IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アグリ・キュルチュール軽井沢株式会社の特許一覧 ▶ 株式会社綿谷製作所の特許一覧

<>
  • 特許-廃プラスチックの油化装置 図1
  • 特許-廃プラスチックの油化装置 図2
  • 特許-廃プラスチックの油化装置 図3
  • 特許-廃プラスチックの油化装置 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-24
(45)【発行日】2022-03-04
(54)【発明の名称】廃プラスチックの油化装置
(51)【国際特許分類】
   C10G 1/10 20060101AFI20220225BHJP
   C08J 11/12 20060101ALI20220225BHJP
   B01D 21/02 20060101ALI20220225BHJP
   B01D 7/02 20060101ALI20220225BHJP
   B01D 53/86 20060101ALI20220225BHJP
   F01K 27/00 20060101ALI20220225BHJP
【FI】
C10G1/10 ZAB
C08J11/12
B01D21/02 S
B01D7/02
B01D53/86 280
F01K27/00 Z
【請求項の数】 8
(21)【出願番号】P 2017223620
(22)【出願日】2017-11-21
(65)【公開番号】P2019094408
(43)【公開日】2019-06-20
【審査請求日】2020-11-20
(73)【特許権者】
【識別番号】520272802
【氏名又は名称】アグリ・キュルチュール軽井沢株式会社
(73)【特許権者】
【識別番号】515027451
【氏名又は名称】株式会社綿谷製作所
(74)【代理人】
【識別番号】110002697
【氏名又は名称】めぶき国際特許業務法人
(72)【発明者】
【氏名】甲田 英明
(72)【発明者】
【氏名】綿谷 知紀
(72)【発明者】
【氏名】小池 清仁
【審査官】上坊寺 宏枝
(56)【参考文献】
【文献】特開2003-183672(JP,A)
【文献】特開2002-080861(JP,A)
【文献】特開2005-342647(JP,A)
【文献】特開2016-089079(JP,A)
【文献】特開2004-256636(JP,A)
【文献】特表2013-523944(JP,A)
【文献】特開2003-261879(JP,A)
【文献】特開2011-057800(JP,A)
【文献】特開2001-247874(JP,A)
【文献】特開2004-182961(JP,A)
【文献】特開2016-60800(JP,A)
【文献】特開平10-88148(JP,A)
【文献】特開2002-138287(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C10G 1/10
C08J 11/12
B01D 7/02、21/02、53/86-53/90、53/94
F01K 27/00
(57)【特許請求の範囲】
【請求項1】
廃プラスチックを加熱して熱分解する熱分解槽と、
前記熱分解槽で生成した分解ガスをテレフタル酸の昇華点以上に加熱する蒸留筒部と、
加熱された前記分解ガスに冷却水を噴射して油原液に凝縮させると共に前記テレフタル酸を結晶化するテレフタル酸結晶化部と、
前記分解ガス、前記テレフタル酸の結晶、前記冷却水及び前記油原液の混濁液を貯留し、比重差を利用して前記テレフタル酸の結晶と、前記冷却水と、前記油原液とに層分離するテレフタル酸沈降トラップと、
前記テレフタル酸沈降トラップに接続され前記テレフタル酸沈降トラップ内の前記油原液の上澄み分を貯留する油貯留タンクと、
を有する、廃プラスチックの油化装置であって、
前記蒸留筒部は、水平方向に伸びる筒部と、前記筒部を前記熱分解槽に接続する第1配管と、前記筒部を前記テレフタル酸結晶化部に接続する第2配管と、を有し、前記筒部は、複数の孔部が設けられた区画壁によって、下方側区画室と上方側区画室とに区画され、前記第1配管は前記筒部の前記下方側区画室に接続され、前記第2配管は前記筒部の前記上方側区画室に接続され、
前記テレフタル酸結晶化部は、前記第2配管と前記テレフタル酸沈降トラップとの間に設けられた分解ガス冷却管部と、第3配管と、を有し、前記第2配管と前記分解ガス冷却管部の交差部には、冷却水を送る前記第3配管が接続され、前記第3配管の先端部には前記冷却水をシャワー噴射するノズルが設けられている
ことを特徴とする廃プラスチックの油化装置。
【請求項2】
請求項1に記載の廃プラスチックの油化装置において、
前記テレフタル酸沈降トラップには、分散化した状態の、前記分解ガスと前記テレフタル酸の結晶と前記冷却水及び前記油原液を撹拌する攪拌機が配設されている、
ことを特徴とする廃プラスチックの油化装置。
【請求項3】
請求項1または請求項2に記載の廃プラスチックの油化装置において、
前記テレフタル酸沈降トラップ内で層分離された冷却水は、前記テレフタル酸結晶化部及び前記テレフタル酸沈降トラップに循環され、
前記テレフタル酸沈降トラップと前記蒸留筒部の間に冷却器をさらに有している、
ことを特徴とする廃プラスチックの油化装置。
【請求項4】
請求項1から請求項3のいずれか1項に記載の廃プラスチックの油化装置において、
前記油貯留タンク内で凝縮されないガス成分を触媒反応によって炭酸ガスと水蒸気とに分解して排出する排ガス分解処理部をさらに有する、
ことを特徴とする廃プラスチックの油化装置。
【請求項5】
請求項1から請求項4のいずれか1項に記載の廃プラスチックの油化装置において、
前記油貯留タンクには径方向に2分割する分離壁が設けられ、
前記分離壁で区画された一方の区画室に貯留された前記油原液を、比重差を利用して前記油原液と前記油原液に含まれる水とに分離し、前記油原液は前記分離壁をオーバーフローして他方の区画室に貯留され、
前記油貯留タンクの底部には、前記一方の区画室に残る水を排出する開閉弁と、前記他方の区画室に貯留される所要の組成の前記油原液を排出する開閉弁とが配設されている、
ことを特徴とする廃プラスチックの油化装置。
【請求項6】
請求項1から請求項5のいずれか1項に記載の廃プラスチックの油化装置において、
前記油貯留タンクの下流側に配設され前記油貯留タンクに貯留された前記油原液を分溜温度が高い方から低い方に順次導入して温度差をつけて加熱する複数の分留用加熱槽をさらに有し、
各当該分溜用加熱槽で生成した分解ガスそれぞれを凝縮する複数のコンデンサと、
凝縮した所要の組成の油成分を各々貯留する複数の油貯留タンクと、
をさらに有する、
ことを特徴とする廃プラスチックの油化装置。
【請求項7】
請求項6に記載の廃プラスチックの油化装置において、
各前記分留用コンデンサで凝縮されないガス成分を触媒反応によって炭酸ガスと水蒸気とに分解して排出する排ガス分解処理部をさらに有する、
ことを特徴とする廃プラスチックの油化装置。
【請求項8】
請求項6または請求項7に記載の廃プラスチックの油化装置において、
前記廃プラスチックを熱分解し生成した所要の組成の油成分を燃料とし、各前記コンデンサから還流する冷却水を高圧水蒸気に変換し発電する蒸気タービン型発電機をさらに有する、
ことを特徴とする廃プラスチックの油化装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、廃プラスチックの油化装置に関する。
【背景技術】
【0002】
近年、使用後に廃棄されるプラスチック製品、プラスチック製品の製造過程で出たプラスチックの滓などプラスチックを主成分とする廃プラスチックなどの処理は、世界共通の問題になってきている。廃プラスチックを処理する方法としては、焼却、熱分解し減容化して廃却するなどが主流であるが、資源の有効活用の観点から廃プラスチックを熱分解し分解ガスとし、この分解ガスを冷却凝縮して油化する油化装置が注目されている。一般に、油化(油化還元ともいう)が可能なプラスチックとしては、ポリスチレン、ポリプロピレン、ポリカーボネートやポリエチレンなどの熱可塑性プラスチックである。しかし、世界で大量に使用されているペットボトルなどの原料であるポリエチレンテレフタレート(以降PETと記載することがある)は、テレフタル酸を主成分としており、テレフタル酸は昇華性を有し、冷却凝縮する際に結晶化するため配管や冷却装置を詰まらせてしまうという問題があった。
【0003】
そこで、テレフタル酸を昇華点(300℃)以上の高温下で酸または塩基を用いた触媒反応によって分解するテレフタル酸分解装置を備えた廃プラスチックの油化装置がある(例えば、特許文献1参照)。
【0004】
また、廃プラスチックを熱分解し、テレフタル酸を含む分解ガスに循環油を噴射して冷却し、テレフタル酸を結晶化して排出するという廃プラスチックの油化装置というものがある(例えば、特許文献2)。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2003-96469号公報
【文献】特開2004-256636号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1に記載の廃プラスチックの油化装置は、ポリスチレン、ポリプロピレンおよびポリエチレンなどを熱分解して得られた分解ガスを直接コンデンサで冷却して油化する経路と、ポリエチレンテレフタレートを熱分解して得られた分解ガスをテレフタル酸分解装置で分解した後に、冷却装置で凝縮してテレフタル酸分解生成物を排出するという経路の2通りを備えている。すなわち、ポリスチレン、ポリプロピレン、ポリカーボネート及びポリエチレンなどとポリエチレンテレフタレート(PET)を分別して熱分解槽に投入し、切換えバルブによって経理を分離しなければならないという課題がある。
【0007】
特許文献2に記載の廃プラスチックの油化装置は、テレフタル酸を含む分解ガスに循環油を噴射して冷却しテレフタル酸を結晶化して排出するというものであるが、固形化したテレフタル酸と循環油とが分散化した状態であることから、テレフタル酸の経路である沈降槽、析出槽及び循環油槽の底部に結晶化したテレフタル酸が沈積するため、循環油とテレフタル酸の結晶とを遠心分離機によって分離しなければならないという課題がある。
【0008】
そこで、本発明は、PETの主成分であるテレフタル酸の結晶による配管類の詰まりを排除し、PETを含む廃プラスチックの熱分解によって生成する分解ガスを効率的に油化し所要の組成の油成分を得ることが可能な廃プラスチックの油化装置を提供しようとするものである。
【課題を解決するための手段】
【0009】
[1]本発明の廃プラスチックの油化装置は、廃プラスチックを加熱して熱分解する熱分解槽と、前記熱分解槽で生成した分解ガスをテレフタル酸の昇華点以上に加熱する蒸留筒部と、加熱された前記分解ガスに冷却水を噴射して油原液に凝縮させると共に前記テレフタル酸を結晶化するテレフタル酸結晶化部と、前記分解ガス、前記テレフタル酸の結晶、前記冷却水及び前記油原液の混濁液を貯留し、比重差を利用して前記テレフタル酸の結晶と、前記冷却水と、前記油原液とに層分離するテレフタル酸沈降トラップと、前記テレフタル酸沈降トラップに接続され前記テレフタル酸沈降トラップ内の前記油原液の上澄み分を貯留する油貯留タンクと、を有する、を有することを特徴とする。
【0010】
本発明の廃プラスチックの油化装置によれば、PETを含む廃プラスチックを熱分解し生成する分解ガスに冷却水を噴射することによって凝縮し、テレフタル酸の結晶と油原液を生成した後、テレフタル酸の結晶と冷却水と油原液とを比重差を利用して層分離し、テレフタル酸の結晶を外部に排出する。このようにすることによって、テレフタル酸の結晶による配管類の詰まりを排除し、PETを含む廃プラスチックの熱分解により生成する分解ガスを油化して効率的に所要の油成分を得ることが可能となる。また、テレフタル酸の結晶は、冷却水の一部と共に排出することが可能であるため、特許文献2に記載の油化装置のようにテレフタル酸の結晶と循環油とを遠心分離機で分離してしなくてもよい。油貯留タンクにおいては、テレフタル酸沈降トラップで凝縮しなかった分解ガスを所定の温度で凝縮させることによって、所要の組成の油成分を生成することができる。
【0011】
なお、廃プラスチックにはPVC(ポリ塩化ビニル、通称塩ビ)が含まれることが予測される。PVCを熱分解すると分解ガス中に塩素ガスが発生する。塩素ガスは水溶性であることから、冷却水に溶け込んで塩酸となる。このような場合、テレフタル酸沈降トラップから排出した後の冷却水を中和剤(塩基)で中和することが可能である。或いは、テレフタル酸沈降トラップ5の底部に沈降する冷却水Wに外部から中和剤を投入するようにしてもよい。このようにすれば、廃プラスチックにPVCが混在していても環境に有害なガスの排気を抑制することが可能となる。
【0012】
[2]本発明の廃プラスチックの油化装置においては、前記テレフタル酸沈降トラップには、分散化した状態の、前記分解ガスと前記テレフタル酸の結晶と前記冷却水及び前記油原液を撹拌する攪拌機が配設されていることが好ましい。
【0013】
攪拌機によって撹拌することによって、テレフタル酸の結晶、冷却水、油原液及び分解ガスの分散化をさらに進め、冷却及び凝縮を促進することが可能となり、テレフタル酸の結晶、油原液、冷却水の分離を促進することが可能となる。
【0014】
[3]本発明の廃プラスチックの油化装置においては、前記テレフタル酸沈降トラップ内で層分離された冷却水は、前記テレフタル酸結晶化部及び前記テレフタル酸沈降トラップに循環され、前記テレフタル酸沈降トラップと前記蒸留筒部の間に冷却器をさらに有していることが好ましい。
【0015】
このようにすれば、分解ガスを凝縮させる冷却水の使用量を抑制でき、経費の削減が図れるうえ、環境に配慮した廃プラスチックの油化装置を実現できる。テレフタル酸結晶化部に送水した後の冷却水は温度が上昇するが、冷却器を備えることによって冷却水を適切な温度に管理することが可能となる。
【0016】
[4]本発明の廃プラスチックの油化装置においては、前記油貯留タンク内で凝縮されない分解ガスを触媒反応によって炭酸ガスと水蒸気とに分解して排出する排ガス分解処理部をさらに有することが好ましい。
【0017】
油貯留タンクには、テレフタル酸沈降トラップから送られる油原液が貯留され、所定温度に維持される。沸点がその所定温度以下のガスは凝縮されない。このガスを排ガス分解処理部において触媒反応によって炭酸ガスと水(水蒸気)とに分解して排出すれば、排気ガスを無害化、無臭化して排出できる。
【0018】
[5]本発明の廃プラスチックの油化装置においては、前記油貯留タンクには径方向に2分割する分離壁が設けられ、前記分離壁で区画された一方の区画室に貯留された前記油原液を、比重差を利用して前記油原液と前記油原液に含まれる水とに分離し、前記油原液は前記分離壁をオーバーフローして他方の区画室に貯留され、前記油貯留タンクの底部には、前記一方の区画室に残る水を排出する開閉弁と、前記他方の区画室に貯留される所要の組成の前記油原液を排出する開閉バルブとが配設されていることが好ましい。
【0019】
このような構成にすれば、油貯留タンクにおいて水と油原液とを容易に分離することができ、水だけを排出し、所要の組成の油原液を取り出すことが可能となる。
【0020】
[6]本発明の廃プラスチックの油化装置においては、前記油貯留タンクの下流側に配設され前記油貯留タンクに貯留された前記油原液を分溜温度が高い方から低い方に順次導入して温度差をつけて加熱する複数の分留用加熱槽をさらに有し、各当該分溜用加熱槽で生成した分解ガスそれぞれを凝縮する複数のコンデンサと、凝縮した所要の組成の油成分を各々貯留する複数の油貯留タンクと、をさらに有することが好ましい。
【0021】
このように構成すれば、廃プラスチックを熱分解し生成した分解ガスを各所定の温度で凝縮し所要の組成の油成分、例えば、ガソリン、灯油、軽油や重油などとして回収することが可能となる。
【0022】
[7]本発明の廃プラスチックの油化装置においては、複数の前記コンデンサのうち少なくとも一つで凝縮されないガス成分を触媒反応によって炭酸ガスと水蒸気とに分解して排出する排ガス分解処理部をさらに有することが好ましい。
【0023】
排ガス分解処理部において各コンデンサで凝縮されないガスを触媒反応によって炭酸ガスと水(水蒸気)とに分解して排気ガスとして排出すれば、排気ガスを無害化、無臭化して排出できる。
【0024】
[8]本発明の廃プラスチックの油化装置においては、前記廃プラスチックを熱分解し生成した所要の組成の油成分を燃料とし、各前記コンデンサから還流する冷却水を高圧水蒸気に変換して発電する蒸気タービン型発電機をさらに有することが好ましい。
【0025】
このようして得られる油成分を燃料とし、蒸気タービン発電機で発電した電力を廃プラスチックの油化装置の稼働用電力として使用することによって油化装置の省エネルギー化を図ることが可能となる。さらに、油化装置以外の他の機器や照明などの電力として使用することが可能となる。
【図面の簡単な説明】
【0026】
図1】第1実施形態に係る廃プラスチックの油化装置1Aの構成を示す説明図である。
図2】蒸留筒部3及びテレフタル酸結晶化部4の構成を示す図である。
図3】第1実施形態に係る廃プラスチックの油化装置1Aを用いた廃プラスチックの油化方法の主要工程を示す工程フロー図である。
図4】第2実施形態に係る廃プラスチックの油化装置1Bの分留部の構成を簡略化して示す説明図である。
【発明を実施するための形態】
【0027】
以下、本発明の実施形態に係る廃プラスチックの油化装置1A,1Bについて、図1図4を参照しながら説明する。なお、以降の説明において、廃プラスチックの油化装置1A,1Bを簡略して油化装置1と記載することがある。なお、ここで油化対象となる廃プラスチックとしては、使用後に廃棄されるプラスチック製品、プラスチック製品の製造過程で出たプラスチックの滓などであって、ポリスチレン、ポリプロピレン、ポリエチレン、発泡スチロール(発泡スチレン)、ポリエチレンテレフタレート(PET)などの熱可塑性プラスチックである。
【0028】
[第1実施形態]
図1は、本発明の第1実施形態に係る油化装置1Aの構成を示す説明図である。油化装置1Aは、PETを含む廃プラスチックPを熱分解して分解ガスG0を生成する熱分解槽2と、分解ガスG0をテレフタル酸の昇華点以上に加熱する蒸留筒部3と、蒸留筒部3で加熱された分解ガスG0に冷却水Wを噴射して冷却し、分解ガスG0を油原液Dに凝縮すると共にPETを熱分解することによって生成されるテレフタル酸を冷却して結晶化するテレフタル酸結晶化部4と、テレフタル酸の結晶Tと冷却水W及び油原液Dとの混濁液Kを貯留するテレフタル酸沈降トラップ5と、を有している。テレフタル酸沈降トラップ5では、テレフタル酸の結晶T、冷却水W、油原液Dの比重差を利用してテレフタル酸の結晶Tと冷却水Wと油原液Dとに層分離する。テレフタル酸沈降トラップ5には、油貯留タンク6が接続されている。
【0029】
熱分解槽2には押し出し機7が接続されている。押し出し機7は、原料である廃プラスチックPを溶解しながら熱分解槽2に送り込む。押し出し機7には、必要に応じて不図示の前処理部が設置される。前処理部としては、廃プラスチックPを洗浄する洗浄機、押し出し機7に投入可能なサイズや形態に廃プラスチックPを破砕する破砕機、発泡スチロールなどを圧縮する圧縮機などである。
【0030】
熱分解槽2は、底部が円錐形状の本体部12と、本体部12の外周に配設されるヒータ13と、本体部12の内部に配設され溶解された廃プラスチックP1を撹拌する攪拌機14とを有している。原料の廃プラスチックPに対して溶解された廃プラスチックを廃プラスチックP1と記載する。本体部12は、ベース台15に設置されている。ヒータ13は、例えばセラミックヒータ、高周波コイル或いは電熱線などである。セラミックヒータは、任意の形状に成形しやすく温度管理がしやすい。高周波コイルを用いる場合は、本体部12の材質は鉄または鉄系合金とし高周波加熱が可能な構成とする。
【0031】
攪拌機14は、回転軸16と、回転軸16の底部側先端に固定された撹拌羽根17と、本体部12の外部に設けられ回転軸16を回転するモータ18とで構成されている。攪拌機14は、廃プラスチックP1を撹拌羽根17で撹拌して廃プラスチックP1の温度を均一にする機能と、本体部12の底部に付着する廃プラスチックP1の溶解残渣を掻き取る機能を備えている。本体部12には温度を検出する不図示の温度センサーが配置され、ヒータ13への供給電力を制御して内部温度を適切に管理する。熱分解槽2の内部温度は、300℃~500℃、好ましくは350℃~450℃に管理される。温度を350℃にすれば、常温で固体化する組成の油成分の熱分解が可能であり、450℃に抑えれば、不必要なエネルギー消費を抑制できる。
【0032】
本体部12には、ゼオライトなどの吸着材を投入する投入口20が設けられている。ゼオライトは本体部12内の水分吸着や臭気吸着(防臭)機能を有する。また、本体部12の底部には、廃プラスチックP1の溶解残渣を除去するための排出口21が備えられている。なお、ゼオライトは、投入される廃プラスチックPが十分に洗浄及び乾燥されている場合には省略することができる。また、本体部12の内部が所定以上の圧力なった場合に、熱分解によって生成される分解ガスG0を外部に逃がすベント(不図示)を設けるようにしてもよい。このベントには、有害物質や粒子などを除去するフィルタを設けることが好ましい。
【0033】
図2は、蒸留筒部3及びテレフタル酸結晶化部4の構成を示す図であり、図1のA-A切断線で切断した切断面を示す断面図である。図1図2に示すように、蒸留筒部3は、水平方向に伸びる筒部25と、筒部25を下方側の区画室25Aと上方側の区画室25Bとに区画する区画壁26と、を有している。下方側の区画室25Aは、配管27Aによって熱分解槽2の本体部12に接続され、上方側の区画室25Bは、配管27C(図2参照)によってテレフタル酸沈降トラップ5の上方に接続されている。筒部25の一方の端部は、蓋部材28によって封止される(図1参照)。区画壁26には、複数の孔部29(図2参照)が設けられている。筒部25の側面外周には、不図示のヒータ及び冷却管が配設され筒部25内の温度をテレフタル酸の昇華点300℃以上かつ350℃以下の範囲に維持する。以降の説明においては、この温度管理範囲をテレフタル酸の昇華点と記載することがある。熱分解槽2において廃プラスチックP1を熱分解して生成した分解ガスG0は、配管27Aを介して蒸留筒部3に導入される。
【0034】
蒸留筒部3に導入された分解ガスG0のうち、沸点がテレフタル酸の昇華点以下の分解ガスは、区画壁26の孔部29から上方側の区画室25Bに移動し、配管27C、分解ガス冷却管部30を介してテレフタル酸沈降トラップ5に導入される。沸点がテレフタル酸の昇華点以上の分解ガスG2は凝縮しながら区画室25Aから配管27Bを通って本体部12に戻り、本体部12内において廃プラスチックP1と共に熱分解される。筒部25には、不図示の温度センサーが設置され、筒部25内をテレフタル酸の昇華点温度にコントロールする。
【0035】
図2に示すように、配管27Cと分解ガス冷却管部30の交差部には、冷却水Wを送る配管27Dが接続され、配管27Dの先端部に設けられるノズル31から冷却水Wをシャワー噴射し、配管27Cから導入される分解ガスG0を冷却水Wで分散化しつつテレフタル酸の昇華点以下に冷却しながら分解ガスG0を分解ガス冷却管部30に流動する。この過程で冷却され凝縮途中の分解ガスを分解ガスG1と記載する。分解ガスG1は、分解ガスG0と凝縮され微細な液滴となった油原液が混在する状態である。ノズル31から噴射される冷却水Wの流速によってノズル31の先端方向が負圧となり分解ガスG0が冷却管30に吸引され、テレフタル酸沈降トラップ5に冷却水Wと共に送り込まれる。分解ガス冷却管部30の先端はテレフタル酸沈降トラップ5に連通し、分解ガス冷却管30の先端にはノズル32が設けられており、冷却水Wをテレフタル酸沈降トラップ5の上方空間にシャワー状に噴射する。配管27Cは、分解ガスG0が分解ガス冷却管30に達するまではテレフタル酸の昇華点温度を維持するために保温用ハウジング33内に配置される。
【0036】
図1に示すように、テレフタル酸沈降トラップ5は縦長の円柱状タンクであって、内部は外気と遮断されている。テレフタル酸沈降トラップ5の底部側は円錐状に断面積が狭められており、底部には開閉バルブ36が設けられている。テレフタル酸沈降トラップ5の高さ方向中央部には下方側が狭い開口部37Aを有する隔壁部37が設けられている。隔壁部37の上方には攪拌機39が配設されている。攪拌機39は、回転軸40と、回転軸40の底部側先端に固定された撹拌羽根41と、テレフタル酸沈降トラップ5の上方側外部に設けられ、回転軸40を回転するモータ42とから構成される。テレフタル酸沈降トラップ5において、隔壁部37の上方側の空間は、テレフタル酸沈降トラップ5の隔壁部37より上層は、油原液Dと、テレフタル酸の結晶T、冷却水W及び凝縮しきれない分解ガスが分散化され噴霧状となっている領域である。
【0037】
撹拌羽根41は、分散化された分解ガスG0,G1、テレフタル酸の結晶T、冷却水W,油原液Dを撹拌することによってさらに分散化し、冷却によりテレフタル酸の結晶T、油原液D、冷却水Wを分離しやすくする。テレフタル酸沈降トラップ5の側壁面には冷却管38が巻回されており、冷却管38は隔壁部37の下面にも延長され、テレフタル酸沈降トラップ5内を所定温度に冷却する。隔壁部37によって冷却されたテレフタル酸の結晶T、冷却水W、油原液Dの混濁液Kは、隔壁部37に接触することによって冷却され分解ガスG1の凝縮、テレフタル酸の結晶化が促進される。
【0038】
混濁液Kは、隔壁部37の開口部37Aを通過して底部側に貯留される。貯留された混濁液Kは、テレフタル酸沈降トラップ5の外周下方側に巻回される冷却管38によってテレフタル酸の昇華点以下に冷却され、テレフタル酸は結晶化する。混濁液Kを構成する成分の比重は、テレフタル酸の結晶T>冷却水W>油原液D>テレフタル酸トラップ5で凝縮されない分解ガスG3の関係にある。すなわち、テレフタル酸沈降トラップ5の最下層から順にテレフタル酸の結晶T、冷却水W、油原液D、分解ガスG3に層分離される。分解ガスG3は、テレフタル酸沈降トラップ5の最上層に集まる。テレフタル酸の結晶Tは主として冷却水Wとの混在状態で沈降するので、所定時間経過後に開閉バルブ36を開いて冷却水の一部と共に外部に排出する。
【0039】
テレフタル酸沈降トラップ5の油原液Dの上層は、配管35Bを介して油貯留タンク6に接続され、油原液Dの上澄み分は油貯留タンク6に流動し貯留される。一方、分解ガスG3は、テレフタル酸沈降トラップ5で冷却しても凝縮されないガスである。分解ガスG3の層には配管35Aが接続され、配管35Aを介して油貯留タンク6に送られる。
【0040】
テレフタル酸沈降トラップ5において、冷却水Wの層の高さ方向中央付近には配管27Dが接続され、冷却水Wを冷却器10で所定温度に冷却し、ポンプ11によってテレフタル酸結晶化部4及びテレフタル酸沈降トラップ5の間に循環する。循環する冷却水Wの流量が不足する場合には、独立した貯水槽34を用意し、配管27Dに接続し冷却水Wを補給することができる。冷却器10にはフィルタ(図示せず)が設けられており、フィルタは、テレフタル酸沈降トラップ5から送られる冷却水Wにテレフタル酸の結晶Tが混ざっている際に除去し、冷却器10、ポンプ11及びポンプ11より下流側の配管27Dがテレフタル酸の結晶Tによって目詰まりをおこすことを防止する。従って、フィルタをテレフタル酸沈降トラップ5の冷却水出口付近に設けてよく、複数個所に設けるようにしてもよい。油原液Dは、配管35Bを介して油貯留タンク6に送られ、分解ガスG3と共に所定温度で冷却され、分解ガスG3は凝縮されて所要の成分の油となる。
【0041】
油貯留タンク6はテレフタル酸沈降トラップ5に配管35Bによって接続されている。油貯留タンク6は、底部が円錐形状を備えた筒状タンクであって、底部の略中央から高さ方向に所定の高さまで延長される分離壁43によって径方向に2分割され、一方の区画室である水貯留部44と他方の区画室である油原液貯留部45とに区画される。水貯留部44には、テレフタル酸沈降トラップ5で分離された油原液Dおよび分解ガスG3が導入される。油原液Dおよび分解ガスG3には、水分(水蒸気)が含まれている。テレフタル酸沈降トラップ5内は、冷却水と分解ガスG0が混在するため温度はテレフタル酸の昇華点以下となるものの安定しない。油貯留タンク6の外周には冷却管46が巻回されていて、油貯留タンク6内の油原液D及び分解ガスG3を所定温度に冷却する。沸点が所定温度以上の油成分は凝縮されて油原液Dとし、水と混在した状態で水貯留部44に一旦貯留される。水貯留部44では、油原液Dと水の比重差によって下層に水、上層に油原液Dに層分離される。油原液Dの量は水よりもはるかに多く、分離壁43をオーバーフローして油原液貯留部45に流動する。水貯留部44および油原液貯留部45のそれぞれには、開閉バルブ47,48が取り付けられていて、所定時間経過後に開閉バルブ47を解放して水を排出し、油原液Dは開閉バルブ48を解放して所要の組成の油成分として回収される。
【0042】
油貯留タンク6において、沸点が所定温度以下の分解ガスG4は、配管35Cを介して排ガス分解処理部9に導入される。排ガス分解処理部9では、触媒を用いて分解ガスG4を炭酸ガスと水(水蒸気)に分解し排ガスGhとして外部に排出する。触媒としては、TiO、Cr、NiO、SnO、ZnOなどの酸化物半導体(金属酸化物半導体)、又はAg、Ru、Rh、Pd、In、Os、Ir及びPtなどの貴金属粒子や貴金属酸化物粒子を用いる。酸化物半導体は、真性体領域(たとえば、300℃)、かつ酸素環境下において、ラジカル反応と酸化反応によって分解ガスG4を炭酸ガスと水とに分解する。一方、貴金属粒子および貴金属酸化物粒子を触媒とする場合には、触媒熱反応によって分解ガスG4を炭酸ガスと水とに分解し排気ガスGhとして排出する。
【0043】
押し出し機7は、外周にヒータが配設された加熱筒50と、加熱筒50の内部で回転するスクリュー51とで構成される、いわゆるスクリュー型押し出し機である。ホッパー52から投入された廃プラスチックPは、加熱筒50内で流動化温度まで加熱溶解されスクリュー51によって熱分解槽2に送り込まれる。スクリュー51は、外部に設けられたモータ53によって一方向に回転される。モータ53には駆動輪54が軸止され、スクリュー51には従動輪55が軸止されており、駆動輪54と従動輪55にはベルト56が懸架され、モータ53の回転がスクリュー51に伝達される。ホッパー52には、目詰まりを防止する投入補助具57が設けられている。投入補助具57は、ホッパー52内で廃プラスチックPに常時または定期的に振動を与える。押し出し機7およびモータ53は、支持台58に取付けられている。押し出し機7によって廃プラスチックPを流動化温度に加熱溶解して熱分解槽2に供給することによって、熱分解槽2内の温度を低下させることなく連続的に廃プラスチックPを供給し熱分解を行うことが可能となる。続いて、油化装置1を用いた廃プラスチックPの油化方法について図1図3を参照しながら説明する。
【0044】
図3は、第1実施形態に係る廃プラスチックの油化装置1を用いた廃プラスチックPの油化方法の主要工程を示す工程フロー図である。廃プラスチックPを熱分解して得られる分解ガスの主成分は炭化水素であり、炭化水素は分子式CnHm(n、mは1以上の整数)で表され、nの値が小さいほど沸点が低く、nの値が大きいほど沸点が高い。まず、ホッパー52から押し出し機7に廃プラスチックPを投入し、廃プラスチックPを加熱溶解しながら熱分解槽2に送る(ステップS1)。押し出し機7は、加熱しながらスクリュー51を回転することによって廃プラスチックP1を剪断して流動化する。廃プラスチックPは、その原料の状態に応じて洗浄したり、押し出し機7に投入可能なサイズや形態に破砕したり、発泡スチロールやシート類を圧縮するなどの前処理が施される。
【0045】
熱分解槽2は、押し出し機7から供給された廃プラスチックP1を350℃~450℃熱分解し分解ガスG0を生成する(ステップS2)。加熱温度350℃~450℃では、熱可塑性プラスチックの大部分を熱分解し分解ガスG0を生成する。
【0046】
分解ガスG0は蒸留筒部3に送られる。配管27Aにおいて温度低下がある場合には蒸留筒部3においてテレフタル酸の昇華点以上に加熱する(ステップS3)。テレフタル酸は、ポリエチレンテレフタレート(PET)の主成分であって昇華性を有し、昇華点は300℃である。そこで、蒸留筒3の加熱温度を330℃にすれば、蒸留筒3内ではテレフタル酸は結晶化しない。なお、熱分解槽2から蒸留筒3内に導入される分解ガスG0がテレフタル酸の昇華点以上に維持可能であれば、蒸留筒3は加熱しなくてもよい。蒸留筒3において、沸点が330℃以上の分解ガスG0は凝縮され熱分解槽2に戻され廃プラスチックP1と共に熱分解される。沸点が330℃以下の分解ガスG0は、テレフタル酸結晶化部4で冷却される。沸点が330℃以下の分解ガスには、分子式においてnが19以下、すなわち、凝縮されると重油~溶剤や燃料ガスとなる油成分が含まれる。沸点が330℃以上の油成分は、分子式においてnが20以上の常温で固体化する潤滑油やワセリンなどである。
【0047】
テレフタル酸結晶化部4において、蒸留筒部3から分解ガス冷却管部30に流動する分解ガスG0に冷却水Wを噴射し、昇華点以下に冷却することによってテレフタル酸は凝縮され結晶化する(ステップS4)。冷却管30内においては、分解ガスG0が凝縮途中の状態(分解ガスG1)であって、テレフタル酸沈降トラップ5に導入される。分解ガスG1は、テレフタル酸沈降トラップ5で冷却され、混濁液Kとしてテレフタル酸沈降トラップ5に一時的に貯留される。テレフタル酸結晶化部4は、押し出し機7および熱分解槽2の始動に合わせて冷却水Wを分解ガス冷却管部30に噴射を開始し、テレフタル酸沈降トラップ5では攪拌機39を起動する。テレフタル酸沈降トラップ5において、混濁液Kは、比重差を利用してテレフタル酸の結晶T、冷却水W、油原液Dに層分離する(ステップS5)。テレフタル酸の結晶Tが所定量(あるいは所定時間)沈降したところで、開閉バルブ36を解放してテレフタル酸の結晶Tを排出する。
【0048】
テレフタル酸沈降トラップ5において凝縮しない分解ガスG3は油貯留タンク6に送られ50℃~常温に冷却し、テレフタル酸沈降トラップ5から送られる油原液Dと共に油原液Dとして貯留する(ステップS6)。沸点が50℃以上の分解ガスの組成は分子式C14~C1940で表され、凝縮した油成分としてはガソリン~重油を含む。また、沸点が50℃以下の分解ガスG4はC12~CHで表されるペンタン(溶剤)~メタン(燃料ガス)などである。油貯留タンク6では、水と油原液Dの比重差を利用して層分離し(ステップS7)、油原液Dは分離壁43をオーバーフローして油原液貯留部45に流動し開閉バルブ48を解放して所要の油成分として回収する(ステップS8)。水貯留部44に残った水は開閉弁47を解放して排出する(ステップS9)。油貯留タンク6において凝縮しない分解ガスG4は、排ガス分解処理部9において触媒反応によって炭酸ガスと水(水蒸気)に分解し、無害化して外部に排出する。
【0049】
以上説明した廃プラスチックの油化装置1Aは、廃プラスチックPを加熱して熱分解する熱分解槽2と、熱分解槽2で生成した分解ガスG0をテレフタル酸の昇華点以上に加熱する蒸留筒部3と、加熱された分解ガスG0に冷却水Wを噴射して油原液Dに凝縮すると共にテレフタル酸を結晶化するテレフタル酸結晶化部4と、分解ガスG0とテレフタル酸の結晶Tと冷却水W及び油原液Dの混濁液Kを貯留し、比重差を利用してテレフタル酸の結晶Tと冷却水Wと油原液Dと、分解ガスG0のうち凝縮されない分解ガスG3と、に分離するテレフタル酸沈降トラップ5と、テレフタル酸沈降トラップ5に接続され、テレフタル酸沈降トラップ5内の油原液Dの上澄み分を貯留し、かつ凝縮されない分解ガスG3をさらに凝縮する油貯留タンク6とを有している。
【0050】
PETを含む廃プラスチックPを熱分解し生成される分解ガスG0に冷却水を噴射することによって凝縮し、テレフタル酸の結晶Tと油原液Dを生成した後、テレフタル酸の結晶Tと冷却水Wと油原液Dとを比重差を利用して層分離してテレフタル酸の結晶Tを外部に排出する。このようにすることによって、テレフタル酸の結晶Tによる配管類の詰まりを排除し、PETを含む廃プラスチックPの熱分解により生成する分解ガスを油化して効率的に所要の組成の油成分を得ることが可能となる。また、テレフタル酸の結晶Tは、冷却水の一部と共に排出することが可能であるため、特許文献2に記載の油化装置のようにテレフタル酸の結晶と循環油とを遠心分離機で分離してしなくてもよい。油貯留タンクにおいては、テレフタル酸沈降トラップ5で凝縮されなかった分解ガスG3を所定の温度で凝縮することによって、所要の組成の油成分を生成することができる。
【0051】
テレフタル酸沈降トラップ5内は、分散化した状態の分解ガスG0,G1とテレフタル酸の結晶Tと冷却水W及油原液Dを撹拌する攪拌機14を配設している。攪拌機14によって撹拌することによって、テレフタル酸の結晶T、冷却水W、油原液D及び分解ガスG0さらに分散化を進め、冷却及び凝縮を促進することが可能となり、テレフタル酸の結晶T、油原液D、冷却水Wの分離を促進することが可能となる。
【0052】
廃プラスチックPにPVC(ポリ塩化ビニル、通称塩ビ)が含まれることが予測される。PVCを熱分解すると分解ガス中に塩素ガスが発生する。塩素ガスは水溶性であることから、冷却水Wに溶け込んで塩酸となる。そこで、テレフタル酸沈降トラップ5から排出する冷却水を中和剤(塩基)で中和することが可能である。或いは、テレフタル酸沈降トラップ5の底部に沈降する冷却水Wに外部から中和剤を投入するようにしてもよい。このようにすれば、廃プラスチックPにPETやPVCが混在していても環境に有害なガスの排気を抑制することが可能となる。
【0053】
また、廃プラスチックの油化装置1Aは、テレフタル酸沈降トラップ5内で層分離された冷却水Wは、テレフタル酸結晶化部4及びテレフタル酸沈降トラップ5に循環され、前記テレフタル酸沈降トラップと前記蒸留筒部の間に冷却器10を有している。このようにすれば、分解ガスG0を冷却・凝縮する冷却水Wの使用量を抑制でき、経費の削減が図れるうえ、で環境に配慮した廃プラスチックの油化装置1Aを実現できる。テレフタル酸結晶化部4に送水した後の冷却水Wは温度が上昇するが、冷却器10を備えることによって冷却水Wを適切な温度に管理することが可能となる。
【0054】
また、廃プラスチックの油化装置1は、油貯留タンク6内で凝縮されないガス成分を触媒反応によって炭酸ガスと水蒸気とに分解して排出する排ガス分解処理部9を有している。油貯留タンク6には、テレフタル酸沈降トラップ5から送られる油原液Dが貯留され、所定温度に維持される。沸点がその所定温度以下のガスは凝縮されずにガス状態の分解ガスG4である。この分解ガスD4を排ガス分解処理部9において触媒反応によって炭酸ガスと水(水蒸気)とに分解して排出すれば、排気ガスGhを無害化、無臭化して排出できる。触媒として塩基を使用すれば、PVCを熱分解する際に発生する塩素ガスを中和して排出することが可能となる。
【0055】
また、油貯留タンク6には径方向に2分割する分離壁43が設けられ、分離壁43で区画された一方の区画室である油原液貯留部45に油原液Dを一時貯留し、比重差を利用して油原液Dと油原液Dに含まれる水とに分離して水より比重が小さい油原液Dは分離壁43をオーバーフローして他方の区画室である油原液貯留部45に流動し、油貯留タンク6の底部には、水貯留部44の下層に残る水を排出する開閉弁47と、油原液貯留部45に貯留される所要の組成の油原液Dを排出する開閉バルブ48とが配設されている。
【0056】
このように構成すれば、廃プラスチックを熱分解し生成した油原油Dを所定の温度で凝縮すれば、所要の組成の油成分、例えば、ガソリン、灯油、軽油及び重油などの油成分として回収することが可能となる。
【0057】
[第2実施形態]
続いて、本発明の第2実施形態に係る廃プラスチックの油化装置1Bについて図4を参照して説明する。第2実施形態は、第1実施形態に記載の油化装置1Aにおいて熱分解して得た油原液Dをさらに所要の組成の油成分、例えば、ガソリン、灯油、軽油、重油などに分留する複数の分留部61を備えることを特徴とする。
【0058】
図4は、第2実施形態に係る廃プラスチックの油化装置1Aの分留部61の構成を簡略化して示す構成説明図である。なお、以降の説明では、廃プラスチックの油化装置1Bを簡略化して油化装置1Bと記載することがある。第1実施形態において説明したように、油化装置1Aでは、廃プラスチックPを熱分解して油原液Dを油貯留タンク6に貯留する。油貯留タンク6の冷却温度が50℃の場合、分子式C6H14~C19H40で表されるガソリンなどの軽質油~重油などの重質油が油貯留タンク6に貯留される。分留部61は、複数の分留用加熱槽62A、62B,62C,62Dと、複数のコンデンサ63A,63B,63C,63Dと、複数の油貯留タンク64A,64B,64C,64Dとから構成される。分留用加熱槽62A,62B,62C,62Dにはヒータ21が設けられ、分留加熱槽ごとに加熱温度が設定される。以下に説明する分溜部61の構成は1例であって、各分留用加熱槽の温度や分溜用加熱槽の数は限定されない。
【0059】
油貯留タンク6に一時貯留された油原液Dは、配管65Aを介して分留用加熱槽62Aに送られ加熱される。分留用加熱槽62Aでは、油原液Dを175℃に加熱し沸点が175℃以下の成分をガス化する。この温度で気化されるガス成分は、分子式でnが10以下で表されるものであってガソリンや燃料ガスとなる成分であり、配管66Aを介してコンデンサ63Aに送られ50℃以下に冷却される。コンデンサ63Aには、配管67Aによって冷却水が送られている。コンデンサ63Aで凝縮した分解ガスは、ガソリンとして油貯留タンク64Aに貯留される。
【0060】
分留用加熱槽62Aで気化されずに液体として残った油原液D1は、配管65Bを介して分留用加熱槽62Bに送られ加熱される。分留用加熱槽62Bでは、油原液D1を260℃に加熱し沸点が260℃以下の成分をガス化する。この温度で気化される分解ガスは、分子式でnが11~14で表されるものであって主成分は灯油であり、配管66Bを介してコンデンサ63Bに送られ50℃以下に冷却される。コンデンサ63Bには、配管67Aによって冷却水が送られている。コンデンサ63Bで凝縮した分解ガスは、灯油として油貯留タンク64Bに貯留される。
【0061】
分留用加熱槽62Bでガス化されずに液体として残った油原液D2は、配管65Cを介して分留用加熱槽62Cに送られ加熱される。分留用加熱槽62Cでは、油原液D2を280℃に加熱し沸点が280℃以下の成分を気化させる。この温度で気化されるガス成分は、分子式でnが15,16で表されるものであって主成分は軽油であり、配管66Cを介してコンデンサ63Cに送られ50℃以下に冷却される。コンデンサ63Cには、配管67Aによって冷却水が送られている。コンデンサ63Cで凝縮した分解ガスは、軽油として油貯留タンク64Cに貯留される。
【0062】
分留用加熱槽62Cで気化されずに液体として残った油原液D3は、配管65Dを介して分留用加熱槽62Dに送られ加熱される。分留用加熱槽62Dでは、油原液D3を330℃に加熱し沸点が330℃以下の成分を気化させる。この温度で気化されるガス成分は、分子式でnが17,18,19で表されるものであって主成分は重油であり、配管66Dを介して分コンデンサ63Dに送られ50℃以下に冷却される。コンデンサ63Dには、配管67Aによって冷却水が送られている。コンデンサ63Dで凝縮したガスは、重油として油貯留タンク64Dに貯留される。油貯留タンク64D内にはガス化しない分子式でnが20~40のワセリンや蝋燭成分が分留残渣として残留するので、これらは後に人為的に排出される。
【0063】
水槽68からポンプ69によってコンデンサ63A、63B,63C,63Dに送られた冷却水は、配管67Bを介して蒸気タービン発電機70に接続される。蒸気タービン発電機70は、冷却水を高圧蒸気に変換するボイラーと、高圧水蒸気で回転するタービンと発電機を備えている。この蒸気タービン発電機70で発電された電力は、油化装置1A又は油化装置1Bで駆動されるモータ及びヒータなどに供給する。蒸気タービン発電機70で使用された高圧水蒸気は冷却装置71で冷却、降圧され、水槽68に戻される。上記タービン発電機70を駆動する燃料としては、油化装置1A又は油化装置1Bで生成され回収される所要の組成の油成分を使用することが可能である。
【0064】
前述したように、油貯留タンク6で凝縮されない分解ガスG4は、配管35Cを介して排ガス分解処理部9に導入され、触媒を用いて炭酸ガスと水(水蒸気)に分解し排ガスGhとして外部に排出される。同様に、コンデンサ63Aで凝縮されない分子式でnが5以下のペンタンやエタン、メタンなどの燃料ガスは、排ガス分解処理部9に送られ触媒反応によって炭酸ガスと水(水蒸気)とに分解して排出される。
【0065】
なお、油貯留タンク64A,64B,64C,64Dには、不図示のベントが設けられていて、これら各油貯留タンクの内圧が所定以上の圧力になった際にベントによって圧力を逃がす。また、ベントから放出されるガスを排ガス分解処理部9に集めて触媒によって分解して排出する構成とすることが好ましい。
【0066】
以上説明した第2実施形態に係る油化装置1Bは、油貯留タンク6の下流側に、油貯留タンク6に貯留された油原液Dを分溜温度が高い方から低い方に順次導入して温度差をつけて加熱する複数の分留用加熱槽62A~62Dと、各分溜用加熱槽で生成した分解ガスそれぞれを凝縮する複数のコンデンサ63A~63Dと、凝縮した所要の組成の油成分を各々貯留する複数の油貯留タンク64A~64Dと、を有している。
【0067】
このように、分留部61を設けることによって、廃プラスチックPを熱分解して生成した分解ガスG0を凝縮した油原液Dをガソリン、灯油、軽油や重油などの組成の油成分として回収することができる。なお、生成した所要の組成の油成分は1例であって、加熱温度を細分化することによって、油成分をさらに細分化することが可能である。例えば、分留用加熱槽62Aの加熱温度を174℃、151℃、126℃、98℃、69℃とすれば、それぞれが一般に総称されるガソリンを、C1022(デカン)、C20(ノナン)、C18(オクタン)、C14(ヘプタン)、C10(ヘキサン)などの油成分として回収することが可能となる。
【0068】
また、油化装置1Bは、複数の前記コンデンサのうち少なくとも一つで凝縮されない前記分解ガスを触媒反応によって炭酸ガスと水蒸気とに分解して排出する排ガス分解処理部を有している。排ガス分解処理部9は、第1実施形態に記載の排ガス分解処理部9(図1参照)と共通使用できる。コンデンサ63Aの冷却温度が50℃の場合、沸点が50℃以下のメタンやプロパンなどの燃料ガスはコンデンサ63Aでは凝縮されない。これらの分解ガスを排ガス分解処理部9の触媒反応によって炭酸ガスと水(水蒸気)に分解して排出すれば、排気ガスを無害化、無臭化して排出できる。なお、コンデンサ63Aに加えてコンデンサ63B,63C,64Dの一つ又は全部を排ガス分解処理部9に接続するようにしてもよい。
【0069】
また、油化装置1Bは、廃プラスチックPを熱分解し生成した所要の組成の油成分を燃料とし、各前記コンデンサを還流する冷却水を高圧水蒸気に変換して発電する蒸気タービン型発電機を有している。このようして得られる油成分を燃料とし、蒸気タービン発電機で発電した電力を廃プラスチックの油化装置1Bの稼働用電力として使用することによって油化装置の省エネルギー化を図ることが可能となる。さらに、油化装置以外の他の機器や照明などの電力として使用することが可能となる。なお、分留部61を有しない油化装置1Aにおいては、テレフタル酸トラップ5に設けられた冷却管38から冷却水W水を導入し蒸気タービン型発電機70を駆動して発電し、電力を利用するようにしてもよい。
【0070】
なお、本発明は前述の実施の形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。例えば、前述した第1実施形態では、スクリュー型の押し出し機7を採用しているが、押し出し機7に替えて溶解槽を設け、廃プラスチックPを溶解・流動化してギヤポンプなどで熱分解槽2に送るようにしてもよい。
【0071】
また、前述した第1実施形態では、油貯留タンク6に分離壁43を設置し水(冷却水W)と油原液Dを分離しているが、例えば、分離壁43を設置せずに水(冷却水W)と油原液Dの比重差を利用して分離するようにしてもよく、油原液Dのみを貯留する油貯留タンクを油貯留タンク6に併設するようにしてもよい。
【0072】
また、前述した第2実施形態では、油成分ごとに分留用加熱槽62A,62B,62C,62Dを併設しているが、例えば、これらを沸点が高温の油成分から低温の油成分に分留する一つの分留塔としてもよい。
【0073】
また、前述した第2実施形態では、発電装置として蒸気タービン発電機70を用いているが、熱分解槽2や分溜用加熱槽62A、62B,62C,62Dなどの外周壁に熱発電素子を付設してもよい。
【符号の説明】
【0074】
1A,1B…廃プラスチックの油化装置、2…熱分解槽、3…蒸留筒部、4…テレフタル酸結晶化部、5…テレフタル酸沈降トラップ、6…油貯留タンク、7…押し出し機、9…排ガス分解処理部、10…冷却器、12…本体部、14,39…攪拌機、25A,25B…区画室、26…区画壁、43…分離壁、44…水貯留部(一方の区画室)、45…油原液貯留部(他方の区画室)、47,48…開閉弁、62A~62D…分留用加熱槽、63A~63D…コンデンサ、64A~64D…油貯留タンク、70…蒸気タービン発電機、D…油原液、G0…分解ガス、K…混濁液、P…廃プラスチック、P1…溶解された廃プラスチック、T…テレフタル酸の結晶、W…冷却水
図1
図2
図3
図4