(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-22
(45)【発行日】2022-03-03
(54)【発明の名称】炭化ケイ素基板、およびSiC単結晶ブールを成長させる方法
(51)【国際特許分類】
C30B 29/36 20060101AFI20220224BHJP
C30B 23/06 20060101ALI20220224BHJP
【FI】
C30B29/36 A
C30B23/06
(21)【出願番号】P 2019551590
(86)(22)【出願日】2018-03-07
(86)【国際出願番号】 EP2018055627
(87)【国際公開番号】W WO2018177707
(87)【国際公開日】2018-10-04
【審査請求日】2019-09-19
(32)【優先日】2017-03-29
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】519167232
【氏名又は名称】サイクリスタル ゲーエムベーハー
(74)【代理人】
【識別番号】100092783
【氏名又は名称】小林 浩
(74)【代理人】
【識別番号】100120134
【氏名又は名称】大森 規雄
(74)【代理人】
【識別番号】100136744
【氏名又は名称】中村 佳正
(74)【代理人】
【識別番号】100104282
【氏名又は名称】鈴木 康仁
(72)【発明者】
【氏名】マイケル ヴォーゲル
(72)【発明者】
【氏名】バーンハード エッカー
(72)【発明者】
【氏名】ラルフ ミューラー
(72)【発明者】
【氏名】マティアス ストックマイヤー
(72)【発明者】
【氏名】アーント-ディートリッヒ ウェーバー
【審査官】山本 一郎
(56)【参考文献】
【文献】特開2013-100217(JP,A)
【文献】特開2011-251885(JP,A)
【文献】特表2008-538542(JP,A)
【文献】特開2010-150133(JP,A)
【文献】米国特許出願公開第2013/0305983(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C30B 1/00-35/00
(57)【特許請求の範囲】
【請求項1】
炭化ケイ素基板であって、
前記基板(100)の総表面積の45%±15%を占めるドープされた内側領域(102)と、
前記内側領域(102)を半径方向に囲むドープされたリング形状の周辺領域(104)とを備え、
前記内側領域(102)でのドーパントの平均濃度が、前記周辺領域(104)でのこのドーパントの前記平均濃度とは少なくとも1・10
18cm
-3だけ異なり、かつ、
前記基板(100)のボウが25μm未満であり、かつ/または前記基板(100)のワープが40μm未満である、
炭化ケイ素基板。
【請求項2】
前記ドーパントが窒素を含み、前記窒素ドーパント濃度は、前記周辺領域(104)においてよりも前記内側領域(102)においてより高い、請求項1に記載の炭化ケイ素基板。
【請求項3】
前記内側領域(102)での前記ドーパントの前記平均濃度が、前記周辺領域(104)でのこのドーパントの前記平均濃度とは少なくとも5・10
18cm
-3だけ異なる、請求項1または2に記載の炭化ケイ素基板。
【請求項4】
前記基板(100)の電気抵抗率が12mΩcm~26mΩcmの範囲である、請求項1から3のいずれか一項に記載の炭化ケイ素基板。
【請求項5】
物理的蒸気輸送成長システムにおいて少なくとも1つのSiC単結晶ブール(108、109)を成長させる方法であって、
源材料コンパートメント(116)にSiC粉末源材料(114)を配置するステップと、
成長コンパートメント(118、119)の中に少なくとも1つのSiC種結晶を配置するステップであって、昇華したガス状成分を前記成長コンパートメント(118、119)に供給するために、前記源材料コンパートメント(116)が前記成長コンパートメント(118、119)に連結されている、ステップと、
高温を印加して、前記SiC種結晶においてSiC成長相を生じさせる前記昇華したガス状成分を発生させ、それにより、前記SiC種結晶にSiCボリューム単結晶ブール(108、109)が形成されるようにする、ステップとを含み、
前記少なくとも1つの成長コンパートメント(118、119)が、前記単結晶ブール(108、109)の成長中に前記単結晶ブール(108、109)の長手方向軸を基準として半径方向にドーパント濃度を制御するためのドーパント源および/またはドーパントシンクを備えることにより、前記単結晶ブール(108、109)の中央領域におけるドーパント濃度は、前記単結晶ブール(108、109)の周辺領域におけるドーパント濃度とは異なるものとなり、
前記SiC粉末源材料が、前記種結晶の中央領域に対向する領域に、ドーパントを富化した材料(126)を備え、前記ドーパントを富化した材料(126)における前記ドーピング元素の濃度は、少なくとも1・10
20cm
-3であり、ドーピングがより少ない外側のSiC粉末源材料における前記ドーピング元素の濃度が、5・10
17cm
-3未満であ
り、
かつ、
前記ドーパントが窒素を含む、
方法。
【請求項6】
物理的蒸気輸送成長システムにおいて少なくとも1つのSiC単結晶ブール(108、109)を成長させる方法であって、
源材料コンパートメント(116)にSiC粉末源材料(114)を配置するステップと、
成長コンパートメント(118、119)の中に少なくとも1つのSiC種結晶を配置するステップであって、昇華したガス状成分を前記成長コンパートメント(118、119)に供給するために、前記源材料コンパートメント(116)が前記成長コンパートメント(118、119)に連結されている、ステップと、
高温を印加して、前記SiC種結晶においてSiC成長相を生じさせる前記昇華したガス状成分を発生させ、それにより、前記SiC種結晶にSiCボリューム単結晶ブール(108、109)が形成されるようにする、ステップとを含み、
前記少なくとも1つの成長コンパートメント(118、119)が、前記単結晶ブール(108、109)の成長中に前記単結晶ブール(108、109)の長手方向軸を基準として半径方向にドーパント濃度を制御するためのドーパント源および/またはドーパントシンクを備えることにより、前記単結晶ブール(108、109)の中央領域におけるドーパント濃度は、前記単結晶ブール(108、109)の周辺領域におけるドーパント濃度とは異なるものとなり、
前記成長コンパートメントが、円筒形のルツボ壁部によって境界を画定され、前記ルツボ壁部の内表面(124)が、タンタル、タングステン、ニオブ、モリブデンおよび/またはハフニウムのゲッター層を備
え、かつ、
前記ドーパントが窒素を含む、
方法。
【請求項7】
前記成長しているブール(108、109)の中央領域が、窒素および/またはアンモニアのガスと直に接触する、請求項
5または6に記載の方法。
【請求項8】
前記ゲッター層が、非めっきメタライゼーション層(130)によって形成され、前記非めっきメタライゼーション層(130)は、内半径が前記種の直径よりも2mm大きく、厚みが0.5mm~3mmの範囲であり、最短長さが最終的に成長する結晶の長さよりも長い、請求項6に記載の方法。
【請求項9】
前記ゲッター層が、多孔質の黒鉛カバーウォール(134、135)によって定位置に保持されたタンタル、タングステン、ニオブ、モリブデンおよび/またはハフニウムの合金または混合物としての金属粒子(132、133)によって形成され、前記多孔質の黒鉛カバーウォール(134、135)の嵩密度は1.0g・cm
-3~2.0g・cm
-3であり、金属粒子の組成は0.01mm~1mmの範囲である、請求項6に記載の方法。
【請求項10】
前記源材料コンパートメントに前記SiC粉末源材料を配置するステップが、ドーパントを富化したSiC粉末源材料(126)を充填するステップと、前記源材料コンパートメント(116)と前記成長コンパートメント(118、119)の間の界面をドーパントフィルタ(136)で部分的に覆うステップとを含む、請求項5から
9のいずれか一項に記載の方法。
【請求項11】
少なくとも1つのSiC種結晶が、2つの成長コンパートメントのそれぞれの中に配置され、前記源材料コンパートメントが、前記2つの成長コンパートメントの間に対称に配置され、ガス透過性の多孔質膜によって前記成長コンパートメントのそれぞれから隔てられる、請求項5から1
0のいずれか一項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、機械的特性および電気的特性が改善された炭化ケイ素(SiC)基板に関する。さらに、本発明は、物理的蒸気輸送成長システムにおいてバルクSiC結晶を生産する方法に関する。
【背景技術】
【0002】
炭化ケイ素は、その物理的、化学的、および電気的な特性が優れていることにより、とりわけパワーエレクトロニクス半導体構成要素、高周波構成要素、および種々の特殊な発光半導体構成要素のための半導体基板材料として使用されている。これらの製品の基盤として、理想的に純粋で欠陥のない品質のバルクSiC結晶が求められている。
【0003】
当技術分野では知られているように、バルクSiC結晶は、一般的に、物理蒸着技法を用いて、具体的には昇華法を使用して生産される。この工程では、2000℃を超える温度が必要とされる。物理的蒸気輸送(PVT)は、本質的には昇華および再凝結のプロセスであり、この場合、源材料(source material)および種結晶が、源材料の温度が種の温度よりも高くなるように成長炉の内部に配置され、それにより、源材料が昇華し、蒸気種が拡散し種の上に堆積して、単結晶を形成する。
【0004】
バルクSiC結晶は、ウェハ形状の基板を生産するために、たとえばダイヤモンドが入ったワイヤソーを用いてスライスされる。その表面は、後に続く段階的な研磨ステップによって精錬される。電子的構成要素を製造するために、薄い単結晶層(たとえばSiCまたはGaN)が、研磨されたウェハ上にエピタキシャル堆積される。これらの層の特性、したがってそこから製造される電子的構成要素の特性は、下にあるSiC基板の品質に決定的に依存する。
【0005】
特に、基板の幾何形状は、堆積されるエピタキシャル層の品質にとって重要である。たとえば、均一で高品質な層の成長の決め手になる、エピタキシャルリアクタ内部での最適な熱的結合は、理想的な平坦形状からの著しいずれを呈さない基板においてのみ確実にすることができる。当業者には知られているように、ボウおよびワープにより、基板の幾何形状特性が特徴付けられる。幾何形状特性が不十分な基板、すなわちボウおよび/またはワープの値が高すぎる基板を使用すると、後に続くエピタキシャル工程では、エピタキシャル層の品質低下が生じ、製造工程の歩留まりが下がる。
【0006】
発行された米国特許第8,747,982B2号明細書には、物理的蒸気輸送によってSiC単結晶を製造する従来の方法が示されている。この工程の間、成長表面は、温度場の等温線によって規定される。この方法を用いて高品質なSiC単結晶を製造するには、表面がカーブしていることが必須である。しかし、カーブした熱場は、冷却後に結晶内部に凍結される、熱による機械的張力の原因にもなる。ブールから製造されるウェハのボウおよびワープの値が高くなることが、その結果となり得る。
【0007】
ソーイング工程(sawing process)を最適化すると、満足な幾何形状をもつ基板、すなわちボウおよびワープの値が低い基板を単結晶から切り出すことができる。しかし、ソーイング工程では、基板を変形させる表面および表面下の加工変質層が基板表面に導入され、所望の表面品質を得るには、これは後に続く研磨工程において除去されなければならない。ソーイング工程の後、基板の形状は、主に、表面近くの加工変質層内の機械的応力によって決定される。前記研磨工程を実施してこの加工変質層を取り除くことにより、結晶の内部に凍結された、熱による張力が支配的な影響となり、仕上がった基板の幾何形状を決定する。したがって、基板の幾何形状は研磨工程中に変わり、最終的には、熱による応力により、完全に機械加工されたウェハの幾何形状が決まる。
【0008】
従来の基板は熱による応力を保持していることが多く、したがってボウおよびワープについて高い値を示し、このことにより、工程チェーン全体の歩留まりが低下する。
【0009】
さらに、たとえば基板の厚みと基板直径の比が約0.013である、かなり大きい基板厚みを採用することが知られている。米国特許第7,422,634B2号明細書では、直径が75mm前後の基板において約1mmの基板厚みを選択したとき、低いボウおよびワープの値を得ることができると述べられている。しかし、その結果得られる比は、現在の生産標準による基板の比よりもかなり大きい。現在の基板の直径は約150mm、厚みは350μmであり、この結果、比は0.0023になる。当然、厚みを大きくすると、その剛性が高まることにより、基板はより安定化する。その結果、基板は、内部の機械的張力による変形を受けにくくなる。しかし、この解決法はより多くの量の材料を必要とし、したがって著しくコストが高くなる。
【0010】
発行された米国特許第8,449,671B2号明細書では、ワープおよびボウが小さいSiC基板の製造方法が開示されており、SiC基板の幾何形状は、SiC単結晶の温度処理によって改善される。単結晶を熱で後処理することにより、熱による成長張力が小さくなり、これらの結晶から製造されるウェハのボウおよびワープの値が改善する。しかし、結晶を熱処理することにより、単結晶内の欠陥のバランスも変化する。単結晶を熱処理にかけることにより、線欠陥の形成または位置変更によって機械的張力は小さくなる。しかし、新しく形成された、または位置変更された欠陥も、こうした基板上に製造される電子的構成要素の電気的特性に悪影響を与えるおそれがある。
【発明の概要】
【発明が解決しようとする課題】
【0011】
したがって、改善された炭化ケイ素基板、および厚み/直径の比が小さい場合であっても基板の幾何形状特性を確実に改善する製造方法が、依然として求められている。
【課題を解決するための手段】
【0012】
この目的は、独立請求項の主題によって解決される。本発明の有利な実施形態は、従属請求項の主題である。
【0013】
既に上述したように、加工変質層や機械的影響などの、他の工程によるあらゆる影響は、適したソーイングステップおよび研磨ステップを使用することによって除去することができるので、完全に処理されたSiC基板の幾何形状は、主に結晶格子内部の張力に依存する。さらに、加工変質層の除去などの個々の処理ステップ中、基板の幾何形状が変化しない場合、除去する必要のある材料が少なくなり、それにより材料のロスおよび処理時間が減り、基板のハンドリングが単純化されるので、SiC基板の処理は著しく単純化される。
【0014】
結晶格子内の張力は、結晶を成長させている間の熱的条件によって既に発生している。ブールの成長中の結晶欠陥を避けるために、温度場は、等温線が成長面(凸形結晶(convex crystal))においてカーブするように選択されなければならない。その結果、選択された結晶長さにおいて、中央部では、周辺領域に比べて異なる温度が存在する。これにより、成長工程後、結晶が冷えたときに凍結される熱的な張力が生じる。機械的張力を小さくするために、等温線の曲率が小さくなり過ぎるように選択された場合、結晶の欠陥はあまりにも多くなる。
【0015】
さらに、結晶格子内の張力は、ケイ素または炭素を除く任意の化学元素を含み得る、ドーパントまたは汚染物などの不純物の存在によっても生じる場合がある。一般的に、不純物が取り込まれるのを避けることはできない。一方では、基板の電気抵抗を調節するために、通常は窒素がドーパントとして必要とされる。他方では、源材料およびルツボ部品は、決まって微量の不純物、たとえば鉄、アルミニウムなどで汚染されている。
【0016】
当技術分野では知られているように、不純物原子は通常の格子位置においてケイ素原子または炭素原子に取って代わる場合もあり、格子間の位置に存在する場合もある。不純物の位置に応じて、格子定数は変化し、結晶格子は変形して機械的にバイアスされ得る。
【0017】
さらに、不純物原子は、それらのタイプ、および結晶格子内での位置に応じて、電気的にアクティブまたは非アクティブであり得る。最終製品の、電気抵抗などの測定される電気的特性は、実際の不純物原子濃度を必ずしも反映するわけではないことに留意しなければならない。
【0018】
本発明は、SiC基板において、少なくとも2つの異なる領域を半径方向に画定することにより、また第2の領域と比較して著しく異なる濃度の選択した不純物原子を第1の領域に与えることにより、基板のその表面全体にわたる機械的張力を選択的に制御することができるというアイデアに基づく。具体的には、本発明による炭化ケイ素基板は、前記基板の総表面積の少なくとも30%を占める内側領域と、内側領域を半径方向に囲む、リング形状の周辺領域とを備える。内側領域におけるドーパントの平均濃度は、周辺領域におけるこのドーパントの平均濃度とは少なくとも1・1018cm-3異なる。
【0019】
それにより、周辺領域では、内側領域の圧縮を生じさせるはずの環状の引張り応力が避けられる。したがって、望ましくないウェハのボウが避けられる。本発明者らは、周辺領域では、接線方向に圧縮応力を得なければならず、この圧縮応力が、内側領域に対して半径方向に作用する引張り応力を生じさせるということを認識している。これにより、凸形結晶を成長させることによって生じるはずのたわみさえも小さくする、または完全に避けることができる。
【0020】
内側領域は、前記基板の総表面積の45%±15%を形成することが好ましい。このように分配すると、最も満足な結果になることが示され得る。既に述べたように、内側領域での濃度は、周辺領域とは少なくとも1・1018cm-3異なる。濃度差は、約5・1018cm-3以上になることが好ましい。
【0021】
本発明によれば、任意の不純物元素を、本発明による機械的にアクティブなドーパントとして使用することができる。当業者には明らかなように、内側領域と外側領域の間のドーパント濃度差の様子は、ドーパント元素を考慮して選択しなければならない。有利には、SiC基板の電気抵抗を決定するためにいずれにせよ製造工程に導入される窒素が使用されてもよい。たとえば、窒素について、中央区域では周辺区域に比べて高い濃度が選択されなければならない。
【0022】
ボウが25μm未満、ワープが40μm未満の、本質的に単結晶のSiC基板を作り出せることが有利である。以下では、用語「ボウ」は、ウェハの公称直径よりもある指定量だけ小さい直径をもつ円に等間隔で配置された3つの点によって定められる中心面基準平面からの、自由な非吸着(unclamped)ウェハの中心面の中心点のずれを示す。用語「ワープ」は、自由な非吸着ウェハの中心面の、基準平面からの正方向の最大距離と負方向の最大距離との間の差を示す。湾曲したウェハの場合でも、各カーブが互いの鏡像である場合、ワープはゼロになり得る。
【0023】
本発明は、有利には、4H、6H、15R、および3Cを含む群から選択されるポリタイプを有する基板に利用され得る。特に、4Hポリタイプが好ましい。SiCは、4H、6H、3Cおよび15Rなどの多くの様々なポリタイプで存在するが、4H-SiCが、高電力で高温の電子装置において最も関心の高いポリタイプである。異なるポリタイプ間の違いは、Si-C二重層の、c軸に沿った積層順序にある。
【0024】
さらに、基板の表面の配向は、公称上の軸上にあるのではなく、軸から0°~8°ずれていてもよく、好ましくは、基板表面は4°ずれた配向を有してもよい。この配向は、後に堆積される層のエピタキシャル成長に影響を与える。
【0025】
既に上述したように、本発明による基板は、現在の標準的なSiCウェハ寸法、したがってエピタキシャル工程に適合するように構成することができる。具体的には、基板の厚みは1000μm未満かつ200μm超であり、好ましくは350μm±25μmに等しい。さらに、基板の直径は少なくとも100mm、好ましくは150mmまたは200mmである。
【0026】
有利には、基板の電気抵抗率は12mΩcm~26mΩcmの範囲、好ましくは18mΩcm~22mΩcmの範囲であり、かつ/またはエッチピット密度は50000cm-2未満である。エッチピット密度(EPD)は、基板の表面近くの領域に含まれる欠陥および転座の数の評価基準である。
【0027】
さらに、本発明は、物理的蒸気輸送成長システムにおいて少なくとも1つのSiC単結晶ブールを成長させる方法に関し、この方法は、
源材料コンパートメントにSiC粉末源材料を配置するステップと、
成長コンパートメントの中に少なくとも1つのSiC種結晶を配置するステップであって、昇華したガス状成分を成長コンパートメントに供給するために、前記源材料コンパートメントが前記成長コンパートメントに連結されている、ステップと、
高温を印加して、SiC種結晶においてSiC成長相(growth phase)を生じさせる昇華したガス状成分を発生させ、それにより、SiC種結晶にSiCボリューム(volume)単結晶ブールが形成されるようにする、ステップとを含み、
成長コンパートメントは、単結晶ブールの成長中に単結晶ブールの長手方向軸を基準として半径方向にドーパント濃度を制御するためのドーパント源および/またはドーパントシンクを備える。
【0028】
ドーパント濃度を制御するためのいくつかの可能性が存在する。ドーパントとして窒素を用いる場合、単結晶の、(長手方向軸に対して)半径方向に辺縁の領域は、中央領域よりも低いドーパント濃度を与えられなければならない。いずれの場合にも、濃度差は少なくとも1・1018cm-3、好ましくは5・1018cm-3であるべきである。0.1mbar~100mbarの範囲の圧力に達する間に、成長温度は約2200℃になり得る。
【0029】
この濃度差は、たとえば内側領域が周辺領域に比べて多くの量のドーパントを受けるように、特定のドーパント元素、たとえば窒素の源を、成長コンパートメントの中央に配置することによって実現することができる。別法として、選択されたドーパント、たとえば窒素向けのゲッター材料を、成長結晶の周辺領域に対して最も強い影響を与えるように、成長コンパートメントの外側領域に配置することもできる。
【0030】
たとえば、ドーパントは窒素を含んでもよい。この場合、成長しているブールの中央領域が、窒素ガスまたは窒素含有ガス(たとえばアンモニア)と直に接触してもよい。具体的には、成長コンパートメントの内部の中央にガス入口を配置して、成長コンパートメントの内部の雰囲気に窒素ガスを注入することができる。この解決法には、成長工程中に組み込まれるドーパントの濃度をかなり簡単に修正および最適化できるという利点がある。
【0031】
成長結晶の中央領域におけるドーパント濃度を高めることは、SiC粉末源材料を均一に充填する代わりに、ドーパントを富化したSiC粉末源材料を種結晶に対向する領域に提供することによっても実現することができる。この変形形態には、ガス入口および流体のプロセス剤を加えるよりも、ドーパントを富化した粉末をかなり簡単に取り扱うことができるという利点がある。具体的には、SiC粉末源材料は、ドーパントを富化した材料を種結晶の中央領域に対向する領域に備え、ドーパントを富化したSiC粉末におけるドーピング元素の濃度は、少なくとも1・1020cm-3、好ましくは5・1020cm-3である。ドーピングがより少ない外側の源材料におけるドーピング元素の濃度は、5・1017cm-3未満、好ましくは1・1017cm-3未満である。
【0032】
既に述べたように、必要とされる濃度差を与えるやり方の1つは、第1の領域に供給するドーパントの量を増やすことである。他方のやり方は、第2の領域に供給されるドーパントの量を局所的に減らすことである。これは、たとえば、成長結晶の中央よりも周辺領域に近いところにゲッター材料を提供することによって実施することができる。当然、必要とされるゲッター材料は、濃度プロファイルを形成しなければならない具体的なドーパントに依存する。
【0033】
本発明の有利な一実施形態によれば、成長コンパートメントにおいて、ルツボの非めっき(massive)ライニングとして窒素ゲッターが提供される。ルツボ内の、結晶が成長している区域において、非めっき壁部ライニングが提供される。この壁部ライニングは、1つまたは複数の窒素結合金属を備える。こうした金属は、たとえばタンタル、タングステン、モリブデン、ニオブ、またはハフニウムでもよい。具体的には、成長コンパートメントは、円筒形のルツボ壁部によって境界を画定されてもよく、ルツボ壁部の内表面が、タンタル、タングステン、モリブデン、ニオブ、および/またはハフニウムのゲッター層を備える。本発明によれば、成長領域の周辺の区域に存在している窒素が部分的にこの金属に結合し、不可逆的な窒素結合が生み出される。これは、周辺領域において成長結晶に取り込むのに利用可能な窒素が中央領域よりも少なくなるように、結晶の成長面付近での窒素の横方向の分散を制御することを意味する。ゲッター層は、内半径が種の直径よりも2mm、好ましくは1mm大きく、厚みが0.5mm~3mmの範囲であり、最短長さが最終的に成長する結晶の長さよりも長い、非めっきメタライゼーション層によって形成することができる。
【0034】
単結晶へのその取込みの空間的濃度が影響を受ける必要がある特定のドーパントに応じ、他のゲッター材料が使用されてもよいことは、当業者には明らかである。
【0035】
ゲッター材料は、非めっき金属層ではなく、黒鉛などの多孔質壁部によって定位置に保持された粒状粒子または粉末粒子の形で提供されてもよい。この実施形態によれば、少なくとも1つのSiC単結晶を成長させる方法は、成長コンパートメントの内部に、ルツボ壁部から間隔を空けて多孔質の壁部を設けるステップと、多孔質の壁部とルツボ壁部の間の隙間を粒状または粉末のゲッター金属で充填するステップとをさらに含む。窒素をゲッタリングすべき場合、ゲッター粒子はタンタル、タングステン、モリブデン、ニオブ、ハフニウム、またはこれらの合金もしくは混合物を含むことができる。窒素は、多孔質の黒鉛壁部を介して隙間に入り、不可逆的にゲッター金属に結合する。したがって、半径方向において、周辺領域よりも中央で濃度値が高い窒素濃度プロファイルが生み出される。その結果、成長しているSiC単結晶の外側の領域では、成長結晶格子に組み込むのに利用可能なガス状窒素が少なくなる。具体的には、ゲッター層は、多孔質の黒鉛カバーウォールによって定位置に保持されたタンタル、タングステン、ニオブ、モリブデンおよび/またはハフニウムの合金または混合物としての金属粒子によって形成され、多孔質の黒鉛カバーウォールの嵩密度は1.0g・cm-3~2.0g・cm-3、好ましくは1.2g・cm-3であり、金属粒子の組成は0.01mm~1mmの範囲、好ましくは0.05mm~0.5mmの範囲である。
【0036】
本発明の別の有利な実施形態によれば、成長コンパートメントにおけるドーパントの濃度プロファイルは、成長コンパートメントと源材料コンパートメントの間の界面で調節することができる。具体的には、源材料コンパートメントにSiC粉末源材料を配置するステップは、ドーパント(たとえば窒素)を富化したSiC粉末源材料を充填するステップと、源材料コンパートメントと成長コンパートメントの間の界面をドーパント(たとえば窒素)フィルタで部分的に覆うステップとを含んでもよい。
【0037】
たとえば、ドーパントフィルタは、黒鉛カプセル内に具体化された、合金または混合物としてのタンタル、タングステン、ニオブ、モリブデン、またはハフニウムなどの金属を備え、嵩密度は1.0g・cm-3~2.0g・cm-3、好ましくは1.2g・cm-3であり、ドーパントの粒径の組成は0.01mm~1mmの範囲、好ましくは0.05mm~0.5mmの範囲でもよい。
【0038】
当然、上記の実施形態の種々の組合せも本発明に含まれることが意図されている。
【0039】
当技術分野では一般に知られているように、PVT成長技法は、成長速度がかなり遅く、通常は約100μm/hの範囲であるということに苦慮している。したがって、特性を損なうことなくより迅速にSiC結晶を成長させる工程も求められている。この課題を解決するために、ルツボの内側チャンバを、中央の源材料コンパートメントと、対称に配置されてそれぞれが少なくとも1つのSiC種結晶を備える2つの成長コンパートメントとに分割することによって2つ以上のSiC単結晶ブールを同時に成長させる対称型PVT成長システムに、本発明によるアイデアを適用することができる。各成長コンパートメントは、ガス透過性の多孔質の仕切りにより、それぞれ源材料コンパートメントから隔てられる。こうした完全に対称な配置により、源材料コンパートメントの中央において温度が最も高く、各種結晶の場所ではより低い同一の温度をもつ領域を有する温度プロファイルを生み出すことができる。こうしたPVT成長システムは、欧州特許第2664695B1号明細書に記載されている。
【0040】
2つのSiC単結晶を同時に成長させるこうした方法には、生産されるブールのそのままの品質を依然として保ちながら、はるかに多い生産量を得ることができるという利点がある。
【0041】
本発明のいくつかの実施形態を説明するために、添付図面が本明細書に組み込まれ、その一部を形成する。これらの図面は、説明とともに、本発明の原理を説明する働きをする。図面は、本発明をどう作成および使用することができるかという好ましい例および代替の例を示す目的のものに過ぎず、図示および説明される実施形態のみに本発明を限定するものと解釈されるべきではない。さらに、各実施形態のいくつかの態様が、個々に、または様々な組合せで、本発明による解決策をなす場合がある。さらなる特徴および利点は、添付図面に示されている本発明の様々な実施形態についての以下のより詳細な説明から明らかになろう。各添付図面中、同様のリファレンスは同様の要素を指す。
【図面の簡単な説明】
【0042】
【
図1】本発明の第1の有利な実施形態による炭化ケイ素基板の概略上面図である。
【
図2】本発明の第2の有利な実施形態による炭化ケイ素基板の概略上面図である。
【
図3】本発明の第1の実施形態によるPVT成長装置の概略断面図である。
【
図4】本発明の別の実施形態によるPVT成長装置の概略断面図である。
【
図5】本発明の別の実施形態によるPVT成長装置の概略断面図である。
【
図6】本発明の別の実施形態によるPVT成長装置の概略断面図である。
【
図7】本発明の別の実施形態によるPVT成長装置の概略断面図である。
【
図8】本発明の別の実施形態によるPVT成長装置の概略断面図である。
【
図9】本発明の別の実施形態によるPVT成長装置の概略断面図である。
【発明を実施するための形態】
【0043】
次に、各図を参照して本発明をより詳細に説明する。まず
図1を見ると、本発明による(以下では「ウェハ」とも呼ばれることがある)SiC基板100の概略図が示されている。本発明によれば、SiC基板100は、(矢印rによって示された)半径方向に、第1の領域102および第2の領域104を備える。第1の領域102は、リング形状の第2の領域104によって囲まれている。文字「A」で示されているように、第1の領域102は、第1の平均濃度の窒素などのドーパントを有し、一方、第2の領域104は、第1の平均濃度とは異なる第2の平均濃度(「B」)を有する。本発明の例示的な一実施形態によれば、ドーパントの平均濃度は、第1の領域102と第2の領域104の間で、少なくとも1・10
18cm
-3、好ましくは5・10
18cm
-3異なる。具体的には、第1の領域102における窒素の平均濃度は、第2の周辺領域104における窒素濃度より高くなり得る。
【0044】
本発明によれば、円形の内側領域102は、総ウェハ表面の少なくとも45%±15%を占める。したがって、リング形状の外側領域104も、当然、総ウェハ表面の少なくとも45%±15%を占める。その結果、周辺領域104においてリング形状の引張り応力が発生するのを避けることができる。むしろ、周辺領域104では圧縮応力が広がり、これにより、第1の領域102では半径方向に作用する引張り応力が生じる。第1の領域102におけるこの引張り応力により、凸形結晶の成長による、予め固定されたたわみの影響が打ち消される(または、少なくともこの影響が小さくなる)。
【0045】
互いに異なる第1の領域および第2の領域に平均濃度が異なる不純物原子を導入することにより、成長手順中に発生した熱的張力を補償する形で、炭化ケイ素基板の内部で選択的に機械的応力を生じさせることができる。その結果、本発明によるSiC基板100は、仕上げの研磨ステップを施すことによって表面近くのすべての邪魔な層を除去した後では、ひずみが小さいか、または理想的にはひずみがない。したがって、SiC基板100には応力による幾何形状のエラーがなく、したがって低いボウおよびワープの値を有する。この有利な幾何形状により、エピタキシャルリアクタにおいてこうした基板の優れた熱的結合が可能になり、熱的結合は、均一で高品質なエピタキシャル層を成長させる決め手になる。さらに、本発明による基板上では、高品質な電子的構成要素を製造することができる。さらに、応力が補償されることにより、変形が起きず、したがって材料の除去が著しく少なくなるので、機械加工中の材料ロスを減らすこともできる。既に上で述べたように、知られている厚い基板は、熱的応力または機械的応力がある場合でも低いボウおよびワープの値を示す。しかし、本発明によるSiC基板の厚みの方がはるかに薄く、それでもなお優れた幾何形状特性を示すことができる。たとえば、0.002~0.004の範囲の、厚みと直径の比を得ることができる。
【0046】
第1の(内側の)領域102では第2の(外側の)領域104よりも約5・1018cm-3大きい窒素ドーパント濃度を与えるとき、本発明によるSiC基板100は、以下の特徴によって特色付けることができる。寸法は、ウェハの厚みが1000μmより小さく200μmより大きい、たとえば350μm±25μmである場合、直径が100mm、さらには150mm、さらには200mmになるように選択することができる。エッチピット密度(EPD)によって示される全体的な転座密度は、50000cm-2になり得、好ましくは10000cm-2未満にとどまる。電気抵抗率は、12mΩcm~26mΩcmの範囲、好ましくは18mΩcm~22mΩcmの範囲になり得る。
【0047】
これらのSiC基板は、ボウが25μm未満、さらには15μm未満であり、ワープが40μm未満、さらには30μm未満であることが示され得る。
【0048】
後に続く所期のエピタキシャル層、ならびに必要とされる光学的特性および半導体材料特性に応じて、SiC基板は、今日までに発見されている200を超える考えられるSiCポリタイプのうちの1つを有することができる。当技術分野では知られているように、最も一般的なポリタイプには、3C、2H、4H、6H、8H、9R、10H、14H、15R、19R、20H、21H、および24Rが含まれ、ここで、(C)、(H)および(R)は、立方晶系、六方晶系、および菱面体晶系である、3つの基本的な結晶学的カテゴリである。3C-SiCまたはβ-SiCと名付けられている立方晶系の閃亜鉛鉱型構造では、SiおよびCは、ダイヤモンド構造(diamond framework)において規則的な席を占有する。一般にα-SiCと呼ばれる、六方晶系ポリタイプのnH-SiCおよび菱面体晶系ポリタイプのnR-SiCでは、CおよびSiの層からなるnSi-C二重層が単純単位格子(primitive unit cell)に積層される。本発明による基板は、4Hポリタイプのものであることが好ましい。さらに、基板の配向は、軸から0°~8°、好ましくは4°ずれている。ポリタイプおよび配向は、通常は種結晶の配向、または結晶作成中の傾斜によって制御することができる。
【0049】
図2には、本発明による基板の別の態様が示されている。PVTシステムにおいてSiC基板を製造するとき、領域102と領域104の間には境界を画定するはっきりした線はないことが予想され得る。むしろ、領域102の値Aと領域104の値Bの間の平均ドーパント濃度勾配をもつ移行領域106が存在する。移行領域106のドーパント濃度は、文字「C」で示されている。移行領域106では、ドーパント濃度は、中央領域102での高い方の値Aから周辺領域104での低い方の値Bへと至るように、半径方向rに沿って可変であることが理解されなければならない。
【0050】
重要なことは、
図1および
図2は概略図であり、領域102、領域104、および領域106の寸法に関して、またこれらの領域の互いに対する面積比に関して、一定の縮尺に従っていないことに留意しなければならない。
【0051】
図3~
図9には、
図1および
図2を参照して説明した基板へとスライスすることができる単結晶ブールを成長させるためのPVT工程の様々な実施形態が示されている。
【0052】
種結晶利用昇華成長(seeded sublimation growth)としても知られている物理的蒸気輸送(PVT)は、大きいサイズのSiC単結晶を成長させる、最も一般的で成功している方法である。米国特許第8,747,982B2号明細書には、本発明によるSiC基板を製造するために使用および修正することができる有利な製造方法が記載されている。
【0053】
SiC単結晶108の成長中に半径方向にドーパントプロファイルを生じさせる第1の例を、
図3を参照して説明する。以下では、成長しているSiC単結晶108は「ブール」とも呼ばれる。
【0054】
図3にはPVT成長セル110の概略図が示されており、SiC単結晶108のPVT成長は、黒鉛の蓋で封止された黒鉛ルツボ112の中で実施され、この黒鉛ルツボ112には、ルツボ112の下部において源材料コンパートメント116に配置された昇華源114が装填されている。(図には見えていない)単結晶の種が、ルツボの上部に配置される。熱絶縁材料がルツボ112を囲み、この熱絶縁材料は、再凝結に必要な温度勾配を生じさせる熱放散チャネル(図示せず)の領域においてのみ開いている。
【0055】
昇華源114は、通常、個別の工程で合成された多結晶のSiCの粒または粉末である。装填済みのルツボ112は成長チャンバの中に配置され、そこで熱絶縁材(図示せず)によって囲まれる。誘導加熱または抵抗加熱(図示せず)を使用して、ルツボ112を一般には2000℃~2400℃である適した温度にし、SiC単結晶種の上でSiC単結晶をPVT成長させる。成長チャンバは、たとえば石英ガラスで作成することができ、単結晶の成長中に昇華源114の温度が種結晶の温度よりも(通常は10~200Kの差で)高く保たれるように、RFコイルがルツボ112に対して位置決めされる。
【0056】
十分に高い温度に達すると昇華源114は気化し、ケイ素、Si2C、およびSiC2の分子の蒸気でルツボ112の成長コンパートメント118を満たす。昇華源114と種結晶の間の温度差により、蒸気は移動して種結晶上に凝結し、それにより、成長する単結晶ブール108が形成される。成長速度を制御するために、通常、PVT成長は、一般に0.1mbar~100mbarである、低圧の不活性ガスの存在下で実施される。
【0057】
米国特許第8,747,982B2号明細書に示されているような既知の装置に加えて、本発明は、成長結晶108の中央領域に向かって方向付けられた方向性ガス流122を提供するために、成長コンパートメント118の中で中央に配置されたガス入口120を備える。これにより、成長コンパートメント118の、ルツボ112の内壁部124に近い領域と中央領域との間で、ドーパント濃度の差が生じる。成長結晶108の中央近くにより高いドーパント濃度を与えることにより、中央の成長結晶格子には、周辺領域に組み込まれる濃度と比べてより高いドーパント濃度が組み込まれる。ガス流122の特定のパラメータに応じて、結晶108から生産される最終処理後のSiC基板において、
図1または
図2に示した濃度プロファイルを実現することができる。
【0058】
示してある実施形態では、ガス流122は、ドーパントとして窒素を含む。しかし、当然、他の適したガス、たとえばアンモニアもまた、入口120を通って成長コンパートメント118に導入されてもよい。
【0059】
図4には、本発明による成長セル110の第2の有利な実施形態が示されている。やはり、結晶108は、成長コンパートメント118に配置された種結晶から成長する。昇華粉末源114が、源材料コンパートメント116に収容されている。源材料の嵩密度は、1.0g・cm
-3~2.6g・cm
-3の範囲、好ましくは1.4g・cm
-3~1.8g・cm
-3の範囲であるべきである。源材料の粒径(D50)は、100μm~1000μmの範囲、好ましくは300μm~500μmの範囲であるべきである。しかし、知られている装置とは対照的に、粉末源114は、ルツボ112の直径全体にわたって均一に分散されていない。本発明によれば、源材料コンパートメント116の中央は、ドーパントがさらに豊富にされた、富化源材料126を備える。富化されたSiC粉末のドーピング元素の濃度は、少なくとも1・10
20cm
-3、好ましくは5・10
20cm
-3である。ドーピングがより少ない外側の源材料におけるドーピング元素の濃度は、5・10
17cm
-3未満、好ましくは1・10
17cm
-3未満である。加熱工程中、富化源材料126を気化させたとき、ドーパントの流れ128が発生する。さらに、ドーピングされていない源材料と富化された源材料126との間の界面では、ドーパントが徐々に希釈される場合もある。
【0060】
図3に示す実施形態と比較したこの実施形態の利点は、第1に、ガス状のドーパント源を取り扱う必要がなく、第2に、成長工程中にルツボ112への連続的なアクセスが必要とされないということに見て取ることができる。
【0061】
図3および
図4は、成長コンパートメント118の中央において窒素などのドーパントの濃度をアクティブに高めるアイデアに関する。一方、
図5および
図6では、成長コンパートメント118の周辺領域においてドーパントの濃度をアクティブに低くする実施形態を説明する。
【0062】
図5に示されているように、成長セル110は、成長コンパートメント118および昇華源材料コンパートメント116を備える。源材料コンパートメント116は、従来の成長セルに関して知られているように、源材料114で満たされている。本発明によれば、ルツボ112の内壁部124は、少なくとも部分的に、固体ゲッター材料130で覆われている。ゲッター材料130は、成長コンパートメント118に存在するドーパント原子を選択的に引き付け、結合し、それにより、ルツボ112の壁部124に近い領域においてその濃度を下げる。その結果、成長コンパートメント118の中央領域のドーパント濃度は周辺領域の濃度よりも高くなり、成長結晶108は、周辺領域と比較してドーパント濃度が高い中央領域を備える。成長コンパートメント118の周辺領域ではドーパントの利用可能性が低くなることにより、外側領域では、中央領域に比べて、成長結晶108に取り込まれるドーパント濃度は低くなる。
【0063】
たとえば、ドーパントとして窒素を使用するとき、固体ゲッター材料130は、タンタル、タングステン、ニオブ、モリブデンもしくはハフニウム、またはこれらの合金などの金属を含んでもよい。これらの元素は、窒素結合を形成することにより、不可逆的に窒素と結合する。当然、他の適したゲッター材料も使用することができる。ゲッターの設計は、効果的なゲッタリングのために十分に近くするために、種の直径よりわずかに大きく、半径方向の間隙が2mm、好ましくは間隙が1mmである直径と、0.5mm~3mmの範囲の厚みと、結晶の長さよりも長く、結晶成長工程の間はずっと結晶外周部での窒素の吸収を持続する最短長さとを有する、円筒形の形状になるような設計である。
【0064】
図6には、本発明による成長セル110の別の有利な例が示されている。この構成は、成長コンパートメント118の境界を画定する周辺部にゲッター材料が提供されているという点で、
図5に示した構成と類似している。しかし、この実施形態によれば、固体ゲッター層の代わりに、粒状の、または粉末のゲッター粒子132が提供される。これらのゲッター粒子132を定位置に保つために、成長コンパートメント118の内部に多孔質のカバーウォール134が提供される。多孔質のカバーウォール134は、たとえば、分子および原子が成長コンパートメントからゲッター材料に、またその逆に拡散することを可能にする、黒鉛から形成されてもよい。したがって、カバーウォールの嵩密度は、1.0g・cm
-3~2.0g・cm
-3、好ましくは1.2g・cm
-3になり得る。
【0065】
本発明によれば、ゲッター粒子132は、タンタル、タングステン、ニオブ、モリブデン、またはハフニウムなどの1つまたは複数の窒素結合性金属を、粒状の形態または粉末形態で、合金または混合物として含んでもよい。成長コンパートメント118にドーパントとして存在する窒素は、多孔質の黒鉛壁部134を通って拡散し、ゲッター粒子132との窒素結合を不可逆的に形成する。これにより、結晶108の成長面近くでの窒素の横方向の分散は、辺縁部において結晶に組み込むのに利用可能な窒素が、結晶108の中央よりも少なくなるという形で影響を受ける。結晶成長工程全体を通して終始ゲッターの機能性を均衡させるために、粒および粉末のサイズの組成は、ゲッターの最適化された空き表面(free surface)を提供するために、0.01mm~1mmの範囲、好ましくは0.05mm~0.5mmの範囲で調節されなければならない。
【0066】
これにより、
図1および
図2に示した、本発明による濃度プロファイルを得ることができる。
【0067】
図7には、本発明による成長セル110の別の有利な例が示されている。この特定の実施形態によれば、源材料コンパートメント116は、ドーパント富化された粉末源材料126で完全に満たされている。結晶108の中央に向かって方向付けられたドーパントの流れ128、たとえば窒素の流れを制御するために、源材料コンパートメント116と成長コンパートメント118の間の界面にフィルタ要素136が配置される。フィルタ要素136は、この界面の周辺領域を覆うように、また粉末源材料126が気化したときに窒素などのドーパントが結晶108に向かって進むことを可能にするため、中央領域は開いたままにするように配置される。
【0068】
図7に示されるように、ドーパントの流れ128によって示された中央区域と比較してドーパント濃度が低い、成長コンパートメント118のほぼリング形状の区域を形成するために、ドーパントフィルタ136は、たとえばリング形状の形であってもよい。フィルタは、分子および原子がフィルタを介して粉末コンパートメントから成長コンパートメントへと拡散することを可能にする黒鉛カプセル内に具体化された、タンタル、タングステン、ニオブ、モリブデン、またはハフニウムなどの金属を、粒状の形態または粉末形態で、合金または混合物として含んでもよい。フィルタの嵩密度は、1.0g・cm
-3~2.0g・cm
-3、好ましくは1.2g・cm
-3である。結晶成長工程の間、終始ゲッターの機能性を均衡させるために、粒および粉末のサイズの組成は、ゲッターの最適化された空き表面を提供するために、0.01mm~1mmの範囲、好ましくは0.05mm~0.5mmの範囲で調整されなければならない。フィルタカプセルの高さは、ゲッターの能力が結晶成長工程全体を通して保たれるように調整されなければならず、1mm~20mmの範囲、好ましくは5mm~10mmの範囲の厚みをもつ。
【0069】
当然、
図3~
図7に示した実施形態によるアイデアは、炭化ケイ素基板に所望のドーパント濃度プロファイルを作り出すために必要になり得る任意の形で互いに組み合わせられてもよい。
【0070】
既に上述したように、1つではなく2つの結晶を同時に成長させることにより、SiC単結晶を成長させるための生産時間を著しく短縮することができる。こうした同時成長を実現するために、欧州特許第2664695B1号明細書の原理を本発明によるアイデアに適合することができる。
【0071】
図8に示されるように、本発明による成長セル210は、2つの成長コンパートメント118、119を備えてもよい。成長コンパートメント118、119は、昇華源114を備える源材料コンパートメント116に対して対称に配置される。成長コンパートメント118、119のそれぞれでは、1つの結晶108、109が種結晶(図示せず)から成長している。
図3に示した構成と同様に、成長結晶108、109のそれぞれに向かって窒素ガスを導入するために、ガス入口120が提供される。当然、任意の他のガス状ドーパント、たとえばアンモニアも、この実施形態に含まれ得る。
【0072】
成長コンパートメント118、119のそれぞれには、成長コンパートメント118、119の各中央領域に周辺領域よりも高い濃度のドーパントが供給されるように、ドーパント入口121、123が配置される。
【0073】
図5および
図6を参照して説明したのと同様に、成長セル210も、粒状または粉末のゲッター材料、たとえばタンタル、タングステン、ニオブ、モリブデンまたはハフニウムなどの金属を合金または混合物として提供することによって周辺領域のドーパント濃度を下げるというアイデアを使用することができる。
図9には、分子および原子が成長コンパートメントからゲッター材料に、またその逆に拡散することを可能にする多孔質のカバーウォール134、135の後ろにゲッター粒子132、133を配置した一例が示されている。したがって、カバーウォールは、1.0g・cm
-3~2.0g・cm
-3、好ましくは1.2g・cm
-3の嵩密度を示す。結晶成長工程の間、終始ゲッターの機能性を均衡させるために、粒および粉末のサイズの組成は、ゲッターの最適化された空き表面を提供するために、0.01mm~1mmの範囲、好ましくは0.05mm~0.5mmの範囲で調節されなければならない。
【0074】
ゲッター粒子132、133は、成長コンパートメント118、119の周辺領域から一定量のドーパント原子を結合することにより、成長コンパートメント118、119の内部でドーパントの濃度勾配を生じさせる。具体的には、成長コンパートメント118、119の中央でのドーパント濃度、たとえば窒素の濃度は、成長結晶108、109のその中央領域においてより高いドーパント濃度を組み込むために、周辺領域よりも高くなる。
【0075】
ゲッター粒子134、133を提供する代わりに、
図5に示されるような固体ゲッター材料を提供することもできる。これまでの実施形態に関して説明したように、選択されるゲッター材料は、濃度プロファイルを形成しなければならないドーパントに依存する。窒素においては、たとえばタンタル、タングステン、ハフニウム、ニオブ、モリブデン、またはハフニウムを、これらの合金または混合物として使用することができる。固体ゲッターの設計は、効果的なゲッタリングのために十分に近くするために、種の直径よりわずかに大きく、半径方向の間隙が2mm、好ましくは間隙が1mmである直径と、0.5mm~3mmの範囲の厚みと、結晶の長さよりも長く、結晶成長工程の間はずっと結晶外周部での窒素の吸収を持続する最短長さとを有する、円筒形の形状になるような設計である。
【0076】
本発明によれば、内側領域102でのドーパントの平均濃度は、周辺領域104でのこのドーパントの平均濃度とは、絶対値で少なくとも1・1018cm-3異なる。たとえば、内側領域102での平均濃度が3・1018cm-3~3・1019cm-3の範囲であり、周辺領域104でのドーパントの平均濃度が内側領域102よりも低いとすると、これは、少なくとも1・1018cm-3である絶対差が、周辺領域104でのドーパントの平均濃度に対する3%~50%の相対差に対応することを意味することになる。この関係は、以下の計算から導くことができる。
【0077】
内側領域でのドーパントの平均濃度が3・1019cm-3である場合、周辺領域での平均濃度は、3・1019cm-3-1・1018cm-3=2.9・1019cm-3と計算され、したがって1・1018cm-3という値は3%に対応する。
【0078】
一方、内側領域でのドーパントの平均濃度が3・1018cm-3である場合、周辺領域での平均濃度は、3・1018cm-3-1・1018cm-3=2・1018cm-3と計算され、したがって1・1018cm-3という絶対値は50%に対応する。
【符号の説明】
【0079】
100 SiC基板
102 内側領域
104 外側領域
106 移行領域
108、109 SiC単結晶ブール
110、210 成長セル
112 ルツボ
114 昇華源材料
116 源材料コンパートメント
118、119 成長コンパートメント
120、121、123 ガス入口
122 ガス流
124 ルツボの内壁部
126 ドーパントを富化した源材料
128 ドーパントの流れ
130 固体ゲッター材料
132、133 ゲッター粒子
134、135 多孔質のカバーウォール
136 ドーパントフィルタ