(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-15
(45)【発行日】2022-02-24
(54)【発明の名称】燃料電池
(51)【国際特許分類】
H01M 8/026 20160101AFI20220216BHJP
H01M 8/0258 20160101ALI20220216BHJP
H01M 8/0267 20160101ALI20220216BHJP
H01M 8/10 20160101ALN20220216BHJP
【FI】
H01M8/026
H01M8/0258
H01M8/0267
H01M8/10 101
(21)【出願番号】P 2018174261
(22)【出願日】2018-09-18
【審査請求日】2021-02-18
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(73)【特許権者】
【識別番号】000241500
【氏名又は名称】トヨタ紡織株式会社
(74)【代理人】
【識別番号】100087480
【氏名又は名称】片山 修平
(72)【発明者】
【氏名】岡部 裕樹
(72)【発明者】
【氏名】河邉 聡
(72)【発明者】
【氏名】青野 晴之
(72)【発明者】
【氏名】平田 和之
【審査官】守安 太郎
(56)【参考文献】
【文献】特開2008-282728(JP,A)
【文献】特開2015-002061(JP,A)
【文献】特開2009-170286(JP,A)
【文献】特開2011-113806(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/02
(57)【特許請求の範囲】
【請求項1】
膜電極接合体と、
前記膜電極接合体に積層されたガス拡散層と、
前記ガス拡散層に積層されたセパレータと、を備え、
前記セパレータは、前記ガス拡散層側で反応ガスが流れるガス溝と前記ガス拡散層とは反対側で冷媒が流れる冷媒溝とが表裏一体に形成された流路部と、前記流路部の前記ガス溝側の第1面と、前記第1面とは反対側である前記冷媒溝側の第2面と、を含み、
前記流路部は、前記ガス拡散層に当接したリブ部と、前記ガス拡散層から退避した底部と、及び前記リブ部と前記底部との間で連続した側部と、を含み、
前記側部には、前記ガス溝に沿って延び前記第1面に対して窪んだ排水溝が形成されており、
前記排水溝の水力直径は、2μm以上であって200μm以下であり、
前記排水溝に沿って延びた方向に垂直な断面視で、前記第2面の前記排水溝に対向する対向部位は、前記冷媒溝側に突出している、燃料電池。
【請求項2】
前記断面視で、前記対向部位は、前記排水溝の内面に対して相補形状である、請求項1の燃料電池。
【請求項3】
前記断面視で、前記排水溝の内面から前記対向部位までの厚みは、前記側部の前記排水溝及び対向部位以外の部位での厚みと同じである、請求項1又は2の燃料電池。
【請求項4】
前記断面視で、前記排水溝の内面から前記対向部位までの厚みは、前記側部の前記排水溝及び対向部位以外の部位での厚みよりも薄い、請求項1又は2の燃料電池。
【請求項5】
前記断面視で、前記対向部位は湾曲している、請求項1乃至4の何れかの燃料電池。
【請求項6】
前記底部の前記第2面は、平坦であり、前記セパレータに隣接した他のセパレータに導通接続される、請求項1乃至5の何れかの燃料電池。
【請求項7】
前記側部には、少なくとも前記リブ部と前記排水溝との間で前記第1面に対して窪んでおり前記排水溝に連通した案内溝が形成されている、請求項1乃至6の何れかの燃料電池。
【請求項8】
前記案内溝の少なくとも一部は、前記リブ部に形成されている、請求項7の燃料電池。
【請求項9】
前記案内溝に対向する前記第2面の部位は、前記冷媒溝側に突出している、請求項7又は8の燃料電池。
【請求項10】
前記排水溝の水力直径は、前記案内溝の水力直径よりも小さい、請求項7乃至9の何れかの燃料電池。
【請求項11】
前記流路部は、前記リブ部に前記側部とは反対側で隣接した隣接側部と、前記隣接側部に前記リブ部と反対側で隣接し前記ガス拡散層から退避した隣接底部と、を含み、
前記隣接側部には、前記ガス溝に沿って延び前記第1面に対して窪んだ隣接排水溝が形成され、
前記第2面の前記隣接排水溝に対向する隣接対向部位は、前記冷媒溝側に突出している、請求項1乃至10の何れかの燃料電池。
【請求項12】
前記流路部は、前記リブ部に前記側部とは反対側で隣接した隣接側部と、前記隣接側部に前記リブ部と反対側で隣接し前記ガス拡散層から退避した隣接底部と、を含み、
前記隣接側部には、前記ガス溝に沿って延び前記第1面に対して窪んだ隣接排水溝が形成され、
前記第2面の前記隣接排水溝に対向する隣接対向部位は、前記冷媒溝側に突出しており、
前記案内溝は、前記側部から前記リブ部を介して前記隣接側部にまで延びて前記排水溝と前記隣接排水溝とに連通している、請求項7乃至10の何れかの燃料電池。
【請求項13】
前記セパレータは、前記ガス拡散層を介して前記膜電極接合体のカソード側に対向している、請求項1乃至12の何れかの燃料電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池に関する。
【背景技術】
【0002】
燃料電池のセパレータでは、一方側に反応ガスが流れるガス溝が形成され、他方側には冷媒が流れる構成が知られている。ガス溝側では、例えば発電反応によって生成水が発生する。このような生成水の一部は、水蒸気となって反応ガスと共に燃料電池から排出され得るが、残りの一部は液水となってガス溝内に滞留して、反応ガスの拡散性に影響を及ぼす場合がある。このような液水を燃料電池から排出するために、ガス溝の内面にこのガス溝に沿って延びた排水溝が設けられる場合がある(例えば特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
上述したように、ガス溝内を反応ガスと共に流れる水蒸気の一部は、セパレータのガス溝とは反対側を流れる冷媒と熱交換されて、ガス溝内で凝縮する場合がある。このような凝縮水が、排水溝以外の部位で多く発生すると、排水溝が有効利用されずに、排水性が低下する可能性がある。
【0005】
そこで本発明は、排水性が向上した燃料電池を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的は、膜電極接合体と、前記膜電極接合体に積層されたガス拡散層と、前記ガス拡散層に積層されたセパレータと、を備え、前記セパレータは、前記ガス拡散層側で反応ガスが流れるガス溝と前記ガス拡散層とは反対側で冷媒が流れる冷媒溝とが表裏一体に形成された流路部と、前記流路部の前記ガス溝側の第1面と、前記第1面とは反対側である前記冷媒溝側の第2面と、を含み、前記流路部は、前記ガス拡散層に当接したリブ部と、前記ガス拡散層から退避した底部と、及び前記リブ部と前記底部との間で連続した側部と、を含み、前記側部には、前記ガス溝に沿って延び前記第1面に対して窪んだ排水溝が形成されており、前記排水溝の水力直径は、2μm以上であって200μm以下であり、前記排水溝の延びた方向に垂直な断面視で、前記第2面の前記排水溝に対向する対向部位は、前記冷媒溝側に突出している、燃料電池によって達成できる。
【0007】
対向部位は、冷媒溝側に突出しているため、対向部位の第2面側の表面積が確保されている。これにより、第1面側で排水溝の内面に反応ガスと共に接する水蒸気と、第2面側で対向部位に接する冷媒との熱交換効率が向上している。このため、排水溝の内面上での水蒸気の凝縮が促進される。また、排水溝の水力直径が2μm以上であるため、排水溝の内面上で発生する凝縮水の量を確保できる。更に、排水溝の水力直径が200μm以下であるため、排水溝の毛管力によって排水溝の内面上で発生した凝縮水の保持力を確保できる。このようにして発生した凝縮水は、排水溝内で連続した液水となり、反応ガスの圧力を受けて排水溝内で反応ガスの下流側へと流れる。このように排水溝を有効利用することができ、燃料電池の排水性が向上している。
【0008】
前記断面視で、前記対向部位は、前記排水溝の内面に対して相補形状であってもよい。
【0009】
前記断面視で、前記排水溝の内面から前記対向部位までの厚みは、前記側部の前記排水溝及び対向部位以外の部位での厚みと同じであってもよい。
【0010】
前記断面視で、前記排水溝の内面から前記対向部位までの厚みは、前記側部の前記排水溝及び対向部位以外の部位での厚みよりも薄くてもよい。
【0011】
前記断面視で、前記対向部位は湾曲していてもよい。
【0012】
前記底部の前記第2面は、平坦であり、前記セパレータに隣接した他のセパレータに導通接続されていてもよい。
【0013】
前記側部には、少なくとも前記リブ部と前記排水溝との間で前記第1面に対して窪んでおり前記排水溝に連通した案内溝が形成されていてもよい。
【0014】
前記案内溝の少なくとも一部は、前記リブ部に形成されていてもよい。
【0015】
前記案内溝に対向する前記第2面の部位は、前記冷媒溝側に突出していてもよい。
【0016】
前記排水溝の水力直径は、前記案内溝の水力直径よりも小さくてもよい。
【0017】
前記流路部は、前記リブ部に前記側部とは反対側で隣接した隣接側部と、前記隣接側部に前記リブ部と反対側で隣接し前記ガス拡散層から退避した隣接底部と、を含み、前記隣接側部には、前記ガス溝に沿って延び前記第1面に対して窪んだ隣接排水溝が形成され、前記第2面の前記隣接排水溝に対向する隣接対向部位は、前記冷媒溝側に突出していてもよい。
【0018】
前記流路部は、前記リブ部に前記側部とは反対側で隣接した隣接側部と、前記隣接側部に前記リブ部と反対側で隣接し前記ガス拡散層から退避した隣接底部と、を含み、前記隣接側部には、前記ガス溝に沿って延び前記第1面に対して窪んだ隣接排水溝が形成され、前記第2面の前記隣接排水溝に対向する隣接対向部位は、前記冷媒溝側に突出しており、前記案内溝は、前記側部から前記リブ部を介して前記隣接側部にまで延びて前記排水溝と前記隣接排水溝とに連通していてもよい。
【0019】
前記セパレータは、前記ガス拡散層を介して前記膜電極接合体のカソード側に対向していてもよい。
【発明の効果】
【0020】
排水性が向上した燃料電池を提供できる。
【図面の簡単な説明】
【0021】
【
図1】
図1は、燃料電池の単セルの分解斜視図である。
【
図2】
図2は、単セルが複数積層された燃料電池の部分断面図である。
【
図3】
図3は、セパレータの流路部の一部を示した斜視図である。
【
図5】
図5Aは、第1比較例のセパレータの排水溝の拡大断面図であり、
図5Bは、第2比較例のセパレータの排水溝の拡大断面図である。
【
図6】
図6は、溝の水力直径と毛管力との関係を示したグラフである。
【
図7】
図7Aは、セパレータの流路部の一部を示した断面図であり、
図7Bは、案内溝を示した断面図である。
【
図8】
図8は、セパレータの流路部の一部を示した断面図である。
【発明を実施するための形態】
【0022】
図1は、燃料電池1の単セル2の分解斜視図である。燃料電池1は、単セル2が複数積層されることで構成される。
図1では、一つの単セル2のみを示し、その他の単セルについては省略してある。
図1には、互いに直交するX方向、Y方向、及びZ方向を示している。単セル2は、
図1に示したZ方向で他の単セルと共に積層される。即ち、Z方向は、複数の単セル2が積層される積層方向である。単セル2は略矩形状であり、単セル2の長手方向及び短手方向はそれぞれ
図1に示したY方向及びX方向に相当する。
【0023】
燃料電池1は、反応ガスとしてアノードガス(例えば水素)とカソードガス(例えば酸素)の供給を受けて発電する固体高分子型燃料電池である。単セル2は、膜電極ガス拡散層接合体10(以下、MEGA(Membrane Electrode Gas diffusion layer Assembly)と称する)と、MEGA10を支持する支持フレーム18と、MEGA10を挟持するアノードセパレータ20及びカソードセパレータ40(以下、セパレータと称する)とを含む。MEGA10は、カソードガス拡散層16c及びアノードガス拡散層16a(以下、拡散層と称する)を有している。支持フレーム18は、略枠状であって内周側がMEGA10の周縁領域に接合されている。セパレータ20及び40と、支持フレーム18が接合されたMEGA10とは、Z方向に積層されている。
【0024】
セパレータ20の2つの短辺の一方側には孔a1~a3が形成され、他方側には孔a4~a6が形成されている。同様に、支持フレーム18の2つの短辺の一方側には孔s1~s3が形成され、他方側には孔s4~s6が形成されている。同様に、セパレータ40の2つの短辺の一方側には孔c1~c3が形成され、他方側には孔c4~c6が形成されている。孔a1、s1、及びc1は連通してアノード出口マニホールドを画定する。同様に、孔a2、s2、及びc2は、冷媒入口マニホールドを、孔a3、s3、及びc3はカソード入口マニホールドを、孔a4、s4、及びc4はカソード出口マニホールドを、孔a5、s5、及びc5は冷媒出口マニホールドを、孔a6、s6、及びc6はアノード入口マニホールドを画定する。尚、本実施例の燃料電池1では、冷媒としては液体である冷却水が用いられる。
【0025】
セパレータ20は、MEGA10に対向する面20aと、面20aの反対側の面20bとを有している。セパレータ40は、MEGA10に対向する面40aと、面40aの反対側の面40bとを有している。セパレータ20の面20aには、アノード入口マニホールドとアノード出口マニホールドとを連通してアノードガスが流れるアノード溝20Aが形成されている。セパレータ40の面40aには、カソード入口マニホールドとカソード出口マニホールドとを連通してカソードガスが流れるカソード溝40Aが形成されている。セパレータ20の面20b、及びセパレータ40の面40bには、冷媒入口マニホールドと冷媒出口マニホールドとを連通し冷媒が流れる冷媒溝20B及び40Bがそれぞれ形成されている。アノード溝20A及び冷媒溝20Bはセパレータ20の長手方向(Y方向)に延びている。カソード溝40A及び冷媒溝40Bも同様に、セパレータ40の長手方向(Y方向)に延びている。これらの溝は、主に、XY平面において各セパレータのMEGA10に対向する領域に設けられている。
【0026】
セパレータ20及び40の材料は、ガス遮断性及び導電性を有した材料であり、具体的には、ステンレス鋼、チタン、チタン合金、アルミニウムといった金属、又はカーボンを圧縮した緻密質カーボン、又はこれら複合した材料である。また、セパレータ20及び40は、プレス加工により成形されたものであるが、これに限定されず、切削加工により成形されたものであってもよい。
【0027】
図2は、単セル2が複数積層された燃料電池1の模式的な部分断面図である。
図2では、1つの単セル2のみを図示し、その他の単セルについては省略してある。
図2が示す断面は、アノード溝20Aやカソード溝40A、及び冷媒溝20B及び40Bが延びたY方向に直交している。
【0028】
MEGA10は、拡散層16a及び16cと、膜電極接合体(以下、MEA(Membrane Electrode Assembly)と称する)11とを有している。MEA11は、電解質膜12と、電解質膜12の一方の面及び他方の面のそれぞれに形成されたアノード触媒層14a及びカソード触媒層14c(以下、触媒層と称する)とを含む。電解質膜12は、湿潤状態で良好なプロトン伝導性を示す固体高分子薄膜であり、例えばフッ素系のイオン交換膜である。触媒層14a及び14cは、例えば白金(Pt)などを担持したカーボン担体とプロトン伝導性を有するアイオノマとを含む触媒インクを、電解質膜12に塗布することにより形成される。拡散層16a及び16cは、ガス透過性及び導電性を有する材料、例えば炭素繊維や黒鉛繊維などの多孔質の繊維基材で形成されている。拡散層16a及び16cは、それぞれ触媒層14a及び14cに接合されている。尚、拡散層16a及び16cの少なくとも一方が、金属発泡焼結体や網状のエキスパンドメタル等の多孔体であってもよい。また、触媒層14aに撥水層が接合され、この撥水層に拡散層16aが接合されていてもよい。同様に、触媒層14cに撥水層が接合され、この撥水層に拡散層16cが接合されていてもよい。
【0029】
アノード溝20A及び冷媒溝20Bは、Y方向から見てその断面形状は波形状である。アノード溝20A及び冷媒溝20Bは、X方向、即ちアノード溝20A及び冷媒溝20Bが並んだ方向に繰り返し連続した、リブ部21、側部23、底部25、及び側部27により画定されている。リブ部21は、拡散層16aに当接している。底部25は、リブ部21と略平行であり拡散層16aから退避している。側部23は、リブ部21とこのリブ部21よりも+X方向側にある底部25との間で、このリブ部21及び底部25に対して傾斜して連続している。側部27は、底部25とこの底部25よりも+X方向側にあるリブ部21との間で、この底部25及びリブ部21に対して傾斜して連続している。側部23及び27は、この側部23及び27の間のリブ部21の、X方向の中心を通過するYZ平面に対して略対称である。
【0030】
拡散層16a側で、側部23、底部25、及び側部27により囲まれた空間が、セパレータ20のアノード溝20Aとして画定される。また、底部25は
図2Aに示した単セル2の上方側に隣接する不図示の他の単セルのカソードセパレータに当接する。この不図示のカソードセパレータ側で、リブ部21と、側部23及び27とにより囲まれた空間がセパレータ20の冷媒溝20Bとして画定される。このようにアノード溝20A及び冷媒溝20Bは、セパレータ20に表裏一体に形成されている。アノード溝20Aは、拡散層16a側でアノードガスが流れるガス溝の一例である。冷媒溝20Bは、拡散層16aとは反対側で冷媒が流れる冷媒溝の一例である。アノード溝20A及び冷媒溝20Bは、ガス溝と冷媒溝とが表裏一体に形成された流路部の一例である。セパレータ20の面20aは、流路部のアノード溝20A側の第1面の一例であり、セパレータ20の面20bは、面20aとは反対側である冷媒溝20B側の第2面の一例である。セパレータ40の面40aは、流路部のカソード溝40A側の第1面の一例であり、セパレータ40の面40bは、面40aとは反対側である冷媒溝40B側の第2面の一例である。
【0031】
同様に、カソード溝40A及び冷媒溝40Bは、Y方向から見てその断面形状は波形状である。カソード溝40A及び冷媒溝40Bは、X方向に繰り返し連続した、リブ部41、側部43、底部45、側部47により画定されている。リブ部41は、拡散層16cに当接している。底部45は、リブ部41と略平行であり拡散層16cから退避している。側部43は、リブ部41とこのリブ部41よりも+X方向側にある底部45との間で、このリブ部41及び底部45に対して傾斜して連続している。側部47は、底部45とこの底部45よりも+X方向側にあるリブ部41との間で、この底部45及びリブ部41に対して傾斜して連続している。側部43及び47は、この側部43及び47の間のリブ部41の、X方向の中心を通過するYZ平面に対して略対称である。
【0032】
拡散層16c側で、側部43、底部45、及び側部47により囲まれた空間が、セパレータ40のカソード溝40Aとして画定される。また、底部45は
図2に示した単セル2の下方側に隣接する不図示の他の単セルのカソードセパレータに当接する。この不図示のカソードセパレータ側で、リブ部41と、側部43及び47とにより囲まれた空間がセパレータ40の冷媒溝40Bとして画定される。このようにカソード溝40A及び冷媒溝40Bは、セパレータ40に表裏一体に形成されている。カソード溝40Aは、拡散層16c側でカソードガスが流れるガス溝の一例である。冷媒溝40Bは、拡散層16cとは反対側で冷媒が流れる冷媒溝の一例である。カソード溝40A及び冷媒溝40Bは、ガス溝と冷媒溝とが表裏一体に形成された流路部の一例である。
【0033】
側部27は、リブ部21に側部23とは反対側で隣接した隣接側部の一例である。隣接する2つの底部25の一方は、側部27にリブ部21と反対側で隣接し拡散層16aから退避した隣接底部の一例である。側部47は、リブ部41に側部43とは反対側で隣接した隣接側部の一例である。隣接する2つの底部45の一方は、側部47にリブ部41と反対側で隣接し拡散層16cから退避した隣接底部の一例である。
【0034】
図3は、セパレータ40の流路部の一部を示した斜視図である。
図3では、カソードガスが流れるセパレータ40の面40a側を示している。
図3において、カソードガス及び冷媒は+Y方向に流れる。セパレータ40の面40aには、排水溝431及び471や案内溝411が形成されている。具体的には、排水溝431及び471は、それぞれ側部43及び47にカソード溝40Aに沿って延びて形成されている。詳細には、排水溝431及び471はカソード溝40Aと平行である。排水溝471は、側部47にカソード溝40Aに沿って延び面40aに窪んだ隣接排水溝の一例である。また、案内溝411は、リブ部41とそのリブ部41に隣接した側部43及び47の一部とに、X方向に延びて形成されており、Y方向に所定のピッチで複数形成されている。これら案内溝411は、一端が排水溝431に連通し、他端が排水溝471に連通している。尚、
図3から明らかであるが、案内溝411や、排水溝431及び471の幅や深さは、カソード溝40Aや冷媒溝40Bの幅や深さよりも小さい。
【0035】
図4Aは、セパレータ40の流路部の一部を示した断面図である。
図4Aの断面は、カソード溝40A等が延びたY方向に垂直であり、
図4Aは、排水溝431及び471がそれぞれ延びた方向に垂直な断面から見た場合での、セパレータ40の流路部の一部を示しているともいえる。排水溝431は、Y方向に垂直な方向から見て、側部43の略中央部に形成されている。排水溝471についても同様である。排水溝431の幅や深さは、これら排水溝431が延びた方向で略一定であるがこれに限定されない。排水溝471についても同様である。
【0036】
排水溝431及び471は、セパレータ40の面40aに窪んで形成されている。このため、発電反応により生じた生成水が排水溝431及び471に捕捉される。排水溝431及び471で捕捉された液水は、カソードガスの圧力を受けて排水溝431及び471に沿ってカソードガスの下流側へと流れ、カソードガス排出マニホールドを介して燃料電池1の外部へ排出される。尚、案内溝411や対向部位412については、詳しくは後述する。
【0037】
図4Bは、
図4Aの排水溝431の拡大図である。尚、
図4Bでは案内溝411については省略してある。排水溝431は、排水溝431が延びた方向に垂直な断面視で略半円状である。面40bの排水溝431に対向する対向部位432は、冷媒溝40B側に突出している。このため、対向部位432の表面積が確保されている。ここで、拡散層16c内やカソード溝40A内では、発電反応により生じた熱や、不図示のコンプレッサにより圧縮されて高温となったカソードガスが流れることにより、比較的高温となっている。これにより、カソード溝40A内では、発電反応により生じた生成水の一部や、燃料電池1に供給される前にカソードガスに含まれていた水分が、水蒸気となって流れる。これに対して、カソード溝40Aの反対側の冷媒溝40Bでは、低温の冷媒が流れている。ここで、上述したように対向部位432の表面積が確保されているため、排水溝431の内面に接する水蒸気と、対向部位432に接する冷媒との熱交換効率が向上している。即ち、排水溝431の内面が、排水溝431以外の側部43の面40aよりも、冷媒により冷却されやすい構成となっている。このため、排水溝431内での水蒸気の凝縮が促進されている。これにより、排水溝431内で発生した凝縮水が連続的に流れ、このように排水溝431を有効利用されて燃料電池1の排水性が向上している。排水溝471、及び面40bの排水溝471に対向する対向部位472についても、同様である。
【0038】
次に、複数の比較例について説明する。尚、複数の比較例では本実施例と類似の符号を付することにより重複する説明を省略する。
図5Aは、第1比較例のセパレータ40xの排水溝431xの拡大断面図である。セパレータ40xの側部43xに形成された排水溝431xは、面40axに窪んで形成されているが、面40bxの排水溝431xに対向する対向部位432xは冷媒溝40Bx側には突出しておらずに平坦である。このため、比較例での対向部位432xの表面積は、本実施例での対向部位432の表面積よりも小さい。従って、本実施例の方が、第1比較例よりも上述した熱交換効率が向上しており、排水性が向上している。
【0039】
図5Bは、第2比較例のセパレータ40yの排水溝431yの拡大断面図である。第1比較例のセパレータ40xと同様に、第2比較例のセパレータ40yの側部43yに形成された排水溝431yは、面40ayに窪んで形成され、面40byの排水溝431yに対向する対向部位432yは冷媒溝40By側には突出しておらずに平坦である。また、第1比較例とは異なり、側部43yは側部43xよりも薄く、排水溝431yの内面と対向部位432yとの間の厚みは、第1比較例の排水溝431xの内面と対向部位432xとの間の厚みや、本実施例の排水溝431の内面と対向部位432との間の厚みよりも薄い。このように、第2比較例の排水溝431yの内面と対向部位432yとの間の距離が近いため、排水溝431yの内面に接する水蒸気と対向部位432yに接する冷媒との熱交換効率が向上する。しかしながら、このような排水溝431yの内面と対向部位432yとの間の厚みが薄い部分では剛性が低下する可能性がある。本実施例では、対向部位432が冷媒溝40B側に突出していることにより、排水溝431での側部43の厚みが確保されており、これにより剛性も確保されている。
【0040】
本実施例では、第1及び第2比較例とは異なり、
図4Bに示すように、排水溝431が延びた方向に垂直な断面視で、対向部位432は排水溝431の内面に対して相補形状である。即ち、対向部位432は、排水溝431の内面と同様に湾曲しており、対向部位432の形状と排水溝431の内面の形状とは略同じである。このため、排水溝431の内面から対向部位432までの間の厚みは、略均一である。これにより、排水溝431の内面から対向部位432までの間で部分的に厚みが薄くなることが抑制されており、剛性が確保されている。
【0041】
また、本実施例では、第1及び第2比較例とは異なり、
図4Bに示すように、排水溝431の内面から対向部位432までの厚みは、側部43の排水溝431及び対向部位432以外の部位での厚みと略同じである。このため、排水溝431の内面から対向部位432までの厚みが、側部43の排水溝431及び対向部位432以外の部位での厚みよりも薄くなりすぎることによる、排水溝431及び対向部位432周辺での剛性の低下が抑制されている。また、排水溝431の内面から対向部位432までの厚みが、側部43の排水溝431及び対向部位432以外の部位での厚みよりも厚くなりすぎることによる、熱交換率の低下、及び冷媒の圧損の増大が抑制されている。また、上述したように、対向部位432は湾曲しているため、このような構成によっても冷媒の圧損の増大が抑制されている。
【0042】
次に、排水溝431の水力直径について説明する。溝の水力直径とは、その溝の断面積と等価とみなせる断面積を有した円管の直径を意味する。従って、溝の水力直径が大きいほど、その溝の断面積が大きいことを示し、その溝で捕捉できる液水の量も多いことを示す。従って、溝による排水性を考慮すると、その溝の水力直径は大きいほどよい。しかしながら、溝の水力直径が増大するほど、溝の毛管力が低下することが知られている。
図6は、溝の水力直径と毛管力との関係を示したグラフである。横軸は水力直径を示し、縦軸は毛管力を示している。
図6に示すように、水力直径と毛管力との関係は反比例の関係にある。ここで、毛管力が大きいほどその溝の液水の保持力が大きいことを示す。従って、水力直径が大きいほど、その溝で捕捉できる液水の量は確保できるが、毛管力は低下し、一度溝で捕捉した液水が溝から脱離し、この溝を有効利用して液水を排出することが困難となる可能性がある。
【0043】
従って、本実施例では、排水溝431の水力直径は、2μm以上であって200μm以下に設定されている。排水溝431の水力直径が2μm以上であるため、排水溝431の内面で発生する凝縮水の量が確保されている。また、排水溝431の水力直径が200μm以下であるため、排水溝431の毛管力によって排水溝431の内面上で発生した凝縮水の保持力が確保されている。即ち、このような凝縮水が、カソードガスの圧力や燃料電池1から外部に加えられた振動、その他重力の作用等によって排水溝431から脱離することが抑制される。このため、排水溝431が有効利用されて燃料電池1の排水性が向上している。尚、排水溝431の毛管力により、排水溝431以外の部位で発生した液水を排水溝431内に吸引することが容易となり、液水の捕捉性も確保されている。排水溝471についても同様である。
【0044】
排水溝431の水力直径は、5μm以上であって150μm以下が好ましい。排水溝431の水力直径が5μm以上であることにより、上述した2μm以上の場合よりも排水溝431の毛管力は低下するが排水溝431の内面で発生する凝縮水の量を確保できる。また、排水溝431の水力直径が150μm以下であることにより、上述した200μm以下の場合よりも排水溝431の内面で発生する凝縮水の量は低下するが毛管力を確保することができる。排水溝431の水力直径がこのような範囲に設定されていることにより、排水溝431の内面で発生する凝縮水の量の確保と毛管力の確保とを両立でき、排水溝431による排水性が向上している。排水溝431の水力直径は、更に好ましくは7μm以上であって150μm以下であり、更に好ましくは10μm以上であって100μm以下である。尚、排水溝431の水力直径は小さいほど、排水溝431の形成やその寸法精度を維持することが困難となる場合があるため、このような事情を考慮して適宜設定することが望ましい。
【0045】
尚、排水溝431の内面から対向部位432までの厚みは、側部43の排水溝431及び対向部位432以外の部位での厚みと略同じであるが、これに限定されない。上述したように、排水溝431の内面から対向部位432までが厚すぎると、上述したように熱交換効率が低下し、薄すぎると剛性が低下する。このため、例えば、上記の厚みは、側部43の排水溝431及び対向部位432以外の部位での厚みの0.8倍から1.2倍程度が望ましい。
【0046】
また、排水溝431の内面から対向部位432までの厚みは、側部43の剛性を確保できる範囲で、側部43の排水溝431及び対向部位432以外の部位での厚みよりも薄くてもよい。対向部位432が冷媒溝40B側に突出しつつ、厚みを他の部位よりも薄くすることで、排水溝431を冷却する効果を高め、排水溝431内で水蒸気の凝縮を促進できる。
【0047】
本実施例での排水溝431は、側部43に形成されており底部45には形成されていない。また、底部45の面40bは、平坦に形成されている。例えば、底部45の面40aに窪んだ排水溝を形成することも考えられる。しかしながら、底部45の面40aに排水溝を形成すると、底部45の剛性が部分的に低下して、底部45の面40bを平坦に維持することが困難となる可能性がある。また、底部45の面40bの全面に亘って隣接するセパレータが当接する場合、面40bの底部45の排水溝に対向する部位を冷媒溝40B側に突出させることは困難である。ここで、セパレータ40の底部45の面40bは、セパレータ40に隣接するセパレータに当接して、両者は導通接続され、両者間の接触抵抗は小さい方が好ましい。このような接触抵抗の増大を抑制するためには、セパレータ40の底部45の面40bと隣接するセパレータとの密着面積が大きいことが望ましく、そのためには底部45の面40bが平坦であることが望ましい。本実施例では、排水溝431を底部45ではなく、側部43に設けることにより、底部45の面40bを平坦に維持でき、セパレータ間の接触抵抗の増大が抑制されている。
【0048】
次に、本実施例の案内溝411について説明する。
図7Aは、セパレータ40の流路部の一部を示した断面図である。
図7Aの断面は、カソード溝40Aが延びたY方向に直交するX方向に垂直である。案内溝411は、リブ部41と、側部43及び47の一部分とに亘って形成され、X方向に延びている。案内溝411の幅、深さは部位によらずに略一定であるが、これに限定されない。ここで、案内溝411は、排水溝431よりもリブ部41側の側部43で面40aに対して窪んでいる。このため、排水溝431よりもリブ部41側の側部43の面40aに液水が付着した場合であっても、カソード溝40A内を流れるカソードガスの圧力により、+Y方向に流れて側部43で案内溝411に捕捉される。このように案内溝411で捕捉された液水は排水溝431へと案内され、液水は案内溝411から排水溝431へと連続的に流れる。このように排水性が向上している。
【0049】
また、上述したように案内溝411は、排水溝431のみならず、排水溝471にも連通している。このため、リブ部41で案内溝411に捕捉された液水は、この案内溝411に連通した排水溝431及び471の少なくとも何れかに案内されるため、排水性が向上している。
【0050】
また、案内溝411は、排水溝431及び471よりも、拡散層16cに当接するリブ部41側に形成されている。これにより、発電反応によりMEA11のカソード側で発生した生成水を、案内溝411で容易に捕捉することができる。
【0051】
上述したように、案内溝411は、その一端が排水溝431に連通しており、排水溝431を通過するように連通しているのではない。従って、案内溝411は、排水溝431と底部45との間の側部43の領域には形成されていない。案内溝411が排水溝431に通過するように連通している場合には、リブ部41側から排水溝431に向かって案内溝411を流れる液水が排水溝431を通過して、排水溝431に案内できない可能性がある。本実施例では案内溝411の一端が排水溝431に連通していることにより、案内溝411から排水溝431へと液水を適切に案内できる。同様に、案内溝411の他端も排水溝471に連通している。
【0052】
図7Bは、案内溝411を示した断面図である。
図7Bの断面は、案内溝411が延びた方向に垂直である。排水溝431と同様に、面40bの案内溝411に対向した対向部位412は面40b側に突出している。これにより、上述した排水溝431と同様に、案内溝411の内面上での凝縮水の発生が促進され、排水性が向上している。
【0053】
ここで、排水溝431及び471の各水力直径は、案内溝411の水力直径よりも小さい。ここで、
図6に示したように、溝の水力直径が小さいほど毛管力が増大するため、排水溝431及び471の各毛管力は、案内溝411の毛管力よりも大きい。これにより、案内溝411で捕捉された液水や案内溝411で発生した凝縮水は、毛管力が大きい排水溝431及び471の何れかに流れることが促進され、排水性が向上している。本実施例では、排水溝431及び471と案内溝411との深さは略同じであり、排水溝431及び471のそれぞれは案内溝411よりも幅が狭く形成されているが、これに限定されず、例えば、排水溝431及び471と案内溝411との幅が略同じであり、排水溝431及び471のそれぞれが案内溝411よりも深さが浅くてもよい。
【0054】
尚、案内溝411についても、排水溝431と同様に、案内溝411の水力直径は、2μm以上であって200μm以下であるが、5μm以上であって150μm以下でもよい。また、案内溝411の水力直径は、好ましくは7μm以上であって150μm以下であり、更に好ましくは10μm以上であって100μm以下である。案内溝411の水力直径をこのような範囲に設定することにより、案内溝411が保持できる液水の量を確保しつつ液水の保持力も確保することができる。しかしながら、案内溝411の水力直径は必ずしも上記範囲を満たす必要はない。案内溝411が満水になると案内溝411から排水溝431及び471の何れかに液水が溢れ出るからである。
【0055】
排水溝431及び471と案内溝411とが窪んで形成されたセパレータ40の面40aが重力方向上方を向くようにして燃料電池1が使用される場合には、重力の作用によって拡散層16c側から面40a側に落下した液水も、排水溝431及び471や案内溝411で容易に捕捉することができる。
【0056】
排水溝431及び471や案内溝411は、親水処理がなされていることが望ましい。これにより、排水溝431及び471や案内溝411内での液水の流動性が向上し、排水性が向上する。親水処理としては、周知の種々の技術を適用可能であり、例えば、プラズマ処理、紫外線処理、親水被膜の形成等が挙げられる。
【0057】
案内溝411は、排水溝431及び471の双方に連通しているが、何れか一方にのみ連通していてもよい。この場合も、案内溝411から排水溝431及び471の一方に液水を案内することができるからである。また、案内溝411はリブ部41にも形成されているが、リブ部41には形成されておらずに側部43及び47の少なくとも一方にのみ形成されていてもよい。例えば、案内溝411がリブ部41には形成されておらずに側部43にのみ形成されている場合には、案内溝411は、側部43の、リブ部41と排水溝431との間の領域に形成されて排水溝431に連通していればよい。この場合も、側部43に形成された案内溝411により液水を捕捉でき、案内溝411から排水溝431に液水を案内できるからである。
【0058】
側部43における排水溝431の位置は、リブ部41及び底部45の何れからも同じ距離となるように側部43の略中央に形成されているが、これに限定されない。排水溝431が延びた方向は、-Z方向から見て、カソード溝40Aの延びた方向に対して僅かに傾斜していてもよい。また、排水溝431は、排水性を考慮すると直線状に延びていることが好ましいが、-Z方向から見て、カソード溝40Aが延びた方向に対して緩やかに湾曲した形状であってもよいし、複数の直線状の部分が異なる角度で連通した形状でもよい。排水溝471についても同様である。また、排水溝431及び471は平行でなくてもよい。側部43及び47の何れか一方にのみ排水溝が形成されていてもよい。
【0059】
案内溝411は、-Z方向から見て、カソード溝40Aの延びた方向に対して直交する方向に延びているが、これに限定されない。案内溝411は、-Z方向から見て直線状であるがこれに限定されず、湾曲した形状であってもよいし、複数の直線状の部分が異なる角度で連通した形状でもよい。また、案内溝411は、-Z方向から見て排水溝431及び471に直交するように連通しているが、これに限定されない。例えば、側部43で案内溝411は、カソードガスが流れる方向に沿うように、+Y方向と+X方向との間の方向に延びて排水溝431に接続されていてもよい。同様に、側部47で案内溝411は、カソードガスが流れる方向に沿うように、+Y方向と-X方向との間の方向に延びて排水溝471に接続されていてもよい。Y方向に並んだ複数の案内溝411のピッチは、一定に限定されない。例えば、液水が発生しやすい部分により狭いピッチで複数の案内溝411を形成してもよい。
【0060】
図8は、セパレータ20の流路部の一部を示した断面図である。
図8は、セパレータ20のアノード溝20A及び冷媒溝20Bが延びた方向に対して垂直な断面図である。セパレータ40と同様に、アノード側のセパレータ20においても、側部23及び27にはそれぞれ排水溝231及び271が形成され、側部23及び27とリブ部21とには排水溝231及び271に連通した複数の案内溝211が形成されている。これらの排水溝231及び271や案内溝211に対向する面20bの対向部位232、272、及び212は、冷媒溝20B側に突出しているため、排水性が向上している。尚、セパレータ20のアノード溝20A及び冷媒溝20Bの形状及び大きさは、それぞれセパレータ40のカソード溝40A及び冷媒溝40Bの形状及び大きさと略同じであり、アノード溝20A及び冷媒溝20Bの形状とカソード溝40A及び冷媒溝40Bの形状とはXY平面で略対称である。
【0061】
本実施例では、排水溝231及び271や案内溝211は、セパレータ20の重力方向下方を向いた面20aに窪んで形成されている。ここで、排水溝231及び271や案内溝211内の液水が重力によってこれら溝から脱落しない程度に、これらの溝の幅や深さが設定されていることが望ましい。セパレータ40の排水溝431及び471や案内溝411についても同様である。このような構成により、これらのセパレータ20及び40を有する燃料電池1の向きが重力方向に対して何れの向きで使用されても、液水が重力により排水溝や案内溝から脱落することが抑制され、排水性が向上する。
【0062】
上述したセパレータ40のカソード溝40A及び冷媒溝40Bや、セパレータ20のアノード溝20A及び冷媒溝20Bは、直線状に延びているが、これに限定されず、少なくとも一方のセパレータの溝が波状に延びていてもよい。例えば、セパレータ40のカソード溝40A及び冷媒溝40Bが波状に延びている場合には、側部43及び47や排水溝431及び471も波状に延びて形成される。
【0063】
上記実施例では、アノード側のセパレータ20に排水溝231及び271が形成され、カソード側のセパレータ40にも排水溝431及び471が形成されているが、これに限定されない。セパレータ20及び40の何れか一方にのみ、排水溝が形成されていてもよい。尚、発電反応による生成水の発生量は、一般的にアノード側よりもカソード側での方が多いため、カソード側のセパレータ40に排水溝431及び471の少なくとも一方を設けることが好ましい。
【0064】
上記実施例では、セパレータ20の側部23及び27は、互いに略平行なリブ部21及び底部25に対して傾斜しているが、これに限定されず、例えば、側部23及び27のそれぞれがリブ部及び底部25に対して略直交してもよい。セパレータ40の側部43及び47についても同様である。
【0065】
上述したセパレータ20及び40のそれぞれは、一層構造であるが、複数の層から構成されるものであってもよい。例えば、金属層と導電性樹脂層とを含むセパレータであってもよい。金属層は、例えば金属板である。導電性樹脂層は、例えば絶縁性の樹脂バインダ中に、金属製である導電性の粒子が分散されたものである。
【0066】
上記のセパレータは、冷媒として液体を用いた水冷式の燃料電池に採用するものに限定されず、例えば冷媒として空気を用いた空冷式の燃料電池に採用してもよい。
【0067】
次に排水溝の変形例について説明する。
図9A~
図9Cは、複数の変形例の排水溝の拡大断面図である。尚、変形例については、上述した実施例と類似の符号を付することにより重複する説明を省略する。
図9A~
図9Cは、それぞれ、第1~第3変形例の排水溝431a~431cを示した拡大断面図である。
図9A~
図9Cは、
図4Bに対応している。
【0068】
図9Aに示すように、排水溝431aは、セパレータ401の側部43の面40aに窪んでおり、断面視で略台形状である。
図9Bに示すように、排水溝431bは、セパレータ402の側部43の面40aに窪んでおり、断面視で略三角形状である。
図9Cに示すように、排水溝431cは、セパレータ403の側部43の面40aに窪んで互いに沿うように2つ形成され、2つの排水溝431cはそれぞれ断面視で略半円状である。また、2つの排水溝431cに対応するように2つの対向部位432cが形成されている。何れの対向部位432a~432cも冷媒溝40B側に突出し、排水溝431a~431cの何れの水力直径も、上述した排水溝431と同様の範囲に設定されているため、排水性が確保されている。
【0069】
また、対向部位432a~432cは、それぞれ、排水溝431a~431cの内面に対して相補形状であるため、排水溝431a~431cや対向部位432a~432c周辺での剛性の低下も抑制されている。また、第1変形例では、排水溝431aの内面から対向部位432aまでの厚みは、側部43の排水溝431a及び対向部位432a以外の部位での厚みとは略同じである。第2及び第3変形例でも同様である。このような構成によっても、熱交換効率が確保され剛性の低下が抑制されている。尚、
図9A~
図9Cで示されている角部に、アールが設けられていてもよい。
【0070】
また、上述した略台形状や略三角形状の排水溝が単一の側部に対して複数設けられていてもよい。また、単一の側部に略半円状の排水溝、略台形状の排水溝、略三角形状の排水溝の少なくとも2つが設けられていてもよい。以上のように、排水溝の断面形状は、製造の容易性や液水の捕捉性等を考慮して、適宜設計することが望ましい。尚、案内溝411も、上記の変形例と同様に、略台形状や略三角形状であってもよいし、このような形状の微細溝が隣接して設けられていてもよい。
【0071】
以上本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。
【符号の説明】
【0072】
1 燃料電池
2 単セル
20 アノードセパレータ
40 カソードセパレータ
21、41 リブ部
25、45 底部
23、27、43、47 側部
211、411 案内溝
231、271、431、471 排水溝
212、232、272、412、432、472 対向部位
20A アノード溝
40A カソード溝
20B、40B 冷媒溝
20a、40a 面(第1面)
20b、40b 面(第2面)