(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-16
(45)【発行日】2022-02-25
(54)【発明の名称】磁気通信システム
(51)【国際特許分類】
H04B 1/59 20060101AFI20220217BHJP
H04B 5/02 20060101ALI20220217BHJP
【FI】
H04B1/59
H04B5/02
(21)【出願番号】P 2019112405
(22)【出願日】2019-06-17
(62)【分割の表示】P 2014183743の分割
【原出願日】2014-09-10
【審査請求日】2019-07-17
(73)【特許権者】
【識別番号】514229580
【氏名又は名称】小林 孝浩
(73)【特許権者】
【識別番号】510216968
【氏名又は名称】株式会社GOCCO.
(74)【代理人】
【識別番号】100103023
【氏名又は名称】萬田 正行
(72)【発明者】
【氏名】小林 孝浩
(72)【発明者】
【氏名】森 誠之
(72)【発明者】
【氏名】渡邉 充哉
【審査官】後澤 瑞征
(56)【参考文献】
【文献】特開2008-040550(JP,A)
【文献】米国特許出願公開第2002/0077710(US,A1)
【文献】特開2004-015762(JP,A)
【文献】特開2010-039896(JP,A)
【文献】特開2011-060169(JP,A)
【文献】特開2001-305221(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04B 1/59
H04B 5/02
(57)【特許請求の範囲】
【請求項1】
一つの送信側装置と一つの受信側装置とからなる磁気通信システムであって、
前記一つの送信側装置は、検出対象としての一つの静止物に固定され、
所定の情報を一意に表現するための所定の信号波の組み合わせからなる信号波パターンを生成する信号波パターン設定手段を含む送信側制御ユニットと、
前記信号波パターンに対応する交流磁気信号を出力する磁場発生コイルとを備え、
前記信号波パターン設定手段は、異なる周波数の電気信号波を2以上の所定数であるn個設定して、それら所定数であるn個の電気信号波によりn進数を表現すると共に、そのn進数の電気信号波を所定の桁数であるm桁だけ連続して出力することで、n進数m桁の情報を表現する一つの信号波パターンを構成する機能を実現し、
前記一つの受信側装置は、一つの移動物に固定され、
前記交流磁気信号を検出する磁気センサと、
前記磁気センサの検出結果の出力に基づき前記信号波パターンを判断すると共に、その信号波パターンが表現する一意の情報を判断する受信側制御ユニットを備え、
前記信号波パターンを構成する信号波の周波数は、
上限が100Hz以下の超低周波数帯域の周波数に設定し、
前記受信側制御ユニットは、前記磁気センサの出力を受けて、前記磁気センサからの電気信号の元となる前記送信側装置からの信号波パターンを解析し、その信号波パターンに対応する指令信号を出力する機能を実現することを特徴とする磁気通信システム。
【請求項2】
前記磁場発生コイルの発生する磁場強度は、検出対象物である静止物と移動物との間の距離のうち、前記移動物が前記静止物に接近する場合の通常の距離又は距離範囲である通常距離を想定し、その通常距離において、前記静止物に固定した前記送信側装置からの交流磁気信号が、前記移動物に固定した、又は、前記移動物と一体に移動する前記受信側装置によって復元できる最低限の強度値である最低強度値以上の強度に設定されることを特徴とする請求項1に記載の磁気通信システム。
【請求項3】
前記磁場発生コイルの発生する磁場強度は、検出対象物として複数の静止物が、所定面積範囲内に二次元的に近接配置される場合、又は、所定容積範囲内に三次元的に近接配置される場合における、二次元方向又は三次元方向に隣接する静止物間の最小離間距離又は最小離間距離範囲である最小離間距離を想定し、前記最小離間距離の中間点において、隣接する静止物に固定した前記送信側装置の磁場発生コイルが発生する磁場強度の最大値である中間地点強度値が、最低強度値未満となるように設定されていることを特徴とする請求項1又は請求項2に記載の磁気通信システム。
【請求項4】
前記通常距離は、50cm~100cmの距離の範囲内で設定されることを特徴とする
請求項2に記載の磁気通信システム。
【請求項5】
前記磁気センサは、モバイル通信端末装置に内蔵される磁気センサとしての地磁気センサで
あることを特徴とする請求項1から4のいずれか1項に記載の磁気通信システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気通信システムに関し、特に、受信装置として(スマートフォンやタブレット等の)モバイル通信端末装置を使用する場合に好適な磁気通信システムに関する。
【背景技術】
【0002】
[従来の磁気通信]
所定の情報を送受信する通信システムとして、一般的ではないものの、磁気通信システムなる通信方式が提案されている。この磁気通信システムは、例えば、特許文献1に記載のように、データの送信装置側では、磁気コアに巻かれたコイルに送信回路から電流を供給する一方で、送信回路により転送するデータのビット値(「1」/「0」)に対応してコイル電流のオン/オフを制御している。一方、データの受信装置側では、コイルに発生する電圧を受信回路で処理する際に、コイルの電圧を微分回路で微分して電圧変化を取り出し、プラスのパルスを第1のスライサーで検出し、マイナスのパルスを第2のスライサーで検出して、両出力をSR(セットリセット)フリップフロップに加えることで、ビットデータ(「1」/「0」)を再生している。(以上、特許文献1の0002段落参照。)
【0003】
また、近年、Bluetooth(ブルートゥース:Bluetooth SIGが所有する登録商標 商標登録番号第4477936号)等の近距離無線通信技術を利用した通信システムも大きく普及している。このような通信システムとして、例えば、特許文献2に記載のシステムがある。特許文献2のシステムは、健康管理活動の序列化と記録保存のための方法と装置を提供するものでるが、この方法では、区域にある存在物(任意患者、看護人、医師、投薬容器、及び前記任意患者の物理患者ファイル)のタグにより、その区域にいる任意患者の看護区域を走査し、区域の存在物のタグの検出に応答して、タグから識別データを読み取り、ユーザインタフェースを介して、健康管理要員による任意患者に関する入力データを受信する一方で、前記タグとして、無線自動識別(RFID)タグに加えて、ブルートゥースタグを例示している(特許文献2の要約、請求項2、請求項10参照)。
【先行技術文献】
【特許文献】
【0004】
【文献】特開平11-8574号公報
【文献】特表2013-519954号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ここで、特定の位置にある物体又は人等であって検出対象となるもの(以下、「検出対象物」ということがある。)について、その検出対象物の位置や(特定の物体等からの)相対距離を検出してその検出結果を特定の処理等に使用したい場合がある。例えば、このような場合として、検出対象物のうち静止状態にあるもの(以下、「静止物」ということがある。)に対して、検出対象物のうち移動するもの(以下、「移動物」ということがある。)が近接したり離間したりする場合において、移動物が携帯するスマートフォン等のモバイル通信端末装置に対して、静止物の位置や(移動物からの)相対距離を通知して、移動物のモバイル端末通信装置を利用して所定の情報(音声、動画等)を外部に提供する場合がある。そのような場合の一例としては、家具展示場等の家具を陳列展示する場所において、モバイル通信端末装置を携帯している人が、展示物である(静止物としての)特定の椅子に着席したときに、その特定の椅子に関する情報(製造者、価格、品質等)を、着席者であるその人のモバイル通信端末装置から音声や画像で出力し、その人に対してその椅子の情報を提供することが考えられる。
【0006】
この場合において、特許文献2のように、ブルートゥースを利用して静止物の位置情報や(人に対する)距離情報を取得する場合、例えば、ブルートゥース4.0(Bluetooth Low Energy(BLE))から採用された近接プロファイル(Proximity Profile:PXP)を利用して、静止物に設置したブルートゥースと人が携帯するモバイル通信端末装置に内蔵したブルートゥースとの間でペアリングを行い、静止物側のブルートゥースとモバイル通信端末装置側のブルートゥースとの間の相対距離をモニタリングして、モニタリングしている相対距離が十分に小さくなったときに、その人が静止物に十分に接近した(例えば、静止物が椅子の場合、その人がその椅子に着席した)と判断して、その人に対してその静止物の情報を提供する(例えば、静止物が椅子の場合、その人に対してその椅子の情報を提供する)ことが考えられる。しかし、本発明者らの実証実験によれば、ブルートゥースを使用して上記のような検出を行う場合、検出対象物としての静止物が複数となり、かつ、それら静止物間の距離が小さくなる場合(即ち、一定の面積範囲に所定複数以上の静止物が近接して存在する場合)、例えば、直径数メートルの範囲内に複数の静止物が存在する場合、複数の静止物の位置をそれぞれ正確に判別できないことが判明した。即ち、(ブルートゥースを内蔵した)モバイル通信端末装置を携帯する人の周囲に、(ペアリングするブルートゥースを固定した)複数の静止物が存在する場合(即ち、その人の近傍位置と離間位置にそれぞれ静止物が存在する場合)において、ブルートゥースのモニタリング結果において、その人から見て近傍位置にある静止物を離間位置にある静止物と判断したり、逆に、その人から見て離間位置にある静止物を近傍位置にある静止物と判断したりすることが確認されている。
【0007】
なお、上記のような静止物の位置情報や(人に対する)距離情報を取得する場合において、特許文献2に記載のRFIDタグを使用することも考えられるが、RFIDタグを検出する検出装置(RFIDリーダー)は、通常、(ブルートゥースとは異なり)スマートフォン等のモバイル通信端末装置に内蔵されておらず、別途の検出装置を用意してモバイル通信端末装置に接続する必要があり、使い勝手や経済性等の点で不都合である。
【0008】
一方、特許文献1に記載のような磁気通信システムを利用して、上記のような静止物の位置情報や(人に対する)距離情報を取得することも考えられるが、この場合、特許文献1に明示されているように、従来の磁気通信システムは、通信を行う機器双方に備えた磁気コアの位置を合わせて、相互の距離を最小に保つ必要がある。このため、従来の磁気通信システムは、片方、あるいは両方の磁気コアユニットを相手の磁気コアユニットにバネの圧力で圧接している。(以上、特許文献1の0003段落参照。)一方、上記の従来例では、バネによる力は通信を行っている機器間を引き離す力となり、通信を行っている機器をロックすることにより接続を安定させる必要が生じ、操作上の手間とロック機構のコストが問題となる等の課題があるため、特許文献1の発明の磁気コアユニットは、通信を行う機器双方に備えた磁気コアの内の一方の磁気コアに巻かれたコイルに直流電流を流し、磁気コア間に吸引力を働かせている。しかし、この場合も、やはり、従来の磁気通信システムと同様、通信を行う機器双方に備えた磁気コアの位置を合わせて、相互の距離を最小に保つ必要がある。即ち、特許文献1に記載のような磁気通信システムを利用して、上記のような静止物の位置情報や(人に対する)距離情報を取得する場合、静止物に固定した一方の磁気コアの位置に、モバイル通信端末装置に固定した他方の磁気コアの位置を合わせて、それら双方の磁気コア装置を相互に最小距離(通常、数cm程度と思われる)で位置固定する必要がある。したがって、従来の磁気通信システムでは、静止物と移動物との間の距離がある程度大きくなる場合(例えば、上記椅子の位置検出の場合のように、静止物としての椅子に固定した検出装置と移動物としてのモバイル通信端末装置に固定した検出装置との間の距離が数十cm又は数メートルとなる場合)には適用することができない。
【0009】
そこで、本発明は、静止物と移動物との間の距離がある程度大きくなる場合(特に、静止物に固定した検出装置と移動物としてのモバイル通信端末装置に固定した検出装置との間の距離が数十cm又は数メートルとなる場合)にも適用することができ、かつ、検出対象物としての静止物が複数となり、かつ、それら静止物間の距離が小さくなる場合(即ち、一定の面積範囲に所定複数以上の静止物が近接して存在する場合)、例えば、直径数メートルの範囲内に複数の静止物が存在する場合であっても、複数の静止物の位置をそれぞれ正確に判別することができる磁気通信システムを提供することを目的とする。
【0010】
また、本発明は、モバイル通信端末装置に内蔵される磁気センサとしての(電子コンパス又はデジタルコンパスと呼ばれることもある)地磁気センサを利用して、検出対象物としての静止物からの交流磁気信号を検出することにより、その静止物の位置や距離等の情報を移動物としてのモバイル通信端末装置に正確に提供することができる磁気通信システムを提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明の磁気通信システムは、一つの送信側装置と一つの受信側装置とからなる。前記一つの送信側装置は、検出対象としての静止物に固定され、所定の情報を一意に表現するための所定の信号波の組み合わせからなる信号波パターンを生成する信号波パターン設定手段を含む送信側制御ユニットと、前記信号波パターンに対応する交流磁気信号を出力する磁場発生コイルとを備える。前記信号波パターン設定手段は、異なる周波数の電気信号波を2以上の所定数であるn個設定して、それら所定数であるn個の電気信号波によりn進数を表現すると共に、そのn進数の電気信号波を所定の桁数であるm桁だけ連続して出力することで、n進数m桁の情報を表現する一つの信号波パターンを構成する機能を実現する。なお、信号波パターン生成手段は、後述する実施の形態の信号波パターン設定手段、基本波発生回路、変調回路等により実現可能である。一方、前記一つの受信側装置は、移動物に固定され、前記交流磁気信号を検出する磁気センサと、前記磁気センサの検出結果の出力に基づき前記信号波パターンを判断すると共に、その信号波パターンが表現する一意の情報を判断する受信側制御ユニットを備える。前記信号波パターンを構成する信号波の周波数は、上限が100Hz以下の超低周波数帯域の周波数に設定する。前記受信側制御ユニットは、前記磁気センサの出力を受けて、前記磁気センサからの電気信号の元となる前記送信側装置からの信号波パターンを解析し、その信号波パターンに対応する指令信号を出力する機能を実現する。
【発明の効果】
【0012】
本発明は、上記のように構成したことにより、静止物と移動物との間の距離がある程度大きくなる場合(特に、静止物に固定した検出装置と移動物としてのモバイル通信端末装置に固定した検出装置との間の距離が数十cm又は数メートルとなる場合)にも適用することができ、かつ、検出対象物としての静止物が複数となり、かつ、それら静止物間の距離が小さくなる場合(即ち、一定の面積範囲に所定複数以上の静止物が近接して存在する場合)、例えば、直径数メートルの範囲内に複数の静止物が存在する場合であっても、複数の静止物の位置をそれぞれ正確に判別することができる。
【図面の簡単な説明】
【0013】
【
図1】
図1は本発明の一実施の形態に係る磁気通信システムの送信側装置の全体構成を(凹部カバーを取り外して収容凹部の内部構成と共に)示す平面図である。
【
図2】
図2は本発明の一実施の形態に係る磁気通信システムの送信側装置の全体構成を(凹部カバーを取り外して収容凹部の内部構成と共に)示す分解斜視図である。
【
図3】
図3は本発明の一実施の形態に係る磁気通信システムの送信側装置における磁場を説明するための(凹部カバーを取り外して収容凹部の内部構成と共に示す)分解斜視図である。
【
図4】
図4は本発明の一実施の形態に係る磁気通信システムの使用例を示す斜視図である。
【
図5】
図5は本発明の一実施の形態に係る磁気通信システムの他の使用例を示す斜視図である。
【
図6】
図6は本発明の一実施の形態に係る磁気通信システムの制御系の一例を示す機能ブロック図である。
【
図7】
図7は本発明の一実施の形態に係る磁気通信システムの信号波パターンを構成する信号波の一例を模式的に示す説明図(波形図)である。
【
図8】
図8は本発明の一実施の形態に係る磁気通信システムの信号波パターン及び高速フーリエ変換処理の例を模式的に示す説明図(模式図)である。
【
図9】
図9は本発明の一実施の形態に係る磁気通信システムの信号波パターンの一例及び高速フーリエ変換処理の一例を示す説明図である。
【
図10】
図10は本発明の一実施の形態に係る磁気通信システムの受信側制御ユニットにおける高速フーリエ変換結果の一例を示す説明図である。
【
図11】
図11は本発明の一実施の形態に係る磁気通信システムの受信側制御ユニットによる信号波パターンの解析例の前半部分を示す説明図(表)である。
【
図12】
図12は本発明の一実施の形態に係る磁気通信システムの受信側制御ユニットによる信号波パターンの解析例の後半部分を示す説明図(表)である。
【発明を実施するための形態】
【0014】
以下、本発明を実施するための形態(以下、実施の形態という)を説明する。なお、各実施の形態を通じ、同一の部材、要素または部分には同一の符号を付して、その説明を省略する。なお、以下の説明における「・・・手段」とは、所定の電気・電子部品や電子素子等により対応する所定の機能を実現するよう構成されたハードウエア資源による構成を指す場合もあり、また、コンピュータ装置のCPU、ROM、RAM、外部記憶装置、入力装置、出力装置等のハードウエア資源を、所定のプログラムによる指令によって動作させることで、対応する所定の機能を実現するように構成されたソフトウエア資源による構成を指す場合もあり、更には、ハードウエア資源とソフトウエア資源との組み合わせによる構成を指す場合もある。いずれにしても、ある「手段」について、ハードウエア資源による構成をソフトウエア資源による構成で置換できる場合は、そのようなソフトウエア資源による構成も発明の範囲内にあり、また、ソフトウエア資源による構成をハードウエア資源による構成で置換できる場合は、そのようなハードウエア資源による構成も発明の範囲内にある。
【0015】
[磁気通信システムの全体構成]
本発明は、
図1~
図12に示す実施の形態の磁気通信システムとして具体化することができる。以下、この磁気通信システムの全体構成について、まず、
図1~
図6を参照して概略的に説明する。本実施の形態の磁気通信システムは、
図1~
図3及び
図6に示す送信側装置(送信部)Sと、
図4及び
図6に示す受信側装置(受信部)Rとから構成され、送信側装置Sと受信側装置Rとの間で磁気通信を行うことで、送信側装置Sの情報を受信側装置Rで受信して、その情報の内容に応じた所定の処理や所定の動作等をコンピュータ装置により実行するよう構成されている。詳細には、送信側装置Sは、検出対象物のうち静止物側の通信装置を構成するものであり、検出対象物としての静止物の所定位置又は所定部位に着脱自在に固定することができるよう、静止物の形状や寸法に合わせて所定の寸法及び形状、並びに、所定の着脱構造等を有すると共に、磁気通信システムの用途や仕様に応じて交流磁場(交流磁界)を所定の態様で発生するための電気的構成及び電子的構成を備え、発生した交流磁界に対応する所定の交流磁気信号を外部に向けて送信自在となっている。一方、受信側装置Rは、検出対象物のうち移動物側の通信装置を構成するものであり、前記送信側装置Sからの交流磁気信号を受信して、その交流磁気信号に応じた所定の電気信号(典型的には、コンピュータ装置に所定の処理や動作を実行させるための所定の電気信号)を出力するための電気的構成及び電子的構成を備え、出力した電気信号に対応する所定の処理や動作等をコンピュータ装置に実行させるようになっている。
【0016】
[送信側装置]
次に、本実施の形態の送信側装置Sについて詳細に説明する。送信側装置Sは、
図1~
図3に示すように、基体10と、送信側制御ユニット20と、磁場発生コイル30とを備えている。詳細には、基体10は、送信側装置Sのベース部材として、送信側制御ユニット20及び磁場発生コイル30を支持及び収容するものであり、椅子や机等の静止物に装着自在な構成となっている。
【0017】
<基体>
基体10は、全体として矩形板状等の所定形状を有する基部11を備えている。基部11は、例えば、木質材料、合成樹脂材料、金属材料等により前記所定形状となるように形成され、その材質に応じた所定の剛性を有して外力より容易には変形しないようになっている。基部11は、全体に均一な所定厚み寸法を有する平板状をなし、かつ、所定の幅方向寸法(
図1中の左右方向寸法)及び所定の長さ方向寸法(
図1中の上下方向寸法)を有しており、その外形輪郭は、
図1に示すような(矩形の一種としての)正方形の外形輪郭となっている。また、基部11の厚さ方向一側面(図示の例では上面側)のの中央部には収容凹部12が形成されている。収容凹部12は、(基部11の厚み寸法より小さい)所定厚み寸法(即ち、所定深さ)を有する凹部状をなし、かつ、所定の幅方向寸法(
図1中の左右方向寸法)及び所定の長さ方向寸法(
図1中の上下方向寸法)を有しており、その外形輪郭は、基部11の外形輪郭に対応する所定形状(基部11が矩形状の場合は対応する小さな矩形状)の外形輪郭となっている。更に、基部11の厚さ方向一側面において前記収容凹部12の外側には、基部11の外周縁と収容凹部12との間のほぼ中間位置に、円形状の収容溝13が形成されている。収容溝13は、収容凹部12と同一厚み寸法((即ち、同一深さ)を有するチャンネル溝状又は凹部溝状をなしている。また、基部11の厚さ方向一側面において収容凹部12と収容溝13との間の部分の所定位置には、収容凹部12と収容溝13とを連通する連通溝14が形成されている。連通溝14は、収容凹部12及び収容溝24と同一厚み寸法((即ち、同一深さ)を有するチャンネル溝状又は凹部溝状をなしている。
【0018】
ここで、
図1~
図3の例では、基部11は正方形板状に形成されているが、長方形板状等の他の矩形板状とすることもでき、或いは、六角形板状や八角形板状等の他の多角形板状とすることもでき、或いは、円形板状、楕円形板状等の他の形状の板状とすることもできる。また、連通溝14は、基部11において収容凹部12のコーナー部と(そのコーナー部に対応する)収容溝13の周方向位置を接続するよう形成されているが、その他の任意の部位又は位置に形成してもよい。
【0019】
<送信側制御ユニット>
基体10の収容凹部12には、送信側制御ユニット20が所定位置に配設されて固定されている。送信側制御ユニット20は、
図6に示す送信側装置Sの機能ブロックの回路構成を実現するための電気部品や電子部品を基板上に実装したものであり、基板を基体10の収容凹部12の底壁上に所定の固定手段(螺子やビス等の締結手段、或いは、ブラケット等の支持手段等)により固定することで、送信側制御ユニット20を収容凹部12の所定位置に固定するようになっている。なお、送信側制御ユニット20は、基本的には、所定電圧で所定周波数の交流電流を所定の時間間隔(ホッピング周期)で外部に出力するものである。具体的には、送信側制御ユニット20は、複数の異なる周波数の交流波形(典型的には正弦波)を発生すると共に、それらの周波数を一定時間間隔を置いた所定の周期で切り替える(即ち、所定のホッピング周期でホッピングする)と共に、それらの周波数の交流電流を前記磁場発生コイル30に出力するための電気的・電子的構成を備えている。なお、送信側制御ユニット20は、ハードウエア資源による構成としての各種のマイコン(マイクロコンピュータ)に対して、後述するような所定の機能を当該マイコンに実現させる(各種プログラム等の)ソフトウエア資源による構成を組み合わせて構成することができる。
【0020】
詳細には、
図6に示すように、送信側装置Sの送信側制御ユニット20は、信号波パターン設定手段21、ホッピング周期設定手段22、基本波発生回路23、及び、変調回路24を備えている。また、送信側装置Sは、送信側制御ユニット20の出力側に接続する電気的・電子的構成として、更に、コイル駆動回路25、給電線26、及び、磁場発生コイル30を備えている。また、送信側装置Sは、送信側制御ユニット20の入力側に接続する電気的・電子的構成として、更に、外部入力装置41を備えている。なお、送信側制御ユニット20は、本実施の形態の磁気通信装置の特徴的な構成であるが、ハードウエア資源による構成としての各種のマイコン(マイクロコンピュータ)に対して、後述するような所定の機能を当該マイコンに実現させる(各種プログラム等の)ソフトウエア資源による構成を組み合わせて構成することができる。以下の説明において、「・・・手段」と称されるものは、基本的には、ソフトウエア資源により機能を実現するものであり、「・・・回路」と称されるものは、基本的には、ハードウエア資源により機能を実現するものであるが、これに限定されることなく、「・・・手段」と称されるものをハードウエア資源により機能実現したり、「・・・回路」と称されるものをソフトウエア資源により機能実現したりすることも可能である。なお、図示はしないが、送信側装置Sは、前記送信側制御ユニット20や磁場発生コイル30等の駆動電流を供給するための内部電源を備えるか、或いは、外部電源を接続自在な電気接続口を備えることにより、前記送信側制御ユニット20や磁場発生コイル30等の駆動電流を供給するよう構成されている。
【0021】
<信号波パターン設定手段>
より詳細には、信号波パターン設定手段21は、異なる周波数の電気信号波を2以上の所定数(n個)設定して、それら所定数(n個)の電気信号波によりn進数を表現すると共に、そのn進数の電気信号波を所定の桁数(m桁)だけ連続して出力することで、一つの信号波パターンを構成する機能を実現する。具体的には、信号波パターン設定手段21は、例えば、異なる周波数の電気信号波を2個設定して、それら2個の電気信号波により2進数を表現すると共に、その2進数の電気信号波を所定の桁数(2桁、3桁、4桁等)だけ連続して出力することで、一つの信号波パターンを構成することができ、この場合、2の2乗(=合計4通り)、2の3乗(=合計8通り)、又は、2の4乗(=合計16通り)等の所定数の信号波パターンを生成することができる。或いは、信号波パターン設定手段21は、例えば、異なる周波数の電気信号波を3個設定して、それら3個の電気信号波により3進数を表現すると共に、その3進数の電気信号波を所定の桁数(2桁、3桁、4桁等)だけ連続して出力することで、一つの信号波パターンを構成することができ、この場合、3の2乗(=合計9通り)、3の3乗(=合計27通り)、又は、3の4乗(=合計81通り)等の所定数の信号波パターンを生成することができる。或いは、信号波パターン設定手段21は、例えば、異なる周波数の電気信号波を4個設定して、それら4個の電気信号波により4進数を表現すると共に、その4進数の電気信号波を所定の桁数(2桁、3桁、4桁等)だけ連続して出力することで、一つの信号波パターンを構成することができ、この場合、4の2乗(=合計16通り)、4の3乗(=合計64通り)、又は、4の4乗(=合計256通り)等の所定数の信号波パターンを生成することができる。
【0022】
より具体的には、本実施の形態では、信号波パターン設定手段21は、信号波パターンの一例として、異なる周波数の電気信号波を4個設定して、それら4個の電気信号波により4進数を表現すると共に、その4進数の電気信号波を3桁だけ連続して出力することで、一つの信号波パターンを構成し、4の3乗(=合計64通り)の信号波パターンを生成するようになっている。また、この信号波パターンの4進数を構成する4種類の電気信号波としては、例えば、
図7に示すような信号波A、信号波B、信号波C、及び、信号波Dを設定し、信号波Aの周波数f1、信号波Bの周波数f2、信号波Cの周波数f3、及び、信号波Dの周波数を、それぞれ、f1=2.4Hz、f2=4.8Hz、f3=7.2Hz、f4=9.6Hzに設定している。なお、この設定では、信号波Aの周波数f1(=2.4Hz)を基本周波数として、信号波Bの周波数f2を信号Aの周波数f1の2倍の周波数(f2=2f1=4.8Hz)、信号波Cの周波数f3を信号Aの周波数f1の3倍の周波数(f3=3f1=7.2Hz)、及び、信号波Dの周波数を信号Aの周波数f1の4倍の周波数(f4=4f1=9.6Hz)に設定している。この場合、生成される電気信号波の信号波パターンは、{A,A,A}、{A,A,B}、{A,A,C}、{A,A,D}、{A,B,A}、{A,B,B}、{A,B,C}、{A,B,D}、・・・、{D,D,A}、{D,D,B}、{D,D,C}、{D,D,D}となる。
【0023】
この場合、後述する磁場発生コイル30は、送信側制御ユニット20からの上記信号波パターンの電気信号波の出力を受けて、
図7に示すように、対応する信号波パターン(電気信号波である信号波A~Dと同一周波数f1~f4を有し、かつ、4進数3桁により表現された周波数パターン)の交流磁気信号波からなる信号波A,B,C,Dの任意の一つの信号波を、3桁の各桁の信号波に設定して出力することで、4進数3桁の情報(64通りの異なるデータであって、識別情報又は識別子となりうる情報)を表現する交流磁気信号を外部に出力する。なお、この交流磁気信号波からなる信号波A,B,C,Dは、
図7に示すように、磁束密度を経時的に増減変化させて(典型的には正弦波となる)交流信号波を形成するものである。この場合、生成される交流磁気信号波の信号波パターンは、{A,A,A}、{A,A,B}、{A,A,C}、{A,A,D}、{A,B,A}、{A,B,B}、{A,B,C}、{A,B,D}、・・・、{D,D,A}、{D,D,B}、{D,D,C}、{D,D,D}となる。
【0024】
<ホッピング周期設定手段>
ホッピング周期設定手段22は、前記信号波パターン設定手段21で設定した所定の信号波パターンの信号波(即ち、n進数m桁の信号波パターンの連続する信号波であって、例えば、信号波A,B,C,D)を、一定時間間隔となる所定の切換時間間隔(即ち、ホッピング周期)で切り換えて出力するためのタイミング信号を出力する機能を実現する。具体的には、ホッピング周期設定手段22は、設定した信号波パターンの信号波の周波数で決定される(各信号波の)周期のうち、最長周期(信号波A,B,C,Dの場合、最小周波数となる信号波Aの周期である1/f1≒0.42秒)に基づき、その最長周期以上の時間間隔となるよう、前記ホッピング周期を設定している。より具体的には、ホッピング周期設定手段22は、ホッピング周期の一例として、信号波パターンとして4進数3ケタの信号波パターンが設定され、信号波A,B,C,Dが使用される場合において、信号波A,B,C,Dにおいて最小周波数となる信号波Aの周期(1/f1≒0.42秒)に基づき、その最長周期以上の時間間隔として、0.6秒(0.6sec)となるよう前記ホッピング周期を設定している。そして、この場合、信号波A~Dからなる4進数3桁により表現された周囲数パターンの4つの(電気信号波である)信号波が、ホッピング周期設定手段22により所定のホッピング周波数で切り換えられながら(ホッピングされながら)3桁の各桁の信号波にそれぞれ設定されて出力されることで、4進数3桁の情報(64通りの異なるデータであって、識別情報又は識別子となりうる情報)を表現する交流電気号が出力される。具体的には、この場合、ホッピング周期設定手段22により、
図8に示すような3桁(第1の桁x1,第2の桁x2,第3の桁x3)の信号波(信号1、信号2、信号3)として、それぞれ、信号波A,B,C,Dのうちのいずれかがホッピングして設定されることで、4進数を構成する4個の信号波A,B,C,Dから選択した任意の一つの信号波A,B,C,Dが3桁(x1x2x3)となって連続する所定信号波パターンの電気信号波が生成される。
【0025】
これにより、後述する磁場発生コイル30は、送信側制御ユニット20からの上記信号波パターンの電気信号波の出力を受けて、
図8に示すように、対応する信号波パターン(電気信号波である信号波A~Dと同一周波数f1~f4を有し、かつ、4進数3桁により表現された周囲数パターン)の4つの信号波を、所定のホッピング周波数で切り換えながら(ホッピングしながら)3桁の各桁の信号波にそれぞれ設定して出力することで、4進数3桁の情報(64通りの異なるデータであって、識別情報又は識別子となりうる情報)を表現する交流磁気信号を外部に出力する。具体的には、磁場発生コイル30は、この場合、
図8に示すように、3桁(第1の桁x1,第2の桁x2,第3の桁x3)の信号波(信号1、信号2、信号3)として、それぞれ、電気信号波である信号波A,B,C,Dに対応する磁気信号波である信号波A,B,C,Dのうちのいずれかをホッピングして設定することで、4進数を構成する4個の信号波A,B,C,Dから選択した任意の一つの(磁気信号波である)信号波A,B,C,Dが3桁(x1x2x3)となって連続する所定信号波パターンの交流磁気信号波を生成する。
【0026】
<区切信号E>
一方、ホッピング周期設定手段22(又は、信号波パターン設定手段21)は、n進数m桁の信号波からなる各信号波パターン(一つの信号波パターン)の前後に、それぞれ、所定の区切信号Eを挿入する機能も実現する。なお、区切信号Eは、前記信号波パターンの信号波の周波数を明確に区別できる周波数の信号とするが、典型的には、ゼロ周波数の信号として、区切信号Eが存在する区間は、前記信号波A~Dの各周波数を含むいかなる周波数も出力されていない状態とすることで、区切信号Eの存在を表現することができる。即ち、ホッピング周期設定手段22(又は、信号波パターン設定手段21)は、上記のように生成された各組の(1つの)信号波パターンの最初の電気信号波の直前位置と最後の電気信号波の直後位置に、それぞれ、所定の区切時間間隔だけ時間的に継続する区切信号Eを挿入する。ここで、区切信号Eの区切時間間隔は、前記ホッピング周期の時間間隔と同一の時間間隔(例えば、0.6秒)に設定することが、後述する受信側制御ユニット60による復調処理の観点から好ましい。具体的には、
図8に示すような3桁の信号波(x1x2x3)からなる信号波パターンの電気信号波(信号1、信号2、信号3)が生成される場合において、その信号波パターンの信号波の前後位置(即ち、最初の信号波x1(信号1)の直前位置、及び、最後の信号波x3(信号3)の直後位置)には、それぞれ、同一時間間隔の区切信号Eが挿入される。なお、実際には、前記信号波パターンの信号波が、時間的に連続して複数組(通常は多数組)出力されるため、
図8における最後の区切信号3の後には、更に、(図示はしないが)同一信号波パターンの信号波が連続することになる。
【0027】
<基本波発生回路>
基本波発生回路23は、所定の基本周波数の基本波を発生する回路構成であり、公知の波形発生回路を利用して構成することができる。かかる基本波としては、例えば、前記n進数m桁の信号波パターンを構成する信号波のうち、最低周波数となる基本信号波と同一周波数の信号波を使用することができ、上記信号波A,B,C,Dの場合、信号波Aと同一周波数(2.4Hz)の信号波(典型的には、正弦波)を使用することができる。
【0028】
<変調回路>
変調回路24は、前記信号波パターン設定手段21からの出力及びホッピング周期設定手段22からの出力に基づき、前記基本波発生回路23から出力された基本信号波を、前記n進数m桁の信号波パターンの電気信号波となるように変調して出力する機能を実現する。例えば、変調回路24は、
図8に示すような3桁の信号波(x1x2x3)からなる信号波パターンが設定されている場合、その電気信号波(x1=信号1、x2=信号2、x3=信号3)を変調出力すると共に、その信号波パターンの信号波の前後位置(即ち、最初の信号波x1(信号1)の直前位置、及び、最後の信号波x3(信号3)の直後位置)に、それぞれ、同一時間間隔の区切信号Eを挿入して出力する。
【0029】
即ち、後述する磁場発生コイル30は、送信側制御ユニット20の変調回路24からの上記信号波パターンの電気信号波の出力を受けて、
図8に示すように、対応する信号波パターン(電気信号波である信号波A~Dと同一周波数f1~f4を有し、かつ、4進数3桁により表現された周囲数パターン)の4つの信号波を、所定のホッピング周波数で切り換えながら(ホッピングしながら)3桁の各桁の信号波にそれぞれ設定して出力することで、4進数3桁の情報(64通りの異なるデータであって、識別情報又は識別子となりうる情報)を表現する交流磁気信号を外部に出力する。具体的には、磁場発生コイル30は、この場合、
図8に示すように、3桁(第1の桁x1,第2の桁x2,第3の桁x3)の信号波(信号1、信号2、信号3)として、それぞれ、電気信号波である信号波A,B,C,Dに対応する磁気信号波である信号波A,B,C,Dのうちのいずれかをホッピングして設定することで、4進数を構成する4個の信号波A,B,C,Dから選択した任意の一つの(磁気信号波である)信号波A,B,C,Dが3桁(x1x2x3)となって連続する所定信号波パターンの交流磁気信号波を生成する。
【0030】
<コイル駆動回路>
コイル駆動回路25は、変調回路24からの変調信号を所定の増幅率で増幅し、給電線26を介して磁場発生コイル30に出力する機能を実現する。なお、このコイル駆動回路25は、前記変調回路24からの変調信号を増幅して磁場発生コイル30に出力するドライバとして機能するものであり、磁場発生コイル30からより強度の高い磁場MFを発生したい場合に実装することが好ましい電気的構成であるため、このような必要性がない場合、省略することもできる。
【0031】
<外部入力装置>
外部入力装置41は、前記信号波パターン設定手段21による信号波パターンの各信号波の周波数や信号波の組合せに関する設定情報を外部から入力する機能を実現するものである。即ち、外部入力装置41は、前記信号波パターン設定手段21及び前記ホッピング周期設定手段23への入力インターフェースを提供するものであり、上記ハードウエア資源による構成として実現されている。詳細には、入力装置は、信号波パターン設定手段21に対して、前記信号波パターンを設定するための入力機能を提供すると共に、ホッピング周期設定手段22対して、前記ホッピング周期を設定するための入力機能を提供する。なお、外部入力装置41は、送信側装置Sの外部の別個の装置として構成し、必要時にのみ送信側装置Sのインターフェースに接続して使用することもできる。
【0032】
<磁場発生コイル>
基体10の収容溝13には、磁場発生コイル30が収容状態で配設されている。磁場発生コイル30は、所定直径(線径)の所定のコイル用線材(典型的には、エナメル線等の銅線材料)を使用して、そのコイル用線材を所定巻数(N)で所定コイル径(D)となるよう、前記収容凹溝13の周方向に巻き回していくことで形成される。また、磁場発生コイル30は、給電線26により前記収容凹部12内の送信側制御ユニット20に電気的(及び電力的)に接続されており、送信側制御ユニット20から供給された所定周波数の交流電流(以下、単に「供給電流」ということがある。)により、対応する周波数(基本的には同一周波数)の交流磁場(交流磁界)を発生するようになっている。また、磁場発生コイル30は、送信側制御ユニット20からの交流電流が前記所定のホッピング周期で切り替わるごとに、自らが発生する交流磁場の周波数を供給電流の周波数に対応する周波数(基本的には同一周波数)に切り替えて、対応する周波数の交流磁場を発生する。ここで、磁場発生コイル30により発生する磁場の強度(H)は、その中心部分(
図3に示すような軸心部分である磁場中心MFCの位置)では、基本的には、前記巻き数(N)と磁場発生コイル30に導通する電流量(I)とに比例すると共に、コイル直径(D=2r)に反比例し、H=NI/2r(A/m)となる。また、磁束密度(B)は、磁場の強度(H)に比例し、B=μH=μNI/2r(T)となる(式中「μ」は透磁率)。したがって、本実施の形態の磁気通信システムは、送信側制御ユニット20からの供給電流の電流値(I)、磁場発生コイル30の巻数(N)、及び、磁場発生コイル30のコイル径(D=2r:Dは直径、rは半径)のうちのいずれか一つ以上の値(パラメータ)を増減変更して、磁場発生コイル30が発生する交流磁場の強度(H)が所定の強度値(或いは、所定の強度範囲内)となるようにしている。なお、かかるパラメータとしては、必要な場合、磁場発生コイル30のコイル用線材の種類や線径を追加的に使用してもよい。
【0033】
具体的には、前記磁場発生コイル30の発生する磁場強度は、検出対象物である静止物と移動物との間の距離のうち、移動物が静止物に接近する場合の通常の距離又は距離範囲(以下、これらを総称して「通常距離」ということがある。)を想定し、その通常距離において、静止物に固定した送信側装置Sからの交流磁気信号が、移動物に固定した(又は、移動物に携帯等されて移動物と一体に移動する)受信側装置Rによって確実に受信され、かつ、その交流磁気信号が受信側装置Rによって確実に復調されて元の情報を復元できる最低限の強度値(以下、「最低強度値」ということがある。)以上の強度に設定される。
【0034】
なお、このような最低強度値の規準となる前記通常距離は、静止物の種類に応じて予め把握することができる。例えば、
図4に示すように、静止物が椅子100の場合において、椅子100の座部101の下側(下側面)に送信側装置Sを固定した場合には、モバイル通信端末装置(即ち、受信側装置R)を携帯する移動物としての人100が、静止物としての椅子100に着座したときの(その人100の携帯する)モバイル通信端末装置(受信側装置R)と椅子100に固定した送信側装置Sとの間の距離は、通常は、50cm程度の距離の範囲内、或いは、大きくとも1メートル程度の距離の範囲内に収まると考えられるため、前記通常距離も、この場合は、例えば、50cm~1メートルの距離の範囲内で設定することが実用的である。また、例えば、
図5に示すように、静止物がテーブル120の場合において、テーブル120の天板121の下側(下側面)に送信側装置Sを固定した場合には、モバイル通信端末装置(即ち、受信側装置R)を携帯する移動物としての人100は、静止物としてのテーブル120の直近位置に着座又は停止したときの(その人100の携帯する)モバイル通信端末装置(受信側装置R)とテーブル120に固定した送信側装置Sとの間の距離は、やはり、通常は50cm程度の距離の範囲内、或いは、大きくとも1メートル程度の距離の範囲内に収まると考えられるため、前記通常距離も、この場合は、例えば、50cm~1メートルの距離の範囲内で設定することが実用的である。
【0035】
一方、磁場発生コイル30の発生する磁場強度は、検出対象物として複数の静止物が、所定面積範囲内に近接配置される場合(即ち、二次元的に近接配置される場合)、又は、所定容積範囲内に近接配置される場合(即ち、三次元的に近接配置される場合)における、(二次元方向又は三次元方向に)隣接する静止物間の最小離間距離又は最小離間距離範囲(以下、これらを総称して「最小離間距離」ということがある。)を想定し、このような最小離間距離の中間点において、隣接する静止物に固定した送信側装置Sの磁場発生コイル30が発生する磁場強度の最大値(以下、「中間地点強度値」ということがある。)が、前記最低強度値未満となるように設定することが望ましい。こうすると、複数の静止物が隣接して配置される場合において、隣接する一方の静止物の送信側装置Sからの交流磁気信号が、隣接する他方の静止物の送信側装置Sからの交流磁気信号と干渉することがない。即ち、隣接する静止物の双方に対して移動物の受信側装置Rが接近した場合において、その受信側装置Rは、必ず、隣接する静止物の一方の送信側装置Sからの交流磁気信号のみを受信する(即ち、他方の送信側装置Sからの交流磁気信号が受信感度未満となって、受信側装置Rに受信されることがない)。
【0036】
なお、このような中間地点強度値の規準となる前記最小離間距離は、静止物の種類や静止物を配置する施設等の種類に応じて予め把握することができる。例えば、
図4に示すような椅子100を屋内施設(例えば、家具展示場)に複数互いに離間して配置する場合において、隣接して配置される椅子100の間の最小離間距離は、通常は、最小でも1メートルから2メートル程度の距離の範囲内に収まると考えられるため、前記最小離間距離も、この場合は、例えば、1メートル~2メートルの距離の範囲内で設定することが実用的である。また、例えば、
図5に示すようなテーブル120を屋内施設(例えば、家具展示場)に複数互いに離間して配置する場合において、隣接して配置されるテーブル120の間の最小離間距離は、通常は、やはり、最小でも1メートルから2メートル程度の距離の範囲内に収まると考えられるため、前記最小離間距離も、この場合は、例えば、1メートル~2メートルの距離の範囲内で設定することが実用的である。
【0037】
なお、本発明では、前記通常距離として、数十cmから数メートルの範囲内、例えば、約50cm~約1メートルの範囲内、約50cm~約2メートルの範囲内、約1メートル~約2メートルの範囲内等、比較的近接した距離を設定することもできるが、場合に応じて、任意の距離を設定することができる。いずれにしても、インターネットを利用した通信環境がますます充実している近時においては、移動物としては、通常、人が携帯するモバイル通信端末装置が代表的なものとなるため、人が静止物(椅子、机、テーブル、カウンター、キャビネット等)に接近する場合(或いは、着席、着座等する場合)において静止物側の送信側装置Sと移動物側の受信側装置4との間に想定される前記通常距離、或いは、前記最小離間距離は、モバイル通信端末装置が受信側装置Rとなることを想定して設定することが実用的である。
【0038】
更に、本実施の形態では、前記磁場発生コイル30が発生する磁場MFの強度のうちの最大強度(典型的には、
図3に示す磁場中心MFCの位置における磁場強度)は、検出対象物である移動物が人の場合、及び、検出対象物である移動物がモバイル携帯端末装置のように人に携帯されるものである場合を想定し、その人が検出対象物としての静止物に最接近状態となったときに、その人に照射される磁場の強度(又は磁束密度)が、国際的ガイドラインの基準値未満(典型的には、国際非電離放射線防護委員会(ICNIRP)の基準値未満)となるように設定されている。
【0039】
[地磁気センサの特性対応]
ここで、本発明は、モバイル通信端末装置に内蔵される磁気センサとしての(電子コンパス又はデジタルコンパスと呼ばれることもある)地磁気センサを利用して、検出対象物措定の静止物からの交流磁気信号を検出することにより、その静止物の位置や距離等の情報を移動物としてのモバイル通信端末装置に正確に提供することができる磁気通信システムを提供することも目的(課題)の一つとしている。このため、地磁気センサの特性(特に、スマートフォンやタブレット等のモバイル通信端末装置に内蔵される汎用の地磁気センサの特性)に応じた特別の設定及び考慮が必要になる。即ち、本発明者らは、地磁気センサは、地磁気の大きさと方向とを検出するための電子デバイスであることから、本発明のように、周波数をホッピングしてそのホッピングした周波数を検出する場合において、各周波数を正確に検出できる周波数範囲には限界があるとの知見を得た。即ち、地磁気の大きさと方向以外の周波数を検出する点から構成されていないため、検出できる周波数には限界があるとの知見を得た。そこで、本発明者らは、更に鋭意の研究開発を重ねた結果、そのような周波数の上限は、一般的に流通しているモバイル通信端末装置内蔵型の地磁気センサの場合で、約10Hz程度であるとの知見を得た。よって、本発明では、前記信号波パターンを構成する信号波の周波数は、上限が10Hz以下の周波数(例えば、信号波A,B,C,Dの周波数のうちの最高周波数である信号Dの周波数が10Hz以下の周波数(9.6Hz))となるように、信号波の周波数を設定している。なお、将来的に、又は、設計変更により(特に、スマートフォンやタブレット等のモバイル通信端末装置に内蔵される汎用の)地磁気センサの測定可能周波数の上限が大きくなれば、その範囲での周波数を使用することもできる。なお、地磁気センサの応答周波数は、例えば、ホール素子やフラックスゲートセンサからなる磁気センサの場合は100Hz~kHzオーダー、MR素子やGMR素子からなる磁気センサの場合はMHzオーダー、MI素子からなる磁気センサの場合は10kHz~100kHzオーダーとされることもあるが、実際のモバイル通信端末装置に実装される磁気センサの特性は様々であり、上記のように、10Hz程度の極超低周波数帯域、或いは、多くとも100Hz程度の超低周波数帯域の応答周波数となることも予想されることから、本発明では、信号波パターンの信号波の周波数を、最大でも、これらの極超低周波数帯域(又は超低周波数帯域以下の周波数)となるように設定することが実用上は非常に好ましい。
【0040】
[受信側装置]
次に、本実施の形態の受信側装置Rについて詳細に説明する。受信側装置4は、
図4に示すように、本実施の形態では、モバイル通信端末装置としてのスマートフォンに内装して実装される電気的・電子的構成(典型的には、モバイル通信端末装置としてのスマートフォンに予め実装されている電気的・電子的構成)を利用して、受信側装置4の構成及び機能を実現している。詳細には、
図6に示すように、受信側装置Rは、磁気センサ51と、受信側制御ユニット60と、出力手段65とを備えている。このうち、まず、磁気センサ51は、受信側装置Rを構成するモバイル通信端末装置としてのスマートフォンに予め内装して実装されている構成であり、この磁気センサ(電子コンパス)を本実施の形態の磁気センサ51として利用している。詳細には、磁気センサ51は、送信側装置Sの磁場発生コイル30からの交流磁気信号を検出して(即ち、磁束密度の変化及び磁場の方向の変化を検出することで交流磁気信号を検出して)、その交流検出信号の信号波パターンに応じた電気信号を出力する。即ち、上記のような信号A,B,C,Dからなる4進数3桁の信号波パターンの交流磁気信号が出力された場合、磁気センサ51は、その信号波パターンの各桁に対応する(磁気信号波としての)交流磁気信号を検出し、その交流磁気信号(信号波A,B,C,D)に対応する電気信号を出力する。
【0041】
<受信側制御ユニット>
受信側制御ユニット60は、前記磁気センサ51の出力を受けて、磁気センサ51からの電気信号の元となる前記送信側装置Sからの信号波パターンを解析し、その信号波パターンに対応する指令信号を出力する機能を実現する。なお、受信側制御ユニット60は、ハードウエア資源による構成としての各種のマイコン(マイクロコンピュータ)に対して、後述するような所定の機能を当該マイコンに実現させる(各種プログラム等の)ソフトウエア資源による構成を組み合わせて構成することができる。詳細には、受信側制御ユニット60は、復調回路61、パターン認識手段62、マッチング手段63、及び、指令手段64を備える構成とすることができる。
【0042】
<復調回路>
復調回路61は、磁気センサ51の出力信号である電気信号を入力して、その電気信号に基づき、前記送信側装置Sが送信した所定の信号波パターンの各信号波を復調してその復調信号を出力する機能を実現すると共に、その復調信号を高速フーリエ変換してそのスペクトル成分を抽出する機能を実現する。詳細には、復調回路61は、磁気センサ51からの電気信号に基づき送信側装置Sからの信号波パターンの信号波を復調する手段である復調手段を備えることに加え、その復調手段からの復調信号を高速フーリエ変換するFFT手段を備えている。なお、復調回路61は、磁気センサ51の出力信号が、送信側装置Sからの信号波パターンを忠実に復元した交流信号波形となっている場合(即ち、磁気センサ51がそのような特性及び性能等を備えている場合)、磁気センサ51からの電気信号をそのままFFT手段に入力して高速フーリエ変換を行うよう構成することもでき、この場合、前記復調手段は省略することができる。復調回路61のFFT手段自体は、公知の高速フーリエ変換回路等から構成することができるが、このFFT手段は、送信側制御ユニット20による信号波パターンのホッピング周期(例えば、0.6sec)よりも短い時間間隔の変換周期(例えば、0.4sec)で1回分の高速フーリエ変換を行うと共に、その1回分の高速フーリエ変換(以下、「単位FFT」と呼ぶことがある。)を所定の複数回(以下、「1パターン用FFT回数」と呼ぶことがある。)だけ連続して行い、かつ、隣接する単位FFTの変換周期(即ち、タイミング)を一部の時間間隔(以下、「重畳時間間隔」と呼ぶことがある。)だけ重畳して前記1パターン用FFT回数分の高速フーリエ変換を行うよう構成されている。
【0043】
詳細には、FFT手段は、前記重畳時間間隔として、隣接する2回の単位FFTにおいて、一方の単位FFTが、(m桁連続する信号波のうちの)隣接する信号波にまたがって処理を行うことになる場合に(即ち、一方の単位FFTの時間間隔の一部が一方の信号波の時間間隔に属すると共に残りの時間間隔が他方の信号波の時間間隔に属する場合に)、他方の単位FFTの時間間隔の全体が、他方の信号波の時間間隔内に完全に含まれるような時間間隔を設定している。また、FFT手段は、前記1パターン用FFT回数として、前記ホッピング周期に対する前記単位FFTの変換周期の比率と前記重畳時間間隔の比率とに基づき、前記1パターン用FFT回数分の高速フーリエ変換によって、前記1組の信号波パターンの信号波を完全に網羅すると共に、その前後の区切信号の少なくとも一部を網羅して高速フーリエ変換処理できるような回数を設定している。
【0044】
具体的には、例えば、
図8に示すように、信号波パターンとして3桁の信号波(x1x2x3)を使用すると共に、1組の信号波パターンを区切信号Eにより区切って認識する場合において、ホッピング周期を0.6秒とする場合、FFT手段による前記単位FFTの周期は、0.4秒に設定されると共に、前記重畳時間間隔は0.2秒に設定され、かつ、前記1パターン用FFT回数は10回に設定されている。こうすることで、FFT手段が、前記1パターン用FFT回数(10回)だけ単位FFT(FFT01~FFT10)を所定周期(0.4秒)で繰り返すと共に、隣接する単位FFTを所定重畳時間間隔(0.2秒)で重畳することにより、少なくとも前後の区切信号Eのうちの一方の区切信号Eを含む1組の信号波パターンの全体の時間間隔の範囲内に、前記1パターン用FFT回数分の高速フーリエ変換処理の時間間隔が収まるようになっており、これにより、FFT手段が、1組の信号波パターンの各信号波の時間間隔の全体に、いずれかの単位FFTの時間間隔を完全に重畳させることで、FFT手段が、1組の信号波パターンの全ての信号波のスペクトル成分を完全に抽出して、1組の信号波パターンの信号波の周波数を認識することができるようになっている。また、FFT手段は、最初の単位FFT又は最後の単位FFTの時間間隔を、少なくとも一方(前方又は後方)の区切信号Eの時間間隔の一部に重畳させることで、少なくとも一方(前方又は後方)の区切信号Eの存在(即ち、信号波パターンの最初の信号波の前のゼロ周波数、又は、最後の信号波の後のゼロ周波数)を認識することができるようになっている。なお、前記単位FFTの周期(0.4秒)と重畳時間間隔(0.2秒)との合計値は、前記ホッピング周期(0.6秒)と等しくなっている。また、重畳時間間隔(0.2秒)は、単位FFTの周期(0.4秒)の半分(1/2)の時間間隔となっている。これにより、ホッピング周期である0.6秒の間には、必ず一度は、ホッピング(即ち、1つの信号波の時間間隔)を「またがない」単位FFTが存在することになる。
【0045】
更に、FFT手段は、前記1パターン用FFT回数の単位FFTのうち、一定数おきの単位FFTの抽出スペクトルのみを選択的に使用することで、前記1組の信号波パターンの信号波の周波数を正確に認識するようになっている。例えば、
図8に示すように、信号波パターンとして3桁の信号波(x1x2x3)を使用すると共に、1組の信号波パターンを区切信号Eにより区切って認識し、ホッピング周期を0.6秒とする場合において、1パターン用FFT回数を10回とする場合、FFT手段は、
図8中に斜線を付して示すように、最後の単位FFT、及び、その前の単位FFTのうち2個おきの単位FFTの抽出スペクトルを選択して、合計4個の候補スペクトルを選定し、この4個の候補スペクトル(即ち、1番目、4番目、7番目、10番目の単位FFTの抽出スペクトル)を使用して、前記1組の信号波パターンの信号波の周波数を正確に解析し、認識するようになっている。より具体的には、
図9に示すように、1組の信号波パターンが信号波ABCの連続信号波により構成され、信号波A、信号波B、信号波Cが、それぞれ、所定のホッピング周期による所定のタイミング(t1~t2間、t2~t3間、t3~t4間)で出力される場合において、FFT手段は、1パターン用FFT回数(10回)の単位FFT(FFT01~FFT10)を前記重畳時間間隔で重畳させて実行すると共に、そのうちの所定の4個の単位FFTの抽出スペクトルを候補スペクトルとして選択する。即ち、FFT手段による1パターン用FFT回数(10回)の単位FFT(FFT01~FFT10)の抽出スペクトルは、
図10に示すようなスペクトル成分となるが、FFT手段は、このうち、所定の4個分の単位FFT(FFT01、FFT04、FFT07、FFT10)の抽出スペクトルを候補スペクトルとして出力する。こうすると、
図10に示すように、各候補スペクトルは、対応する信号波のスペクトルをほぼ正確に反映したスペクトルとなり、1組の信号波パターンの信号波の周波数を正確に表すスペクトルとして出力することができる。
【0046】
また、FFT手段は、単位FFTの抽出スペクトルにより解析した信号波で表現される符号(異なる周波数のn個の信号(A,B,C,D等)をm桁連続することによって表現されるn進数m桁の情報のうちの各桁の情報からなる符号)のうち、最大の信号強度を持つ符号に対する、二位(2番目)の信号強度を持つ符号の当該信号強度の比を元に、その符号が持つ「信号らしさ」を計算している。具体的には、FFT手段は、上記所定個数(4個)の候補スペクトルの各々について、最大信号強度と2番目の信号強度との比の値(例えば、最大信号強度が2番目の信号強度の2倍の場合は「2」)を計算し、それら4個分の比の値を合計して、その合計値が十分に大きい場合に、その符号が十分な「信号らしさ」を有すると判断して、その符号が前記最大信号強度の信号波であると判断している。具体的には、FFT手段は、
図11に示すように、単位FFT(FFT01、FFT02、・・・、FFT30、・・・)を繰り返し実行し、そのうち、10回を1繰り返し単位(1パターンFFT用回数)として、その1パターンFFT用回数中の単位FFT(例えば、FFT01~FFT10)を選択し、各単位FFTについて、信号A,B,C,Dについてのスペクトル値を抽出する。次に、FFT手段は、1番目の単位FFT(FFT01)については、最大信号強度である信号Cの信号強度(1st:1359.8)と、2番目の信号強度である信号Aの信号強度(2nd:610.2)との比(ratio:2.2)を計算して保持し、その他の単位FFT(FFT02~FFT10)についても同様の処理を行う。次に、FFT手段は、10個の単位FFT(FFT01~FFT10)について、2個おきの単位FFTの比(ratio)の値を合計して合計値(sum3)として保持する。例えば、1番目の単位FFT(FFT01)については、1番目の単位FFT(FFT01)の比の値(ratio=2.2)、4番目の単位FFT(FFT04)の比の値(ratio=1.2)、7番目の単位FFT(FFT07)の比の値(ratio=48.6)、10番目の単位FFT(FFT10)の比の値(ratio=30.7)を合計してその合計値(sum3=82.7)を保持する。同様にして、FFT手段は、2番目以降の単位FFT(FFT02、FFT03、・・・、FFT10)についても、それ以降の10個分の単位FFTを利用して、2個おきの単位FFTの比(ratio)の値を合計して合計値(sum3)として保持する。例えば、2番目の単位FFT(FFT02)については、2番目の単位FFT(FFT02)の比の値(ratio=2.5)、5番目の単位FFT(FFT05)の比の値(ratio=2.1)、8番目の単位FFT(FFT08)の比の値(ratio=1.0)、11番目の単位FFT(FFT11)の比の値(ratio=1.7)を合計してその合計値(sum3=7.4)を保持する。
【0047】
次に、FFT手段は、このようにして計算した各単位FFTの比の合計値を比較して、隣接する単位FFTの比の合計値に比較して最大となる比の合計値を有する単位FFTを候補単位FFTとして選択する。これにより、
図11では、最初の10個の単位FFT(FFT01~FFT10)については、FFT01,FFT04,FFT07,FFT10が候補単位FFTとして選択されている(「選択」の欄に「○」が付されている)。なお、各単位FFTについては、候補単位FFTとならないものも含めて、すべての単位FFTについて、最大信号強度を有する信号波の符号(A,B,C,D)が、「候補」の欄に表示されている(FFT01=C、FFT02=C、・・・、FFT10=B)。そして、FFT手段は、
図12に示すように、各候補単位FFTの「候補」の欄の符号(
図11の場合は「C」「C」「D」「B」)をその順に配置して、その1パターン用FFT回数分のFFTにより解析される信号波パターンの信号波の符号の組み合わせとして暫定的に保持する(
図12のFFT10の左側の「最終」の欄参照)。なお、FFT手段は、上記のような処理を2回繰り返して(即ち、2試行だけ実行して)その2回分の結果を保持し、その2回分の結果を参照して最も「信号らしさ」を有する符号を判断し、その符号を出力用の符号として採用している。
【0048】
次に、FFT手段は、前記無符号区間としての区切信号Eの区間については、各単位FFTについて、抽出された4個の符号(A,B,C,D)の各スペクトル値(各信号強度)の間の強度差が最も小さい(即ち、均一化又は平準化されている)単位FFTを選択し、その単位FFTに属する信号(符号)が区切信号であると判断して、その単位FFTの前記「候補」欄の符号を、区切信号の符号「E」に置換する。例えば、
図11に示すように、最初の10個の単位FFT(FFT01~FFT10)について、FFT01,FFT04,FFT07,FFT10を候補単位FFTとして選択した場合において、4個の候補単位FFTの「候補」の欄の符号の連続値が「CCDB」となっている場合に、2番目の候補FFT(FFT04)の符号(A,B,C,D)の強度(「14.2」、「18.4」、「74.4」、「61.4」)が、他の3個の候補単位FFTと比較して最も平準化された値の群となっているため、FFT手段は、この2番目の候補FFT(FFT04)の「候補」欄の符号(本来は「C」)を区切信号の符号「E」で置換し、最終的な符号の連続値として、「CEDB」を得る(
図12のFFT10の右側の「最終」の欄参照)。具体的には、FFT手段は、無符号期間として、4つの信号出力から一番「無符号らしい」ものを選択するが、このとき、「無符号らしさ」は、符号A~Dまでの信号強度を合計したものと、この中で一番強度の高いものとの比に基づき、強度が低いものが無符号として選択される。このように、本発明では、一つの信号源からは、繰り返しの信号が発せられると仮定し、区切信号(無符号区間)を目安に得られた符号を巡回しデコードする。
【0049】
更に、FFT手段は、前記各信号波の高速フーリエ変換処理において、そのXYZ軸成分を独立(同時)に求め、得られた複素成分を周波数ごとにRMS(自乗和の平方根)を求めて、これを信号強度として使用している。このときの計算式は以下のとおりである。
√(Xr^2+Xi^2+Yr^2+Yi^2+Zr^2+Zi^2)
{式中、r,iは、それぞれ、実部及び虚部}
これは、モバイル通信端末装置等の受信側装置Rに姿勢の変化があった場合でも、これに影響されず強度計算ができるようにするためである。
【0050】
<パターン認識手段>
パターン認識手段62は、復調回路61のFFT手段が出力した(送信側装置Sの信号波パターンに対応する)信号波パターンの各信号波のスペクトル成分に基づき、前記送信側装置Sが実際に出力した信号波パターンを認識するものである。即ち、パターン認識手段62は、FFT手段の出力信号に基づき、前記送信側装置Sが実際に出力した信号波パターンにおける各信号波の周波数を認識し、その認識結果に応じた制御信号を出力する。
【0051】
<マッチング手段>
マッチング手段63は、パターン認識手段62からの信号を入力し、パターン認識手段62の認識結果を、所定の処理とマッチングするものであり、例えば、上記ソフトウエア資源による構成として実現することができる。詳細には、前記信号波パターンの信号波の周波数の組み合わせで表現される前記n進数m桁の情報を、特定の識別子又はコード情報等として、このコード情報等に応じた特定の処理をコンピュータ装置に実行させるための特定の指令情報が、異なる信号波パターンごとに対応付けて用意されている(例えば、データベースに格納されている)。よって、マッチング手段63は、パターン認識手段62から入力された(信号波パターンの信号波の周波数の組み合わせに対応する)一意のコード情報を表す信号に基づき、磁気センサ51が検出した(送信側装置Sからの)信号波パターンを特定の指令情報とマッチングし、そのマッチング情報に対応する信号を出力する。
【0052】
<指令手段>
指令手段64は、マッチング手段63からの信号を入力し、その信号に対応する指令情報を出力するものであり、例えば、上記ソフトウエア資源による構成として実現することができる。例えば、指令手段64は、マッチング手段63からのマッチング情報に基づき、コンピュータ装置に特定の処理を実行させるための指令情報を出力することができ、この指令情報に応答して、コンピュータ装置が、例えば、特定の出力手段65に、所定の情報(映像、画像、音声等)を出力するよう構成することができる。
【0053】
[磁気通信システムの骨子]
上記の説明を踏まえたうえで、本発明に係る磁気通信システムの骨子となる構成について概略的に説明すると、本実施の形態を含む本発明の磁気通信システムでは、典型的には、所定の複数だけ連続する異なる周波数の交流磁気信号の集合(セット)により1組の交流磁気信号の信号波パターンのセット(本願では、「信号波パターンセット」と称する。)を構成し、この信号波パターンセットを前記送信側装置Sから送信する交流磁気信号、及び、前記受信側装置Rにより受信する交流磁気信号として使用する。このとき、この磁気通信システムでは、信号波パターンセットを構成する各交流磁気信号の周波数を異なる所定周波数に設定し、一つの信号波パターンセットにおいて連続する交流磁気信号の周波数の相互の関係により、一意の情報を表現している。そして、本実施の形態を含む本発明の磁気通信システムでは、送信側装置Sが送信側制御ユニット20の制御によって磁場発生コイル30から出力した所定の信号波パターンの交流磁気信号を、受信側装置Rが、磁気センサ51により受信し、前記信号波パターンの交流磁気信号をデータとして取得する。その後、受信側装置Rの受信側制御ユニット60が、磁気センサ51から出力された交流磁気信号の信号波パターン(即ち、信号波パターンを構成する各区間の信号波の周波数の組合せにより決定される一意の情報)を認識して読解し、その信号波パターンに対応する所定の信号を出力することで、その信号波パターンに対応する所定の処理等をコンピュータ装置に実行させる。
【0054】
[本発明の磁気通信システムの範囲]
本発明については、
図4及び
図5に示すような使用例(椅子、机)を説示し、受信側装置Rとしてスマートフォンを例示しているが(
図4)、本発明の範囲はスマートフォンに限定されるものではなく、タブレット等のモバイル通信端末装置を典型例として、任意の通信装置を含む。また、発明の適用例も、椅子や机に限定されることはなく、(送信側装置Sを固定する)静止物と(受信側装置Rを固定又は携帯する)移動物(典型的には人)との間で磁気通信を行うことで、所定の情報の授受を行える限りにおいて、任意の用途への適用が可能である。更に、本発明の制御系(送信側装置S及び受信側装置Rの回路や機能の構成等)は、
図6に示す例で説明したが、本発明の制御系はこれに限定されるものではない。例えば、送信側装置Sでは、外部入力装置41(キーボドやマウス等)から、信号波パターン設定手段21に対して、異なる周波数の交流波形(例えば、A,B,C,D)を設定し、かつ、それら異なる周波数のパターン(例えば、「ABC」、「ABD」等)を設定すると共に、ホッピング周期設定手段22に対してホッピング周期(例えば、0.6sec)を設定することで、基本波発生回路23からの基本波(例えば、2.4Hzの正弦波)を前記信号波パターンに応じて変調回路24で変調することにより、コイル駆動回路25に前記信号波パターンの交流電流を供給して、その交流電流を給電線26から磁場発生コイル30に給電することで、磁場発生コイル30が前記信号波パターンの交流磁場を発生するとの説明をしているが、送信側の制御系は、本発明の課題を損なわない限りにおいて、かつ、課題達成を行える限りにおいて、任意の構成を採用することができる。同様に、受信側装置Rでは、交流磁場(交流磁気信号)を(モバイル通信端末装置等に内蔵した)磁気センサ51が検出し、その交流磁気信号を復調回路61が前記信号波パターンの交流電気信号に復調して、パターン認識手段62がその信号波パターンを認識し、マッチング手段63がその信号波パターンにマッチする所定の処理や動作等を特定して、指令手段64がその所定の処理や動作等に応じた指令信号を出力し、出力手段65(ディスプレイやスピーカ)がその指令信号に応じた映像や音声等を出力する、という内容で説明したが、受信側の制御系も、本発明の課題を損なわない限りにおいて、かつ、課題達成を行える限りにおいて、任意の構成を採用することができる。
【0055】
また、本発明では、信号波パターンは、上記実施の形態に例示のような3桁4進数の例に限定されるものではなく、任意の桁数で任意のn進数を使用した構成が可能である。また、上記実施の形態の説明では、
図10のFFTのスペクトル成分は、
図9の信号波パターンとFFTのタイミングに合わせて、簡易的なスペクトル表示にしている(周波数Aの区間のみFFTする場合は成分Aのみのスペクトル、A,BにまたがるFFTの場合は、A,Bの両方の成分といった概略的な説明としている)が、実際のスペクトルは、FFTがまたがらない区間でも、ABCDの全ての成分が若干程度出てくる。
【0056】
本発明の磁気通信としては、(4進数3桁等の)所定周波数からなる信号波をホッピングすると共に、上記のようにFFTを使用して解析をする以外に、通常のベースバンド信号(0/1のビット列)で搬送波を変調して交流磁気信号を送信側装置Sから出力し、その交流磁気信号を受信側装置R側で解析することも可能である。しかし、本発明は、異なる周波数の信号からなる信号波パターン及び区切信号を使用して交流磁気信号を生成すると、エラーの少ない通信を行うことができる。一方、本発明は、本来、電子コンパスとして使われるスマートフォン等の地磁気センサを(受信側装置Rの)磁気センサとして使用して磁気通信システムを構成することも一つの特徴であるため、この点からは、通常のベースバンド信号(0/1のビット列)で搬送波を変調して交流磁気信号を送信側装置Sから出力し、その交流磁気信号を受信側装置R側で解析する場合も本発明の特徴となる。
【0057】
また、本発明では、交流磁気信号として(例えば、4種類の)n個の異なる周波数を用意し、それらの周波数を所定の周期でホッピングする変調方式を採用しているが、この方式は、見方を変えると、n進数からなるベースバンド信号に基づき搬送波(正弦波)を周波数変調(FSK)するものと把握することもできる。よって、本発明は、n進数のベースバンド信号を(周波数変調ではなく)振幅変調(ASK)や位相変調(PSK)により変調するということも可能である。また、本発明は、磁気センサに対する通信端末装置の距離や姿勢の変化があったとしても誤検出しにくい方法として、周波数による変調を採用し、FFTのようなコストの高いアルゴリズムで復調している。なお、位相変調については、発生できる磁場の特性や、短いサンプルでのFFT傾向を把握することが必要となるが、本発明の変調方法として使用可能ではある。最も重要な点は、スマートフォン等に内蔵の地磁気センサの特徴に応じた変調方式を採用することであるが、機種によっては、OS側のサンプルレートが違うこともあるため、このような機種ごとの仕様に応じて、信号波の周波数を変更することが必要となる。また、信号による感度が周波数によって異なるため、正規化することも重要となる(基準距離で測定した値でそれぞれ割る)。これは、個体によって異なることになる(同じ補正パラメータでは、検出率が大きく異なるため)。
【符号の説明】
【0058】
S:送信部(送信側装置)
20:送信側制御ユニット(送信部側制御手段)
21:信号波パターン設定手段
22:ホッピング周期設定手段
24:変調回路
30:磁場発生コイル
R:受信部(受信側装置)
51:磁気センサ
60:受信部側制御ユニット(受信部側制御手段)
62:パターン認識手段
63:マッチング手段
64:指令手段