し、第1の先端部と、第2の先端部と、前記第1の先端部および前記第2の先端部に挟まれた中間部とを有する磁気抵抗効果膜を含む磁気抵抗効果素子と、
前記第1の軸方向に対して傾斜した第2の軸方向にそれぞれ延在する第1の部分および第2の部分を有し、電流が供給されることにより、前記磁気抵抗効果膜に対し前記第2の軸方向と直交する第3の軸方向に付与される誘導磁場を形成可能な導線と
を備え、
前記第1の部分および前記第2の部分は、前記第2の軸方向および前記第3の軸方向の双方に直交する第4の軸方向において前記第1の先端部および前記第2の先端部とそれぞれ重なり合うように設けられている
磁場検出装置。
【請求項2】
前記第1の先端部に付与される前記誘導磁場の強度および前記第2の先端部に付与される前記誘導磁場の強度は、前記中間部に付与される前記誘導磁場の強度よりも高い
請求項1記載の磁場検出装置。
【請求項3】
前記第1の部分と前記第2の部分とが並列接続されている
請求項1または請求項2に記載の磁場検出装置。
【請求項4】
前記導線は、
前記第4の軸方向において前記磁気抵抗効果素子を挟むように前記第1の部分と反対側に配置されて各々前記第2の軸方向に延在する複数の第3の部分と、
前記第4の軸方向において前記磁気抵抗効果素子を挟むように前記第2の部分と反対側に配置されて各々前記第2の軸方向に延在する複数の第4の部分と
をさらに有し、
前記電流は、前記第1の部分および前記第2の部分をそれぞれ前記第2の軸方向に沿った第1の方向に流れ、前記第3の部分および前記第4の部分をそれぞれ前記第1の方向と反対の第2の方向に流れる
請求項1から請求項3のいずれか1項に記載の磁場検出装置。
【請求項5】
前記導線は、前記第3の軸方向に沿って進行しつつ前記磁気抵抗効果素子の周囲を旋回するように設けられたヘリカルコイルである
請求項1から請求項4のいずれか1項に記載の磁場検出装置。
【請求項6】
複数の前記磁気抵抗効果素子を備え、
前記複数の磁気抵抗効果素子は、第1の磁気抵抗効果素子と第2の磁気抵抗効果素子とを有し、
前記ヘリカルコイルは、
前記第3の軸方向に沿って進行しつつ前記第1の磁気抵抗効果素子の周囲を第1の旋回方向へ旋回するように設けられた第1のヘリカルコイル部分と、
前記第3の軸方向に沿って進行しつつ前記第2の磁気抵抗効果素子の周囲を前記第1の旋回方向と反対の第2の旋回方向へ旋回するように設けられ、前記第1のヘリカルコイル部分と直列接続された第2のヘリカルコイル部分と
を有する
請求項5に記載の磁場検出装置。
【請求項7】
前記第1の部分は、前記第1の先端部における第1の最先端部と前記第4の軸方向において重なり合うように設けられ、
前記第2の部分は、前記第2の先端部における第2の最先端部と前記第4の軸方向において重なり合うように設けられている
請求項1から請求項6のいずれか1項に記載の磁場検出装置。
【請求項8】
複数の前記磁気抵抗効果素子を備え、
前記複数の磁気抵抗効果素子は、第1の磁化自由層を含む第1の磁気抵抗効果素子と第2の磁化自由層を含む第2の磁気抵抗効果素子とを有し、
前記導線は、前記第1の磁化自由層の磁化の向きと前記第2の磁化自由層の磁化の向きとが反対向きとなるように前記誘導磁場を形成する
請求項1から請求項5のいずれか1項に記載の磁場検出装置。
【請求項9】
第1の軸方向に延在する第1の磁気抵抗効果膜を含む第1の磁気抵抗効果素子と、
前記第1の軸方向に対して傾斜した第2の軸方向にそれぞれ延在しつつ前記第1の軸方向および前記第2の軸方向の双方と異なる第3の軸方向において互いに隣り合う第1の部分および第2の部分を有する第1の導線と、
前記第2の軸方向にそれぞれ延在しつつ前記第3の軸方向において互いに隣り合う第3の部分および第4の部分を有する第2の導線と、
前記第1の軸方向に延在する第2の磁気抵抗効果膜を含む第2の磁気抵抗効果素子と
を備え、
前記第1の磁気抵抗効果膜は、第1の先端部と、第2の先端部と、前記第1の先端部および前記第2の先端部に挟まれた第1の中間部とを有し、
前記第2の磁気抵抗効果膜は、第3の先端部と、第4の先端部と、前記第3の先端部および前記第4の先端部に挟まれた第2の中間部とを有し、
前記第1の導線における前記第1の部分および前記第2の部分は、前記第2の軸方向および前記第3の軸方向の双方に直交する第4の軸方向において前記第1の磁気抵抗効果膜の前記第1の先端部および前記第2の先端部とそれぞれ重なり合うように設けられており、それぞれ第1の電流が供給されることにより、前記第1の先端部および前記第2の先端部に対し前記第3の軸方向に付与される第1の誘導磁場をそれぞれ形成可能であり、
前記第2の導線における前記第3の部分および前記第4の部分は、前記第2の磁気抵抗効果膜の前記第3の先端部および前記第4の先端部とそれぞれ前記第4の軸方向において重なり合うように設けられており、それぞれ第2の電流が供給されることにより、前記第3の先端部および前記第4の先端部に対し前記第3の軸方向に付与される第2の誘導磁場を形成可能である
磁場検出装置。
【請求項10】
前記第1の軸方向に平行であって前記第2の軸方向および前記第3の軸方向に対して傾斜した第1の面と、前記第1の軸方向に平行であって前記第1の面に対して傾斜した第2の面とを有する基板をさらに備え、
前記第1の磁気抵抗効果膜は前記第1の面に設けられ、
前記第2の磁気抵抗効果膜は前記第2の面に設けられている
請求項9記載の磁場検出装置。
【請求項11】
第1の軸方向に延在し、第1の先端部と、第2の先端部と、前記第1の先端部および前記第2の先端部に挟まれた中間部とを有する磁気抵抗効果膜を含む磁気抵抗効果素子と、
前記第1の軸方向に対して傾斜した第2の軸方向にそれぞれ延在する第1の部分および第2の部分を有し、第1の電流が供給されることにより、前記磁気抵抗効果膜に対し前記第2の軸方向と直交する第3の軸方向に沿った第1方向に付与される第1の誘導磁場を形成可能な第1の導線と、
第2の電流が供給されることにより、前記磁気抵抗効果膜に対し前記第1方向と反対の第2方向に付与される第2の誘導磁場を形成可能な第2の導線と
を備え、
前記第1の部分および前記第2の部分は、前記第2の軸方向および前記第3の軸方向の双方に直交する第4の軸方向において前記第1の先端部および前記第2の先端部とそれぞれ重なり合うように設けられている
電流検出装置。
【請求項12】
前記第2の誘導磁場を打ち消す強度を有する前記第1の誘導磁場を形成するように前記第1の電流の大きさを制御する制御部をさらに備えた
請求項11記載の電流検出装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気抵抗効果素子を備えた磁場検出装置および電流検出装置に関する。
【背景技術】
【0002】
これまでに、磁気抵抗効果素子を用いた磁場検出装置がいくつか提案されている。例えば特許文献1には、導体における電流の流れる方向に沿った中心線の方向が、磁気抵抗効果素子における長手方向に沿った中心線の方向と異なるようにした磁界検出装置が開示されている(例えば特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、このような磁場検出装置に対しては、寸法の縮小化と検出精度の向上とが求められている。
【0005】
したがって、より小さな寸法でありながら高い検出精度を発現することができる磁場検出装置を提供することが望まれる。
【課題を解決するための手段】
【0006】
本発明の一実施態様としての磁場検出装置は、磁気抵抗効果素子と、導線とを備える。磁気抵抗効果素子は、第1の軸方向に延在し、第1の先端部と、第2の先端部と、前記第1の先端部および前記第2の先端部に挟まれた中間部とを有する磁気抵抗効果膜を含む。導線は、第1の軸方向に対して傾斜した第2の軸方向にそれぞれ延在する第1の部分および第2の部分を有し、電流が供給されることにより、磁気抵抗効果膜に対し第2の軸方向と直交する第3の軸方向に付与される誘導磁場を形成可能である。ここで、第1の部分および第2の部分は、第2の軸方向および第3の軸方向の双方に直交する第4の軸方向において第1の先端部および第2の先端部とそれぞれ重なり合うように設けられている。
【発明の効果】
【0007】
本発明の一実施態様としての磁場検出装置によれば、小型でありながら高い検出精度を発現することができる。
【図面の簡単な説明】
【0008】
【
図1】本発明の一実施の形態としての電流検出装置の全体構成例を表す概略平面図である。
【
図2A】
図1に示した第1の電流検出ユニットの全体構成例を表す斜視図である。
【
図2B】
図1に示した第2の電流検出ユニットの全体構成例を表す斜視図である。
【
図3A】
図2Aに示した第1の素子形成領域に形成された第1の磁気抵抗効果素子の詳細な構成を説明するための平面図である。
【
図3B】
図2Aに示した第1の電流検出ユニットにおけるセット動作を表す概略断面図である。
【
図3C】
図2Aに示した第1の電流検出ユニットにおけるリセット動作を表す概略断面図である。
【
図3D】
図2Aに示した第1の電流検出ユニットにおける電流検出動作を表す第1の概略断面図である。
【
図3E】
図2Aに示した第1の電流検出ユニットにおける電流検出動作を表す第2の概略断面図である。
【
図3F】
図3Aに示した第1の磁気抵抗効果膜に付与されるセット磁場およびリセット磁場の強度分布を表す説明図である。
【
図3G】
図2Aに示した第4の素子形成領域に形成された第4の磁気抵抗効果素子の詳細な構成を説明するための平面図である。
【
図4A】
図2Bに示した第3の素子形成領域に形成された第3の磁気抵抗効果素子の詳細な構成を説明するための平面図である。
【
図4B】
図2Bに示した第2の電流検出ユニットにおけるセット動作を表す概略断面図である。
【
図4C】
図2Bに示した第2の電流検出ユニットにおけるリセット動作を表す概略断面図である。
【
図4D】
図2Bに示した第2の電流検出ユニットにおける電流検出動作を表す第1の概略断面図である。
【
図4E】
図2Bに示した第2の電流検出ユニットにおける電流検出動作を表す第2の概略断面図である。
【
図4F】
図2Bに示した第2の素子形成領域に形成された第2の磁気抵抗効果素子の詳細な構成を説明するための平面図である。
【
図5A】ヘリカルコイルの一部を拡大して模式的に表した第1の斜視図である。
【
図5B】ヘリカルコイルの一部を拡大して模式的に表した第2の斜視図である。
【
図6A】
図3Aに示した第1の磁気抵抗効果膜の積層構造を表す分解斜視図である。
【
図6B】
図4Cに示した第2の磁気抵抗効果膜の積層構造を表す分解斜視図である。
【
図6C】
図4Bに示した第3の磁気抵抗効果膜の積層構造を表す分解斜視図である。
【
図6D】
図4Aに示した第4の磁気抵抗効果膜の積層構造を表す分解斜視図である。
【
図8】変形例としてのヘリカルコイルの一部を拡大して模式的に表した第1の斜視図である。
【
図9】変形例としてのヘリカルコイルの一部を拡大して模式的に表した第2の斜視図である。
【
図10A】本発明の一実施の形態としての磁場検出装置の全体構成例を表す概略平面図である。
【
図11A】
図10に示した第1の素子形成領域の詳細な構成を説明するための平面図である。
【
図11B】
図11Aに示した第1の素子形成領域の詳細な構成を説明するための断面図である。
【
図12】
図10に示した第2の素子形成領域の詳細な構成を説明するための平面図である。
【
図13】
図10に示した第3の素子形成領域の詳細な構成を説明するための平面図である。
【
図14】
図10に示した第4の素子形成領域の詳細な構成を説明するための平面図である。
【発明を実施するための形態】
【0009】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.一実施の形態
4つの磁気抵抗効果素子を有するブリッジ回路と、旋回方向が途中で反転するヘリカルコイルとを備え、バスを流れる電流を検出する電流検出装置の例。
2.変形例
2-1.第1変形例:
延在方向が異なる2種類の磁気抵抗効果膜を含むようにした電流検出装置の例。
2-2.第2変形例:
一定方向へ旋回するヘリカルコイルを用いた電流検出装置の例。
2-3.第3変形例:
磁場検出装置の例
【0010】
<1.一実施の形態>
[電流検出装置100の構成]
最初に、
図1から
図7を参照して、本発明における一実施の形態としての電流検出装置100の構成について説明する。
【0011】
図1は、電流検出装置100の全体構成例を表す概略平面図である。
図1に示したように、電流検出装置100は、検出対象とする信号電流Im(Im1,Im2)が供給される電流線(バス)5と、電流検出ユニット10A,10Bが形成された基板1とを備えている。電流検出ユニット10Aは、素子形成領域X1に形成された磁気抵抗効果素子11と、素子形成領域X4に形成された磁気抵抗効果素子14と、コイル部分6Aとを有している。電流検出ユニット10Bは、素子形成領域X3に形成された磁気抵抗効果素子13と、素子形成領域X2に形成された磁気抵抗効果素子12と、コイル部分6Bとを有している。なお、コイル部分6Aとコイル部分6Bとは直列接続されており、一体のヘリカルコイル6を形成している。ヘリカルコイル6には、フィードバック電流If(If1,If2)、セット電流Is(Is1,Is2)およびリセット電流Ir(Ir1,Ir2)がそれぞれ供給されるようになっている(いずれも後出)。なお、フィードバック電流If、セット電流Isおよびリセット電流Irは、それぞれ異なるタイミングでヘリカルコイル6に供給されるようになっている。
【0012】
本実施の形態の磁気抵抗効果素子11~14は、それぞれ、本発明の「磁気抵抗効果素子」に対応する一具体例である。また、磁気抵抗効果素子11,14は本発明の「第1の磁気抵抗効果素子」に対応する一具体例でもあり、磁気抵抗効果素子12,13は本発明の「第2の磁気抵抗効果素子」に対応する一具体例でもある。さらに、ヘリカルコイル6は本発明の「導線」および「第1の導線」に対応する一具体例であり、バス5は本発明の「第2の導線」に対応する一具体例である。
【0013】
(電流検出ユニット10A)
図2Aは、
図1に示した電流検出ユニット10Aを拡大して表す斜視図である。
図2Aに示したように、電流検出ユニット10Aは、例えば、バス5の上方に、下部配線6LAと、磁気抵抗効果素子11および磁気抵抗効果素子14がY軸方向に並ぶように形成された基板1と、上部配線6UAとがZ軸方向において順に積層された構造を有する。上部配線6UAおよび下部配線6LAは、コイル部分6Aの一部を構成しており、互いに直列接続されている。
図2Aでは、下部配線6LAが8つの下部配線パターン61LA~68LAを含み、上部配線6UAが2つの上部配線パターン61UA,62UAを含む場合を例示している。但し、本発明では下部配線6LAにおける下部配線パターンの数、および上部配線6UAにおける上部配線パターンの数はこれに限定されるものではなく、任意の数に設定可能である。8つの下部配線パターン61LA~68LAは1つの電源に対し互いに並列接続されている。2つの上部配線パターン61UA,62UAについてもその電源に対し互いに並列接続されている。上部配線6UAと下部配線6LAとは直列接続されていることから、例えば、上部配線6UA(上部配線パターン61UA,62UA)に+Y方向のセット電流Isが流れる場合、下部配線6LA(8つの下部配線パターン61LA~68LA)には-Y方向のセット電流Isが流れるようになっている。これに対し、上部配線6UAに-Y方向のリセット電流Irが流れる場合、下部配線6LAには+Y方向のリセット電流Irが流れるようになっている。また、バス5に+Y方向の信号電流Im1が流れる場合、上部配線6UAには+Y方向のフィードバック電流If1が流れ、下部配線6LAには-Y方向のフィードバック電流If1が流れるようになっている。さらに、バス5に-Y方向の信号電流Im2が流れる場合、上部配線6UAには-Y方向のフィードバック電流If2が流れ、下部配線6LAには+Y方向のフィードバック電流If2が流れるようになっている。なお、
図1の符号If1は、上部配線6UA
および下部配線6LAを流れるフィードバック電流の向きを示している。また、
図2Aにおいて、符号JS11を付した矢印は磁気抵抗効果素子11を構成する磁気抵抗効果膜MR1(後出)における磁化固着層S11(後出)の磁化JS11の方向を示し、符号JS41を付した矢印は磁気抵抗効果素子14を構成する磁気抵抗効果膜MR4(後出)における磁化固着層S41(後出)の磁化JS41の方向を示す。
【0014】
上部配線パターン61UA,62UAおよび下部配線パターン61LA~68LAは、いずれもY軸方向に延在している。下部配線パターン61LA~64LAは、Z軸方向において磁気抵抗効果素子11,14を挟むように上部配線パターン61UAと反対側に配置されている。また、下部配線パターン65LA~68LAは、Z軸方向において磁気抵抗効果素子11,14を挟むように上部配線パターン62UAと反対側に配置されている。
ここで、上部配線パターン61UAが本発明の「第1の部分」に対応する一具体例であり、上部配線パターン62UAが本発明の「第2の部分」に対応する一具体例である。また、下部配線パターン61LA~64LAが本発明の「第3の部分」に対応する一具体例であり、下部配線パターン65LA~68LAが本発明の「第4の部分」に対応する一具体例である。
【0015】
(電流検出ユニット10B)
図2Bは、
図1に示した電流検出ユニット10Bを拡大して表す斜視図である。
図2Bに示したように、電流検出ユニット10Bは、例えば、バス5の上方に、下部配線6LBと、磁気抵抗効果素子13および磁気抵抗効果素子12がY軸方向に並ぶように形成された基板1と、上部配線6UBとがZ軸方向において順に積層された構造を有する。なお、バス5および基板1は、電流検出ユニット10Aと電流検出ユニット10Bとの双方に対して共通に設けられている。上部配線6UBおよび下部配線6LBは、コイル部分6Bの一部を構成しており、互いに直列接続されている。
図2Bでは、下部配線6LBが8つの下部配線パターン61LB~68LBを含み、上部配線6UBが2つの上部配線パターン61UB,62UBを含む場合を例示している。但し、本発明では下部配線6LBにおける下部配線パターンの数、および上部配線6UBにおける上部配線パターンの数はこれに限定されるものではなく、任意の設定可能である。8つの下部配線パターン61LB~68LBは上述の電源に対し互いに並列接続されている。2つの上部配線パターン61UB,62UBについてもその電源に対し互いに並列接続されている。また、
図2Bにおいて、符号JS31を付した矢印は磁気抵抗効果素子13を構成する磁気抵抗効果膜MR3(後出)における磁化固着層S31(後出)の磁化JS31の方向を示し、符号JS21を付した矢印は磁気抵抗効果素子12を構成する磁気抵抗効果膜MR2(後出)における磁化固着層S21(後出)の磁化JS21の方向を示す。
【0016】
コイル部分6Aとコイル部分6Bとは直列接続されているので、コイル部分6Bには、コイル部分6Aおよびコイル部分6Bに対し共通に設けられた電源から供給されるセット電流Isおよびリセット電流Irが流れるようになっている。但し、電流検出ユニット10Bでは、電流検出ユニット10Aとは反対向きにセット電流Isおよびリセット電流Irが流れるようになっている。具体的には、例えば、上部配線6UB(上部配線パターン61UB,62UB)に-Y方向のセット電流Isが流れる場合、下部配線6LB(8つの下部配線パターン61LB~68LB)には+Y方向のセット電流Isが流れるようになっている。これに対し、上部配線6UB(上部配線パターン61UB,62UB)に+Y方向のリセット電流Irが流れる場合、下部配線6LB(8つの下部配線パターン61LB~68LB)には-Y方向のリセット電流Irが流れるようになっている。また、バス5に+Y方向の信号電流Im1が流れる場合、上部配線6UBには+Y方向のフィードバック電流If1が流れ、下部配線6LBには-Y方向のフィードバック電流If1が流れるようになっている。さらに、バス5に-Y方向の信号電流Im2が流れる場合、上部配線6UBには-Y方向のフィードバック電流If2が流れ、下部配線6LBには+Y方向のフィードバック電流If2が流れるようになっている。なお、
図1の符号If1は、上部配線6UB
および下部配線6LBを流れるフィードバック電流の向きを示している。
【0017】
上部配線パターン61UB,62UBおよび下部配線パターン61LB~68LBは、いずれもY軸方向に延在している。下部配線パターン61LB~64LBは、Z軸方向において磁気抵抗効果素子13,12を挟むように上部配線パターン61UBと反対側に配置されている。また、下部配線パターン65LB~68LBは、Z軸方向において磁気抵抗効果素子13,12を挟むように上部配線パターン62UBと反対側に配置されている。
ここで、上部配線パターン61UBが本発明の「第1の部分」に対応する一具体例であり、上部配線パターン62UBが本発明の「第2の部分」に対応する一具体例である。また、下部配線パターン61LB~64LBが本発明の「第3の部分」に対応する一具体例であり、下部配線パターン65LB~68LBが本発明の「第4の部分」に対応する一具体例である。
【0018】
(磁気抵抗効果素子11)
図3Aは、電流検出ユニット10Aのうちの、素子形成領域X1に形成された磁気抵抗効果素子11の詳細な構成を説明するための平面図である。また、
図3B~3Eは、それぞれ、電流検出ユニット10Aの要部を表す断面図である。なお、
図3Aでは、磁気抵抗効果素子11を構成する複数の磁気抵抗効果膜MR1と、それらの上方に配置された上部配線パターン61UA,62UAとを記載しており、他の構成要素については記載を省略している。
【0019】
図3Aに示したように、磁気抵抗効果素子11は、Y軸方向に並ぶ複数の磁気抵抗効果膜MR1を含んでいる。複数の磁気抵抗効果膜MR1は、互いに直列接続されており、それぞれX軸方向およびY軸方向の双方に対して傾斜したW軸方向に延在している。したがって、複数の磁気抵抗効果膜MR1は、それぞれW軸方向の形状異方性を示す。W軸方向とY軸方向とのなす角度θ1は、例えば45°であるとよい。複数の磁気抵抗効果膜MR1は、それぞれ、第1の先端部11Aと、第2の先端部11Bと、それら第1の先端部11Aおよび第2の先端部11Bに挟まれた中間部11Cとを有する。なお、第1の先端部11Aおよび第2の先端部11Bは、それぞれ、W軸方向における第1の最先端部11ATおよび第2の最先端部11BTを含む部分である。また、
図3Aにおいて、符号JS13を付した矢印は磁気抵抗効果膜MR1における磁化自由層S13(後出)の初期状態での磁化方向を示す。すなわち、初期状態での磁化自由層S13の磁化JS13の方向は、W軸方向とほぼ平行である。さらに、
図3Aにおいて符号JS11を付した矢印は、磁気抵抗効果膜MR1における磁化固着層S11(後出)の磁化JS11の方向を示す。すなわち、磁化JS11の方向は、W軸方向と直交するV軸方向とほぼ平行である。したがって、磁気抵抗効果膜MR1の感度方向はV軸方向である。
ここで、W軸方向J1は、本発明の「第1の軸方向」に対応する一具体例である。また、Y軸方向が本発明の「第2の軸方向」に対応する一具体例であり、X軸方向が本発明の「第3の軸方向」に対応する一具体例であり、Z軸方向が本発明の「第4の軸方向」に対応する一具体例である。
【0020】
ヘリカルコイル6の上部配線パターン61UAおよび上部配線パターン62UAは、Z軸方向において第1の先端部11Aおよび第2の先端部11Bとそれぞれ重なり合うように設けられている。また、ヘリカルコイル6の下部配線パターン61LA~64LAはZ軸方向において第1の先端部11Aとそれぞれ重なり合うように設けられている。同様に、ヘリカルコイル6の下部配線パターン65LA~68LAはZ軸方向において第2の先端部11Bとそれぞれ重なり合うように設けられている。より詳細には、上部配線パターン61UAが、第1の先端部11Aのうちの第1の最先端部11ATとZ軸方向において重なり合い、上部配線パターン62UAが、第2の先端部11Bのうちの第2の最先端部11BTとZ軸方向において重なり合っている。
【0021】
したがって、電流検出ユニット10Aでは、
図3Aおよび
図3Bに示したように、ヘリカルコイル6にセット電流Isが供給されることにより、磁気抵抗効果膜MR1に対し-X方向のセット磁場SF-が付与されることとなる。
図3Cに示したように、ヘリカルコイル6にリセット電流Irが供給されることにより、磁気抵抗効果膜MR1に対し+X方向のリセット磁場RF+が付与されることとなる。また、
図3Dに示したように、バス5に+Y方向の信号電流Im1が流れる場合、磁気抵抗効果膜MR1には+X方向の信号磁場Hm1が付与される。その際、ヘリカルコイル6にフィードバック電流If1が供給されることにより、磁気抵抗効果膜MR1に対し、信号磁場Hm1を打ち消すように-X方向のフィードバック磁場Hf1が付与される。さらに、
図3Eに示したように、バス5に-Y方向の信号電流Im2が流れる場合、磁気抵抗効果膜MR1には-X方向の信号磁場Hm2が付与される。その際、ヘリカルコイル6にフィードバック電流If2が供給されることにより、磁気抵抗効果膜MR1に対し、信号磁場Hm2を打ち消すように+X方向のフィードバック磁場Hf2が付与される。
なお、セット磁場SF(SF+,SF-)およびリセット磁場RF(RF+,RF-)が、本発明の「誘導磁場」または「第1の誘導磁場」に対応する一具体例である。
【0022】
図3Fに示したように、第1の先端部11Aに付与されるセット磁場SFおよびリセット磁場RFの強度(絶対値)および第2の先端部11Bに付与されるセット磁場SFおよびリセット磁場RFの強度(絶対値)は、中間部11Cに付与されるセット磁場SFおよびリセット磁場RFの強度(絶対値)よりも高くなる。これは、第1の先端部11Aおよび第2の先端部11Bは、上部配線パターン61UAおよび上部配線パターン62UAとZ軸方向において重なり合うようになっているのに対し、中間部11CとZ軸方向において重なり合う位置に上部配線パターンおよび下部配線パターンが設けられていないからである。すなわち、中間部11Cは、第1の先端部11Aおよび第2の先端部11Bと比較して、ヘリカルコイル6における上部配線パターン61UA,62UAおよび下部配線パターン61LA~68LAからの距離が遠いことに起因している。なお、
図3Fは、磁気抵抗効果膜MR1に付与されるセット磁場SFおよびリセット磁場RFのX軸方向の強度分布を表す説明図である。
図3Fにおいて、横軸がX軸方向の位置(任意単位)を表し、縦軸が磁場強度(任意単位)を表している。
【0023】
(磁気抵抗効果素子14)
図3Gは、電流検出ユニット10Aのうちの、素子形成領域X4に形成された磁気抵抗効果素子14の詳細な構成を説明するための平面図である。なお、
図3Gでは、磁気抵抗効果素子14を構成する複数の磁気抵抗効果膜MR4と、それらの上方に配置された上部配線パターン61UA,62UAとを記載しており、他の構成要素については記載を省略している。
【0024】
図3Gに示したように、磁気抵抗効果素子14は、Y軸方向に並ぶ複数の磁気抵抗効果膜MR4を含んでいる。複数の磁気抵抗効果膜MR4は、互いに直列接続されており、それぞれX軸方向およびY軸方向の双方に対して傾斜したW軸方向に延在している。したがって、複数の磁気抵抗効果膜MR4は、それぞれW軸方向の形状異方性を示す。複数の磁気抵抗効果膜MR4は、それぞれ、第1の先端部14Aと、第2の先端部14Bと、それら第1の先端部14Aおよび第2の先端部14Bに挟まれた中間部14Cとを有する。なお、第1の先端部14Aおよび第2の先端部14Bは、それぞれ、W軸方向における第1の最先端部14ATおよび第2の最先端部14BTを含む部分である。また、
図3Gにおいて、符号JS43を付した矢印は磁気抵抗効果膜MR4における磁化自由層S43(後出)の初期状態での磁化方向を示す。すなわち、初期状態での磁化自由層S43の磁化JS43の方向は、W軸方向とほぼ平行である。さらに、
図3Gにおいて符号JS41を付した矢印は、磁気抵抗効果膜MR4における磁化固着層S41(後出)の磁化JS41の方向を示す。すなわち、磁化JS41の方向は、W軸方向と直交するV軸方向とほぼ平行である。したがって、磁気抵抗効果膜MR4の感度方向はV軸方向である。
【0025】
ヘリカルコイル6の上部配線パターン61UAおよび上部配線パターン62UAは、Z軸方向において第1の先端部14Aおよび第2の先端部14Bとそれぞれ重なり合うように設けられている。また、ヘリカルコイル6の下部配線パターン61LA~64LAはZ軸方向において第1の先端部14Aとそれぞれ重なり合うように設けられている。同様に、ヘリカルコイル6の下部配線パターン65LA~68LAはZ軸方向において第2の先端部14Bとそれぞれ重なり合うように設けられている。より詳細には、上部配線パターン61UAが、第1の先端部14Aのうちの第1の最先端部14ATとZ軸方向において重なり合い、上部配線パターン62UAが、第2の先端部14Bのうちの第2の最先端部14BTとZ軸方向において重なり合っている。したがって、磁気抵抗効果素子14では、磁気抵抗効果素子11と同様に、ヘリカルコイル6にセット電流Isが供給されることにより、磁気抵抗効果膜MR4に対し-X方向のセット磁場SF-が付与されることとなる。また、ヘリカルコイル6にリセット電流Irが供給されることにより、磁気抵抗効果膜MR4に対し+X方向のリセット磁場RF+が付与されることとなる。
【0026】
(磁気抵抗効果素子13)
図4Aは、電流検出ユニット10Bのうちの、素子形成領域X3に形成された磁気抵抗効果素子13の詳細な構成を説明するための平面図である。また、
図4B~4Eは、それぞれ、電流検出ユニット10Bの要部を表す断面図である。なお、
図4Aでは、磁気抵抗効果素子13を構成する複数の磁気抵抗効果膜MR3と、それらの上方に配置された上部配線パターン61UB,62UBとを記載しており、他の構成要素については記載を省略している。
【0027】
図4Aに示したように、磁気抵抗効果素子13は、Y軸方向に並ぶ複数の磁気抵抗効果膜MR3を含んでいる。複数の磁気抵抗効果膜MR3は、互いに直列接続されており、それぞれX軸方向およびY軸方向の双方に対して傾斜したW軸方向に延在している。したがって、複数の磁気抵抗効果膜MR3は、それぞれW軸方向の形状異方性を示す。複数の磁気抵抗効果膜MR3は、それぞれ、第1の先端部13Aと、第2の先端部13Bと、それら第1の先端部13Aおよび第2の先端部13Bに挟まれた中間部13Cとを有する。なお、第1の先端部13Aおよび第2の先端部13Bは、それぞれ、W軸方向における第1の最先端部13ATおよび第2の最先端部13BTを含む部分である。また、
図4Aにおいて、符号JS33を付した矢印は磁気抵抗効果膜MR3における磁化自由層S33(後出)の初期状態での磁化方向を示す。すなわち、初期状態での磁化自由層S33の磁化JS33の方向は、W軸方向とほぼ平行である。さらに、
図4Aにおいて符号JS31を付した矢印は、磁気抵抗効果膜MR3における磁化固着層S31(後出)の磁化JS31の方向を示す。すなわち、磁化JS31の方向は、W軸方向と直交するV軸方向とほぼ平行である。したがって、磁気抵抗効果膜MR3の感度方向はV軸方向である。
【0028】
ヘリカルコイル6の上部配線パターン61UBおよび上部配線パターン62UBは、Z軸方向において第1の先端部13Aおよび第2の先端部13Bとそれぞれ重なり合うように設けられている。また、ヘリカルコイル6の下部配線パターン61LB~64LBはZ軸方向において第1の先端部13Aとそれぞれ重なり合うように設けられている。同様に、ヘリカルコイル6の下部配線パターン65LB~68LBはZ軸方向において第2の先端部13Bとそれぞれ重なり合うように設けられている。より詳細には、上部配線パターン61UBが、第1の先端部13Aのうちの第1の最先端部13ATとZ軸方向において重なり合い、上部配線パターン62UBが、第2の先端部13Bのうちの第2の最先端部13BTとZ軸方向において重なり合っている。
【0029】
したがって、電流検出ユニット10Bでは、
図4Aおよび
図4Bに示したように、ヘリカルコイル6にセット電流Isが供給されることにより、磁気抵抗効果膜MR3に対し+X方向のセット磁場SF+が付与されることとなる。
図4Cに示したように、ヘリカルコイル6にリセット電流Irが供給されることにより、磁気抵抗効果膜MR3に対し-X方向のリセット磁場RF-が付与されることとなる。また、
図4Dに示したように、バス5に+Y方向の信号電流Im1が流れる場合、磁気抵抗効果膜MR3には+X方向の信号磁場Hm1が付与される。その際、ヘリカルコイル6にフィードバック電流If1が供給されることにより、磁気抵抗効果膜MR3に対し、信号磁場Hm1を打ち消すように-X方向のフィードバック磁場Hf1が付与される。さらに、
図4Eに示したように、バス5に-Y方向の信号電流Im2が流れる場合、磁気抵抗効果膜MR3には-X方向の信号磁場Hm2が付与される。その際、ヘリカルコイル6にフィードバック電流If2が供給されることにより、磁気抵抗効果膜MR3に対し、信号磁場Hm2を打ち消すように+X方向のフィードバック磁場Hf2が付与される。
【0030】
(磁気抵抗効果素子12)
図4Fは、素子形成領域X2に形成された磁気抵抗効果素子12の詳細な構成を説明するための平面図である。なお、
図4Fでは、磁気抵抗効果素子12を構成する複数の磁気抵抗効果膜MR2と、それらの上方に配置された上部配線パターン61UB,62UBとを記載しており、他の構成要素については記載を省略している。
【0031】
図4Fに示したように、磁気抵抗効果素子12は、Y軸方向に並ぶ複数の磁気抵抗効果膜MR2を含んでいる。複数の磁気抵抗効果膜MR2は、互いに直列接続されており、それぞれX軸方向およびY軸方向の双方に対して傾斜したW軸方向に延在している。したがって、複数の磁気抵抗効果膜MR2は、それぞれW軸方向の形状異方性を示す。複数の磁気抵抗効果膜MR2は、それぞれ、第1の先端部12Aと、第2の先端部12Bと、それら第1の先端部12Aおよび第2の先端部12Bに挟まれた中間部12Cとを有する。なお、第1の先端部12Aおよび第2の先端部12Bは、それぞれ、W軸方向における第1の最先端部12ATおよび第2の最先端部12BTを含む部分である。また、
図4Fにおいて、符号JS23を付した矢印は磁気抵抗効果膜MR2における磁化自由層S23(後出)の初期状態での磁化方向を示す。すなわち、初期状態での磁化自由層S23の磁化JS23の方向は、W軸方向とほぼ平行である。さらに、
図4Fにおいて符号JS21を付した矢印は、磁気抵抗効果膜MR2における磁化固着層S21(後出)の磁化JS21の方向を示す。すなわち、磁化JS21の方向は、W軸方向と直交するV軸方向とほぼ平行である。したがって、磁気抵抗効果膜MR2の感度方向はV軸方向である。
【0032】
ヘリカルコイル6の上部配線パターン61UBおよび上部配線パターン62UBは、Z軸方向において第1の先端部12Aおよび第2の先端部12Bとそれぞれ重なり合うように設けられている。また、ヘリカルコイル6の下部配線パターン61LB~64LBはZ軸方向において第1の先端部12Aとそれぞれ重なり合うように設けられている。同様に、ヘリカルコイル6の下部配線パターン65LB~68LBはZ軸方向において第2の先端部12Bとそれぞれ重なり合うように設けられている。より詳細には、上部配線パターン61UBが、第1の先端部12Aのうちの第1の最先端部12ATとZ軸方向において重なり合い、上部配線パターン62UBが、第2の先端部12Bのうちの第2の最先端部12BTとZ軸方向において重なり合っている。したがって、磁気抵抗効果素子12では、磁気抵抗効果素子13と同様に、ヘリカルコイル6にセット電流Isが供給されることにより、磁気抵抗効果膜MR2に対し+X方向のセット磁場SF+が付与されることとなる。また、ヘリカルコイル6にリセット電流Irが供給されることにより、磁気抵抗効果膜MR2に対し-X方向のリセット磁場RF-が付与されることとなる。
【0033】
(バス5)
バス5は、例えばY軸方向へ延在する導体であり、電流検出装置100により検出する対象となる信号電流Im(Im1,Im2)が供給されるものである。バス5の主たる構成材料は、例えばCu(銅)などの高導電性材料である。バス5の構成材料としてFe(鉄)やNi(ニッケル)を含む合金、あるいは、ステンレス鋼を用いることもできる。バス5は、その内部を例えば+Y方向へ信号電流Im1が流れることにより、バス5の周囲に信号磁場Hm1を生成可能である。その際、生成された信号磁場Hm1は、磁気抵抗効果素子11~14に対し+X方向に印加される。バス5の内部を-Y方向へ信号電流Im2が流れることにより、磁気抵抗効果素子11~14に対し-X方向に印加される信号磁場Hm2が形成される。
【0034】
(ヘリカルコイル6)
図5Aおよび
図5Bは、ヘリカルコイル6の一部を拡大して模式的に表した斜視図である。すでに述べたように、ヘリカルコイル6は、コイル部分6Aと、コイル部分6Bとを有している。
図5Aおよび
図5Bに示したように、コイル部分6Aは、例えばX軸方向に沿って進行しつつ磁気抵抗効果素子11,14の周囲を第1の旋回方向CD1へ旋回するように設けられている。コイル部分6Bは、X軸方向に沿って進行しつつ磁気抵抗効果素子13,12の周囲を第1の旋回方向CD1と反対の第2の旋回方向CD2へ旋回するように設けられている。コイル部分6Aの第1端部とコイル部分6Bの第1端部とは連結部分6Jを介して連結されている。連結部分6Jには端子T3が接続されている。端子T3は、例えばフレームグラウンド(FG)である。コイル部分6Aの第2端部には端子T1が接続され、コイル部分6Bの第2端部には端子T2が接続されている。なお、
図5Aおよび
図5Bでは、コイル部分6Aに対応する電流検出ユニット10Aと、コイル部分6Bに対応する電流検出ユニット10Bとがそれぞれ2つずつ連なっている形態を表している。また、
図5Aおよび
図5Bでは、2本の上部配線パターン61UAおよび上部配線パターン62UAを省略して1本の上部配線6UAとして記載し、8本の下部配線パターン61LA~68LAを省略して1本の下部配線6LAとして記載し、2本の上部配線パターン61UBおよび上部配線パターン62UBを省略して1本の上部配線6UAとして記載し、8本の下部配線パターン61LB~68LBを省略して1本の下部配線6LBとして記載している。
【0035】
ヘリカルコイル6は、磁気抵抗効果素子11~14の各々と電気的に絶縁されつつ、磁気抵抗効果素子11~14を取り巻くように配置された電気配線である。ヘリカルコイル6の主たる構成材料は、バス5と同様、例えばCu(銅)などの高導電性材料である。
【0036】
図5Aに示したように、ヘリカルコイル6には、電源により、例えば端子T1と端子T2との間にセット電流Isおよびリセット電流Irが供給可能になっている。なお、
図5Aでは、端子T2から端子T1へセット電流Isが流れている様子を矢印で表している。また、リセット電流Irは、端子T1から端子T2へ向かうように、
図5Aで示された矢印と反対向きに流れることとなる。
【0037】
図5Bに示したように、ヘリカルコイル6には、電源により、端子T1と端子T3との間、および端子T2と端子T3との間において、それぞれフィードバック電流If1,If2が供給可能になっている。なお、
図5Bでは、端子T3から端子T1へフィードバック電流If1が流れると共に端子T3から端子T2へフィードバック電流If1が流れる様子を矢印で表している。また、フィードバック電流If2は、端子T1から端子T3へ向かうと共に端子T2から端子T3へ向かうように、
図5Bで示された矢印と反対向きに流れることとなる。
【0038】
(磁気抵抗効果膜MR1~MR4)
磁気抵抗効果膜MR1,MR3は、+X方向の信号磁場の印加により減少し、かつ、-X方向の信号磁場の印加により増加する抵抗値を有する。一方、磁気抵抗効果膜MR2,MR4は、+X方向の信号磁場の印加により増加し、かつ、-X方向の信号磁場の印加により減少する抵抗値を有する。
【0039】
図6Aは、磁気抵抗効果膜MR1の積層構造を表す分解斜視図である。
図6Bは、磁気抵抗効果膜MR2の積層構造を表す分解斜視図である。
図6Cは、磁気抵抗効果膜MR3の積層構造を表す分解斜視図である。
図6Dは、磁気抵抗効果膜MR4の積層構造を表す分解斜視図である。
【0040】
磁気抵抗効果膜MR1~MR4は、それぞれ
図6A~
図6Dに示したように、磁性層を含む複数の機能膜が積層されたスピンバルブ構造をなしている。具体的には、磁気抵抗効果膜MR1は、
図6Aに示したように、+V方向に固着された磁化JS11を有する磁化固着層S11と、非磁性体である中間層S12と、信号磁場の磁束密度に応じて変化する磁化JS13を有する磁化自由層S13とが順にZ軸方向に積層されてなるものである。磁化固着層S11、中間層S12および磁化自由層S13は、いずれもXY面内に広がる薄膜である。したがって、磁化自由層S13の磁化JS13の向きは、XY面内において回転可能となっている。
【0041】
磁気抵抗効果膜MR2は、
図6Bに示したように、-V方向に固着された磁化JS21を有する磁化固着層S21と、非磁性体である中間層S22と、信号磁場の磁束密度に応じて変化する磁化JS23を有する磁化自由層S23とが順にZ軸方向に積層されてなるものである。磁化固着層S21、中間層S22および磁化自由層S23は、いずれもXY面内に広がる薄膜である。したがって、磁化自由層S23の磁化JS23の向きは、XY面内において回転可能となっている。
【0042】
磁気抵抗効果膜MR3は、
図6Cに示したように、+V方向に固着された磁化JS31を有する磁化固着層S31と、非磁性体である中間層S32と、信号磁場の磁束密度に応じて変化する磁化JS33を有する磁化自由層S33とが順にZ軸方向に積層されてなるものである。磁化固着層S31、中間層S32および磁化自由層S33は、いずれもXY面内に広がる薄膜である。したがって、磁化自由層S33の磁化JS33の向きは、XY面内において回転可能となっている。
【0043】
磁気抵抗効果膜MR4は、
図6Dに示したように、-V方向に固着された磁化JS41を有する磁化固着層S41と、非磁性体である中間層S42と、信号磁場の磁束密度に応じて変化する磁化JS43を有する磁化自由層S43とが順にZ軸方向に積層されてなるものである。磁化固着層S41、中間層S42および磁化自由層S43は、いずれもXY面内に広がる薄膜である。したがって、磁化自由層S43の磁化JS43の向きは、XY面内において回転可能となっている。
【0044】
このように、磁気抵抗効果膜MR1,MR3における磁化固着層S11,S31は+V方向に固着された磁化JS11,J31をそれぞれ有するのに対し、磁気抵抗効果膜MR2,MR4における磁化固着層S21,S41は-V方向に固着された磁化JS21,J41をそれぞれ有する。
【0045】
なお、磁気抵抗効果膜MR1~MR4において、磁化固着層S11,S21,S31,S41、中間層S12,S22,S32,S42および磁化自由層S13,S23,S33,S43は、いずれも単層構造であってもよいし、複数層からなる多層構造であってもよい。
【0046】
磁化固着層S11,S21,S31,S41は、例えばコバルト(Co)やコバルト鉄合金(CoFe)、コバルト鉄ボロン合金(CoFeB)などの強磁性材料からなる。なお、磁気抵抗効果膜MR1~MR4において、磁化固着層S11,S21,S31,S41とそれぞれ隣接するように、中間層S12,S22,S32,S42と反対側に反強磁性層(図示せず)を設けるようにしてもよい。そのような反強磁性層は、白金マンガン合金(PtMn)やイリジウムマンガン合金(IrMn)などの反強磁性材料により構成されるものである。反強磁性層は、磁気抵抗効果膜MR1~MR4においては、+V方向のスピン磁気モーメントと-V方向のスピン磁気モーメントとが完全に打ち消し合った状態にあり、隣接する磁化固着層S11,S31の磁化JS11,JS31の向きを+V方向へ固定し、あるいは隣接する磁化固着層S21,S41の磁化JS21,JS41の向きを-V方向へ固定するように作用する。
【0047】
中間層S12,S22,S32,S42は、スピンバルブ構造が磁気トンネル接合(MTJ:Magnetic Tunnel Junction)膜として機能するものである場合、例えば酸化マグネシウム(MgO)からなる非磁性のトンネルバリア層であり、量子力学に基づくトンネル電流が通過可能な程度に厚みの薄いものである。MgOからなるトンネルバリア層は、例えば、MgOからなるターゲットを用いたスパッタリング処理のほか、マグネシウム(Mg)の薄膜の酸化処理、あるいは酸素雰囲気中でマグネシウムのスパッタリングを行う反応性スパッタリング処理などによって得られる。また、MgOのほか、アルミニウム(Al),タンタル(Ta),ハフニウム(Hf)の各酸化物もしくは窒化物を用いて中間層S12,S22,S32,S42を構成することも可能である。なお、中間層S12,S22,S32,S42は、例えばルテニウム(Ru)や金(Au)などの白金族元素や銅(Cu)などの非磁性金属により構成されていてもよい。その場合、スピンバルブ構造は巨大磁気抵抗効果(GMR:Giant Magneto Resistive effect)膜として機能する。
【0048】
磁化自由層S13,S23,S33,S43は軟質強磁性層であり、互いに実質的に同一の材料により形成されている。磁化自由層S13,S23,S33,S43は、例えばコバルト鉄合金(CoFe)、ニッケル鉄合金(NiFe)あるいはコバルト鉄ボロン合金(CoFeB)などによって構成される。
【0049】
(ブリッジ回路7)
4つの磁気抵抗効果素子11~14は、
図7に示したようにブリッジ接続されてブリッジ回路7を形成している。磁気抵抗効果素子11~14は、検出対象である信号磁場Hm(Hm1,Hm2)の変化を検出可能である。上述したように、磁気抵抗効果素子11,13は+X方向の信号磁場Hm1の印加により抵抗値が減少し、-X方向の信号磁場Hm2の印加により抵抗値が増加するものである。一方、磁気抵抗効果素子12,14は、+X方向の信号磁場Hm1の印加により抵抗値が増加し、-X方向の信号磁場Hm2の印加により抵抗値が減少するものである。したがって、磁気抵抗効果素子11,13と磁気抵抗効果素子12,14とは、信号磁場Hmの変化に応じて互いに例えば180°位相の異なる信号を出力する。
【0050】
図7に示したように、ブリッジ回路7は、直列接続された磁気抵抗効果素子11および磁気抵抗効果素子12と、直列接続された磁気抵抗効果素子13および磁気抵抗効果素子14とが、互いに並列接続されてなるものである。より具体的には、ブリッジ回路7は、磁気抵抗効果素子11の一端と磁気抵抗効果素子12の一端とが接続点P1において接続され、磁気抵抗効果素子13の一端と磁気抵抗効果素子14の一端とが接続点P2において接続され、磁気抵抗効果素子11の他端と磁気抵抗効果素子14の他端とが接続点P3において接続され、磁気抵抗効果素子12の他端と磁気抵抗効果素子13の他端とが接続点P4において接続されている。ここで、接続点P3は電源Vccと接続されており、接続点P4は接地端子GNDと接続されている。接続点P1は出力端子Vout1と接続され、接続点P2は出力端子Vout2と接続されている。出力端子Vout1および出力端子Vout2は、それぞれ、例えば差分検出器8の入力側端子と接続されている。この差分検出器8は、接続点P3と接続点P4との間に電圧が印加されたときの接続点P1と接続点P2との間の電位差(磁気抵抗効果素子11および磁気抵抗効果素子14のそれぞれに生ずる電圧降下の差分)を検出し、差分信号Sとして演算回路9へ向けて出力するものである。
【0051】
なお、
図7において符号JS11,JS31を付した矢印は、磁気抵抗効果素子11,13の各々における磁化固着層S11,S31の磁化JS11,JS31の向きを模式的に表している。また、
図7において符号JS21,JS41を付した矢印は、磁気抵抗効果素子12,14の各々における磁化固着層S21,S41の磁化JS21,JS41の向きを模式的に表している。
図7に示したように、磁化JS11,JS31の向きと磁化JS21,JS41の向きとは互いに反対となっている。すなわち、
図7は、磁気抵抗効果素子11の抵抗値および磁気抵抗効果素子13の抵抗値は、信号磁場Hmの変化に応じて互いに同じ向きに変化(例えば増加もしくは減少)することを表している。
図7は、さらに、磁気抵抗効果素子12の抵抗値および磁気抵抗効果素子14の抵抗値は、いずれも、信号磁場Hmの変化に応じて磁気抵抗効果素子11,13の各抵抗値の変化とは反対向きに変化(減少もしくは増加)することを表している。
【0052】
ブリッジ回路7を構成する磁気抵抗効果素子11~14には、それぞれ電源Vccからの電流I10が接続点P3において分流された電流I1もしくは電流I2が供給される。ブリッジ回路7の接続点P1,P2からそれぞれ取り出された信号e1,e2が差分検出器8に流入する。
【0053】
[電流検出装置100の動作および作用]
本実施の形態の電流検出装置100では、演算回路9において電位差V0を算出することにより、バス5を流れる信号電流Im1,Im2が生成する信号磁場の変化を検出することができる。
【0054】
(検出動作)
電流検出装置100において、まず、信号磁場Hmが印加されていない状態を考える。ここで電流I10をブリッジ回路7に流したときの磁気抵抗効果素子11~14の各抵抗値をr1~r4とする。電源Vccからの電流I10は、接続点P3において電流I1および電流I2の2つに分流される。そののち、磁気抵抗効果素子11および磁気抵抗効果素子12を通過した電流I1と、磁気抵抗効果素子14および磁気抵抗効果素子13を通過した電流I2とが接続点P4において合流する。この場合、接続点P3と接続点P4との間の電位差Vは、
V=I1*r1+I1*r2=I2*r4+I2*r3
=I1*(r1+r2)=I2*(r4+r3) ……(1)
と表すことができる。
また、接続点P1における電位V1および接続点P2における電位V2は、
それぞれ、
V1=V-I1*r1
V2=V-I2*r4
と表せる。よって、接続点P1と接続点P2との電位差V0は、
V0=V2-V1
=(V-I2*r4)-(V-I1*r1)
=I1*r1-I2*r4 ……(2)
ここで、(1)式から、
V0=r1/(r1+r2)×V-r4/(r4+r3)×V
={r1/(r1+r2)-r4/(r4+r3)}×V ……(3)
となる。このブリッジ回路7では、信号磁場Hmが印加されたときに、上記の式(3)で表された接続点P2と接続点P1との電位差V0を測定することにより、抵抗変化量が得られる。ここで、信号磁場Hmが印加されたときに、磁気抵抗効果素子11~14の各々の抵抗値R1~R4がそれぞれ変化量ΔR1~ΔR4だけ変化したとすると、すなわち、信号磁場Hmを印加後の抵抗値R1~R4が、それぞれ
R1=r1+ΔR1
R2=r2+ΔR2
R3=r3+ΔR3
R4=r4+ΔR4
であるとすると、信号磁場Hmの印加時における電位差V0は、式(3)より、
V0={(r1+ΔR1)/(r1+ΔR1+r2+ΔR2)-(r4+ΔR4)/(r4+ΔR4+r3+ΔR3)}×V ……(4)
となる。電流検出装置100では、磁気抵抗効果素子11,13の抵抗値R1,R3と、磁気抵抗効果素子12,14の抵抗値R2,R4とは互いに逆方向の変化を示すように構成されているので、変化量ΔR4と変化量ΔR1とが打ち消し合うと共に、変化量ΔR3と変化量ΔR2とが打ち消し合うこととなる。このため、信号磁場の印加前後を比較した場合、式(4)の各項における分母の増加はほとんど無い。一方、各項の分子については、変化量ΔR1と変化量ΔR4とが必ず反対の符号を有するので増減が現れることとなる。
【0055】
仮に、磁気抵抗効果素子11~14の全てが完全に同一の特性を有するものとした場合、すなわち、r1=r2=r3=r4=R、かつ、ΔR1=-ΔR2=ΔR3=-ΔR4=ΔRで
あるとした場合、式(4)は、
V0={(R+ΔR)/(2×R)-(R-ΔR)/(2×R)}×V
=(ΔR/R)×V
となる。
【0056】
このように、ΔR/R等の特性値について既知である磁気抵抗効果素子11~14を用いるようにすれば、信号磁場Hmの大きさを測定することができ、その信号磁場Hmを発生する信号電流Im1,Im2の大きさを推定することができる。
【0057】
あるいは、制御部を設け、バス5を流れる信号電流Im1,Im2により生成される信号磁場Hmを打ち消す強度を有するフィードバック磁場Hf1,Hf2を形成するように、すなわち、ブリッジ回路7からの出力が零を維持するように、フィードバック電流If1,If2の大きさを逐次制御するようにしてもよい。その場合、フィードバック電流If1,If2の大きさがバス5を流れる信号電流Im1,Im2と実質的に等しいとみなすことができる。
【0058】
(セット・リセット動作)
ところで、この種の電流検出装置では、信号磁場の検出動作を行う前に、各磁気抵抗効果素子における磁化自由層の磁化を所定の方向に一旦揃えることが望ましい。より正確な信号磁場Hmの検出動作を行うためである。具体的には、既知の大きさの外部磁場を所定の方向と、それと反対の方向とに交互に印加する。これを磁化自由層の磁化のセット・リセット動作という。
【0059】
本実施の形態の電流検出装置100では、ヘリカルコイル6に対しセット電流Isを供給することでセット動作がなされる。ヘリカルコイル6へのセット電流Isの供給により、
図3Bおよび
図4Bに示したようにヘリカルコイル6の周囲にセット磁場SF-,SF+がそれぞれ生成される。その結果、電流検出ユニット10Aでは、-X方向のセット磁場SF-を磁気抵抗効果素子11,14の磁気抵抗効果膜MR1,MR4に印加することができる。これにより、磁気抵抗効果膜MR1,MR4における磁化自由層S13,S43は-X方向に向くこととなり、セット動作がなされる。一方、電流検出ユニット10Bでは、+X方向のセット磁場SF+を磁気抵抗効果素子12,13の磁気抵抗効果膜MR2,MR3に印加することができる。これにより、磁気抵抗効果膜MR2,MR3における磁化自由層S23,S33は+X方向に向くこととなり、セット動作がなされる。また、ヘリカルコイル6に対しリセット電流Irを供給することでリセット動作がなされる。ヘリカルコイル6へのリセット電流Irの供給により、
図3Cおよび
図4Cに示したように、ヘリカルコイル6の周囲にリセット磁場RF+,RF-がそれぞれ生成される。その結果、電流検出ユニット10Aでは、+X方向のリセット磁場RF+を磁気抵抗効果素子11,14の磁気抵抗効果膜MR1,MR4に印加することができる。これにより、磁気抵抗効果膜MR1,MR4における磁化自由層S13,S43は+X方向に向くこととなり、リセット動作がなされる。一方、電流検出ユニット10Bでは、-X方向のリセット磁場RF-を磁気抵抗効果素子12,13の磁気抵抗効果膜MR2,MR3に印加することができる。これにより、磁気抵抗効果膜MR2,MR3における磁化自由層S23,S33は-X方向に向くこととなりリセット動作がなされる。
【0060】
[電流検出装置100の効果]
本実施の形態では、例えば磁気抵抗効果素子11において、ヘリカルコイル6の上部配線パターン61UAおよび上部配線パターン62UAを、Z軸方向において第1の先端部11Aおよび第2の先端部11Bとそれぞれ重なり合うように設けるようにした。このため、第1の先端部11Aに付与されるセット磁場SF-およびリセット磁場RF+の強度(絶対値)および第2の先端部11Bに付与されるセット磁場SF-およびリセット磁場RF+の強度(絶対値)が、中間部11Cに付与されるセット磁場SF-およびリセット磁場RF+の強度(絶対値)よりも高くなる。したがって、磁気抵抗効果膜MR1における第1の先端部11Aおよび第2の先端部11Bに対し、ヘリカルコイル6により生成されるセット磁場SFおよびリセット磁場RFを効果的に付与することができる。よって、磁気抵抗効果膜MR1の全体に亘って均質かつ十分に磁化自由層S13の磁化JS13の方向がセット・リセットされることとなる。磁気抵抗効果素子12~14においても同様の作用が得られる。そのため、本実施の形態の電流検出装置100によれば、寸法を縮小した場合であっても高い電流検出精度を発現することができる。
【0061】
また、本実施の形態では、各磁気抵抗効果膜全体と重なり合うような幅の広い導線を用いるのではなく、磁気抵抗効果膜の一部(第1の先端部11A~14Aおよび第2の先端部11B~14B)のみと重なり合うヘリカルコイル6を備えるようにしている。すなわち、例えば上部配線パターン61,62の幅を狭くすることができる。このため、所定のセット磁場SFおよびリセット磁場RF、ならびにフィードバック磁場Hf1,Hf2を得るためにヘリカルコイル6に供給する必要のある電流値を低く抑えることができる。
【0062】
また、本実施の形態では、ヘリカルコイル6における一部区間に分岐部分を形成するようにした。すなわち、例えば上部配線6UAを互いに並列接続された2つの上部配線パターン61UA,62UAにより構成し、下部配線6LAを互いに並列接続された8つの下部配線パターン61LA~68LAにより構成するようにした。このため、このような分岐部分を含まないヘリカルコイルを用いた場合と比べ、本実施の形態では、ヘリカルコイル6の巻き数(ターン数)よりも多くの数の磁気抵抗効果膜MR1~MR4をY軸方向に並べることができる。よって、高集積化に有利である。
【0063】
また、本実施の形態では、
図5Aおよび
図5Bに示したように互いに逆向きに旋回するコイル部分6Aとコイル部分6Bとが一体化したヘリカルコイル6を用いるようにした。このため、磁化自由層の磁化方向のセット方向(リセット方向)が逆向きの磁気抵抗効果膜MR1~MR4を含む複数の磁気抵抗効果素子11~14を、より狭い領域内に形成できる。また、コイル部分6Aとコイル部分6Bとが一体化された一のヘリカルコイル6を用いることで、2つのヘリカルコイルを配置する場合と比較して、給電するための端子の数を削減できる。よって、高集積化に有利である。
【0064】
また、本実施の形態では、磁気抵抗効果膜MR1,MR4における磁化自由層S13,S43のセット方向(リセット方向)と、磁気抵抗効果膜MR2,MR3における磁化自由層S23,S33のセット方向(リセット方向)とが反対向きとなるようにしている。このように、セット(またはリセット)された磁化方向が互いに逆向きとなる磁化自由層をそれぞれ有する磁気抵抗効果素子を用いてブリッジ回路7を構成することで、不要な外乱磁場によるノイズを低減したり、応力歪みに起因する誤差を低減したりすることができる。
【0065】
<2.変形例>
以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施の形態では、センサ部として4つの磁気検出素子を用いてフルブリッジ回路を形成するようにしたが、本発明では、例えば2つの磁気検出素子を用いてハーフブリッジ回路を形成するようにしてもよい。また、複数の磁気抵抗効果膜の形状および寸法は、互いに同じであってもよいし、異なっていてもよい。また、各構成要素の寸法や各構成要素のレイアウトなどは例示であってこれに限定されるものではない。
【0066】
上記実施の形態では、旋回方向が途中で反転するヘリカルコイル6を備えた電流検出装置について説明したが、本発明はこれに限定されるものではない。本発明の電流検出装置は、例えば
図8および
図9に示したヘリカルコイル60のように、一定方向へ旋回するものを備えてもよい。
図8および
図9は、ヘリカルコイル6の変形例としてのヘリカルコイル60の一部を拡大して模式的に表した斜視図であり、
図5Aおよび
図5Bに対応している。ヘリカルコイル60は、コイル部分60Aと、コイル部分60Bとを有している。
図8および
図9に示したように、コイル部分60Aは、例えばX軸方向に沿って進行しつつ磁気抵抗効果素子11,14の周囲を第1の旋回方向CD1へ旋回するように設けられている。コイル部分60Bは、X軸方向に沿って進行しつつ磁気抵抗効果素子13,12の周囲を第1の旋回方向CD1へ旋回するように設けられている。コイル部分60Aの第1端部とコイル部分60Bの第1端部とは連結部分60Jを介して連結されている。連結部分60Jには端子T3が接続されている。端子T3は、例えばフレームグラウンド(FG)である。コイル部分60Aの第2端部には端子T1が接続され、コイル部分60Bの第2端部には端子T2が接続されている。
【0067】
図8に示したように、ヘリカルコイル60には、電源により、例えば端子T1と端子T2との間にフィードバック電流If1,If2が供給可能になっている。なお、
図8では、端子T2から端子T1へフィードバック電流If1が流れている様子を矢印で表している。フィードバック電流If2は、端子T1から端子T2へ向かうように、
図8で示された矢印と反対向きに流れることとなる。
【0068】
図9に示したように、ヘリカルコイル60には、電源により、端子T1と端子T3との間、および端子T2と端子T3との間において、それぞれセット電流Isおよびリセット電流Irが供給可能になっている。なお、
図9では、端子T3から端子T1へセット電流Isが流れると共に端子T3から端子T2へセット電流Isが流れる様子を矢印で表している。また、リセット電流Irは、端子T1から端子T3へ向かうと共に端子T2から端子T3へ向かうように、
図9で示された矢印と反対向きに流れることとなる。
【0069】
本変形例では、端子T1と端子T3との間および端子T2と端子T3との間のそれぞれに、セット電流Isおよびリセット電流Irを交互に供給することにより、セット・リセット動作が行われる。さらに、バス5を流れる信号電流Im1,Im2を検出する際には、端子T1と端子T2との間にフィードバック電流If1,If2を供給することにより、信号電流Im1,Im2の測定が可能である。
【0070】
また、上記実施の形態では、導体を流れる信号電流の変化を検出する電流検出装置について説明したが、本発明の技術の用途はそれに限定されない。例えば
図10Aおよび
図10Bに示した、本発明の一実施の形態としての磁場検出装置200のように、地磁気を検出する電子コンパスなどにも適用可能である。
図10Aおよび
図10Bに示した磁場検出装置200は、例えばY軸方向の磁場の変化およびZ軸方向における磁場の変化を検出することができる2軸磁気検出コンパスである。
図10Aは、磁場検出装置200の全体構成例を表す概略平面図である。また、
図10Bは、磁場検出装置200の回路構成例を表す回路図である。
【0071】
図10Aに示したように、磁場検出装置200は、基板2の上に、2つの磁場検出ユニットAR2,AR3を備えている。
【0072】
また、
図10Bに示したように、磁場検出装置200では、磁場検出ユニットAR2において4つの磁気抵抗効果素子21~24を用いたブリッジ回路7Lが形成され、磁場検出ユニットAR3において4つの磁気抵抗効果素子31~34を用いたブリッジ回路7Rが形成されている。それら2つのブリッジ回路7L,7Rを用いることにより、磁場検出装置200ではY軸方向およびZ軸方向の磁場の変化を検出することができるようになっている。磁気抵抗効果素子21~24,31~34は、検出対象である信号磁場の変化を検出可能である。ここで、磁気抵抗効果素子21,23,31,33は+Y方向の信号磁場または+Z方向の信号磁場の印加により抵抗値が減少し、-Y方向の信号磁場または-Z方向の信号磁場の印加により抵抗値が増加する。一方、磁気抵抗効果素子22,24,32,34は、+Y方向の信号磁場または+Z方向の信号磁場の印加により抵抗値が増加し、-Y方向の信号磁場または-Z方向の信号磁場の印加により抵抗値が減少する。したがって、磁気抵抗効果素子21,23,31,33と磁気抵抗効果素子22,24,32,34とは、信号磁場の変化に応じて互いに例えば180°位相の異なる信号を出力する。ブリッジ回路7Lから取り出された信号は差分検出器8Lに流入し、ブリッジ回路7Rから取り出された信号は差分検出器8Rに流入する。差分検出器8Lからの差分信号SLおよび差分検出器8Rからの差分信号SRは、いずれも演算回路9に流入するようになっている。
【0073】
磁場検出ユニットAR2は、バス5を有しないこと、素子形成領域X1~X4の代わりに素子形成領域YZ1,YZ4が設けられていること、およびヘリカルコイル6の代わりにヘリカルコイルC2を有していることを除き、上記実施の形態で説明した電流検出装置100と実質的に同じ構造を有する。ヘリカルコイルC2はヘリカルコイル6と実質的に同じ構造であり、コイル部分C2A,C2Bを含んでいる。コイル部分C2A,C2Bにおける上部配線は、それぞれ並列接続された4本に分岐されており、それぞれ+Y方向のセット電流IC2が流れるようになっている。
【0074】
磁場検出ユニットAR3は、バス5を有しないこと、素子形成領域X1~X4の代わりに素子形成領域YZ3,YZ2が設けられていること、およびヘリカルコイル6の代わりにヘリカルコイルC3を有していることを除き、上記実施の形態で説明した電流検出装置100と実質的に同じ構造を有する。ヘリカルコイルC3はヘリカルコイル6と実質的に同じ構造であり、コイル部分C3A,C3Bを含んでいる。コイル部分C3A,C3Bにおける上部配線は、それぞれ並列接続された4本に分岐されており、それぞれ-Y方向のリセット電流IC3が流れるようになっている。
【0075】
図11Aは、素子形成領域YZ1に形成された磁気抵抗効果素子21,31の詳細な構成を説明するための平面図である。
図11Bは、
図11AにおけるXIB-XIB線に沿った矢視方向の断面を表している。ここで、素子形成領域YZ1では、
図11Aに示したように、それぞれY軸に対して角度θ2をなすV軸方向に延在する斜面2L,2Rが基板2の表面に形成されている。斜面2L,2Rは、いずれもXY面に対して傾斜している。また、斜面2Lと斜面2Rとは互いに傾斜している。斜面2L,2Rには、それぞれ、V軸方向に延在する複数の磁気抵抗効果膜MRL1および複数の磁気抵抗効果膜MRR1が形成されている。複数の磁気抵抗効果膜MRL1が直列接続されることにより磁気抵抗効果素子21が形成され、磁気抵抗効果膜MRR1が直列接続されることにより磁気抵抗効果素子31が形成されている。なお、
図11Aでは、磁気抵抗効果素子21を構成する複数の磁気抵抗効果膜MRL1と、磁気抵抗効果素子31を構成する複数の磁気抵抗効果膜MRR1と、それらの上方に配置された上部配線パターンC2UAとを記載しており、他の構成要素については記載を省略している。
ここで、V軸方向は、本発明の「第1の軸方向」に対応する一具体例である。また、斜面2Lが本発明の「第1の面」に対応する一具体例であり、斜面2Rが本発明の「第2の面」に対応する一具体例である。
【0076】
図12は、素子形成領域YZ2に形成された磁気抵抗効果素子22,32の詳細な構成を説明するための平面図である。素子形成領域YZ2においても、それぞれY軸に対して角度θ2をなすV軸方向に延在する斜面2L,2Rが基板2の表面に形成されている。斜面2L,2Rには、それぞれ、V軸方向に延在する複数の磁気抵抗効果膜MRL2および複数の磁気抵抗効果膜MRR2が形成されている。複数の磁気抵抗効果膜MRL2が直列接続されることにより磁気抵抗効果素子22が形成され、磁気抵抗効果膜MRR2が直列接続されることにより磁気抵抗効果素子32が形成されている。
【0077】
図13は、素子形成領域YZ3に形成された磁気抵抗効果素子23,33の詳細な構成を説明するための平面図である。素子形成領域YZ3においても、それぞれY軸に対して角度θ2をなすV軸方向に延在する斜面2L,2Rが基板2の表面に形成されている。斜面2L,2Rには、それぞれ、V軸方向に延在する複数の磁気抵抗効果膜MRL3および複数の磁気抵抗効果膜MRR3が形成されている。複数の磁気抵抗効果膜MRL3が直列接続されることにより磁気抵抗効果素子23が形成され、磁気抵抗効果膜MRR3が直列接続されることにより磁気抵抗効果素子33が形成されている。
【0078】
図14は、素子形成領域YZ4に形成された磁気抵抗効果素子24,34の詳細な構成を説明するための平面図である。素子形成領域YZ4においても、それぞれY軸に対して角度θ2をなすV軸方向に延在する斜面2L,2Rが基板2の表面に形成されている。斜面2L,2Rには、それぞれ、V軸方向に延在する複数の磁気抵抗効果膜MRL4および複数の磁気抵抗効果膜MRR4が形成されている。複数の磁気抵抗効果膜MRL4が直列接続されることにより磁気抵抗効果素子24が形成され、磁気抵抗効果膜MRR4が直列接続されることにより磁気抵抗効果素子34が形成されている。
【0079】
なお、上述の磁場検出装置200と、X軸方向の磁場の変化を検出可能な磁場検出ユニット(便宜上、磁場検出ユニットAR1という。)とを組み合わせることにより、3軸方向の磁場の変化を検出する3軸磁気検出コンパスを実現できる。ここでいう磁場検出ユニットAR1は、バス5を有しないことを除き、上記実施の形態で説明した電流検出装置100と実質的に同じ構造を有するものを適用可能である。
【符号の説明】
【0080】
100…電流検出装置、200…磁場検出装置、10A,10B…電流検出ユニット、11~14…磁気抵抗効果素子、1…基板、5…バス、6,60…ヘリカルコイル、6A,6B…コイル部分、6UA…上部配線、61UA,62UA…上部配線パターン、6LA…下部配線、61LA~68LA…下部配線パターン、7…ブリッジ回路、8…差分検出器、9…演算回路、Hm…信号磁場、Im(Im1,Im2)…信号電流、Hf1,Hf2…フィードバック磁場、If1,If2…フィードバック電流、Ir…リセット電流、Is…セット電流、RF+,RF-…リセット磁場、SF+,SF-…セット磁場、MR1~MR4…磁気抵抗効果膜、X1~X4…素子形成領域。