IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コーニンクレッカ フィリップス エヌ ヴェの特許一覧

<>
  • 特許-マイクロコントローラへの動力供給 図1
  • 特許-マイクロコントローラへの動力供給 図2
  • 特許-マイクロコントローラへの動力供給 図3
  • 特許-マイクロコントローラへの動力供給 図4
  • 特許-マイクロコントローラへの動力供給 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-15
(45)【発行日】2022-02-24
(54)【発明の名称】マイクロコントローラへの動力供給
(51)【国際特許分類】
   H02M 7/12 20060101AFI20220216BHJP
   H02J 50/10 20160101ALI20220216BHJP
   H02J 1/00 20060101ALI20220216BHJP
【FI】
H02M7/12 C
H02J50/10
H02J1/00 306B
【請求項の数】 15
(21)【出願番号】P 2020533749
(86)(22)【出願日】2018-12-18
(65)【公表番号】
(43)【公表日】2021-02-25
(86)【国際出願番号】 EP2018085613
(87)【国際公開番号】W WO2019121755
(87)【国際公開日】2019-06-27
【審査請求日】2021-12-15
(31)【優先権主張番号】17208321.4
(32)【優先日】2017-12-19
(33)【優先権主張国・地域又は機関】EP
【早期審査対象出願】
(73)【特許権者】
【識別番号】590000248
【氏名又は名称】コーニンクレッカ フィリップス エヌ ヴェ
【氏名又は名称原語表記】KONINKLIJKE PHILIPS N.V.
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【弁理士】
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】フェルトマン,エディ へリット
【審査官】土井 悠生
(56)【参考文献】
【文献】特開2016-220351(JP,A)
【文献】特表2017-505097(JP,A)
【文献】米国特許出願公開第2017/0012553(US,A1)
【文献】独国特許出願公開第102015211548(DE,A1)
【文献】米国特許第5726873(US,A)
【文献】特開2017-118641(JP,A)
【文献】米国特許出願公開第2016/268903(US,A1)
【文献】特開平10-271829(JP,A)
【文献】中国特許出願公開第102545354(CN,A)
【文献】米国特許出願公開第2017/012553(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02M 7/00-7/40
H02J 50/10
H02J 1/00
(57)【特許請求の範囲】
【請求項1】
複数の出力ポートを有し、各出力ポートが、当該出力ポートとハイサイドDC電圧レールとの間に電気的に接続された関連するハイサイドスイッチと、当該出力ポートとローサイドDC電圧レールとの間に電気的に接続された関連するローサイドスイッチとを備える、マイクロコントローラ回路と、
使用中に前記ハイサイドDC電圧レール及び前記ローサイドDC電圧レールによって給電されるよう構成される処理モジュールと、
前記ハイサイドDC電圧レールへ電気的に接続されたキャパシタンスと
を有し、
前記複数の出力ポートのうちの少なくとも1つの出力ポートは、ホストデバイスの動作の少なくとも1つの様相を制御する制御信号を出力するよう構成され、前記処理モジュールは、前記制御信号を出力するために前記少なくとも1つの出力ポートの前記関連するハイサイドスイッチ及び前記関連するローサイドスイッチのスイッチングを制御するよう構成され、
前記複数の出力ポートは、使用中にAC波形を受けるよう構成される第1出力ポートを更に有し、前記処理モジュールは、前記ハイサイドDC電圧レールと前記ローサイドDC電圧レールとの間で整流された電圧を供給するために、前記AC波形の位相をモニタし、該AC波形の位相に基づいて前記第1出力ポートの前記関連するハイサイドスイッチ及び前記関連するローサイドスイッチのスイッチングを制御するよう構成される、マイクロコントローラ装置であって、
前記処理モジュールは、
前記第1出力ポートでの前記AC波形の電圧と、前記ハイサイドDC電圧レールでの電圧とをモニタし、
前記第1出力ポートでの前記AC波形のモニタされた電圧が、ゼロと前記ハイサイドDC電圧レールでのモニタされた電圧との間にあるときに、前記第1出力ポートの前記関連するハイサイドスイッチをターンオフされた状態に保ち、
前記第1出力ポートでの前記AC波形のモニタされた電圧が、前記ハイサイドDC電圧レールでのモニタされた電圧よりも高いときに、前記第1出力ポートの前記関連するハイサイドスイッチをターンオンされた状態に保つ
よう構成される、
ことを特徴とするマイクロコントローラ装置。
【請求項2】
前記複数の出力ポートは、使用中に前記AC波形を受けるよう構成される第2出力ポートを更に有し、前記マイクロコントローラ装置は、前記第1出力ポート及び前記第2出力ポートにわたって前記AC波形を受けるよう構成され、
前記処理モジュールは、
前記整流された電圧を供給するために、前記AC波形の前記位相に基づいて前記第2出力ポートの前記関連するハイサイドスイッチ及び前記関連するローサイドスイッチのスイッチングを制御し、
前記第1出力ポートでの前記AC波形のモニタされた電圧が、ゼロと前記ハイサイドDC電圧レールでのモニタされた電圧との間にあるときに、前記第2出力ポートの前記関連するローサイドスイッチをターンオフされた状態に保ち、
前記第1出力ポートでの前記AC波形のモニタされた電圧が、前記ハイサイドDC電圧レールでのモニタされた電圧よりも高いときに、前記第2出力ポートの前記関連するローサイドスイッチをターンオンされた状態に保つ
よう更に構成される、
請求項1に記載のマイクロコントローラ装置。
【請求項3】
前記キャパシタンスは、前記ハイサイドDC電圧レールと前記ローサイドDC電圧レールとの間に電気的に接続される、
請求項2に記載のマイクロコントローラ装置。
【請求項4】
前記キャパシタンスは、前記ハイサイドDC電圧レールと前記ローサイドDC電圧レールとの間で更なるキャパシタンスと直列に電気的に接続され、前記AC波形は、前記第1出力ポートと、前記キャパシタンスと前記更なるキャパシタンスとの間のノードとの間に印加される、
請求項1に記載のマイクロコントローラ装置。
【請求項5】
前記処理モジュールは、前記ハイサイドDC電圧レール上で電圧リプルをモニタすることによって前記AC波形の前記位相をモニタするよう構成される、
請求項1乃至4のうちいずれか一項に記載のマイクロコントローラ装置。
【請求項6】
前記処理モジュールは、前記マイクロコントローラ装置のモニタリングポートでの電流又は電圧のゼロ交差のモニタリングによって前記AC波形の前記位相をモニタするよう構成される、
請求項1乃至5のうちいずれか一項に記載のマイクロコントローラ装置。
【請求項7】
前記モニタリングポートは前記第1出力ポートであり、前記処理モジュールは、ゼロ交差が期待されるモニタリング期間中に前記AC波形のゼロ交差について前記第1出力ポートのモニタリングを可能にするように前記第1出力ポートの前記関連するハイサイドスイッチ及び前記関連するローサイドスイッチを制御するよう構成される、
請求項6に記載のマイクロコントローラ装置。
【請求項8】
前記処理モジュールは、前記第1出力ポートの前記関連するハイサイドスイッチ及び前記関連するローサイドスイッチを制御するための少なくとも1つのスイッチ制御信号を生成するように前記AC波形の前記位相にロックされる位相ロックループを実装するよう構成される、
請求項1乃至7のうちいずれか一項に記載のマイクロコントローラ装置。
【請求項9】
前記ハイサイドスイッチ及び前記ローサイドスイッチは、ボディダイオードを備えたMOSFETスイッチを有する、
請求項1乃至8のうちいずれか一項に記載のマイクロコントローラ装置。
【請求項10】
前記AC波形を生成する電力モジュールを更に有し、該電力モジュールは、ホスト製品の要素の動きからAC波形を生成するエネルギハーベスティングモジュール及びワイヤレス受電器のうちの少なくとも1つを有する、
請求項1乃至のうちいずれか一項に記載のマイクロコントローラ装置。
【請求項11】
請求項1乃至10のうちいずれか一項に記載のマイクロコントローラ装置を有する電子デバイス。
【請求項12】
前記マイクロコントローラ装置の前記ハイサイドDC電圧レールは、前記マイクロコントローラ装置の外部の少なくとも1つのモジュールに給電するよう構成される外部DC電圧レールへ電気的に接続される、
請求項11に記載の電子デバイス。
【請求項13】
請求項1乃至10のうちいずれか一項に記載の少なくとも1つのマイクロコントローラ装置、又は請求項11若しくは12に記載の電子デバイスを有するシェーバー製品であって、
前記マイクロコントローラ装置は、前記シェーバー製品の切削要素に又はその中に位置する、
シェーバー製品。
【請求項14】
前記マイクロコントローラ装置は、使用中に前記切削要素で状態を検知し、該検知された状態に応じて前記シェーバー製品の動作の少なくとも1つの様相を調整するよう構成される、
請求項13に記載のシェーバー製品。
【請求項15】
複数の出力ポートを有し、各出力ポートが、当該出力ポートとハイサイドDC電圧レールとの間に電気的に接続された関連するハイサイドスイッチと、当該出力ポートとローサイドDC電圧レールとの間に電気的に接続された関連するローサイドスイッチとを備える、マイクロコントローラ装置に給電する方法であって、前記マイクロコントローラ装置は、処理モジュールと、前記ハイサイドDC電圧レールへ電気的に接続されたキャパシタンスとを更に有し、前記方法は、
ホストデバイスの動作の少なくとも1つの様相を制御する制御信号を出力するように前記複数の出力ポートのうちの少なくとも1つの出力ポートの前記関連するハイサイドスイッチ及び前記関連するローサイドスイッチのスイッチングを制御することと、
前記ハイサイドDC電圧レール及び前記ローサイドDC電圧レールによって前記処理モジュールに給電することと、
前記複数の出力ポートのうちの第1出力ポートでAC波形を受けることと、
前記第1出力ポートで前記AC波形の位相をモニタすることと、
前記ハイサイドDC電圧レールと前記ローサイドDC電圧レールとの間で整流された電圧を供給するために、前記AC波形の位相に基づいて前記第1出力ポートの前記関連するハイサイドスイッチ及び前記関連するローサイドスイッチのスイッチングを制御することと
を有する、前記方法において、
前記第1出力ポートでの前記AC波形の電圧と、前記ハイサイドDC電圧レールでの電圧とをモニタすることと、
前記第1出力ポートでの前記AC波形のモニタされた電圧が、ゼロと前記ハイサイドDC電圧レールでのモニタされた電圧との間にあるときに、前記第1出力ポートの前記関連するハイサイドスイッチをターンオフされた状態に保つことと、
前記第1出力ポートでの前記AC波形のモニタされた電圧が、前記ハイサイドDC電圧レールでのモニタされた電圧よりも高いときに、前記第1出力ポートの前記関連するハイサイドスイッチをターンオンされた状態に保つことと
を更に有することを特徴とする方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、マイクロコントローラの動力供給、シェーバー製品のようなパーソナルケア製品のマイクロコントローラに動力を供給することに係る。
【背景技術】
【0002】
マイクロコントローラは、少なくとも1つのプロセッサ及びいくつかのメモリを通常備えており、様々な汎用入出力(general purpose input-output;GPIO)ポートを介して何らかの検知及び/又は制御機能を提供するよう構成可能である比較的に小さい制御回路である。
【0003】
マイクロコントローラは、検知及び/又は制御機能を提供するように、例えば、製品の動作が優勢な動作条件に適応されることを可能にするように、様々な電子製品に組み込まれ得る。
【0004】
マイクロコントローラは、使用中に動力を供給される必要がある。しかし、いくつかの場合に、製品内のマイクロコントローラの場所に応じて、製品の電源から、例えば、バッテリから又は幹線電源から得られる、マイクロコントローラへの適切なDC電力を供給することは、簡単でないことがある。
【0005】
本開示の実施形態は、マイクロコントローラの動力供給のための方法及び装置を対象とする。
【0006】
独国特許出願公開第102015211548(A1)号(特許文献1)には、第1制御デバイスによって制御される2つのローサイドMOSFETスイッチを有し且つ2つの第2制御デバイスの夫々1つによって夫々制御される2つのハイサイドMOSFETスイッチを有するブリッジ整流器を制御するデバイスが開示されている。2つの第2制御デバイスは、2つのハイサイドMOSFETスイッチのための制御信号が2つのローサイドMOSFETスイッチのための制御信号から演繹されるように、前記第1制御デバイスへ機能的に接続され、これによって、対角に配置されたMOSFETスイッチの各対は同期して切り替えられる。このようにして、ローサイドMOSFETスイッチのうちの1つとハイサイドMOSFETスイッチのうちの1つとの間の第1ノード点で、及び他のローサイドMOSFETスイッチと他のハイサイドMOSFETスイッチとの間の第2ノード点で供給されるAC電圧は、DC電圧に変換される。実施形態において、第2制御デバイスは、DC電圧によって充電されたコンデンサによって給電される。
【先行技術文献】
【特許文献】
【0007】
【文献】独国特許出願公開第102015211548(A1)号
【発明の概要】
【0008】
本開示の一態様に従って、複数の出力ポートを有するマイクロコントローラ回路を有するマイクロコントローラ装置が提供される。各出力ポートは、当該出力ポートとハイサイドDC電圧レールとの間に電気的に接続された関連するハイサイドスイッチと、当該出力ポートとローサイドDC電圧レールとの間に電気的に接続された関連するローサイドスイッチとを備え、ハイサイドスイッチ及びローサイドスイッチは夫々、ボディダイオードを備えたMOSFETを有する。マイクロコントローラ装置は、使用中にハイサイドDC電圧レール及びローサイドDC電圧レールによって給電されるよう構成される処理モジュールを更に有する。マイクロコントローラ装置は、ハイサイドDC電圧レールへ電気的に接続されたキャパシタンスを更に有する。複数の出力ポートのうちの少なくとも1つの出力ポートは、ホストデバイスの動作の少なくとも1つの様相を制御する制御信号を出力するよう構成される。処理モジュールは、制御信号を出力するために少なくとも1つの出力ポートの関連するハイサイド及びローサイドスイッチのスイッチングを制御するよう構成される。複数の出力ポートは、使用中にAC波形を受けるよう構成される第1出力ポートを更に有し、処理モジュールは、ハイサイドDC電圧レールとローサイドDC電圧レールとの間で整流された電圧を供給するために、AC波形の位相をモニタし、AC波形の位相に基づいて第1出力ポートの関連するハイサイドスイッチ及び関連するローサイドスイッチのスイッチングを制御するよう構成される。処理モジュールは、第1出力ポートでのAC波形の電圧と、ハイサイドDC電圧レールでの電圧とをモニタし、第1出力ポートでのAC波形のモニタされた電圧が、ゼロとハイサイドDC電圧レールでのモニタされた電圧との間にあるときに、第1出力ポートの関連するハイサイドスイッチをターンオフされた状態に保ち、第1出力ポートでのAC波形のモニタされた電圧が、ハイサイドDC電圧レールでのモニタされた電圧よりも高いときに、第1出力ポートの関連するハイサイドスイッチをターンオンされた状態に保つよう更に構成される。
【0009】
この配置は、マイクロコントローラがAC(alternating current)波形を受け、そして、マイクロコントローラに動力を供給するDC(direct current)電源を提供するためにAC波形を効率的に整流することを可能にする。第1出力ポートの関連するハイサイドスイッチは、第1出力ポートでのAC波形の電圧がハイサイドDC電圧レールでの電圧よりも低いときに、ターンオフされた状態にあるから、関連するハイサイドスイッチを介したキャパシタンスの望ましくない放電は防がれる。これは、マイクロコントローラがAC波形から自身に効率的に動力を供給することが可能であることを意味する。これは、外付けのDC電源又は外付けの整流器を必要とせずにマイクロコントローラが実装されることを可能にする。そのようなマイクロコントローラは、例えば、以下で更に詳細に論じられるように、ワイヤレス受電器又はエネルギハーベスティングモジュールによって形成され得るようなローカルAC電源により実装されてよい。マイクロコントローラはまた、ホストデバイス、すなわち、マイクロコントローラが組み込まれているデバイスの動作の少なくとも1つの様相を制御する制御信号を、少なくとも1つの他の出力ポートを介して出力することもできる。MOSFETスイッチは、双方向の電流伝導を可能にし、電流が出力ポート内及びDC電圧レールへ流れ込むことを可能にする。第1出力ポート及び適用可能である場合には第2出力ポートのMOSFETスイッチのボディダオードは、例えば起動時に、処理モジュールがアクティブ整流制御を提供するほど十分に給電されないときに、パッシブ整流を提供するよう動作し得る。
【0010】
好適な実施形態で、複数の出力ポートは、使用中にAC波形を受けるよう構成される第2出力ポートを更に有し、マイクロコントローラ装置は、第1出力ポート及び第2出力ポートにわたってAC波形を受けるよう構成される。そのような実施形態で、処理モジュールは、整流された電圧を供給するために、AC波形の位相に基づいて第2出力ポートの関連するハイサイドスイッチ及び関連するローサイドスイッチのスイッチングを制御し、第1出力ポートでのAC波形のモニタされた電圧が、ゼロとハイサイドDC電圧レールでのモニタされた電圧との間にあるときに、第2出力ポートの関連するローサイドスイッチをターンオフされた状態に保ち、第1出力ポートでのAC波形のモニタされた電圧が、ハイサイドDC電圧レールでのモニタされた電圧よりも高いときに、第2出力ポートの関連するローサイドスイッチをターンオンされた状態に保つよう更に構成される。そのような実施形態で、第1及び第2出力ポートの関連するスイッチは、完全同期ブリッジ整流器として動作し得る。キャパシタンスは、ハイサイドDC電圧レールとローサイドDC電圧レールとの間に電気的に接続される。いくつかの場合に、キャパシタンスはオフチップキャパシタ、すなわち、マイクロコントローラとともに集積回路の部分として形成されないが、マイクロコントローラ回路の電圧端子へ接続されるキャパシタ、であってよい。以下で更に詳細に論じられるように、そのようなキャパシタンスは、外付けのDC電源が存在したとしても存在すると期待され得る。
【0011】
マイクロコントローラ装置のいくつかの実施で、キャパシタンスは、ハイサイドDC電圧レールとローサイドDC電圧レールとの間で更なるキャパシタンスと直列に電気的に接続されてもよく、AC波形は、第1出力ポートと、キャパシタンスと更なるキャパシタンスとの間のノードとの間に印加されてよい。そのような配置は、整流及び電圧倍増を提供可能であり、マイクロコントローラの単一の出力ポートを用いて実装可能である。
【0012】
処理モジュールは、ハイサイドDC電圧レール上で電圧リプルをモニタすることによってAC波形の位相をモニタするよう構成されてよい。追加的に、又は代替的に、処理モジュールは、モニタリングポートはAC波形を受けるよう構成されたマイクロコントローラ装置のモニタリングポートでの電流又は電圧のゼロ交差のモニタリングによって、AC波形の位相をモニタするよう構成されてよい。
【0013】
いくつかの実施で、モニタリングポートは、AC波形を受ける第1出力ポートであってよい。処理モジュールは、ゼロ交差が期待されるモニタリング期間中にAC波形のゼロ交差について第1出力ポートのモニタリングを可能にするように第1出力ポートの関連するハイサイド及びローサイドスイッチを制御するよう構成されてよい。そのような配置では、同じ出力ポートが、整流を提供するACサイクルの部分のために、及びAC波形の位相のモニタリングを提供するACサイクルの部分のために使用される。モニタリング期間中に、処理モジュールは、出力ポートでの電圧をモニタするよう構成されてよく、入力パスが出力ポートから設けられてよい。例えば、出力ポートの関連するスイッチはトライステートにされてよく、ポート自体はモニタリングフェーズの間に入力として構成される。
【0014】
いくつかの実施で、処理モジュールは、第1出力ポートのハイサイドスイッチ及びローサイドスイッチを制御するための少なくとも1つのスイッチ制御信号を生成するようにAC波形の位相にロックされる位相ロックループを実装するよう構成されてよい。
【0015】
いくつかの実施で、ハイサイドDC電圧レール及びローサイドDC電圧レールは、オフチップ電圧レールへ接続され、他のモジュール、例えば、センサ、アクチュエータ、又は通信モジュールのうちの1つ以上といった、DC電力を必要とするコンポーネントへ電力を供給するために使用されてよい。
【0017】
マイクロコントローラ装置は、AC波形を生成する電力モジュールを更に有してよい。電力モジュールは、ホスト製品の要素の動きからAC波形を生成するエネルギハーベスティングモジュール及びワイヤレス受電器のうちの少なくとも1つを有してよい。
【0018】
いくつかの場合に、マイクロコントローラ装置は、シェーバー製品の切削要素に又はその中に位置してよい。例えば、マイクロコントローラは、切削要素の本体上に又はその中に位置してよい。電力モジュールも、いくつかの場合に、切削要素の本体上に又はその中に位置してよい。切削要素は、いくつかの場合に、切削動作を提供するように使用中に回転されるよう配置された回転切削要素であってよい。マイクロコントローラ装置は、使用中に切削要素で状態を検知し、検知された状態に応じてシェーバー製品の動作の少なくとも1つの様相を調整するよう構成されてよい。
【0019】
実施形態はまた、本明細書中の変形例のうちのいずれかで記載されるマイクロコントローラ装置を有する電子デバイスに係る。いくつかの実施形態は、マイクロコントローラのハイサイドDC電圧レールが、マイクロコントローラの外の少なくとも1つのモジュールに動力を供給するよう構成された外部DC電圧レールへ電気的に接続される電子デバイスに係る。電子デバイスは、シェーバー製品などのパーソナルケア製品、又は何らかの他のタイプの製品であってよい。シェーバー製品は、上記のタイプの複数の切削要素を有してよく、そのような切削要素のうちの1つ以上は、本明細書中の変形例農地のいずれかで記載されるマイクロコントローラ装置を有してよい。
【0020】
他の態様で、複数の出力ポートを有し、各出力ポートが、当該出力ポートとハイサイドDC電圧レールとの間に電気的に接続された関連するハイサイドスイッチと、当該出力ポートとローサイドDC電圧レールとの間に電気的に接続された関連するローサイドスイッチとを備え、ハイサイドスイッチ及びローサイドスイッチは夫々、ボディダイオードを備えたMOSFETを有する、マイクロコントローラ装置に給電する方法であって、マイクロコントローラ装置は、処理モジュールと、前記ハイサイドDC電圧レールへ電気的に接続されたキャパシタンスとを更に有する、方法が提供される。方法は、ホストデバイスの動作の少なくとも1つの様相を制御する制御信号を出力するように前記複数の出力ポートのうちの少なくとも1つの出力ポートの関連するハイサイドスイッチ及び関連するローサイドスイッチのスイッチングを制御することを含む。方法は、ハイサイドDC電圧レール及びローサイドDC電圧レールによって処理モジュールに給電することと、複数の出力ポートのうちの第1出力ポートでAC波形を受けることと、第1出力ポートでAC波形の位相をモニタすることと、ハイサイドDC電圧レールとローサイドDC電圧レールとの間で整流された電圧を供給するために、AC波形の位相に基づいて第1出力ポートの関連するハイサイドスイッチ及び関連するローサイドスイッチのスイッチングを制御することとを更に含む。方法は、第1出力ポートでのAC波形の電圧と、ハイサイドDC電圧レールでの電圧とをモニタすることと、第1出力ポートでのAC波形のモニタされた電圧が、ゼロとハイサイドDC電圧レールでのモニタされた電圧との間にあるときに、第1出力ポートの関連するハイサイドスイッチをターンオフされた状態に保つことと、第1出力ポートでのAC波形のモニタされた電圧が、ハイサイドDC電圧レールでのモニタされた電圧よりも高いときに、第1出力ポートの関連するハイサイドスイッチをターンオンされた状態に保つこととを更に含む。
【0021】
この態様の方法は、本明細書中で論じられている変形例のうちのいずれかで実装されてよい。
【0022】
特段明示されない限りは、本開示の実施形態の特徴のいずれも、本明細書中で記載される他の特徴のうちのいずれか1つ以上と組み合わせて実装されてよい。
【0023】
本開示の実施形態の様々な特徴及び利点を説明するために、様々な実施形態が、添付の図面に関連して、単に一例としてのみ記載される。
【図面の簡単な説明】
【0024】
図1】関連するマイクロコントローラを備えるシェーバー製品の切削要素の一例を示す。
図2】従来のマイクロコントローラ回路の例を表す。
図3】実施形態に従ってAC波形の整流を提供するよう配置されたマイクロコントローラ回路の例を表す。
図4】マイクロコントローラのためのスイッチング制御の一例を表す。
図5】他の実施形態に従ってAC波形の整流を提供するよう配置されたマイクロコントローラ回路の例を表す。
【発明を実施するための形態】
【0025】
様々なタイプの電子シェーバー製品が知られている。そのような製品は、通常、使用中に切削動作を提供するよう駆動される1つ以上の可動切削要素を備える。例えば、いくつかのシェーバー製品では、1つ以上の回転切削要素が設けられることがある。
【0026】
改善された又は個人化されたユーザ経験は、シェービング中にシェービング状態を検知し、検知された状態に応じてシェーバー動作の少なくとも1つの様相を適応させることによって、実現され得る。いくつかの場合に、切削要素での状態に応答することが有益であり、よって、切削要素の場所での検知及び/又は制御を提供することが提案されている。検知及び制御の少なくともいくつかの態様は、切削要素の場所に位置するマイクロコントローラによって提供されてよく、例えば、マイクロコントローラは、回転する切削要素の構造に、又はその部分として、位置してよい。
【0027】
図1は、この目的を説明する。図1は、概して、切削要素100を表す。切削要素100は、刃などの1つ以上のカッター102を支持する本体101を備える。切削要素100は、使用中にカッター102を動かして切削動作を提供するよう概して軸103を中心として回転されるように配置される。マイクロコントローラ104は、切削要素100と共同設置され、切削要素100の本体101に取り付けられるか、又はその部分として形成されてよい。上述されたように、マイクロコントローラ104は、少なくとも1つのプロセッサ及びいくつかのメモリを通常備えており、様々な汎用入出力(GPIO)ポートを介して何らかの検知及び/又は制御機能を提供するよう構成可能である比較的に小さい制御回路である。よって、マイクロコントローラ104は、図1に表されているように、検知及び制御機能を提供するように切削要素100と共同設置可能である。マイクロコントローラ104は、例えば、切削要素100の本体101のレイヤとして配置される回路基板(別個に図示されず。)でパッケージ化され形成されてよい。なお、マイクロコントローラ104が切削要素100の本体101に取り付けられるか、又はその中に組み込まれ得る多くの方法が存在する。
【0028】
検知及び制御機能を提供するために、マイクロコントローラ104は、シェーバーの様々な状態を示す検知信号を受信する1つ以上のセンサ105へ適切な入力ポート、例えば、適切に構成されたGPIOポートを介して結合されてよい。マイクロコントローラ104はまた、シェーバー動作の1つ以上の様相を制御するように、適切な出力ポート、例えば、適切に構成されたGPIOポートを介して、制御信号を出力するよう配置されてもよい。いくつかの場合に、マイクロコントローラ104は、検知された状態に切削要素100の動作の少なくとも1つの様相を適応させる1つ以上のアクチュエータ106へ結合されてよい。いくつかの実施で、マイクロコントローラ104はまた、1つ以上のセンサ105を作動させる制御信号を出力してもよい。いくつかの実施形態では、切削要素100の本体101に位置している少なくとも1つの通信モジュール109が存在してもよい。通信モジュール109は、マイクロコントローラ104から出力された制御信号を受信し、制御信号を切削要素100の他の部分又はホスト製品107の他の部分へリレーするよう構成されてよい。追加的に、又は代替的に、通信モジュール109は、コントローラ104へリレーされるべき、例えば、他のセンサからの又はより上位の制御システムからの、入来する制御信号を受信してもよい。なお、マイクロコントローラ104は、動作することができるように電力を供給される必要がある。
【0029】
マイクロコントローラ104が切削要素100に位置する、例えば、回転する切削要素本体101上に位置するとき、電力がマイクロコントローラ104に供給されるべきである。マイクロコントローラ104は、切削要素100での状態に耐える(例えば、水、石鹸、毛などに耐性がある)ように、切削要素の本体101とともに回転することになる。
【0030】
電力は、製品自体の電源から得られる。使用中に、切削要素100は、図1で107として概して示されている製品の部分としてアセンブルされ、製品は、バッテリ及び/又は幹線電源アダプタ(図示せず。)などの少なくとも1つの電源を備える。電力は、何らかの適切な供給経路を介して、すなわち、有線接続を介して、製品の主電源からマイクロコントローラ104へ供給されてよい。しかし、マイクロコントローラ104は動く、例えば、切削要素の本体101とともに回転する、ということで、供給経路は、動いている部品どうしの間の適切な接続、例えば、環境から適切に保護される必要があるスリップリング接続などを伴う必要がある。
【0031】
従って、マイクロコントローラの場所で、すなわち、マイクロコントローラの近くで電力を受電又は生成することが可能な、例えば、マイクロコントローラ104とともに切削要素100に共同設置された電力モジュール108をマイクロコントローラ104に設けることが有利であり得る。例えば、電力モジュール108は、ワイヤレスで、例えば誘導結合によって、電力を受けるようにマイクロコントローラ104の近くに配置されたワイヤレス受電器を有してよい。追加的に、又は代替的に、電力モジュール108は、使用中に切削要素100の動きからエネルギを生成するよう配置されたエネルギハーベスティングモジュールを有してよい。いくつかの配置において、電力モジュールは共振電力モジュールであってもよい。当業者に理解されるだろうように、ワイヤレスレシーバが、電力伝送のために使用される周波数に合わせられた共振周波数を有する共振回路として配置されてもよい。同様に、エネルギハーベスティングモジュールは、エネルギハーベスティングのために使用される可動コンポーネントの機械的な共振に基づいた共振回路として配置されてもよい。
【0032】
ワイヤレス電力転送及びエネルギハーベスティングは両方とも、電力モジュール108でAC(alternating current)を生成する。しかし、ほとんどのマイクロコントローラは、DC(direct current)電圧供給から作動する。
【0033】
電力モジュール108は、マイクロコントローラ104に動力を供給する適切なDC電圧にAC波形を変換するよう整流器により実装されてよい。
【0034】
様々なタイプの整流器が知られている。1つのタイプの整流器は、AC源へ接続する第1及び第2AC端子を備えているブリッジ整流器である。第1及び第2AC端子は夫々、各々の第1及び第2ハイサイドアームを介してハイサイドDC端子へ接続される。同様に、ローサイドDC端子は、各々の第1及び第2ローサイドアームを介して第1及び第2AC端子へ接続される。ダイオードブリッジ整流器において、ダイオードは、1方向でのみ、例えばローサイドDC端子からAC端子へ及びAC端子からハイサイドDC端子へ、電流フローを許すように、アームの夫々に配置される。使用中に、AC電圧の1つの極性について、電流は、ローサイドDC端子から第2AC端子への第2ローサイドアームのダイオードを介した電流経路を有して、第1AC端子からハイサイドDC端子へ第1ハイサイドアームのダイオードを介して流れることができる。AC電圧の極性が変化するとき、電流は代わりに、ローサイドDC端子から第1AC端子への第1ローサイドアームダイオード介した電流経路を有して、第2AC端子からハイサイドDC端子への第2ハイサイドアームダイオードを介して流れる。よって、AC端子での電流フローの極性は変化するが、一方で、DC端子は、AC波形のサイクルにわたって同じ極性の電流フローを経験することになる。
【0035】
ダイオードブリッジは、ブリッジアームのダイオードが自動的に導通し、すなわちAC電圧に基づかないということで、比較的に簡単であり、アクティブ制御を必要としない。しかし、使用中に、整流器に関連したいくらかの電力損失又は浪費を生じさせることになるダイオードでの電圧降下が存在する。ワイヤレス電力伝送のために、特にエネルギハーベスティングのために、少なくとも、特に高価な又は大きいコンポーネントを使用しないと、利用可能な電力が比較的に限られることがあるということで、電力効率は重要になる。
【0036】
ブリッジ整流器配置内の電力損失は、整流器アームのうちの少なくともいくつかでMOSFETのようなアクティブスイッチを使用することによって、低減され得る。MOSFETのようなアクティブスイッチは、ダイオードよりも低いオン抵抗を有し、よって、ダイオードと比較して浪費を低減し得る。いくつかの配置において、一対の整流器アーム、例えばローサイドアームは、ダイオードよりもむしろMOSFETを使用してよく、MOSFETは、システム電圧によって受動的に制御される。しかし、整流器アーム、例えばハイサイドアームの他の対におけるダイオードによるいくらかの電力損失が依然として存在する。完全同期ブリッジ整流器において、MOSFETなどのアクティブスイッチは、ハイサイド及びローサイドアームの夫々で使用され、AC波形と位相において同期して制御され得る。これは、比較的に低いレベルの電力損失を整流にもたらす。しかし、MOSFETと、AC波形の位相をモニタし、MOSFETのスイッチングを制御するための関連する制御回路とは、マイクロコントローラ104のための電力モジュール108を設けることに付随したサイズ及びコストを増やすことになる。いくつかの場合に、例えば、マイクロコントローラ104がシェーバー製品の切削要素100で又はその部分として形成される場合に、マイクロコントローラ104及び関連する外部回路、例えば電力モジュール108、を組み込むためのスペースは限られている可能性がある。
【0037】
本開示の実施形態は、マイクロコントローラに動力を供給する方法及び装置に係る。特に、実施形態は、マイクロコントローラに動力を供給するDC電力へAC電力を整流する方法及び装置に係る。本開示の実施形態は、マイクロコントローラのための電力を供給するためにAC波形の整流を提供するようマイクロコントローラ自体を使用する。
【0038】
図2は、標準のマイクロコントローラ104のいくつかの態様を一般的に表す。マイクロコントローラは、プロセッサ、メモリなど(別々に図示されない。)を通常有する処理モジュール202を有する集積回路201として実装される。処理モジュール202は、一般に、2つのDC電圧レール、すなわちハイサイド供給レールVDD及びローサイド供給レールVSSから給電される。本明細書で使用されるように、語「ハイサイド」は、一般に、よりポジティブであり/よりネガティブでないことを意味し、語「ローサイド」は、よりポジティブでなく/よりネガティブであることを意味する点に留意されたい。いくつかの場合に、ハイサイド供給レールは、正供給電圧を供給されてよく、ローサイド供給レールは、接地にあってよい。これらの供給電圧は、一般に、外部電源から、通常は外部フィルタキャパシタンス205を経由して、各々の供給端子203及び204により供給される。マイクロコントローラ回路201はまた、デジタル出力信号を出力することが可能な少なくとも1つのポート206、すなわち出力ポートを有する。図2は、明りょうさのために2つのそのようなポートを表すが、明らかなように、通常は、より多くのそのようなポートが存在してよく、通常は、ポート206はGPIOポートであってよい。デジタル出力を供給するために、各ポート206は、ハイサイドスイッチ207を介してハイサイド電圧レールVDDへ、及びローサイドスイッチ208を介してローサイド電圧レールVSSへ結合されてよい。通常、スイッチ207及び208はMOSFETであり、よって、当業者によって理解されるだろうようにボディダイオード209を含む。本明細書で使用されるように、語「ポート」は、マイクロコントローラ回路の端子又は接続、例えば回路ピン又はパッドを指すと理解されるべきであり、語「出力ポート」は、マイクロコントローラがその端子で出力デジタル信号を生成するよう構成され得るように、スイッチ207及び208などの関連する回路構成を備えているそのような端子を指すべきである点に留意されたい。
【0039】
よって、スイッチ208及び208は、処理モジュール202によって制御される。使用中に論理ハイ出力状態を供給するために、スイッチ207は、スイッチ208がオフされ、すなわち開いている状態で、オンされ、すなわち閉じられてよい。論理ロー出力状態を供給するために、スイッチ207は、オンされてよく、スイッチ208は、オフされてよい。出力ポートが使用中でない場合に、それは、ハイサイドスイッチ208及びローサイドスイッチ208の両方をオフすることによって無効化又はトライステートされてよい。
【0040】
本開示の実施形態で、マイクロコントローラ回路201の少なくとも1つの出力ポート206は、AC電圧を受けるよう結合され、使用中に、マイクロコントローラは、整流を制御するように出力ポートに関連したスイッチ207及び208を制御する。
【0041】
図3は、一実施形態に従って整流を提供するよう配置されたマイクロコントローラ回路を表す。図3は、複数の出力ポート206を有する、図2に関連して先に論じられたようなマイクロコントローラ回路201を表す。図3は、例示のためにたった3つの出力ポートしか表さないが、明らかなように、いくつかの実施では、より多くの出力ポートが存在してよい。図3の実施形態では、出力ポート206のうちの2つ(図3中、第1ポート206-1及び第2出力ポート206-2として夫々特定される)は、例えば、いかなる整流もなしで電力モジュール108によって供給され得るようなAC源へ結合される。
【0042】
キャパシタンス205は、通常はオフチップキャパシタであり、電圧供給端子203及び204の間に接続される。上述されたように、通常、外付けキャパシタは、供給電圧のフィルタリングのためにそれらの端子の間に接続され、よって、そのような外付けキャパシタ205は、どのみち存在すると期待されるので、いかなる追加の回路構成も表さない。しかし、図3の実施形態では、ハイサイド供給端子203は、いかなる外部電圧供給にも接続される必要がない。なお、いくつかの実施形態で、ハイサイド供給端子及び任意にローサイド供給端子は、電力を他の構成要素へ供給するように、外部の、すなわちオフチップの、電圧レールへ接続されてもよい。
【0043】
使用中に、第1及び第2出力ポート206-1及び206-2のスイッチは、整流を提供するようにAC源108のAC波形により位相に基づき制御される。例えば、AC源108からの印加AC波形により、第1出力ポート206-1での電圧が、第2出力ポート206-2での電圧よりも十分に正であるときに、第1出力ポート206-1に関連するハイサイドスイッチ207-1は、第1出力ポート206-1からハイサイド電圧レールVDDへの電流経路を提供するようにオフされ、すなわち閉じられてよい。同時に、第2出力ポート206-2に関連するローサイドスイッチ208-2は、ローサイド電圧レールVSSから第2出力ポート206-2への戻り経路を提供するように閉じられてよい。逆に、第1出力ポート206-1での電圧が第2出力ポート206-2での電圧よりも十分に負であるときに、第1ハイサイドスイッチ207-1及び第2ローサイドスイッチ208-2はオフされてよく、第2ハイサイドスイッチ207-2及び第1ローサイドスイッチ208-1はオンされてよい。これは、第2出力ポート206-2からハイサイド電圧レールVDDへの電流経路と、ローサイド電圧レールVSSから第1出力ポート206-1への戻り経路とを提供する。
【0044】
これは、使用中に、電流がAC源から出力ポート206の1つに流れ込むことを意味する。市販されているマイクロコントローラのポートは、電流入力及び電流出力の両方を扱うことができ、容易に利用可能なマイクロコントローラは、マイクロコントローラのための電力を供給するのに十分である数十ミリアンペ程度の入力電流を扱うことができる。出力ポートのアクティブスイッチとして使用されるMOSFETは、双方向電流を導くことができる。よって、ハイサイドスイッチ207として使用されるMOSFETは、出力ポート206からハイサイド電圧レールVDDへ電流が流れることを可能にすることができる。
【0045】
よって、第1及び第2出力ポート206-1及び206-2は、それらの関連するスイッチとともに、AC波形の同期整流を提供するよう制御可能である。よって、DCレール、すなわちVDD及びVSS、の間の電圧は、1つの極性しか有さない。キャパシタンス205は、電荷を蓄え、ハイサイド供給レールVDDの電圧を保つよう貯蔵キャパシタンスとして動作し、よって、DC電圧レールにわたって現れる整流された時間変化する電圧に対するいくらかのフィルタリングを有効に提供する。
【0046】
本開示の実施形態は、このようにして、それ自体のDC電力源を提供するように、AC波形の整流を提供するためにマイクロコントローラ自体を使用する。図3に表されている実施形態は、完全同期ブリッジ整流器を実装し、よって、比較的に低い損失で動作可能であって、マイクロコントローラが、エネルギハーベスティング電力モジュール又はワイヤレス受電器などの比較的に低電力のAC源により作動されることを可能にする。図3に表されている実施形態は、外部DC電力源によりマイクロコントローラに動力を供給する標準の配置と比較して追加の構成要素を必要とせず、よって、如何なるコスト又はサイズ増大も有さず、代わりに、マイクロコントローラの2つの出力ポートを使用する。
【0047】
マイクロコントローラ回路201の他の出力ポート206は、如何なる適切な目的のために使用されてもよく、少なくともいくつかの出力ポートは、ホストデバイスの動作の少なくとも1つの様相を制御するための制御信号を出力するために使用されてよい。図3は、例えば、更なる出力ポート、すなわち第3出力ポート206-3を表す。この第3出力ポートの関連するハイサイドスイッチ207-3及び関連するローサイドスイッチ208-3は、ホストデバイスの動作の少なくとも1つの様相を制御するための制御信号SCONを出力するために、先に論じられたように出力ポートをハイサイド電圧レールVDD又はローサイド電圧レールVSSへ接続するように処理モジュール202によって制御されてよい。例えば、制御信号は、図1に関連して先に論じられたように、アクチュエータ106又は通信モジュール109へ出力されてよい。
【0048】
明らかなように、マイクロコントローラ処理モジュール202が出力ポートのスイッチを制御するために、処理モジュールはそれ自体が給電されなければならない。起動時に、電力モジュール108がAC波形を生成し始めるとき、マイクロコントローラは、当初は給電されていなくてよい。この無給電状態で、出力ポート206に関連する両方のMOSFET207及び208は、有効にオフ状態にある。しかし、この場合に、整流は、MOSFETスイッチのボディダイオード209を介して依然として受動的に起こり得る。関連するボディダイオードを夫々備えたスイッチ207-1、208-1、207-2、208-2の構成は、ダイオードブリッジ整流器の構成を提供する。AC波形が起動するとき、整流はよって、アクティブ制御を何ら必要とせずに、受動的に起こり得る。これは、いくらかの電力損失を伴いながら、処理モジュール202が起動することを可能にするほど十分な電圧をDCレール上で生成する。処理モジュール202がアクティブであると、それは、より効率的な整流を提供するように、関連するスイッチのアクティブ制御を開始し始めることができる。
【0049】
よって、マイクロコントローラ回路201の処理モジュール202は、使用中に、整流を提供するように第1及び第2出力ポート206-1及び206-2のスイッチ207-1、208-1、207-2、208-2を動作させるよう構成される。アクティブ整流制御を提供するために、処理モジュール202は、適切な時点で、例えば、関連する出力ポートでの電圧が適切な大きさ及び極性を有するときに、第1及び第2出力ポート206-1及び206-2のスイッチ207-1、208-1、207-2、208-2を切り替えるために、AC波形の位相をモニタする。
【0050】
AC波形の位相が処理モジュール202によって決定され得る様々な方法がある。いくつかの実施形態で、処理モジュール202は、位相ロックループ(phase-locked-loop;PLL)機能を実装してよい。PLL機能は、処理モジュール202のためのソフトウェアにおいて実装されてよい。いくつかの実施で、DC供給レールでの電圧リプル、例えば、VDDレールでの電圧は、PLLのための入力信号として使用されてよい。この電圧レールは、使用中に、AC波形の時間変化する整流されたバージョンにより電圧リプルを経験することになる。供給レールVDDでの電圧は、ACサイクルごとに2度ピークに達し、PLLは、出力ポートのスイッチのスイッチングのタイミングをとるために使用され得るAC波形の2倍の周波数でクロック信号を供給するようこの電圧リプルと同期されてよい。
【0051】
追加的に、又は代替的に、マイクロコントローラ201の少なくとも1つのポートは、AC源108と、AC波形のゼロ交差、すなわち、AC電流又は電圧がゼロに達するときを検出するためにモニタリングポートとして使用される関連するポートとへ接続されてよい。ACサイクルごとに2つのゼロ交差が存在し、ゼロ交差を検出することは、AC波形の位相の明らかな表れを提供する。いくつかの実施で、AC波形においてゼロ交差をモニタするために使用されるモニタリングポートは、マイクロコントローラ回路201の更なるポート、すなわち、第1又は第2出力ポート206-1及び206-2以外のポートであってよい。なお、いくつかの実施では、第1及び/又は第2出力ポート206-1及び206-2が、ゼロ交差をモニタするためにモニタリングポートとして使用されてもよい。起動時に、処理モジュール202が十分に給電されると、しかし、アクティブ同期整流が開始される前に、第1及び第2出力ポート206-1及び206-2は、AC波形のゼロ交差を検出するために処理モジュール202によってモニタされてよい。ゼロ交差は、出力ポートの論理状態遷移として検出されてよい。明らかなように、GPIOポートなどのポートは、必要に応じて、出力ポートで電圧及び/又は電流をモニタするための経路(図3中、破線で示される)を提供するよう入力部として構成され得る。
【0052】
ゼロ交差のタイミングは、処理モジュール202によって実装されるPLL機能のための入力として供給され得る。同期されたクロック信号が利用可能であると、これは、AC波形により適切な位相でスイッチ207-1、208-1、207-2、208-2を制御するために使用されてよい。なお、AC波形へのクロック信号の位相ロックを保つために、同期整流は、ゼロ交差が期待される時点の前後で、少なくともいくつかのACサイクルの間、サスペンドされてよい。
【0053】
効率的な整流のために、ハイサイドスイッチ207は、関連する出力ポート206での電圧がハイサイド供給レールVDDでの電圧よりも高くなるまで、オフされたままであることが理解される。これは、出力ポート206での電圧がハイサイド電圧レールVDDでの電圧よりも低いときに、関連するハイサイドスイッチ207はオフされており、キャパシタンス205の望ましくない放電が阻止されることを意味する。よって、AC電圧波形の大きさが比較的に低いとき、ハイサイドスイッチ207-1及び207-2は両方ともいずれにしろオフされる。そのような時点で、AC波形のゼロ交差の前後で、出力ポート206の関連するスイッチはオフされ、出力ポートでの電圧は、モニタリング期間にモニタされる。上述されたように、モニタリング期間中に、AC波形のゼロ交差は決定され得る。追加的に、又は代替的に、スイッチのボディダイオード209を介した導通が検出され、出力ポートの関連するスイッチのスイッチングを制御するために使用されてもよい。
【0054】
図4は、この原理を説明する。図4は、ACサイクルにわたって第1出力ポート206-1での電圧のプロット401を示すとともに、ハイサイドDC電圧レールVDDの電圧402を示す。図4は、明りょうさのために、ACサイクルの正部分についてしか電圧を示していない。時間T1で、(出力ポート206-1についての)ACサイクルの正部分は、AC波形がゼロと交差するときに始まる。この時点で、AC波形は立ち上がり始める。しかし、時間T2まで、出力ポート206-1での電圧は、ハイサイドレール電圧VDDよりも低く、よって、第1ハイサイドスイッチ207-1は、オフされた状態に保たれる。この期間中、第1及び第2出力ポート206-1及び206-2の全ての関連するスイッチはオフされている。そのような状態で、出力ポート206-1及び206-2のスイッチはパッシブ整流器として動作するが、ハイサイドレールVDDの電圧402が出力ポート206-1での電圧よりも高いということで、第1ハイサイドスイッチ207-1のボディダイオード209は逆バイアスをかけられ、導通は起こらない。時間T2で、出力ポート206-1での電圧は、ハイサイドDC電圧レールVDDでの電圧よりも高くなるよう増大し、この時点で、第1ハイサイドスイッチ207-1はオンされる。第2ローサイドスイッチは同時にオンされ、2つのスイッチは第1スイッチ制御信号S1によって制御される。これらのスイッチは、出力ポート206-1での電圧がハイサイドDC電圧VDDよりも低くなる時間T3までの期間TON_207-1_208-2にオンされたままである。期間TON_207-1_208-2の存続時間は、T2からT3の間の時間から決定され得る。次いで、AC電圧波形はゼロまで落ち、(出力ポート206-1の)サイクルの負部分が始まるが、これは、第2出力ポート206-2が関係している限りはACサイクルの正部分と見なされ得る。同様のプロセスは、次いで第2出力ポート206-2での電圧がハイサイドDC電圧レールVDDよりも高い時間T4からT5の間の期間TON_207-2_208-1に第2スイッチ制御信号S2によって第2ハイサイドスイッチ207-2が第1ローサイドスイッチ208-1とともにオンされる場合に、第2出力ポートについて起こる。
【0055】
述べられているように、全てのスイッチがオフである期間(TOFF)中、関連する出力ポートは、処理モジュールへの入力を有するように切り替えられ、ボディダイオード導通の始まりを検出するようにモニタされ得る。ボディダイオード導通の始まりは、関連する出力ポート206での電圧をハイサイドDC電圧レールVDDの電圧と比較することによって検出されてよい。
【0056】
ゼロ交差をモニタするための及び/又はボディダイオード導通を検出するためのこのような制御は、ゼロ交差を測定し、適切な制御信号、例えば割り込みを、AC波形の2倍の周波数であるレートで生成する能力を有効に必要とする。AC波形の周波数、ひいてはACサイクルの周期TACは、AC波形を供給するために使用される電力モジュール108のタイプに依存する。エネルギハーベスティングのために、AC波形の周波数は、使用されるエネルギハーベスティングのタイプに、更には、駆動される場合に切削要素本体101の回転速度に依存してよい。エネルギハーベスティングのために、結果として得られる波形の周波数は、数十又は数百ヘルツから数十又は数百キロヘルツの程度、例えば、いくつかの例となる実施形態の場合に100Hzから10kHzの範囲内であってよい。そのような動作レートは、比較的に簡単且つ安価なマイクロコントローラを用いてさえ容易に達成可能である。例えば誘導結合に基づいたワイヤレス受電器を備えている電力モジュールの場合に、周波数は、数百ヘルツから数百キロヘルツの程度又はそれ以上であってよい。
【0057】
比較的に簡単且つ安価なマイクロコントローラは、例えば200kHzぐらいまでのAC周波数により容易に動作することが可能であり得る。実施形態はまた、AC波形のより高い周波数(例えば、200kHz超)を供給する電力モジュールにより実装されてもよいが、そのような実施形態は、そのような周波数で動作するよう具体的に選択されるマイクロコントローラ(例えば、ゼロ交差検出のために使用され得る高速プロセッサ及び/又は専用ハードウェアを備えている)の使用を必要とすることがある。
【0058】
処理モジュール202は、いくつかの実施形態で、如何なる過電圧もモニタするようにDC供給レールVDD及びVSSにわたる電圧をモニタしてよい。例えば、処理モジュール202は、給電されるときに、過電圧閾値に対してDC供給レールVDDの電圧をモニタしてよい。過電圧閾値に達するが又はそれを超えるとき、処理モジュール202は、両方のローサイドスイッチ208-1及び208-2をオンするようスイッチ制御信号を生成してよく、ハイサイドスイッチ207-1及び207-2はオフされたままである。これは、AC源108を短絡し、ハイサイドスイッチのボディダイオードを介してキャパシタンス205の更なる充電を阻止する。明らかに、これは、ローサイドスイッチ208-1及び208-2を流れる短絡電流を生じさせるが、特に、電力モジュール108が比較的に低電力のエネルギハーベスティングシステムを有する場合に、AC源は、通常は比較的に高いインピーダンスを有することなり、よって、期待される電流は、出力ポート206-1及び206-2が一緒に短絡された状態でさえ、出力ポート及び関連するスイッチの許容範囲内にあることができる。
【0059】
図3に表されている実施形態は、このようにして、マイクロコントローラがそれ自体の電力源をもたらすようにAC波形のアクティブ整流を提供する手段を提供する。図3に示される配置は、外部DC電源によりマイクロコントローラに給電する従来の手段と比較して、如何なる追加の構成要素も必要とせず、単に、マイクロコントローラの標準の出力ポート、例えばGPIOポートを使用する。マイクロコントローラは、通常、2よりも多い構成可能なポートを備え、検知及び制御機能は、マイクロコントローラのそのような他のポートを用いて実装可能である。これは、コンパクトなマイクロコントローラが、エネルギハーベスティング配置又はワイヤレス受電器を有する電力モジュールのような、比較的にコンパクト且つ低電力のAC源とともに使用されることを可能にする。
【0060】
図3に表される配置において、DC電圧レール間に現れ得る最大電圧は、AC波形の電圧振幅、すなわち、ピークAC電圧の大きさに等しい。しかし、実際には、DCレールの平均電圧は、このピーク電圧振幅よりも低い。いくつかの場合に、DCレール上でより高い電圧を有することが有利であり得る。
【0061】
図5は、他の例となる実施形態を表す。図5の例では、第1出力ポート206-1は、図3に関して論じられたような方法で、電力モジュール108などのAC源の一方の側へ結合される。しかし、この実施形態では、2つのキャパシタンス501及び502が、DC電圧レールVDD及びVSSの間に直列に接続されており、AC源108の他方の側は、2つの直列接続されたキャパシタンス501及び502の間のノード503へ接続されている。この配置は、整流器及び倍電圧器として動作する。ACサイクルの正の半分の間、ハイサイドスイッチ207-1はサイクル内の適切な時点でオンされ得、ローサイドスイッチ208-1はオフされている。これはキャパシタンス501を充電し、それにより、その正プレートはVDDレールへ接続される。ACサイクルの負部分の間、ハイサイドスイッチ207-1はオフされ得、ローサイドスイッチ208-1は適切な時点でオンされる。これはキャパシタンス502を充電し、それにより、その正プレートはノード503へ接続される。結果として、夫々のキャパシタンス501及び502は、理論上、ピークAC電圧の大きさに等しい最大電圧まで、充電されるが、DC電圧レールVDD及びVSSの間の電圧は両方のキャパシタンスの電圧の和になる。
【0062】
使用中に、AC波形の位相は、図3に関して先に論じられたのと同じように、例えば、同期整流がゼロ交差の期待される時点の前後で中断される場合には第1出力ポート206-1、又はマイクロコントローラの他のポートなどの出力ポートでAC波形をモニタすることによって、測定されてよい。図5に表される配置はまた、AC波形が始まるときに自動起動を可能にしながら、スイッチのアクティブ制御によらずに、スイッチ207-1及び208-1のボディダイオード209を介して受動的に動作する。
【0063】
更なる出力ポート206-2は、デバイス動作の少なくとも1つの様相を制御するための制御信号を出力するように制御されてよい。
【0064】
図3に表される配置と比較して、図5の実施形態は、より高い平均DC電圧を供給し、マイクロコントローラの単一の出力ポートしか用いずに実装可能である。しかし、それは、図3の実施形態の1つのキャパシタと比較して、2つのキャパシタンス、例えば2つの外付けキャパシタの使用を必要とし、よって、追加の構成要素を使用する。しかし、更なる外付けキャパシタは、追加のコスト又はサイズをそれほど増大させない。当然、キャパシタンス205、501又は502のいずれも、望まれる場合には、1よりも多い物理キャパシタによって実装されてよいことが理解される。
【0065】
最大許容平均電流も、それが4つではなく2つのMOSFETによって運ばれるので、図5の実施形態では低くなる。しかし、一般に、必要とされる電流が、出力ポートに関連したMOSFETの定格容量よりも大きい場合に、2つ以上の出力ポートが並列に接続され、互いに同期して切り替えられてよく、それにより、電流は、接続されているポートのMOSFETの間で共有される。図5は、望まれる場合に、第2出力ポート206-1が経路504を介して第1出力ポート206-1と並列に接続され得ることを表す。この場合に、この出力ポートは、制御信号の出力のためには使用されず、少なくとも1つの第3出力ポートが、図3に表されるように、制御信号を出力するために使用されてよい。
【0066】
従って、概して、本開示の実施形態は、マイクロコントローラに動力を供給する方法及び装置に、特に、AC波形へ結合された少なくとも第1出力ポートを備え、マイクロコントローラのためにDC電圧レールでのAC波形の整流を提供するために出力ポートに関連したスイッチを制御するよう構成されたマイクロコントローラに係る。DCレールで生成された電圧は、マイクロコントローラ自体に動力を供給するために使用され得る。更には、DCレールで生成された電圧は、例えば、図1に表されているセンサ、アクチュエータ又は通信モジュールのいずれか又は全てのような他のローカルコンポーネントに給電するために外部の、すなわちオフチップの電圧レールへ供給されてよい。
【0067】
添付の図面は、本開示の原理を理解するために必要な態様のみを表し、実際に存在する可能性がある他の特徴及び構成要素は、明りょうさのために省略されている。例えば、図1は、マイクロコントローラ104を備えたシェーバー製品107の切削要素100の原理を単に一般的に表し、切削要素100の構造の更なる詳細、その駆動メカニズム及び製品全体の他の態様は、省略されている。同様に、図2図3及び図5は、マイクロコントローラのポート及び特徴のほんの一部しか表さない。
【0068】
実施形態は、シェーバー製品において検知及び制御を提供することを参照して主に記載されてきた。検知することが有利であり得る種々の状態、及びマイクロコントローラとともに実装され使用され得る多種多様なタイプのセンサが存在する。同様に、シェーバー動作の少なくともいくつかの側面が、検知された状態に基づいて調整され得る多種多様な方法が存在する。
【0069】
実施形態は、1つの特定のタイプのシェーバー製品において検知及び制御を提供することを参照して主に記載されてきた。しかし、原理は、他のタイプのシェーバー製品に、例えば、回転しないが、例えば概して直線往復運動により動作する切削要素を備えることがある他のタイプのシェーバー製品に、より一般的には、パーソナルケアようであるかどうかに関わらず、他の製品に適用されることが理解される。マイクロコントローラを組み込み、AC源(例えば、エネルギハーベスティングによって得られるか又はワイヤレス電力伝送による)によってマイクロコントローラに動力を供給することが有利であり得る如何なる製品でも、本明細書で記載される原理は適用可能であり、本開示の実施形態は、任意の製品で使用される上記のように構成されたマイクロコントローラに、及びそのようなマイクロコントローラを備えた任意の製品にまで及ぶ。
【0070】
開示される実施形態に対する他の変形は、図面、本開示、及び添付の特許請求の範囲の検討から、請求される発明を実施する際に当業者によって理解及び達成され得る。特許請求の範囲において、語「有する」(comprising)は、他の要素又はステップを除外せず、不定冠詞(a又はan)は、複数を除外しない。単一のプロセッサ又は他のユニットが、特許請求の範囲で挙げられているいくつかの項目の機能を満たしてもよい。特定の手段が相互に異なる従属請求項に挙げられている単なる事実は、それらの手段の組み合わせが有利に使用されえないことを示すものではない。コンピュータプログラムは、他のハードウェアとともに又はその部分として供給される光記憶媒体又は固体状態媒体などの適切な媒体で記憶/分配されてよいが、他の形態で、例えば、インターネット又は他の有線若しくは無線電気通信システムを介して、分配されてもよい。特許請求の範囲におけるいかなる参照符号も、適用範囲を制限するものとして解釈されるべきではない。
図1
図2
図3
図4
図5