(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-22
(45)【発行日】2022-03-03
(54)【発明の名称】ノズルベーン
(51)【国際特許分類】
F02B 37/24 20060101AFI20220224BHJP
F02B 39/00 20060101ALI20220224BHJP
F01D 17/16 20060101ALI20220224BHJP
F01D 9/02 20060101ALI20220224BHJP
【FI】
F02B37/24
F02B39/00 U
F01D17/16 A
F01D9/02 101
(21)【出願番号】P 2019081047
(22)【出願日】2019-04-22
【審査請求日】2020-11-25
(73)【特許権者】
【識別番号】503174969
【氏名又は名称】株式会社アテクト
(74)【代理人】
【識別番号】100120341
【氏名又は名称】安田 幹雄
(72)【発明者】
【氏名】小高 得央
【審査官】池田 匡利
(56)【参考文献】
【文献】特開2015-031237(JP,A)
【文献】米国特許出願公開第2005/0220616(US,A1)
【文献】独国特許出願公開第102009020591(DE,A1)
【文献】国際公開第2018/139049(WO,A1)
【文献】特開2013-181396(JP,A)
【文献】特開2008-133827(JP,A)
【文献】特表2003-522890(JP,A)
【文献】特開昭62-294704(JP,A)
【文献】特開2013-137017(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F02B 37/24
F02B 39/00
F01D 17/16
F01D 9/02
(57)【特許請求の範囲】
【請求項1】
ターボチャージャのタービンインペラの外周側に設けられて前記タービンインペラに導入される排気ガスの流量を調整する翼部と、前記翼部の端面から突出するように伸びると共に前記タービンインペラに対する翼部の傾きを変更すべく当該翼部を揺動する揺動軸と、を備えたノズルベーンであって、
前記翼部の断面は涙滴形状に形成されており、
前記翼部の表面に凹状または凸状に形成された気流調整部を有して
おり、
前記翼部は、耐熱金属で形成された翼本体と、セラミックで形成された前記気流調整部を有している
ことを特徴とするノズルベーン。
【請求項2】
前記翼部の表面には、複数の気流調整部が、互いに独立して複数個設けられている
ことを特徴とする請求項1に記載のノズルベーン。
【請求項3】
前記気流調整部は、気流の流れ方向に沿って長手方向にすじ状に形成された1又は複数の凹部を有している
ことを特徴とする請求項1または2に記載のノズルベーン。
【請求項4】
前記気流調整部は、すじ状に形成された1又は複数の凸部を有している
ことを特徴とする請求項1~3のいずれかに記載のノズルベーン。
【請求項5】
前記翼部は、当該翼部の表面にセラミックコーティングが行われている
ことを特徴とする請求項1~4のいずれかに記載のノズルベーン。
【請求項6】
ターボチャージャのタービンインペラの外周側に設けられて前記タービンインペラに導入される排気ガスの流量を調整する翼部と、前記翼部の端面から突出するように伸びると共に前記タービンインペラに対する翼部の傾きを変更すべく当該翼部を揺動する揺動軸と、を備えたノズルベーンであって、
前記翼部の断面は涙滴形状に形成されており、
前記翼部における排気ガスに対向する側の翼前縁に対して、前記翼前縁の反対側の部位
である翼後縁が異形状に形成されて
おり、
前記翼部の表面に凹状または凸状に形成された気流調整部を有しており、
前記翼部は、耐熱金属で形成された翼本体と、セラミックで形成された前記気流調整部を有している
ことを特徴とするノズルベーン。
【請求項7】
ターボチャージャのタービンインペラの外周側に設けられて前記タービンインペラに導入される排気ガスの流量を調整する翼部と、前記翼部の端面から突出するように伸びると共に前記タービンインペラに対する翼部の傾きを変更すべく当該翼部を揺動する揺動軸と、を備えたノズルベーンであって、
前記翼部の断面は涙滴形状に形成されており、前記翼部は揺動軸の軸心方向に沿って厚みが変化するように形成されて
おり、
前記翼部の表面に凹状または凸状に形成された気流調整部を有しており、
前記翼部は、耐熱金属で形成された翼本体と、セラミックで形成された前記気流調整部を有している
ことを特徴とするノズルベーン。
【請求項8】
ターボチャージャのタービンインペラの外周側に設けられて前記タービンインペラに導入される排気ガスの流量を調整する翼部と、前記翼部の端面から突出するように伸びると共に前記タービンインペラに対する翼部の傾きを変更すべく当該翼部を揺動する揺動軸と、を備えたノズルベーンであって、
前記翼部の断面は涙滴形状に形成されており、
前記排気ガスが脈動流であることを緩和するように、前記翼部における排気ガスに対向する側の翼前縁に対して、前記翼前縁の反対側の部位である翼後縁が足ひれ状に形成されて
おり、
前記翼部の表面に凹状または凸状に形成された気流調整部を有しており、
前記翼部は、耐熱金属で形成された翼本体と、セラミックで形成された前記気流調整部を有している
ことを特徴とするノズルベーン。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両のエンジンに設けられるVG(Variable Geometry)ターボチャージャにおいて、タービンインペラに導入される排気ガスの流量を調整するノズルベーンに関するものである。
【背景技術】
【0002】
昨今、欧州、日本、米国などでの排気ガス規制の動きに伴い、従来から用いられてきたウェイストゲートバルブを有するターボチャージャに代わり、VG(Variable Geometry)ターボチャージャが用いられるようになってきた。このVGターボチャージャは、例えば、クリーンディーゼルエンジンの高出力化にはなくてはならない機構であり、燃費改善を目指した高効率化の要求が寄せられている。
【0003】
このVGターボチャージャは、タービンインペラ(タービン翼)の周囲にノズルベーンという小型の翼部を備えており、このノズルベーンを、タービンインペラの回転軸と平行な軸芯回りに揺動させることで、タービンインペラに対する翼部の傾斜角を変更し、タービンインペラに導入される排気ガスの流量を調整可能となっている。具体的には、ノズルベーンは翼部と揺動軸とが設けられており、揺動軸を揺動させることで翼部を揺動させることでタービンインペラに導入される排気ガスの流量を調整可能となっている。
【0004】
例えば、特許文献1には、翼端面が涙滴形状とされた翼部を備え、この翼端面のほぼ中央から突出するように揺動軸が伸びるノズルベーンを有するターボチャージャの技術が開示されている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、特許文献1のノズルベーンは、翼端面が涙滴形状とされた翼部を設けることで、タービンインペラに導入される排気ガスの流量を精度良く調整できるようにし、ターボチャージャ自体のタービン効率が良くして、エンジンの燃費改善を行うものとなっている。
しかし、上述したノズルベーンの翼端面の形状を涙滴形状とするだけでは、ターボチャージャのタービン効率が良くするにも限界があり、エンジンの燃費改善を十分に行うことはできない。
【0007】
本発明は、上述の問題に鑑みてなされたものであり、ターボチャージャにおいて、さらなる燃費改善やドライバビリティ向上が可能となるノズルベーンを提供することを目的とする。
【課題を解決するための手段】
【0008】
上記課題を解決するため、本発明のノズルベーンは以下の技術的手段を講じている。
即ち、本発明のノズルベーンは、ターボチャージャのタービンインペラの外周側に設けられて前記タービンインペラに導入される排気ガスの流量を調整する翼部と、前記翼部の端面から突出するように伸びると共に前記タービンインペラに対する翼部の傾きを変更すべく当該翼部を揺動する揺動軸と、を備えたノズルベーンであって、前記翼部の断面は涙滴形状に形成されており、
前記翼部の表面に凹状または凸状に形成された気流調整部を有しており、前記翼部は、耐熱金属で形成された翼本体と、セラミックで形成された前記気流調整部を有していることを特徴とする。
【0009】
好ましくは、前記翼部の表面には、複数の気流調整部が、互いに独立して複数個設けられているとよい。
好ましくは、前記気流調整部は、気流の流れ方向に沿って長手方向にすじ状に形成された1又は複数の凹部を有しているとよい。
好ましくは、前記気流調整部は、すじ状に形成された1又は複数の凸部を有しているとよい。
【0010】
好ましくは、前記翼部は、当該当該の表面にセラミックコーティングが行われているとよい。
また、本発明のノズルベーンは、ターボチャージャのタービンインペラの外周側に設けられて前記タービンインペラに導入される排気ガスの流量を調整する翼部と、前記翼部の端面から突出するように伸びると共に前記タービンインペラに対する翼部の傾きを変更すべく当該翼部を揺動する揺動軸と、を備えたノズルベーンであって、前記翼部の断面は涙滴形状に形成されており、前記翼部における排気ガスに対向する側の翼前縁に対して、前記翼前縁の反対側の部位である翼後縁が異形状に形成されており、前記翼部の表面に凹状または凸状に形成された気流調整部を有しており、前記翼部は、耐熱金属で形成された翼本体と、セラミックで形成された前記気流調整部を有していることを特徴とする。
【0011】
さらに、本発明のノズルベーンは、ターボチャージャのタービンインペラの外周側に設けられて前記タービンインペラに導入される排気ガスの流量を調整する翼部と、前記翼部の端面から突出するように伸びると共に前記タービンインペラに対する翼部の傾きを変更すべく当該翼部を揺動する揺動軸と、を備えたノズルベーンであって、前記翼部の断面は涙滴形状に形成されており、前記翼部は揺動軸の軸心方向に沿って厚みが変化するように形成されており、前記翼部の表面に凹状または凸状に形成された気流調整部を有しており、前記翼部は、耐熱金属で形成された翼本体と、セラミックで形成された前記気流調整部を有していることを特徴とする。
【0012】
さらにまた、本発明のノズルベーンは、ターボチャージャのタービンインペラの外周側に設けられて前記タービンインペラに導入される排気ガスの流量を調整する翼部と、前記翼部の端面から突出するように伸びると共に前記タービンインペラに対する翼部の傾きを変更すべく当該翼部を揺動する揺動軸と、を備えたノズルベーンであって、前記翼部の断面は涙滴形状に形成されており、前記排気ガスが脈動流であることを緩和するように、前記翼部における排気ガスに対向する側の翼前縁に対して、前記翼前縁の反対側の部位である翼後縁が足ひれ状に形成されており、前記翼部の表面に凹状または凸状に形成された気流調整部を有しており、前記翼部は、耐熱金属で形成された翼本体と、セラミックで形成された前記気流調整部を有していることを特徴とする。
【発明の効果】
【0013】
本発明のノズルベーンによれば、ターボチャージャにおいて、さらなる燃費改善やドライバビリティ向上が可能となる。
【図面の簡単な説明】
【0014】
【
図1】本実施形態のノズルベーンが設けられたターボチャージャ内部の構造を示した模式図である。
【
図2A】第1実施形態のノズルベーンの斜視図である。
【
図2B】先端側から見た第1実施形態のノズルベーンの端面図である。
【
図3A】第2実施形態のノズルベーンの斜視図である。
【
図3B】先端側から見た第2実施形態のノズルベーンの端面図である。
【
図4A】第3実施形態のノズルベーンの斜視図である。
【
図4B】先端側から見た第3実施形態のノズルベーンの端面図である。
【
図5】第4実施形態のノズルベーンの斜視図である。
【
図6A】外周側の斜め前方から見た第5実施形態のノズルベーンの斜視図である。
【
図6B】内周側の斜め前方から見た第5実施形態のノズルベーンの斜視図である。
【
図7】第6実施形態のノズルベーンの斜視図である。
【
図8】第7実施形態のノズルベーンの斜視図である。
【
図9】第8実施形態のノズルベーンの斜視図である。
【発明を実施するための形態】
【0015】
以下、本発明のノズルベーン1の実施形態を、図面に基づき詳しく説明する。
図1は、第1実施形態のノズルベーン1が設けられたターボチャージャ2の内部構造を模式的に示したものである。
図1に示すように、第1実施形態のターボチャージャ2は、厚みのある略円盤状のターボケーシング3を備えている。このターボケーシング3の内部は空洞とされており、空洞とされた部分の略中央にはタービンインペラ4が収容されている。また、ターボケーシング3の下部にはエンジンからタービンインペラ4側に排気ガスを導入する排気導入部5が設けられている。
【0016】
上述したターボケーシング3内に収容されているタービンインペラ4は、排気導入部5から導入された排気ガスを受けるタービンブレード6を有している。このタービンブレード6は、タービン軸7の軸心回りに複数設けられており、複数のタービンブレード6に排気ガスを吹き付けることで中央のタービン軸7を回転できるようになっている。
そして、このタービンインペラ4の外側(外周側)に、第1実施形態のノズルベーン1が取り付けられている。
【0017】
図2A及び
図2Bに示すように、第1実施形態のノズルベーン1は、タービンインペラ4に導入される排気ガスの流量を調整する翼部8と、翼部8の端面から突出するように伸びると共にタービンインペラ4に対する翼部8の傾きを変更すべく翼部8を揺動させる揺動軸9と、を有している。具体的には、このノズルベーン1は、1基のタービンインペラ4につき複数個設けられており、タービンインペラ4の外周側に複数(
図1の例では15個)、タービン軸7の回りに円環状に並ぶように設けられている。
【0018】
図2A及び
図2Bに示すように、それぞれのノズルベーン1に設けられる翼部8は、上述したタービン軸7に対して軸垂直方向を向く断面(以降、翼断面という)の形状が涙滴形状とされた部材である。具体的には、翼部8の翼断面は、飛行機の翼のように翼下面に比べて翼上面の方が大きく外側に向かって湾曲したような形状となっている。
また、翼部8の翼断面は、いわゆる涙滴形状とされており、翼前縁8a(排気ガスに対向する側であり、断面視で厚みが厚い側、以下同じ)に比べて、翼後縁8b(翼前縁8aの反対側の部位であり、断面視で厚みが薄く先細りしている側、以下同じ)は尖った形状とされている。そして、それぞれのノズルベーン1の翼部8が、尖った翼後縁8bをタービンインペラ4側に向けるようにして(丸まった翼前縁8aをタービンインペラ4から離れた側に向けるようにして)、取り付けられている。この翼前縁8aから翼後縁8bに向かう途中の翼端面に、上述した揺動軸9が設けられている。
【0019】
揺動軸9は、タービン軸7の軸心と平行となる向きに軸心を備えた略円柱状の部材である。揺動軸9の一方側の端部は上述した翼部8に連結されており、また揺動軸9の他方側の端部には揺動軸9を圧入して固定するための圧入部10が形成されている。具体的には、揺動軸9の他方側の端部は、図示を省略するノズルベーン駆動機構に嵌め込み状態で取り付けられており、ノズルベーン駆動機構を用いて揺動軸9を軸心回りに回動させることで、上述したノズルベーン1が揺動軸9の軸心回りに揺動するようになっている。
【0020】
また、揺動軸9の軸径(外径)は、上述した翼部8の最大厚み(翼前縁8aから翼後縁8bまでの翼部8の厚みの中で最大の厚み)とほぼ同じかやや大きな寸法とされており、翼後縁8b側(先細り側)において揺動軸9は断面(軸垂直方向に沿った断面)の一部を介して翼部8に連結される構造となっている。
言い換えれば、第1実施形態の揺動軸9は、涙滴形状に形成された翼部8の断面において、当該断面を長手方向に沿って横切る中心線Cを基準とした場合に、揺動軸9の軸心が中心線Cの線上に位置するように設けられているものである。
【0021】
なお、第1実施形態の揺動軸9は、中心線Cの線上に設けられるのが好ましいが、軸心が中心線Cよりもタービンインペラ4側にδだけずれた位置に設けられていてもよいし、軸心が中心線Cを基準としてタービンインペラ4とは反対側に、すなわち-δだけずれた位置に設けられても良い。
[第1実施形態~第3実施形態]
「特徴(気流調整部)」
ところで、第1実施形態のノズルベーン1は、翼部の表面に凹状または凸状に形成された気流調整部11を有していることを特徴とするものである。
【0022】
図2A及び
図2Bに示すように、第1実施形態の気流調整部11は、翼部8の表面に形成された高さの低い円柱状の突起11aであり、翼部8の表面に複数形成されている。より具体的には、第1実施形態の気流調整部11は、長手方向や幅方向の寸法に対して、1/4程度の突出高さで、翼部8の表面から突出するものである。これらの気流調整部11は、互いに等しい距離をあけて配備されており、本実施形態の場合であれば翼部8の幅方向に2個、長手方向に10列で、合わせて20個の気流調整部11が、翼部8のおもて側の面と裏側の面とに形成されている。言い換えれば、第1実施形態の気流調整部11は、互いに独立して複数設けられるものとなっており、翼部8の表面を鮫肌状に加工したものということもできる。
【0023】
このような気流調整部11を形成すると、翼部8の表面に形成された凹凸によりタービンインペラ4に流入する気流が精度良く調整され(整流され)、またタービンインペラ4側に流入する気流の量の増えるため、ターボチャージャにおいてさらなる燃費改善やドライバビリティ向上が可能となる。
具体的には、上述した気流調整部11を形成すれば、翼部8の表面を流れる排気ガスの速度の高さ方向のバラツキをコントロールする、つまり翼部8の表面近くを流れる排気ガスの速度と、翼部8から離れた位置を流れる排気ガスの速度との差が小さくなり、タービンインペラ4に流入する気流を整流する(均等な流れを形成する)ことが可能となる。
【0024】
また、タービンインペラ4に流入する気流が整流されると、排気ガスが脈動流となることを緩和可能となり、タービンインペラ4側に流入する気流の量がさらに増えて、ターボチャージャにおいてさらなる燃費改善やドライバビリティ向上が可能となる。
なお、第1実施形態の気流調整部11は高さの低い円柱状の突起11aであったが、本発明の気流調整部11の形状は円柱状に限られない。例えば、
図3A及び
図3B(第2実施形態)に示すように高さの低い三角柱状の突起11bであってもよいし、
図4A及び
図4B(第3実施形態)に示すように高さの低い三角柱状の突起11cであってもよい。これら第2実施形態及び第3実施形態のノズルベーン1でも、第1実施形態同様の作用効果を発揮することが可能となる。
【0025】
また、
図3A及び
図3Bに示す第2実施形態のノズルベーン1は、翼部8における排気ガスに対向する側の翼前縁8aに対して、翼前縁8aの反対側の部位である翼後縁8bが足ひれ状に形成されている。具体的には、「翼後縁8bが足ひれ状に形成」とは、翼部8の翼前縁8aを揺動軸9の軸心に沿った直線状に形成するのではなく、翼前縁8a側に向かって膨らむ半円状の切り欠きが、揺動軸9の軸心方向に複数並ぶような形状に翼部8の翼後縁8bを形成することを言う。このようにノズルベーンの翼後縁8bを足ひれ状に形成すれば、排気ガスの脈動流が緩和され、タービンインペラ4に流入する気流の量が増加するため、ターボチャージャにおいてさらなる燃費改善やドライバビリティ向上が可能となる。
[第4実施形態]
次に、第4実施形態のノズルベーン1について説明する。
【0026】
図5に示すように、第4実施形態のノズルベーン1の気流調整部11は、翼部8における排気ガスの気流の流れ方向に沿って長手方向にすじ状に形成された凹部11dを備えたものとなっている。具体的には、本発明の気流調整部11は、上述した凹部11dを1ヶ所または複数有しているのが好ましく、図例では長手方向にすじ状に形成された溝状の凹部11dを3条備えている。また、この凹部11dは、翼部8の表面に凹状に凹んだ部分を連続して形成したものとなっている。
【0027】
上述した第4実施形態の気流調整部11でも、第1実施形態~第3実施形態に設けられた複数の柱状の突起11a~11cと同様に、排気ガスの気流が精度良く調整され(整流され)、またタービンインペラ4側に流入する気流の量の増えるため、ターボチャージャにおいてさらなる燃費改善やドライバビリティ向上を可能とすることができる。
なお、第4実施形態のノズルベーン1の気流調整部11は、1ヶ所または複数の凹部11dを有するものであったが、本発明の気流調整部11は1ヶ所または複数の凸部を有するものであっても良い。
[第5実施形態]
次に、第5実施形態のノズルベーン1について説明する。
【0028】
図6A及び
図6Bに示すように、第5実施形態のノズルベーン1の気流調整部11は、翼部8における幅方向の両側(おもて側及び裏側)の表面を、幅方向の一方側に向かって双方の曲率が同じとなるように、且つ、長手方向に沿うように連続して撓ませるように曲げて形成されるものとなっている。つまり、翼部8の表面に凹凸を複数設ける第1実施形態~第4実施形態に比して、第5実施形態の気流調整部11は、翼部8の表面に大きな凹部11e(または凸部)を一つだけ設けるものとなっている。
【0029】
このような第5実施形態の気流調整部11でも、排気ガスの気流が精度良く調整され(整流され)、またタービンインペラ4側に流入する気流の量の増えるため、ターボチャージャにおいてさらなる燃費改善やドライバビリティ向上を可能とすることができる。
[第6実施形態]
次に、第6実施形態のノズルベーン1について説明する。
【0030】
図7に示すように、第6実施形態のノズルベーン1の気流調整部11は、翼部8における排気ガスに対向する側の翼前縁8aに対して、翼前縁8aの反対側の部位である翼後縁8bが異形状に形成されていることを特徴としている。
具体的には、
図7に示すように、第6実施形態の翼部8は、翼前縁8aが揺動軸9の軸心方向に沿うように直線的に形成されているのに対し、翼後縁8bが軸心方向に対して傾斜しており、翼前縁8aと翼後縁8bとが異形状とされている。
【0031】
このような第6実施形態のノズルベーン1でも、排気ガスの気流が精度良く調整され(整流され)、またタービンインペラ4側に流入する気流の量の増えるため、ターボチャージャにおいてさらなる燃費改善やドライバビリティ向上を可能とすることができる。
[第7実施形態]
次に、第7実施形態のノズルベーン1について説明する。
【0032】
図8に示すように、第7実施形態のノズルベーン1の気流調整部11は、揺動軸9の軸心方向に沿って厚みが変化するように翼部8を形成したものとなっている。つまり、第7実施形態のノズルベーン1の翼部8は、揺動軸9に近い側に比べて、揺動軸9から遠い側の厚み(翼部8の一方側の表面から他方側の表面までの距離)の方が、薄くなるような断面形状(くさび形の断面形状)に形成されている。
【0033】
このような第7実施形態のノズルベーン1でも、排気ガスの気流が精度良く調整され(整流され)、またタービンインペラ4側に流入する気流の量の増えるため、ターボチャージャにおいてさらなる燃費改善やドライバビリティ向上を可能とすることができる。
[第8実施形態]
次に、第8実施形態のノズルベーン1について説明する。
【0034】
図9に示すように、第8実施形態のノズルベーン1の気流調整部11は、第6実施形態と同様に、翼部8における排気ガスに対向する側の翼前縁8aに対して、翼前縁8aの反対側の部位である翼後縁8bが異形状に形成されていることを特徴としている。
具体的には、
図9に示すように、第8実施形態の翼部8は、翼前縁8aが揺動軸9の軸心方向に沿うように直線的に形成されているのに対し、翼後縁8bが後方に向かって膨出するように湾曲しており、翼前縁8aと翼後縁8bとが異形状とされている。
【0035】
このような第8実施形態のノズルベーン1ででも、排気ガスの気流が精度良く調整され(整流され)、またタービンインペラ4側に流入する気流の量の増えるため、ターボチャージャにおいてさらなる燃費改善やドライバビリティ向上を可能とすることができる。
ところで、上述した翼部8と揺動軸9とは断面の一部を介して接しているだけであるため、使用環境によっては翼部8と揺動軸9とが破断、分離してしまう可能性がある。このような場合は、翼部8と揺動軸9とを、粉末射出成形法で一体物として成形し、翼部8と揺動軸9との接合強度を高めるとよい。また、上述した翼部8と揺動軸9との接合面に沿って肉盛部を設けるなどして、接合強度を高めても良い。
【0036】
以上述べたノズルベーン1を好適に製造するに際しては、鉄、チタン、ニッケル、コバルト、ニオブ、タングステンなどを組み合わせた合金、窒化ホウ素、炭化ホウ素などのセラミックス、それらを組み合わせたサーメットを被焼結材料として、この被焼結材料にアクリル樹脂、ポリスチレン、またはポリプロピレンなどの母材樹脂にワックスなどを混合したバインダを混合し、混合物をノズルベーン1の型枠に供給して焼結を行う粉末射出成形法(PIM)を採用するとよい。このような粉末射出成形法であれば、翼部8と揺動軸9とを一体物として成形することができ、揺動軸9が翼部8の中心線Cからずれた形状を採用しても、強度に優れたノズルベーン1を得ることができる。
【0037】
好適には、上述した翼部8については、少なくともこの翼部8の表面にセラミックコーティングが行われているのが好ましい。例えば、翼部8のうち、気流調整部11を除く翼本体12を耐熱金属で形成し、気流調整部11をセラミックで形成する。このように気流調整部11と翼本体12を別の材料で形成すれば、強度が求められる気流調整部11をセラミックのような強度に優れる材料で形成した上で、より安価な耐熱金属で翼本体12を形成でき、ノズルベーン1を低価格で得ることが可能となる。
【0038】
なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。
【0039】
例えば、上述した実施形態では、揺動軸9が翼部8の長手方向の中央側に取り付けられた例を挙げたが、揺動軸9の取り付け位置は翼部8の長手方向の翼後縁8b側であっても良い。
【符号の説明】
【0040】
1 ノズルベーン
2 ターボチャージャ
3 ターボケーシング
4 タービンインペラ
5 排気導入部
6 タービンブレード
7 タービン軸
8 翼部
8a 翼前縁
8b 翼後縁
9 揺動軸
10 圧入部
11 気流調整部
11a 円柱状の突起
11b 三角柱状の突起
11c 角柱状の突起
11d 凹部
11e 大きな凹部
C 中心線