(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-25
(45)【発行日】2022-03-07
(54)【発明の名称】効率を向上させた垂直軸ツインタービンを有する浮体式風力タービン
(51)【国際特許分類】
F03D 3/02 20060101AFI20220228BHJP
F03D 3/06 20060101ALI20220228BHJP
F03D 13/25 20160101ALI20220228BHJP
【FI】
F03D3/02 B
F03D3/06 G
F03D13/25
(21)【出願番号】P 2018547460
(86)(22)【出願日】2017-03-07
(86)【国際出願番号】 FR2017050505
(87)【国際公開番号】W WO2017153676
(87)【国際公開日】2017-09-14
【審査請求日】2020-02-19
(32)【優先日】2016-03-08
(33)【優先権主張国・地域又は機関】FR
(73)【特許権者】
【識別番号】311016455
【氏名又は名称】サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィク
【氏名又は名称原語表記】CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
(74)【代理人】
【識別番号】100139594
【氏名又は名称】山口 健次郎
(74)【代理人】
【識別番号】100185915
【氏名又は名称】長山 弘典
(74)【代理人】
【識別番号】100090251
【氏名又は名称】森田 憲一
(72)【発明者】
【氏名】アシャール,ジャン-リュック
【審査官】井古田 裕昭
(56)【参考文献】
【文献】国際公開第2013/175123(WO,A1)
【文献】米国特許出願公開第2011/0236181(US,A1)
【文献】中国特許出願公開第102305191(CN,A)
【文献】米国特許出願公開第2010/0278653(US,A1)
【文献】特開2003-206849(JP,A)
【文献】中国実用新案第203548058(CN,U)
(58)【調査した分野】(Int.Cl.,DB名)
F03D 3/02
F03D 3/06
F03D 13/25
(57)【特許請求の範囲】
【請求項1】
浮体式プラットホーム(14)と、そのプラットホームに載ったタービンエンジン(12)とを備えた浮体式風力タービン(10)であって、
前記タービンエンジンが、
- 第1の平面に対して対称に配置された第1および第2の垂直軸タービン(24)であって、
各タービンが、中央部(33)と特定形状のアーム(34、36)とを備えた2以上のN枚のブレード(32)を備えており、
前記タービンのブレードの回転軸(A、A’)が、前記第1の平面に垂直な第2の平面内に含まれており、
前記ブレードの中央部が、回転時に前記回転軸(A、A’)を中心として円筒を描くとともに、端部で前記アームによって延出されており、
前記アームが、ピボット結合部(74、76)によって車軸要素(52、56)に連結されており、
前記アーム(34、36)が、前記ブレード(32)の回転軸(A、A’)と垂直であり、前記各ブレード(32)の中央部(33)が、前記各アーム(34、36)に特定形状のL字屈曲部(38、40)を介して連結されており、
前記各ブレード(32)において、前記ブレードの回転軸(A、A’)と平行に測定された、前記ブレードの中央部(33)の高さが、前記ブレードの回転軸(A、A’)と平行に測定された、前記ブレードの中央部に連結された前記2つのアーム(34、36)の間の高さの2/3以上であり、
前記各タービンが、前記車軸要素同士を連結するシャフトを除いて、支持構造を備えた上部および下部の2つの水平フェアリング(42、44;126、128)によって保持されている、
前記の第1および第2の垂直軸タービン(24);および
- 前記タービン間の垂直な中央パイロン(28)に連結され、前記支持構造を備えた上部および下部水平フェアリングを備えるように構成されている、前記タービンを保持する構造;
を備える、前記浮体式風力タービン(10)。
【請求項2】
前記各L字屈曲部(38、40)が半径Rの4分の1円の形状を有し、各L字屈曲部の曲率半径が、どの位置においても、4分の1円の半径から5%未満だけずれている、請求項1に記載の浮体式風力タービン。
【請求項3】
前記各L字屈曲部(38、40)の外形が、前記L字屈曲部が連結されている前記ブレードの中央部の外形の特徴から前記L字屈曲部が連結されている前記アームの外形の特徴への単調な移行を示している、請求項1または2に記載の浮体式風力タービン。
【請求項4】
前記各タービンの前記上部および下部水平フェアリングが、中央の平面に対して対称形状の略三角形の断面を有する、前記タービン間の垂直中央パイロンに連結されており、
前記中央パイロンが、風向きに対して上流側の円弧状の表面と、2個の平坦または凹状の側面とを備えており、前記の2個の平坦または凹状の側面が前記中央の平面内に含まれる消失線に向かって下流側で合流しており、
前記パイロンが、該パイロンの上流側部分において、前記タービンのブレードの回転軸を含む前記第2の平面の上流側に配置された、軸線Oを有するほぼ円筒状のタワーによって、前記浮体式プラットフォームに接続されている、請求項1~3のいずれか一項に記載の浮体式風力タービン。
【請求項5】
前記各タービン(24)が、前記各ブレード(32)を該ブレードの上半部内に位置する点から前記タービンの前記上部ピボット結合部の部品まで連結する斜め牽引線(66)と、前記各ブレード(32)を該ブレードの下半部内に位置する点から前記タービンの前記下部ピボット結合部の回転部品まで連結する第2の斜め牽引線とを備えている、請求項1~4のいずれか一項に記載の浮体式風力タービン。
【請求項6】
前記各タービン(24)が、水平牽引線を備えており、この水平牽引線が、該タービンの前記各ブレード(32)を、該ブレードに沿った中間付近に対応する位置にある軸の高さで、前記タービンの回転軸上に配置された点を介して、前記タービンの他方のブレードに連結させている、請求項1~4のいずれか一項に記載の浮体式風力タービン。
【請求項7】
前記各牽引線が特定形状のスリーブで被覆されており、該スリーブが、前記牽引線が前記ブレード(32)と接する区域を除いて、前記牽引線の略全長にわたって延びている、請求項5または6に記載の浮体式風力タービン。
【請求項8】
前記ブレード(32)の中央部が、回転時に直径Dの円筒を描くとともに、前記ブレードの輪郭の翼弦をcとした場合に、0.2未満のソリディティS=2Nc/Dを有する、請求項1~7のいずれか一項に記載の浮体式風力タービン。
【請求項9】
前記タービンエンジン(12)が前記浮体式プラットホーム(14)に対しての回動に適するように、前記パイロン(28)が、軸線Oを有する円筒部によって延長され、タワー(18)内に設けられた、軸線Oを有する円筒状開口に入り、前記円筒部および円筒状開口が前記ピボット結合部の一部である、請求項1~8のいずれか一項に記載の浮体式風力タービン。
【請求項10】
上部および下部支持構造を備えた各水平フェアリング(126、128)が、半翼型によって形成されており、
前記半翼型は、まっすぐ、後方傾斜形、台形、及び楕円形からなる群から選択される形状であり、前記各水平フェアリングの端部の内側には、固定された車軸要素と、前記半翼型の外側に延びる回転ハブ(50、54)とを備えたピボット結合部が配置されており、前記各水平フェアリングには、前記タービン(24)のブレード(32)のアーム(34、36)が、ディスク(51、55)を介して、外側から取り付けられている、請求項1~9のいずれか一項に記載の浮体式風力タービン。
【請求項11】
前記各フェアリング(42、44;126、128)の支持構造が、前記フェアリングの内側に位置する翼桁、リブおよびケーブルと、フェアリングの前縁の近傍で前記パイロン(28)に連結された、前記各半翼型の幅に応じた、前記支持構造の一部としての、長尺の環状構造管とを備えている、請求項10に記載の浮体式風力タービン。
【請求項12】
前記上部フェアリングに対して、前記パイロンの頂部の前記支持構造から前記フェアリングの車軸要素までつながるガイシステムの外部牽引線と、前記下部フェアリングに対して、前記パイロンを前記フェアリングの車軸要素に連結する外部支持材とを備えている、請求項11に記載の浮体式風力タービン。
【請求項13】
前記環状構造管が、保守作業者が通るのに適している、請求項11または12に記載の浮体式風力タービン。
【請求項14】
前記支持構造を備えた上部および下部水平フェアリング(42、44)のそれぞれが、中心部でピボット結合部を収容するとともに風から保護する扁平回転楕円によって形成されており、前記ピボット結合部が、前記フェアリングの内側に固定された固定車軸要素(52、56)と、前記車軸要素を中心として回転するハブ(50、54)とを備えており、
前記タービン(24)のブレード(32)のアーム(34、36)が、前記回転するハブと一体化した回転ディスク(51、55)と、前記タービンのブレードのL字屈曲部(38、40
)とに接続されて
おり、前記L字屈曲部の2分の1~L字屈曲部の全部が前記フェアリングに収容されている、請求項1~9のいずれか一項に記載の浮体式風力タービン。
【請求項15】
前記タービンの各フェアリング(42、44)が、該フェアリングの前記車軸要素(52、56)に固定されたカウル(58、60)に部分的に閉じられたハウジング(46、48)を備えており、前記カウルの端縁と前記フェアリングの残部との間に、前記タービンのブレード(32)が通過する環状の開口(62)が残されている、請求項14に記載の浮体式風力タービン。
【請求項16】
前記支持構造(26)が、前記第1の平面内における前記第2の平面の風向き下流側に垂直安定化支柱(30)を備えている、請求項14または15に記載の風車。
【請求項17】
前記の各フェアリング(42、44)の支持構造が、第1の構造管(64)によって前記中央パイロン(28)に連結されるとともに、第2の構造管(64)によって前記垂直安定化支柱(30)に連結された環状管(70)を備えている、請求項16に記載の浮体式風力タービン。
【請求項18】
前記第1の構造管(64)が、保守作業者が通るのに適している、請求項17に記載の浮体式風力タービン。
【請求項19】
各タービン(24)が、前記支持構造を備えた前記下部水平フェアリングの内部または下に収容された、前記タービンのブレード(32)によって駆動される発電機(80)を備えている、請求項1~18のいずれか一項に記載の浮体式風力タービン。
【請求項20】
前記発電機(80)が、直接駆動式永久磁石同期発電機である、請求項19に記載の浮体式風力タービン。
【請求項21】
前記発電機(80)がディスクブレーキ(96)を備えている、請求項19または20に記載の浮体式風力タービン。
【請求項22】
前記発電機(80)によって生み出される電気を送出するケーブル、および/または前記発電機(80)および/または前記発電機のディスクブレーキを監視するケーブル、および/または前記発電機(80)および/または前記発電機のディスクブレーキを制御するケーブルが、前記構造管(64)内に配置されている、請求項17とともに請求項19に記載の浮体式風力タービン。
【請求項23】
各ブレード(32)が、炭素繊維を用いた複合材料から製造されている、請求項1~22のいずれか一項に記載の浮体式風力タービン。
【請求項24】
前記中央部、前記上部および下部アーム、並びに前記上部および下部L字屈曲部が、それぞれパネルの形で別々の部品として製造されている、請求項1~23のいずれか一項に記載の浮体式風力タービン。
【請求項25】
前記パネルが、ブレードを再構成するために、現場において後で接続される、請求項24に記載の浮体式風力タービン。
【発明の詳細な説明】
【発明の詳細な説明】
【0001】
本発明は、仏国特許出願第16/51913号明細書の優先権を主張するものであり、この仏国特許出願第16/51913号明細書は、本明細書の不可欠な部分を形成するものとして考慮されるものである。
【技術分野】
【0002】
本発明は、浮体式風力タービンに関し、特に沖合で使用される浮体式風力タービンに関する。
【従来技術の説明】
【0003】
陸上に設置された風車の大部分は、一般的に3枚のブレードを備えた軸流タービンを備えており、そのタービンの回転軸は、風車に到達する入射風の方向と平行である。このような風車を水平軸風車(Horizontal-Axis Wind Turbine:HAWT)と称する。ブレードは、タワーの上端でナセルに支えられている。陸上にあるその他の風車は、回転軸が風向きと垂直なクロスフロータービンを備えており、水平方向や、ほとんどの場合垂直方向に配置され、垂直軸風車(Vertical-Axis Wind Turbine:VAWT)と呼ばれる。風車のブレードは、シャフトを駆動回転させ、次に、そのシャフトが発電機(ジェネレータとも称する)を駆動する。
【0004】
最近は、風がより強く、より一定である沖合に風車を設置する傾向にある。現在稼働中の沖合の風車は、主として軸流タービンを備えている。軸流タービンを支えるタワーの下端は、50~60mより浅い深さの海底に、土壌の性質に適した様々なシステムを用いて固定されている。しかしながら、深さの浅い場所の数は限られており、そのため、係留システムによって海底に結合される浮体式支持構造物を備えた、浮体式風力タービンと呼ばれる洋上風車を設計することが望ましい。
【0005】
浮体式風力タービン用に提案された設計の多くは、HAWTを使用している。この選択は、陸上の風車または沖合設置型の風車に採用された解決策との継続性をもたらすので、安心感を抱かせる。しかしながら、いくつかの理由でHAWTは沖合浮体式風力タービンにあまり適していないように思われるために、その選択には疑問を抱く場合がある。その理由の一つは、動力伝達部品(オプションで増速歯車装置として作用するギアボックスを備えている)、発電機および制御室を収容したナセルがタワーの頂部に配置されていることである。(ナセルの内容物が水面近くや水面下にさえ収容されるVAWTと比べて、)タワーの頂部に載せられたナセルの高い位置は、(a)アクセスの難しさにより、海での保守作業が困難であること、(b)鉛直安定性を実現するためのプラットホームによるピッチとロールの補償が、重い部品、発電機および増速歯車装置のかなりの重量のせいで、より困難であること、(c)設置作業が大型クレーンを必要とし、より困難であることを意味する。
【0006】
また、HAWTには、追加で必要な調整があり、例えば、(d)VAWTが風向きに対して鈍感であるのに対して、ヨーのための空力学的調整が必要であって、さらに、ヨー調整用のサーボ機構もナセルと接続されたタワー上端に載せられており、(e)ナセル内部の熱制御(ジェネレータ、増速歯車装置)も必要とされ、この機能は、水の安定した影響からはほど遠い、海上のこの高さでの著しい温度変動のせいで不可欠である。最後に、(f)HAWTのブレードは、浮体式風力タービンの動力増大とともに増加する重量のせいで、繰り返し重力荷重応力を受ける。この増加は、このタイプの風車のコストの最適化に起因するものである。そのために、設計段階でのスケーリングが難しくなる。
【0007】
HAWTよりむしろVAWTを用いて浮体式風力タービンを開発するほうが有利であるように思われる。VAWTについて多数の例が記述されている。これらの例のうち、VAWTに分類されるが、対向するブレード間の差動抗力の原理で作動するサボニウスタイプの垂直タービンは、その出力が非常に低いせいで、設置および保守点検コストの正当性を示すために動力レベルが非常に高くなければならない浮体式風力タービン事業計画には不向きであるため、本明細書では検討されない。一方、第2のタイプのVAWTは、1枚のブレードに対する揚力の原理で作動し、トロポスカイン(troposkein)形状のブレードを備えたダリウス型タービン、または直線状もしくは螺旋状のブレードを備えたH型構成のタービン、またはV字形状のタービンに分類される。例として、国際公開第2009/036107号パンフレットには、ダリウス型タービンを備えた浮体式VAWTが記載されており、国際公開第2010/120182号パンフレットには、直線状ブレードを備えたH型タービンからなる浮体式VAWTが記載されている。
【0008】
しかしながら、第2のタイプのVAWTには、いくつかの欠点がいまだに存在し、その一部が原因で陸上でのVAWTの不成功につながっており、解消または低減される必要がある。
(i)第2のタイプのVAWTが生み出す動力は、第1のタイプのVAWTの動力よりも高いが、同じ大きさのHAWTが生み出す動力よりなおもって低いことが一般に認められている。この欠点を低減させるために、いくつかの解決策が試みられている。H型タービンは、実際に、アーム-ブレード接続部および翼型端部で明白な散逸ロスを被っている。そのため、最適な効率が一般的にあまり高くない。上記効率は、成型複合材料を用いた特定形状のブレード-アーム接続部によって抗力を低減させることにより、特に、迎え角調整装置を設けることにより、少しだけ向上させることができる。上記装置は、保守管理を制限せざるを得ない厳しい洋上環境に機械的な複雑さを持ち込むことになる。一方、ダリウス型タービンの最適な効率は、低減された(0.3未満)ソリディティS=2Nc/D(Nはブレード枚数、cは翼弦、D/2はタービン半径)と高い(4を超える)最適な進行パラメータλ=ωD/2Vi(ωはタービンの回転角速度、Viは入射風速)のおかげで明らかにより高い。タービンの最大断面積に比例する取得動力は、この最大断面積を増大させない限り大きくならない。これには、ガイによって保持される機械の重大なハンディキャップであるタワーの高さを大きく増大させることが必要になる。
(ii)ブレードが所定の角度位置で動かないままになって、始動が困難になる可能性がある。
(iii)各タービンの回転毎に各ブレードに作用する接線方向および法線方向の空気力が変動する。これらの力は、連結アームに沿って伝達され、その後タービンの駆動軸に伝達される。その結果、駆動軸の基部に、特に上記力の法線成分に起因する揺動曲げモーメントが生じ、それが構造に対する大きな疲労に通じることになる。このモーメントは、
「前後方向」曲げモーメントと呼ばれる、風向きと平行な前方から後方へまたはその逆方向へ風車を傾斜させる傾向がある第1の成分と、
「横方向」モーメントと呼ばれる、風向きと垂直な面内で左から右へまたはその逆方向へ風車を傾斜させる傾向がある第2の成分との、
2つの成分を有している。
【0009】
逆回転ツインタービンを並置することで、欠点(i)、(ii)および(iii)を解消または低減させるタービンエンジンを形成可能であることが知られている。陸上用途向けを第一に設計されたそのようなタービンエンジンの大部分は、第1のタイプのVAWTを備えており、第2のタイプのVAWTを備えたものは少数である。反対に、ツインタービンの並置の短所は、単一VAWTにおける入射風の向きに対する鈍感さを喪失すること、すなわち、ヨー調整が必要になることである。第2のタイプのタービンを備えた洋上風車を記載した米国特許第8,827,631号明細書、および側方のフェアリングによって挟まれ相当量の材料(タービンが備える空力調整装置もかさばったものである)を使用した中央の直立部品によって保持された第2のタイプのタービンを備えた風車を記載した文書である国際公開第2013/175123号パンフレットの例を挙げることができる。したがって、浮体式風力タービンの動力向上を追うことはできない。
【0010】
そのため、材料面で経済的でありながら、上述の欠点の一部を低減または解消する、ツインタービンを備えた浮体式風力タービンを提案することが望ましい。
【0011】
さらに、浮体式風力タービンは海岸から離れているため、コストのかかる介入を限定するために、予想される解決策は単純なままでなければならない。
【発明の概要】
【0012】
実施形態の主題は、ツインタービンによって形成された浮体式風力タービンの上述の欠点の全てまたは一部を克服することである。
【0013】
実施形態の別の主題は、材料を過多に使用することなく、上記風車の効率を増大させることである。
【0014】
実施形態の別の主題は、タービンの回転時にタービンのピボット結合部に働く垂直荷重の変動を平滑化することである。
【0015】
実施形態の別の主題は、ヨーの制御が不要になるように、風車の構造によって、風車の風上への指向を受動的に提供することである。
【0016】
したがって、実施形態は、浮体式プラットホームと、該プラットホームに載ったタービンエンジンとを備えた浮体式風力タービンであって、タービンエンジンが、
第1の平面に対して対称に配置された第1および第2のクロスフロー型タービンであって、各タービンが、中央部とアームとをそれぞれ備えた複数枚のブレードからなり、中央部が、回転時に円筒を描くとともに両端でアームによって延出されており、アームがピボット結合部によって車軸要素にさらに結合されており、各タービンが、シャフトを除いて支持構造を備えた上部および下部の2つの水平フェアリングによって保持された第1および第2のクロスフロータービンと、
タービンのブレードの回転軸を含む第2の平面の風向き上流側においてタービン間に位置する垂直な中央パイロンに連結された上部および下部フェアリングによって形成されたシステムからなる、タービンを保持する構造と、
を備えた浮体式風力タービンを提供する。
【0017】
実施形態によれば、タービンエンジンは、第2の平面の風向き上流側に位置するピボット軸を中心とした浮体式プラットホームに対する回動に適している。
【0018】
実施形態によれば、アームは、ブレードの回転軸に対して垂直である。
【0019】
実施形態によれば、各ブレードの中央部は、それぞれ関連するアームに対して4分の1円弧状のL字屈曲部によって連結されている。
【0020】
実施形態によれば、各ブレードの中央部はまっすぐである。
【0021】
実施形態によれば、各ブレードの中央部は、回転時のタービンが描く円筒との内接を維持しながら小さい傾斜角(5°未満)で撓む。
【0022】
実施形態によれば、各ブレードに関して、ブレードの回転軸と平行に測定されたブレードの中央部の高さは、ブレードの回転軸と平行に測定された、ブレードの中央部に連結された2本のアーム間の高さの3分の2以上である。
【0023】
水平フェアリングは以下のどちらか一方の支持構造を備えており、
すなわち、水平フェアリングは、アームを収容して入射風から保護することを可能にし、車軸要素とハブがフェアリング内部に完全に収容された、まとめて中程度材料効率支持構造(Moderately Material Efficient Supporting Structure:MMESS)フェアリングと称する第1級支持構造を備えている。実施形態によれば、各MMESSフェアリングは、フェアリングの車軸要素に固定されたカウルに部分的に閉じられたハウジングを備え、カウルの端縁とフェアリングの残部との間に、タービンのブレードが通過する環状の開口が残されている。実施形態によれば、各MMESSフェアリングは、タービンのブレードのL字屈曲部のうち、2分の1から全部までの間でばらつく部分を収容している。これにより、上記フェアリングの幅は、フェアリングが収容するL字屈曲部の部分と関連して、タービンの直径からタービンの直径の一部までの間でばらつく可能性がある。実施形態によれば、MMESSフェアリングは、第1の中央平面内において第2の平面の風向き下流側にある垂直安定化支柱にさらに連結されている。
または、水平フェアリングは、アームを入射風にさらしたままにし、車軸要素とハブがフェアリング内部に部分的に収容された、まとめて高度材料効率支持構造(Highly Material Efficient Supporting Structure:HMESS)フェアリングと称する第2級の支持構造を備えている。各HMESSフェアリングは、半翼型(まっすぐ、後方傾斜形、台形、楕円形など)によって形成されており、その端部の内側には、半翼型の外側に延びる回転ハブを備えたピボット結合部が配置されており、各HMESSフェアリングには、タービンのブレードが、ハブと一体物を形成する回転ディスクを介して外側から取り付けられている。上記半翼型の幅は、ピボット結合部の要素を越えた直ぐのところまで延びている。
【0024】
実施形態によれば、浮体式風力タービンの各MMESSフェアリングは、タービン毎に、タービンの第1の平面と反対側に、タービンの上部および下部フェアリングを連結する垂直側方支柱をさらに備えている。
【0025】
実施形態によれば、各MMESSフェアリングは、第1の構造管によって中央パイロンに連結されるとともに第2の構造管によって垂直安定化支柱に連結された環状管を備えている。
【0026】
実施形態によれば、各HMESSフェアリングは、中央パイロンをピボット結合部に連結する前縁の近傍に、各半翼型の幅に応じた長尺の環状構造管を備えている。
【0027】
実施形態によれば、各タービンは、各ブレードをブレードの上半部内に位置する点からタービンの上部ピボット結合部の回転部品まで連結する斜め牽引線と、各ブレードをブレードの下半部内に位置する点からタービンの下部ピボット結合部の回転部品まで連結する第2の斜め牽引線とを備えている。
【0028】
実施形態によれば、各タービンは、タービンの各ブレードをブレード沿いの途中の近傍に位置する高さでタービンの回転軸上に配置された共通の結節点を介してタービンの他方のブレードに連結させる水平牽引線を備えている。
【0029】
実施形態によれば、各タービンは、タービンのブレードによって駆動されるとともにタービンの下部フェアリングに収容された発電機を備えている。
【0030】
実施形態によれば、発電機は、直接駆動式永久磁石同期発電機である。
【0031】
実施形態によれば、発電機はディスクブレーキを備えている。
【0032】
実施形態によれば、発電機が生み出す電気を送出するケーブルならびに/または発電機および/もしくはディスクブレーキを監視するケーブルならびに/または発電機および/もしくはディスクブレーキを制御するケーブルが、タービンの下部フェアリングの環状構造管内に配置されている。
【0033】
実施形態によれば、タービンの上部および下部フェアリングの環状構造管は、保守作業者が通るのに適している。
【0034】
実施形態によれば、浮体式風力タービンは、一方の上部フェアリングの上面に固定された少なくとも一つの光起電性パネルをさらに備えている。
【図面の簡単な説明】
【0035】
これらの特徴および長所のみならず、他の特徴および長所も、非限定的に挙げられた特定の実施形態についての以下の説明において、添付の図面に基づいて詳細に開示されるであろう。
図1は、MMESSフェアリングを備えた浮体式風力タービンの実施形態の部分概略斜視図である。
図2Aおよび
図2Bは、
図1に示すタービンの一方の上部および下部のそれぞれの部分概略分解組立図である。
図3Aおよび
図3Bは、
図1に示すタービンの一方の上部および下部の拡大部分概略断面図である。
図4は、MMESSフェアリングを備えた浮体式風力タービンの部分概略斜視図である。
【詳細な説明】
【0036】
発明の理解に有用な要素のみを記載し、図示する。明細書の残りの部分では、特に明記しない限り、「およそ」、「ほぼ」、「約」という表現は、プラスマイナス10%、好ましくはプラスマイナス5%を意味する。また、「上部」、「下部」、「上方」、「下方」、「頂部」、「底部」という用語は、例えば、垂直方向にほぼ相当する、風車のタービン回転軸に対して定義されている。
【0037】
図1は、MMESSフェアリングを備えた浮体式風力タービン10の実施形態の部分概略斜視図である。浮体式風力タービン10は、水位より上で浮体式プラットホーム14上に載ったタービンエンジン12を備えている。
【0038】
タービンエンジン12は、回転軸A、A’をそれぞれ有する2つの並置されたクロスフロータービン24と、上記回転軸を中心とする扁平回転楕円面形状の保持構造26とを備えている。各クロスフロータービン24は、上部および下部MMESSフェアリング42、44に保持されている。上記フェアリングは、構造管64によって中央パイロン28に連結されるとともに構造管64によって垂直安定化支柱30に連結された支持構造(
図2に図示)を備えている。上記パイロンおよび垂直安定化支柱は、両側に2つのタービン24が対称に配置される中央垂直平面内に含まれている。垂直安定化支柱の断面は、タービン24の回転軸に垂直な平面において、対称形状の翼型形状である。
【0039】
このようにして、
図2、
図3Aおよび
図3Bに詳細に示す、上部および下部MMESSフェアリング42、44に固定されたピボット結合部によって、軸線A、A’を有するタービンのブレード32を支持することが可能になる。それにより、各タービン24は、上述したクロスフロータービンにおけるようなシャフトを不要にすることができる。それにより、中央パイロン28と垂直安定化支柱30によって耐荷重機能がもたらされる。この結果、一つの同じタービン中の2つのハブを非連結にして、上部ピボット結合部から発生して下部ピボット結合部に向かう寄生的な曲げ応力を生じることなく、2つのハブ間の合わせ不良を許容することができる。特に、上部ピボット結合部から発生して下部ピボット結合部に向かう曲げモーメントの衝撃を避けることができる。
【0040】
実施形態によれば、パイロン28はほぼ三角形の断面を有しており、その断面は、円弧状の上流側表面と2つの平坦または凹状の側面とが中央平面に含まれる消失線に向かって下流側で合流するように、中央平面に対して対称である。このパイロンは、その上流側部分において、軸線Oを有する円筒状のタワーによって浮体式支持体に接続されており、その深さにおける伸びは、多くてタービンの直径の半分である。実施形態によれば、軸線Aおよび軸線A’を含む平面と、軸線Aを含みパイロン28と接する平面との間の角度は、風向きによる上流側で、30°以下である。
【0041】
パイロンの風向きにおける掃引形状は、タービンエンジンのピッチ軸に沿う二次モーメントに反比例する。ここで、このパイロンのモーメントは、その深さの伸びのせいで、同じ最大断面積を持つ円形タワーのモーメントよりもはるかに大きい。それにより、パイロンは、タービンのピボット結合部を介して伝達される長手方向の空力学的および機械的非定常応力をより吸収することができる。
【0042】
実施形態によれば、各タービン24は、少なくとも2枚、例として、
図1では3枚のブレード32を備えている。
図1の右側に示すタービン24のブレード32は、軸線Aを中心とする回転運動可能に取り付けられており、
図1の左側に示すタービン24のブレードは、軸線A’を中心とする回転運動可能に取り付けられている。好ましくは、軸線Aと軸線A’は平行である。運動時、ブレード32は、
図1の右側に示すタービン24の軸線Aと、
図1の左側に示すタービン24の軸線A’をそれぞれ有する、直径Dの回転円柱に内接する表面を掃引する。各ブレード32は、直径Dの円柱内に含まれる中央部分33を備えている。例えば、中央部分33は、まっすぐで、軸線Aまたは軸線A’に平行である。この図では、中央部分33のみが風にさらされるが、後述するように、MMESSフェアリングの他の実施形態も考え得る。
【0043】
ブレード32の外形は、円柱同士を分ける中央平面に対して対称に円柱上に配分されている。それにより、ブレード32は、中央区域でブレード32が風上方向に移動するように、回転方向が逆である。
【0044】
回転軸AまたはA’に垂直な平面において、各ブレード32の断面は、中空の対称的もしくは非対称的両凸形、または二重曲率を有する外形に相当していてもよい。実施形態によれば、直径Dは20mと80mの間である。
【0045】
図1に示す実施形態では、各タービン24のブレード32が、まっすぐな中央部33を有しているが、各ブレード32の中央部33が回転円柱を掃引する限り、クロスフロータービンに由来するいかなるタイプのブレードが使用されてもよい。例えば、タービンは、中央部が螺旋形のブレードや、中央部が米国特許出願公開第2011/006534号明細書に記載されているようなV字形のブレードを備えていてもよい。しかしながら、効率の急減を起こさないように、後退角が10°を超えてはいけない。螺旋形ブレードやV字形ブレードを使用することは、ブレードが付与するトルクを一様にするという利点がある。
【0046】
プラットホーム14は、半水中型で、3点浮標式プラットホームに相当してもよい。プラットホーム14は、星形に配置された3つの浮遊コラムまたは浮遊円柱16を備えている。プラットホーム14は、浮遊円柱16にトラス20で連結された、軸線Oを有する中央タワー18をさらに備えている。プラットホーム14は、星形の3つの浮遊コラム16による静水圧剛性のみならず、コラムの下部に収められた、液体バラストもあり得るバラストによって、タービンの軸線AおよびA’が最大限の取得動力をもたらす垂直位置に近くなるように、安定化される。感知可能な姿勢の変化が起こらないように、これらコラム内の液体の配分が制御されてもよい。プラットホーム14は、海底に結合された、例えばカテナリーを備えた係留システム(図示せず)によって所定位置に保持される。3点浮標式プラットホーム14の利点は、原材料コスト、設置コストおよび海上での性能の間の満足のゆく妥協である。他のタイプの浮体式プラットホームが使用されてもよい。変形例によれば、プラットホーム14が、本明細書の不可欠な一部を形成するとみなされる国際公開第2013/175124号パンフレットに記載されたプラットホームに相当してもよい。変形例によれば、プラットホーム14が、はしけ、「スパー」プラットホームまたは張力脚プラットホーム(tension-leg platform:TLP)に相当してもよい。喫水線が
図1の線22で図示されている。
【0047】
好ましくは、タービンエンジン12は、プラットホーム14の中央タワー18に取り付けられている。変形例によれば、タービンエンジン12をほぼ垂直な軸線0を中心として浮体式プラットホーム14に対して自由回転させるために、
図1に図示しないピボット結合システムがタワー18の頂部に設けられてもよい。この目的のため、パイロン28が、ピボット結合部の雄型部分の役割をする、軸線Oを有する円筒部によって延長され、その円筒部が、タワー18内に設けられた、ピボット結合部の雌型部分の役割をする、軸線Oを有する円筒状開口に入るようになっていてもよい。この結合は、HAWTタワーの頂部に存在し、大型のころ軸受を収めた旋回リングの変形によってもたらすことができる。
【0048】
このピボット結合は、タービンエンジンを自ら風上に向けさせるようにする。実際には、MMESSフェアリング42、44が持つピボット結合部に対して各タービンが及ぼす法線力の合力が、軸線O上でピボット結合部が生成するモーメントの場合と同様に釣り合っている。それは、回転軸Oの下流側に軸線AおよびA’を配置することにより、実際には、回転を始めることなく、常に風車を風上に向けて安定化させる傾向があるからである。
【0049】
MMESSフェアリングを備えた風車に存在する垂直安定化支柱30は、タービンエンジン12の対称軸を通常運転時に風向きと平行に維持することに寄与する。実際には、垂直安定化支柱30は、かなりのてこ作用を有する尾翼の役割をする。結果的に、ヨー制御が不要になって有利である。
【0050】
タワー18の頂部に結合システムが設けられない簡略化された実施形態では、風車のヨー安定化が依然として得策である。
図1に示すプラットホーム浮体式支持体14がこの補正空力モーメントを受ける。補正空力モーメントは、このタイプの浮体式支持体のヨーを制御するカテナリーの空力モーメントに付加される。
【0051】
図2Aおよび
図2Bは、
図1の右側に示すタービン24の上部および下部のそれぞれの部分概略分解組立図である。両タービン24は、中央平面に対して互いに対称形状の構造を有している。
図1の右側に示すタービン24について、
図1の左側に示すタービンが対称形状の構造を有することを承知した上で、より詳細に説明する。
【0052】
各ブレード32は、好ましくは軸線AまたはA’とほぼ垂直であり、とりわけ水平である上部アーム34と、好ましくは軸線AまたはA’とほぼ垂直であり、とりわけ水平である下部アーム36とを備えており、上部アーム34は、ブレード32の中央部33の上端に連結されており、下部アーム36は、ブレード32の中央部33の下端に連結されている。実施形態によれば、各ブレード32において、好ましくは半径Rの4分の1円形状を有する上部L字屈曲部38が、各ブレード32の中央部を上部アーム34に連結させており、好ましくは半径Rの4分の1円形状を有する下部L字屈曲部40が、各ブレード32の中央部33を下部アーム36に連結させている。軸線Aから測定された各アーム34、36の長さLは、R+L=D/2となるようにされている。空力学的観点のみからは、Rの値は、タービンが生み出す動力を最大化するよう意図された妥協の結果である。一般に、無限媒質中で動作するタービンにおいては、Rが小さくなると、駆動部品33が掃引する表面積を増大させる一方で、干渉抗力、ひいては関連する散逸源を増大させる。最適条件は、タービンの特定の幾何学的形状(N、c、Dなど)毎に求められる。Rの上限は、軸線Aと平行に測定された、ブレード32の中央部33に連結されたアーム34、36間の距離の1/6であり、言い換えれば、軸線Aと平行に測定された各ブレード32の中央部33の高さは、上記距離の2/3以上である。
【0053】
上部アーム
34は、上部ハブ50に対して、開口を有しハブ50に固定されたディスク51を介して接続されている。上部ハブ50は、
図3Aおよび
図3Bに示す軸受およびブッシュを介して、軸線Aを有する垂直の上部案内車軸要素52を中心として回転可能に取り付けられており、上部車軸要素52は、上部フェアリング42の上側内面に固定されている。下部アーム36は、下部ハブ54に対して、開口を有しハブ54に固定されたディスク55を介して接続されている。下部ハブ54は、図示しない軸受およびブッシュを介して、軸線Aを有する垂直の下部案内車軸要素56を中心として回転可能に取り付けられており、車軸要素56は、下部フェアリング
44の下側内面に固定されている。
【0054】
アーム34、36およびL字屈曲部38、40は特定断面の形状を有しており、それらの形状は、加えられるせん断応力の増大に耐えるように、ブレード32の中央部33とは異なる外形を有していてもよい。各ブレード32のアーム34、36の断面の最大厚が、ブレード32の中央部33の断面の最大厚より大きくてもよく、例えば、ブレード32の中央部33の断面の最大厚の2倍以上であってもよい。
【0055】
実施形態によれば、各L字屈曲部38、40の外形は、L字屈曲部が連結されているブレードの中央部の外形の特徴から、L字屈曲部が連結されているアームの外形の特徴への単調な移行を示している。
【0056】
各ブレード32は、炭素繊維を用いた複合材料から製造されてもよい。中央部に対して受ける応力の一様性を考慮して、その中央部に応じて同一パネルでのブレードの製造が展開されてもよい。パネルでの製造は、上部および下部アームに対しても行われてもよい。上部および下部L字屈曲部は別途製造される。その後、ブレードを再構成するために、これらのパネルが、現場でウイングジョイナ・アンド・ポケット・システムで接続されて、物流コストと設置コストが低減される。最終的に、ブレードのまっすぐなパネルが、引き抜き成形法に従って低コストで製造されてもよい。
【0057】
図1の右側に示す上述したタービン24は、下部および上部MMESSフェアリングに連結されている。上記タービンブレードの幾何学的形状のみを扱ったが、その説明は、
図4に記載されているような別の実施形態に相当するHMESSフェアリングに連結されたタービンのブレードの説明にも当てはまるであろう。上記のタービンのブレードの特徴の全てが依然として有効である。
【0058】
実施形態によれば、各タービン24の頂部では、上部アーム34およびL字屈曲部38が、回転MMESS上部フェアリング42に設けられたハウジング46内に収容されている。各タービン24の底部では、アーム36およびL字屈曲部40が、回転下部フェアリング44に設けられたハウジング48内に収容されている。
【0059】
各MMESSフェアリング42、44は、ほぼ平坦なプレート71の端縁に沿って延びる管70を備えている。管70は、上流側で中央パイロン28と合流する構造管64と、下流側で垂直安定化支柱30に合流する構造管64とに連結されている。各フェアリング42、44は、軸線Aを有する円筒状部品73から放射状に延びる補強リブ群72をさらに備えており、円筒状部品、リブ72および管70はプレート71とともに一体物を形成している。
【0060】
実施形態によれば、軸線Aを有するタービン24の上部MMESSフェアリング42は、ハウジング46を覆うとともに上部垂直案内車軸要素52の下端に回転不可に固定された円形のカウル58をさらに備えている。各ブレード32の中央部33の上端をハウジング46内に入れるとともにL字屈曲部38とアーム34を介して上部ハブ50と接続させるために、ハウジング46の端縁とカウル58との間に、
図1には図示しないが、ブレード32の中央部33の厚さの3ないし5倍の幅eとD/2に等しい半径を有する環状の開口が設けられている。カウル58の直径DpはD-eに等しい。
【0061】
軸線Aを有するタービン24の下部MMESSフェアリング44は、ハウジング48を覆うとともに下部垂直案内車軸要素56の上端に回転不可に固定された円形のカウル60をさらに備えている。各ブレード32の中央部33の下端をハウジング48内に入れるとともにL字屈曲部38とアーム34を介して下部ハブ
54と接続させるために、ハウジング48の端縁とカウル60との間に、ブレード32の中央部33の厚さの3ないし5倍の幅eとD/2に等しい半径を有する、
図1に示す環状の開口62が設けられている。カウル60の直径DpはD-eに等しい。
【0062】
それにより、軸線Aを有する各タービン24は、直径Dの円筒上に位置するブレード32の中央部33が入射風を受けて駆動する上部および下部2つのフェアリング42、44間の中間区域と、アーム34、36およびハブ50、54を包み込む上部および下部フェアリング42、44内の2つの区域とからなる3つの区域に軸線Aに沿って展開される。後者の2つの区域では、アーム34、36は、形状抗力を受け、タービン24の動作に対していかなる駆動作用も及ぼさない。しかしながら、これらの部品に対するこの抗力は、閉じた空間内での純粋な回転運動からのみ生じるものである。それらの部品が、MMESSフェアリング42、44がなければ抗力を増大させたであろう、入射風に伴う流動成分を免れるからである。この説は、水平なアーム34が各上部フェアリング42および下部フェアリングの上面および下面から十分に離れている場合に限り適用できる。さらに、カウル58を備えた上部MMESSフェアリング42と、カウル60を備えた下部MMESSフェアリング44は、ブレード32毎に1回転中のブレード32の各角度位置で、航空機の翼の両端の2つの大きなまっすぐのウィングレットが果たすような、ダリウス型Hタービンまたは螺旋形タービンで明らかな翼端抗力を低減する役割を採り入れている。
【0063】
別の実施形態によれば、上記にかかわらず、カウル58、60の直径の値を構造的な理由でD-e未満にすることが有利になる場合がある。大型の風車用に動作時に安定した状態を保つ大きな寸法のカウル58、60を製造することが難しい場合もあるからである。L字屈曲部の一部、例えば、半分までを、干渉抗力を増大させない範囲で、風にむき出しにしてもよい。その利点は、上部および下部MMESSフェアリングおよび関連するカウルの直径を低減することである。
【0064】
最後に、パイロンは、以下の4つの空力学的機能をもたらす。
(i)パイロン28の丸められた前面が、ブレード32が減速させられる区域である風上への移動を保護し、それによってブレード32の性能を向上させる。
(ii)パイロンが存在することにより、各タービン周辺の全ての流れを、入射流れに平行で回転軸を通る平面に対して非対称にする。ここで、無限媒体中の垂直タービンにとって少なくとも起動時にこの流れが対称であると、始動が困難になり、ブレードが一定の対称的な角度位置で静止したままの状態になる。
(iii)このパイロンの配置と幾何学的形状が様々な形で風車の風上側への安定性、ひいてはヨー制御に、特に後述するようにHMESSフェアリングの使用時においてどのように寄与するかが明らかにされている。
(iv)さらに、軸線Aを有するタービンのブレード32が、保持用中央パイロン28に保持された上部および下部MMESSフェアリング42、44間のピボット結合部によって保持されていることも述べられている。
図2は、どのようにしてブレードが上部車軸要素52および下部車軸要素56をそれぞれ独立して軸とする回動を行い、各タービン24用のシャフトを不要にさせるかを示すことによって、上記の点を詳細に説明している。また、中央のシャフトがないことは、最終的にその支持機能を中央パイロン28が行うのでそうなったのであるが、ブレード32の軸線Aを中心とする回転過程の下流側ディスク半体の通過時にブレード32を乱す渦、特にフォンカルマン渦列系を防止する。さらに、これらの系の周波数(無次元パラメータV
i/a、aはシャフトの直径、ストローハル周波数とも称する)は、V
iの増加とともにタワーの固有振動数に近づくので、いくつかの問題を引き起こす。これらの問題が解消される。
【0065】
また、各MMESSフェアリング42、44は、ピッチダウンモーメントに寄与する翼型の役割も採り入れている。
【0066】
さらに、構造管64内には、ディスブレーキ、取得動力取り出し用電気ケーブル、将来的に保守作業者がフェアリング外から特定のアクセス路(図示せず)を介してフェアリング内にアクセスする手段など、発電機箱内の部品の電気的監視/制御回路の全てが通っている。様々な電気装置やプログラミング可能論理制御器によって風車の機能を管理する制御キャビネットが、中央パイロン28の基部および/またはタワー18の基部に設置されてもよい。
【0067】
実施形態によれば、ブレード32毎に、撓み防止斜め牽引線66が、特定の軸受またはブッシュによって上部垂直案内要素52の下端部回りに回動可能に取り付けられた環状部品67を、ブレード32の上半分内に位置する高さのところに連結しており、撓み防止斜め牽引線(図示せず)が、特定の軸受またはブッシュによって下部垂直案内車軸要素56の上端部回りに回動可能に取り付けられた環状部品を、ブレード32の上半分内に位置する高さのところに連結している。牽引線66は、ケーブル、ロープ、鎖、形材等に相当してもよい。これら2本の牽引線は、ブレードの変形を半径方向で一様にするために中央部分33全体にわたって適切に配分されて、一方では、下方のケーブルで名目運転時の空気力(揚力および抗力)に対して優勢な遠心力を打ち消させ、他方では、上方のケーブルでタービンの停止時毎に重力の影響で垂れ下がろうとする、軸線Aを有するタービン24のアーム34、36の水平性を維持させることができる。
【0068】
最後に、タービン24毎に、特定形状の外側垂直側方支柱68が、タービン24の中央平面とは反対側で、タービン24のMMESSフェアリング42、44同士を有利に連結させている。
【0069】
中央パイロン28、垂直安定化支柱30、側方支柱68、およびフェアリング42、44は、翼の製造用に航空機製造で使用される材料、例えば、複合材料から製造されてもよい。
【0070】
図3Aおよび
図3Bは、
図1に示すタービン24のうちの一方の、MMESSフェアリングを備えた浮体式風力タービン10の上部および下部のそれぞれの拡大部分概略断面図である。
【0071】
図3Aに示すように、上部フェアリング42は、上部ハブ50を上部車軸要素52に連結するピボット結合部74を収容している。例えば、ピボット結合部74は軸受で形成されている。
【0072】
図3Bに示すように、下部フェアリング44は、下部ハブ54を下部車軸要素56に連結するピボット結合部76を収容している。例えば、ピボット結合部76は軸受で形成されている。さらに、下部フェアリング44は、タービン24によって供給される機械的動力を出力する発電機80も収容している。実施形態によれば、発電機80は、直接駆動式永久磁石同期発電機である。発電機80のステータ82は、プレート71、円筒状部品73およびディスク55によって画定されたエンクロージャ88内に収められた支持体86上に配置された巻線84を備えている。発電機80のロータ90は、ハブ54と一体物を形成するディスク55に固定された、軸線Aを有する円筒状部品92を備えており、円筒状部品92には、巻線84に面して配置された永久磁石94が装備されている。ロータ90は、補強リブ95をさらに備えていてもよい。ロータ90とステータ82との間で交換される流れは、したがって、放射状である。直接駆動式永久磁石同期発電機80には、下部フェアリング44内で空間を占める増速歯車装置を必要とせず、厚みを増大させることなく、可変速で動作可能であるという利点と、高い動力対重量比を有するという利点がある。発電機80には、ロータ
90と一体物を形成するディスク97と、下部フェアリング44に固定されたキャリパー98とを備えたディスクブレーキ96が装備されている必要がある。
【0073】
図4は、上部MMESSフェアリング126および下部
HMESSフェアリング128を備えた浮体式風力タービン120の実施形態の部分概略斜視図である。浮体式風力タービン120は、
図1に示す浮体式風力タービン10の要素の全てを備えているが、各タービン24において、上部MMESSフェアリング42または下部MMESSフェアリング44が、HMESSフェアリングと呼ばれる、空間要求を削減させた上部支持構造126または下部支持構造128に置き換えられている点で異なる。さらに、垂直安定化支柱30が存在しない。
【0074】
上部HMESSフェアリング126および下部HMESSフェアリング128は、それぞれ、パイロン28に連結された半翼型(まっすぐ、後方傾斜状、台形、楕円形など)を備えており、その端部には、タービン24用にピボット結合部(図示せず)が配置されている。上部HMESSフェアリング126および下部HMESSフェアリング128は、上部および下部車軸要素(図示せず)をそれぞれ備えている。上部車軸要素および下部車軸要素には、
図4に図示しない軸受またはブッシュによって上部および下部ハブ50、54(一部図示)が回転可能に取り付けられており、ハブのHMESSフェアリング外への延出のために円形の開口が設けられている。ハブ50、54の外側部分に固定された上部外側ディスク51および下部外側ディスク55が、ブレード32のアーム34、36によって駆動され、これらの要素は、タービンの一体部分を形成している。
【0075】
本実施形態では、
上部および
下部HMESSフェアリング126、128が、
図2Aおよび
図2Bに示すMMESSフェアリングと共通のいくつかの機能をもたらす(およびその機能からそれに続く利点を導き出す)。まず、支持機能が、前縁近傍で中央パイロンに連結された、各半翼型の幅に応じた長尺の環状構造管(図示せず)によって部分的にもたらされる。その場合、支持機能は、航空機の翼に使用される従来の手段(図示せず)、すなわち、上記構造管と平行な翼桁、リブ、および内部ケーブルによってもたらされる。
【0076】
上部フェアリング126に関しては、内部ケーブルに加えて、
図4に示すように、パイロン28頂部の縦材の上部から半翼型の車軸要素までつながるガイシステム130の外部ケーブルが追設され、下部フェアリング128に関しては、パイロン28の底部から半翼型の車軸要素までつながる外部支持材132が追設されてもよい。
【0077】
それにより、下部および上部HMESSフェアリングに関して、環状構造管は、将来的に保守作業者によるフェアリング内外でブレードが生み出す機械的動力を伝達する部品へのアクセス手段を提供する。最後に、下部HMESSフェアリングのみに関して、上記構造管は、保守作業者に対して、ディスクブレーキや、取得動力取り出し用の電気ケーブルなど、発電機箱内の部品の監視/制御電気回路へのアクセス手段をさらに付与する。
【0078】
最後に、駆動シャフトを必要としないので、MMESSフェアリングと共通の構造的および空力的利点を有する。
【0079】
ブレード32のL字屈曲部38、40およびアーム34、36が外側に出たままのHMESSフェアリングは、ブレード32の形状それ自体に、寄生抗力を低減させる機能を付与している。もはや保護されてないアーム34、36は、MMESSフェアリングの場合よりも強い抗力を受ける可能性がある。一方、軸線Aと垂直な上部および下部アーム34、36から延びるブレード32の作動部33の端部に位置するL字屈曲部38、40によって形成されるアセンブリは、MMESSフェアリングよりも表面積が小さいウィングレットに例えることができる。HMESSフェアリングの場合、L字屈曲部38、40の曲率半径を調整することで、干渉抗力も低減させることができる。中央のシャフトがないので、ブレード32が軸線A中心の回転過程における下流側ディスク半体を通過する際にブレード32を乱す渦、特にフォンカルマン渦列系も防止される。結論として、HMESSフェアリングおよびMMESSフェアリングの存在によって得られる寄生抗力低減に関する利点は、全体として大きく、同程度である。
【0080】
これらの利点は、支持構造を備えた2つのタイプのフェアリングに支持されたタービン24が供給する動力の値に大きな影響を及ぼす。実際には、両タイプのフェアリングに共通する、風車の一般的な構造により、タービンの回転区域に入り込むことなくタービンをその上下端で保持し、フェアリングを支持する共通のパイロン28を回転区域外に置くことにより、揚力の原理で動作するVAWTの2種類の主要な変形例の特徴を有利に組み合わせることが可能になる。ダリウス型タービンからは、低減されたソリディティSによる効率および高い最適進行率λ0が、H型タービンからは、特に牽引線によって維持される矩形に由来する、与えられた高さに対してダリウス型タービンよりかなり大きな最大断面が採り入れられる。
【0081】
実施形態によれば、遠心力と重力に対抗するために、
図1と同様に、
図2に示す部品67と類似するが、外部に位置する上部ディスク51の中心部の周りに固定された環状部品を、ブレード32の上半分内に位置する締結点でブレード32に連結させる撓み防止斜め牽引線66(
図4には図示せず)を使用することが常に可能である。有利なように、第2の斜め牽引線(図示せず)が、外部に位置する下部ディスク55の中心部の周りに固定された環状部品を、ブレード32の下半分内に位置する締結点でブレード32に連結させてもよい。注目すべきなのは、HMESSフェアリングが、MMESSフェアリングに関して上述したものとは異なる、ピボット結合部への締結方法を提供することである。後者の場合、ディスクが内部にあるため、外部の要素だけの周りに追加の軸受を導入し、固定された上部垂直車軸要素52の下端がカウルを支持する必要があった。
【0082】
実施形態によれば、遠心力だけに対抗するために、一水平面内において、ブレード32の中間部の近くに位置する点を回転軸上に位置する点につなぐ撓み防止牽引線を導入することも可能である。
図4に示すような2枚のブレードを有するタービンの場合、これらの撓み
防止牽引線が1本の線に削減される。逆に言えば、この解決策がMMESSフェアリングが存在する場合に使用されてもよい。
【0083】
実施形態によれば、各牽引線68または
図1における各牽引線66が、ブレード32の下半分にある補完物とともに、特定形状のスリーブで覆われたケーブルを含み、ケーブルがブレード32と接する区域を除くケーブルのほぼ全長にわたってスリーブが延びていてもよい。スリーブは、ポリマーからなっていてもよい。スリーブが対称形状の輪郭形状であってもよい。
【0084】
上述のタワー18の頂部に結合用のシステムが設けられている実施形態では、ヨー制御が不要である。HMESSフェアリング126、128が持つピボット結合部に対して各タービン24が及ぼす法線力の合力は、Oにおいてピボット結合部が生じるモーメントの場合と同様に釣り合っている。回転軸Oの下流側に軸線AおよびA’を配置することにより、回転を始めることなく、常に風車を風上に向けて安定化させる傾向となる。HMESSフェアリングを備えた風車120において有利に延ばされたパイロン28は、例えば、タービンの直径の半分に達しており、この風上方向の安定化をさらに増強する。実際には、(i)風によりさらされ、(ii)主にパイロン28の軸線Oの下流側に配置されているパイロン側面に及ぼす風の作用が、尾翼の働きをする。第3の理由として、最も風にさらされるタービン24が、パイロン28と連帯して最も風にさらされないタービン24を保護する。風が第1のタービン24に及ぼす総抗力は、第2のタービン24に及ぼす総抗力よりも大きく、結果としてパイロン28の基部において推定されるトルクも補正トルクである。
【0085】
タワー18の頂部に上記結合システムが設けられていない実施形態では、
図1に示すプラットホーム浮体式支持体14が、この補正空力モーメントを受ける。この補正空力モーメントは、浮体式支持体のヨーを制御するとともに通常運転時にタービンエンジン12の対称軸を風向きと平行に保持するのに寄与するカテナリーの空力モーメントに付加される。
【0086】
図4に示す実施形態によれば、タービンに2枚のブレードが装備されている。この選択は、緊急停止後のタービンを安定化させるために非常に好ましく、この目的のため、タービンブレードの回転軸を含む平面内に2枚のブレードがとどまる角度構成、すなわち、駆動力が最小限または負にもなる構成で両タービンを停止させる必要がある。
【0087】
種々の変形例を有する様々な実施形態について上述した。当業者であれば、進歩性を証明することなく、これら様々な実施形態および変形例の様々な要素を組み合わせることが可能であることに気付くであろう。