(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-25
(45)【発行日】2022-03-07
(54)【発明の名称】KSP阻害剤を有する特異的抗体-薬物コンジュゲート(ADC)
(51)【国際特許分類】
A61K 47/68 20170101AFI20220228BHJP
A61K 31/40 20060101ALI20220228BHJP
A61K 39/395 20060101ALI20220228BHJP
A61K 45/00 20060101ALI20220228BHJP
A61P 35/00 20060101ALI20220228BHJP
A61P 43/00 20060101ALI20220228BHJP
【FI】
A61K47/68 ZNA
A61K31/40
A61K39/395 C
A61K39/395 L
A61K45/00
A61P35/00
A61P43/00 105
A61P43/00 121
(21)【出願番号】P 2019533393
(86)(22)【出願日】2017-12-18
(86)【国際出願番号】 EP2017083313
(87)【国際公開番号】W WO2018114804
(87)【国際公開日】2018-06-28
【審査請求日】2020-12-07
(32)【優先日】2016-12-21
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】514298139
【氏名又は名称】バイエル・ファルマ・アクティエンゲゼルシャフト
(74)【代理人】
【識別番号】100108453
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】ハンス-ゲオルク・レルヒェン
(72)【発明者】
【氏名】アンヌ-ソフィー・レブストック
(72)【発明者】
【氏名】ベアトリクス・シュテルテ-ルートヴィヒ
(72)【発明者】
【氏名】デニス・キルヒホフ
(72)【発明者】
【氏名】サンドラ・ベルント
(72)【発明者】
【氏名】リーザ・ディーツ
(72)【発明者】
【氏名】シュテファン・メルシュ
(72)【発明者】
【氏名】シュテファニ・ハンマー
【審査官】藤代 亮
(56)【参考文献】
【文献】特表2018-524321(JP,A)
【文献】特表2019-522647(JP,A)
【文献】特許第6768011(JP,B2)
【文献】国際公開第2014/151030(WO,A1)
【文献】国際公開第2015/096982(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61K 47/68
A61K 31/40
A61K 39/395
A61K 45/00
A61P 35/00
A61P 43/00
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/REGISTRY/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
式(I)の抗体-薬物コンジュゲート(ADC)
【化1】
(式中、
nは1~8を表し、
AKは、TPP-8987、TPP-9476およびTPP-8988からなる群から選択される抗CD123抗体を表す、
または
AKは、好ましくはTPP-9574、TPP-9580およびTPP-9024からなる群から選択される抗CXCR5抗体を表す、
または
AKは、これらの抗体の抗原結合フラグメントを表し、
前記抗体または前記抗原結合フラグメントは、システイン側基の硫黄原子を介して結合している)
ならびにその塩、溶媒和物およびこれらの溶媒和物の塩。
【請求項2】
nが2~8を表す、請求項1に記載の式(I)の抗体-薬物コンジュゲート(ADC)。
【請求項3】
nが4~8を表す、請求項1に記載の式(I)の抗体-薬物コンジュゲート(ADC)。
【請求項4】
AKが
(i)配列番号2によって示される重鎖の可変CDR1配列(H-CDR1)、配列番号3によって示される重鎖の可変CDR2配列(H-CDR2)および配列番号4によって示される重鎖の可変CDR3配列(H-CDR3)を含む重鎖の可変領域(VH)と配列番号6によって示される軽鎖の可変CDR1配列(L-CDR1)、配列番号7によって示される軽鎖の可変CDR2配列(L-CDR2)および配列番号8によって示される軽鎖の可変CDR3配列(L-CDR3)を含む軽鎖の可変領域(VL)を含む抗CD123抗体を表す、
(ii)配列番号12によって示される重鎖の可変CDR1配列(H-CDR1)、配列番号13によって示される重鎖の可変CDR2配列(H-CDR2)および配列番号14によって示される重鎖の可変CDR3配列(H-CDR3)を含む重鎖の可変領域(VH)と配列番号16によって示される軽鎖の可変CDR1配列(L-CDR1)、配列番号17によって示される軽鎖の可変CDR2配列(L-CDR2)および配列番号18によって示される軽鎖の可変CDR3配列(L-CDR3)を含む軽鎖の可変領域(VL)を含む抗CD123抗体を表す、
(iii)配列番号22によって示される重鎖の可変CDR1配列(H-CDR1)、配列番号23によって示される重鎖の可変CDR2配列(H-CDR2)および配列番号24によって示される重鎖の可変CDR3配列(H-CDR3)を含む重鎖の可変領域(VH)と配列番号26によって示される軽鎖の可変CDR1配列(L-CDR1)、配列番号27によって示される軽鎖の可変CDR2配列(L-CDR2)および配列番号28によって示される軽鎖の可変CDR3配列(L-CDR3)を含む軽鎖の可変領域(VL)を含む抗CXCR5抗体を表す、
(iv)配列番号32によって示される重鎖の可変CDR1配列(H-CDR1)、配列番号33によって示される重鎖の可変CDR2配列(H-CDR2)および配列番号34によって示される重鎖の可変CDR3配列(H-CDR3)を含む重鎖の可変領域(VH)と配列番号36によって示される軽鎖の可変CDR1配列(L-CDR1)、配列番号37によって示される軽鎖の可変CDR2配列(L-CDR2)および配列番号38によって示される軽鎖の可変CDR3配列(L-CDR3)を含む軽鎖の可変領域(VL)を含む抗CD123抗体を表す、
(v)配列番号42によって示される重鎖の可変CDR1配列(H-CDR1)、配列番号43によって示される重鎖の可変CDR2配列(H-CDR2)および配列番号44によって示される重鎖の可変CDR3配列(H-CDR3)を含む重鎖の可変領域(VH)と配列番号46によって示される軽鎖の可変CDR1配列(L-CDR1)、配列番号47によって示される軽鎖の可変CDR2配列(L-CDR2)および配列番号48によって示される軽鎖の可変CDR3配列(L-CDR3)を含む軽鎖の可変領域(VL)を含む抗CXCR5抗体を表す、もしくは
(vi)配列番号52によって示される重鎖の可変CDR1配列(H-CDR1)、配列番号53によって示される重鎖の可変CDR2配列(H-CDR2)および配列番号54によって示される重鎖の可変CDR3配列(H-CDR3)を含む重鎖の可変領域(VH)と配列番号56によって示される軽鎖の可変CDR1配列(L-CDR1)、配列番号57によって示される軽鎖の可変CDR2配列(L-CDR2)および配列番号58によって示される軽鎖の可変CDR3配列(L-CDR3)を含む軽鎖の可変領域(VL)を含む抗CXCR5抗体を表す、
または、これらの抗体の抗原結合フラグメントを表す、
請求項1から3のいずれか一項に記載の抗体-薬物コンジュゲート(ADC)。
【請求項5】
AKが
(i)配列番号1に示される重鎖の可変領域(VH)および配列番号5に示される軽鎖の可変領域(VL)を含む抗CD123抗体を表す、
(ii)配列番号11に示される重鎖の可変領域(VH)および配列番号15に示される軽鎖の可変領域(VL)を含む抗CD123抗体を表す、
(iii)配列番号21に示される重鎖の可変領域(VH)および配列番号25に示される軽鎖の可変領域(VL)を含む抗CXCR5抗体を表す、
(iv)配列番号31に示される重鎖の可変領域(VH)および配列番号35に示される軽鎖の可変領域(VL)を含む抗CD123抗体を表す、
(v)配列番号41に示される重鎖の可変領域(VH)および配列番号45に示される軽鎖の可変領域(VL)を含む抗CXCR5抗体を表す、もしくは
(vi)配列番号51に示される重鎖の可変領域(VH)および配列番号55に示される軽鎖の可変領域(VL)を含む抗CXCR5抗体を表す、
または、これらの抗体の抗原結合フラグメントを表す、
請求項1から4のいずれか一項に記載の抗体-薬物コンジュゲート(ADC)。
【請求項6】
AKが
(i)配列番号9に示される重鎖の領域および配列番号10に示される軽鎖の領域を含む抗CD123抗体を表す、
(ii)配列番号19に示される重鎖の領域および配列番号20に示される軽鎖の領域を含む抗CD123抗体を表す、
(iii)配列番号29に示される重鎖の領域および配列番号30に示される軽鎖の領域を含む抗CXCR5抗体を表す、
(iv)配列番号39に示される重鎖の領域および配列番号40に示される軽鎖の領域を含む抗CD123抗体を表す、
(v)配列番号49に示される重鎖の領域および配列番号50に示される軽鎖の領域を含む抗CXCR5抗体を表す、もしくは
(vi)配列番号59に示される重鎖の領域および配列番号60に示される軽鎖の領域を含む抗CXCR5抗体を表す、
または、これらの抗体の抗原結合フラグメントを表す、
請求項1から5のいずれか一項に記載の抗体-薬物コンジュゲート(ADC)。
【請求項7】
不活性で、非毒性の薬学的に適した補助剤と組み合わせて少なくとも1種の請求項1から6のいずれか一項に記載の抗体-薬物コンジュゲート(ADC)を含む医薬組成物。
【請求項8】
疾患を治療および/または予防する方法に使用するための、請求項1か
ら6のいずれか一項に記載の抗体-薬物コンジュゲート(ADC)
又は請求項7に記載の医薬組成物。
【請求項9】
過剰増殖性および/または血管新生障害を治療する方法に使用するための、請求項1か
ら6のいずれか一項に記載の抗体-薬物コンジュゲート(ADC)
又は請求項7に記載の医薬組成物。
【請求項10】
がんおよび腫瘍を治療する方法に使用するための、請求項1か
ら6のいずれか一項に記載の抗体-薬物コンジュゲート(ADC)
又は請求項7に記載の医薬組成物。
【請求項11】
がん免疫療法の1つもしくは複数の治療アプローチ、または、がん免疫療法の分子標的に対する1つもしくは複数の活性化合物と組み合わせて、がんおよび腫瘍を治療する方法に使用するための、請求項1か
ら6のいずれか一項に記載の抗体-薬物コンジュゲート(ADC)
又は請求項7に記載の医薬組成物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、キネシンスピンドルタンパク質阻害剤の特異的結合剤-薬物コンジュゲート(ADC)、これらのADCの有効な代謝産物、これらのADCを調製する方法、疾患を治療および/または予防するためのこれらのADCの使用、ならびに疾患、特に、例えばがん疾患などの過剰増殖性および/または血管新生障害を治療および/または予防するための医薬品を調製するためのこれらのADCの使用に関する。このような治療は、単独療法として、または他の医薬品もしくはさらなる治療手段と組み合わせて行うことができる。
【背景技術】
【0002】
がんは、最も多様な組織の制御されない細胞増殖の結果である。多くの場合、新たな細胞が既存の組織に侵入する(侵入性増殖)、または遠隔器官に転移する。がんは多種多様な器官に発生し、しばしば組織特異的経過をたどる。したがって、一般的な用語としての「がん」という用語は、様々な器官、組織および細胞型の定義された疾患の大きなグループを記載する。
【0003】
初期段階のいくつかの腫瘍は、外科的処置および放射線療法の処置によって除去することができる。転移した腫瘍は、原則として、化学療法剤によって緩和的に治療することができるにすぎない。ここでの目的は、生活の質の向上と延命の最適な組み合わせを達成することである。
【0004】
結合剤タンパク質と1つまたは複数の薬物分子とのコンジュゲート、特に、腫瘍関連抗原に対する内在化抗体がリンカーを介して細胞傷害剤と共有結合している抗体薬物コンジュゲート(ADC)の形態が知られている。ADCの腫瘍細胞への導入およびその後のコンジュゲートの解離の後、細胞傷害剤自体またはそこから形成される細胞傷害性代謝産物のいずれかが腫瘍細胞内に放出され、その中で作用を直接および選択的に展開することができる。このようにして、従来のがん化学療法とは対照的に、正常な組織への損傷が、かなり狭い限度に抑制される[例えば、J.M.Lambert、Curr.Opin.Pharmacol.5、543~549(2005);A.M.WuおよびP.D.Senter、Nat.Biotechnol.23、1137~1146(2005);P.D.Senter、Curr.Opin.Chem.Biol.13、235~244(2009);L.DucryおよびB.Stump、Bioconjugate Chem.21、5~13(2010)参照]。例えば、国際公開第2012/171020号パンフレットは、複数のtoxophore分子がポリマーリンカーを介して抗体と結合しているADCを記載している。可能性のあるtoxophoreとして、国際公開第2012/171020号パンフレットには、とりわけ、物質SB743921、SB715992(イスピネシブ)、MK-0371、AZD8477、AZ3146およびARRY-520が挙げられている。
【0005】
最後に挙げられた物質は、キネシンスピンドルタンパク質阻害剤である。キネシンスピンドルタンパク質(KSP、Eg5、HsEg5、KNSL1またはKIF11としても知られている)は、双極性紡錘体が機能するために不可欠なキネシン様モータータンパク質である。KSPの阻害は有糸分裂停止をもたらし、比較的長期にわたって、アポトーシスをもたらす(Taoら、Cancer Cell 2005年7月8(1)、39~59)。最初の細胞透過性KSP阻害剤であるモナストロールの発見後、KSP阻害剤は、新規な化学療法剤のクラスとして確立しており(Mayerら、Science 286:971~974、1999)、これらはいくつかの特許出願の主題である(例えば、国際公開第2006/044825号パンフレット;国際公開第2006/002236号パンフレット;国際公開第2005/051922号パンフレット;国際公開第2006/060737号パンフレット;国際公開第03/060064号パンフレット;国際公開第03/040979号パンフレット;および国際公開第03/049527号パンフレット)。しかしながら、KSPは、有糸分裂期の間の比較的短期間にのみ活性であるので、KSP阻害剤は、この期の間に十分に高い濃度で存在しなければならない。国際公開第2014/151030号パンフレットは、一定のKSP阻害剤を含むADCを開示している。
【0006】
KSP阻害剤を有するさらなるADCは、特許出願国際公開第2015/096982号パンフレットおよび国際公開第2016/096610号パンフレットに開示されている。
【先行技術文献】
【特許文献】
【0007】
【文献】国際公開第2012/171020号パンフレット
【文献】国際公開第2006/044825号パンフレット
【文献】国際公開第2006/002236号パンフレット
【文献】国際公開第2005/051922号パンフレット
【文献】国際公開第2006/060737号パンフレット
【文献】国際公開第03/060064号パンフレット
【文献】国際公開第03/040979号パンフレット
【文献】国際公開第03/049527号パンフレット
【文献】国際公開第2014/151030号パンフレット
【文献】国際公開第2015/096982号パンフレット
【文献】国際公開第2016/096610号パンフレット
【非特許文献】
【0008】
【文献】J.M.Lambert、Curr.Opin.Pharmacol.5、543~549(2005)
【文献】A.M.WuおよびP.D.Senter、Nat.Biotechnol.23、1137~1146(2005)
【文献】P.D.Senter、Curr.Opin.Chem.Biol.13、235~244(2009)
【文献】L.DucryおよびB.Stump、Bioconjugate Chem.21、5~13(2010)
【文献】Taoら、Cancer Cell 2005年7月8(1)、39~59
【文献】Mayerら、Science 286:971~974、1999
【発明の概要】
【課題を解決するための手段】
【0009】
抗体-薬物コンジュゲートの種々の開示にもかかわらず、比較的低濃度で投与した後に、持続性アポトーシス作用を示し、したがってがん治療に有益となり得る物質を提供することが本発明の目的である。ここでは、ADCから細胞内に放出された代謝産物のプロファイルが重要な役割を果たしている。しばしば、ADCから形成される代謝産物は排出ポンプの基質である、および/または高い細胞膜透過性を有する。両現象が、腫瘍細胞における短い滞留時間、ひいては最適以下のアポトーシス作用に寄与し得る。
【0010】
本発明は、特異的抗CD123抗体と抗CXCR5抗体の両方に関して改善された活性プロファイルを特に有する特異的toxophoreリンカー組成物を有するADCを提供する。
【0011】
抗体は、好ましくは、ヒト化またはキメラモノクローナル抗CD123抗体または抗CXCR5抗体である。ヒト化抗CD123抗体TPP-8987、TPP-8988およびTPP-9476、ならびにヒト化またはキメラ抗CXCR5抗体TPP-9024、TPP-9574およびTPP-9580が特に好ましい。
【0012】
ここでは、式(I)の抗体-薬物コンジュゲート(ADC)
【化1】
(式中、
nは1~8を表し、
AKは、TPP-8987、TPP-9476およびTPP-8988からなる群から選択される抗CD123抗体を表す、
または
AKは、好ましくはTPP-9574、TPP-9580およびTPP-9024からなる群から選択される抗CXCR5抗体を表す、
または
AKはこれらの抗体の抗原結合フラグメントを表し、
抗体または抗原結合フラグメントはシステイン側基の硫黄原子を介して結合している)
ならびにその塩、溶媒和物およびこれらの溶媒和物の塩が、既知のコンジュゲートと比較して優れた特性を有することが見出された。
【0013】
nが4~8を表す、式(I)の抗体-薬物コンジュゲート(ADC)が好ましい。
【0014】
AKがTPP-8987、TPP-9476およびTPP-8988からなる群から選択される抗CD123抗体ならびにこれらの抗体の抗原結合フラグメントを表す;特に好ましくは、AKがTPP-9476およびこの抗体の抗原結合フラグメントを表す、式(I)の抗体-薬物コンジュゲート(ADC)が好ましい。
【図面の簡単な説明】
【0015】
【
図1】結合剤-薬物コンジュゲートについての好ましい抗体のアノテーションが付与された配列を示す図である。示されているのは、IgGの重鎖および軽鎖、ならびにこれらの抗体のVH領域およびVL領域のタンパク質配列である。配列の下に重要な領域がアノテーションされている(IgG中のVHおよびVL領域、ならびにCDR領域(H-CDR1、H-CDR2、H-CDR3、L-CDR1、L-CDR2、L-CDR3))。
【
図2】結合剤-薬物コンジュゲートについての好ましい抗体の配列および標的分子の配列の配列表を示す図である。
【発明を実施するための形態】
【0016】
本発明は、ヒト化抗CD123抗体またはヒト化もしくはキメラモノクローナル抗CXCR5抗体、リンカーLを介して抗体に結合しているキネシンスピンドルタンパク質阻害剤(KSP阻害剤)である薬物分子のコンジュゲートを提供する。ここでは、ヒト化抗CD123抗体TPP-8987、TPP-8988およびTPP-9476、ならびにヒト化またはキメラ抗CXCR5抗体TPP-9024、TPP-9574およびTPP-9580が特に好ましい。
【0017】
結合剤
最も広い意味では、「結合剤」という用語は、結合剤-薬物コンジュゲートによって対処されるべき一定の標的細胞集団に存在する標的分子に結合する分子を意味すると理解される。結合剤という用語は、その最も広い意味で理解されるべきであり、例えばレクチン、一定の糖鎖に結合することができるタンパク質、またはリン脂質結合タンパク質も含む。このような結合剤には、例えば、高分子量タンパク質(結合タンパク質)、ポリペプチドまたはペプチド(結合ペプチド)、非ペプチド(例えば、アプタマー(米国特許第5270163号明細書)、Keefe AD.ら、Nat.Rev.Drug Discov.2010;9:537~550による概説)またはビタミン)、および他の全ての細胞結合分子または物質が含まれる。結合タンパク質は、例えば、抗体および抗体フラグメントまたは抗体模倣物、例えば、アフィボディ、アドネクチン、アンチカリン(登録商標)、DARPins、アビマー、ナノボディである(Gebauer M.ら、Curr.Opinion in Chem.Biol.2009;13:245~255;Nuttall S.D.ら、Curr.Opinion in Pharmacology 2008;8:608~617による概説)。結合ペプチドは、例えば、リガンド/受容体ペアのリガンド、例えばリガンド/受容体ペアVEGF/KDRのVEGF、例えばリガンド/受容体ペアトランスフェリン/トランスフェリン受容体のトランスフェリン、またはサイトカイン/サイトカイン受容体、例えばリガンド/受容体ペアTNFα/TNFα受容体のTNFαである。
【0018】
結合剤は結合タンパク質であり得る。結合剤の好ましい実施形態は、抗体、抗原結合抗体フラグメント、多重特異性抗体または抗体模倣物である。
【0019】
文献はまた、有機分子と結合剤、特に抗体の共有結合(コンジュゲーション)の種々の選択肢を開示している。本発明によると、抗体のシステイン残基の1個または複数の硫黄原子を介したおよび/または抗体のリジン残基の1個または複数のNH基を介した、toxophoreと抗体のコンジュゲーションが好ましい。しかしながら、抗体の遊離カルボキシル基を介してまたは糖残基を介して、toxophoreを抗体に結合させることも可能である。
【0020】
最も広い意味での「標的分子」は、標的細胞集団中に存在し、タンパク質(例えば、成長因子の受容体)または非ペプチド性分子(例えば、糖もしくはリン脂質)であり得る分子を意味すると理解される。標的分子は、好ましくは受容体または抗原である。
【0021】
「細胞外」標的分子という用語は、細胞の外側に位置する細胞に付着した標的分子、または細胞の外側に位置する標的分子の一部を記載するものである、すなわち結合剤はその細胞外標的分子に無傷細胞上で結合し得る。細胞外標的分子は、細胞膜に固定されてもよく、または細胞膜の構成要素であってもよい。当業者であれば細胞外標的分子を識別する方法を知っている。タンパク質の場合、これは、1個または複数の膜貫通ドメインおよび膜中のタンパク質の配向を決定することにより得る。これらのデータは通常、タンパク質データベース(例えば、SwissProt)に寄託されている。
【0022】
「がん標的分子」という用語は、同じ組織型の非がん細胞よりも1つまたは複数のがん細胞種上に豊富に存在する標的分子を記載する。好ましくは、がん標的分子は、同じ組織型の非がん細胞と比較して1つまたは複数のがん細胞種上に選択的に存在し、選択的にとは同じ組織型の非がん細胞と比較してがん細胞上に少なくとも2倍豊富であることを記載する(「選択的がん標的分子」)。がん標的分子の使用により、本発明によるコンジュゲートを使用したがん細胞の選択的治療が可能になる。
【0023】
結合剤を、結合を介してリンカーに結合させることができる。結合剤を、結合剤のヘテロ原子によって連結させることができる。結合のために使用することができる結合剤の本発明によるヘテロ原子は、硫黄(一実施形態では、結合剤のスルフヒドリル基を介して)、酸素(本発明によると、結合剤のカルボキシルまたはヒドロキシル基によって)および窒素(一実施形態では、結合剤の第一級または第二級アミン基またはアミド基を介して)である。これらのヘテロ原子は、天然結合剤中に存在してもよく、または化学的方法もしくは分子生物学の方法によって導入される。本発明によると、結合剤のtoxophoreへの結合は、標的分子に対する結合剤の結合活性にわずかな影響しか及ぼさない。好ましい実施形態では、結合が、標的分子に対する結合剤の結合活性に全く影響を及ぼさない。
【0024】
本発明によると、「抗体」という用語は、その最も広い意味で理解されるべきであり、免疫グロブリン分子、例えばインタクトまたは改変モノクローナル抗体、ポリクローナル抗体または多重特異性抗体(例えば二重特異性抗体)を含む。免疫グロブリン分子は、好ましくは、典型的にはジスルフィド架橋によって連結された4本のポリペプチド鎖である2本の重鎖(H鎖)および2本の軽鎖(L鎖)を有する分子を含む。各重鎖は、重鎖の可変ドメイン(略してVH)および重鎖の定常ドメインを含む。重鎖の定常ドメインは、例えば、3つのドメインCH1、CH2およびCH3を含み得る。各軽鎖は、可変ドメイン(略してVL)および定常ドメインを含む。軽鎖の定常ドメインは、ドメイン(略してCL)を含む。VHおよびVLドメインは、相補性決定領域(略してCDR)とも呼ばれる超可変性を有する領域および低配列可変性を有する領域(フレームワーク領域、略してFR)にさらに細分され得る。典型的には、各VHおよびVL領域は、3つのCDRおよび最大4つのFRで構成される。例えば、アミノ末端からカルボキシ末端まで、以下の順:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4である。抗体は、任意の適切な種、例えば、ウサギ、ラマ、ラクダ、マウスまたはラットから得ることができる。一実施形態では、抗体がヒトまたはマウス由来である。抗体は、例えば、ヒト、ヒト化またはキメラであり得る。
【0025】
「モノクローナル」抗体という用語は、実質的に均質な抗体の集団から得られた抗体を指す。すなわち、集団の個々の抗体が、天然に存在する突然変異を除いて同一であり、その数は少数であり得る。モノクローナル抗体は、高い特異性で単一の抗原結合部位を認識する。モノクローナル抗体という用語は、特定の調製方法を指さない。
【0026】
「インタクト」抗体という用語は、抗原結合ドメインと軽鎖および重鎖の定常ドメインの両方を含む抗体を指す。定常ドメインは、天然に存在するドメインまたはいくつかの改変されたアミノ酸位置を有するその変異体であり得、非グリコシル化(aglycosylated)であってもよい。
【0027】
「改変されたインタクト」抗体という用語は、抗体に由来しないさらなるポリペプチドまたはタンパク質と共有結合(例えば、ペプチド結合)によってそのアミノ末端またはカルボキシ末端を介して融合されたインタクト抗体を指す。さらに、抗体は、規定された位置で、反応性システインを導入してtoxophoreとのカップリングを促進するように改変され得る(Junutulaら、Nat Biotechnol.2008年8月;26(8):925~32参照)。
【0028】
ここでの「アミノ酸改変」または「突然変異」は、ポリペプチド配列中のアミノ酸の置換、挿入および/または欠失を意味する。ここでの好ましいアミノ酸改変は置換である。ここでの「アミノ酸置換」または「置換」は、タンパク質配列中の所与の位置にあるアミノ酸の別のアミノ酸への交換を意味する。例えば、置換Y50Wは、50位のチロシンがトリプトファンと交換されている親ポリペプチドの変異体を記載している。ポリペプチドの「変異体」は、参照ポリペプチド、典型的には天然または「親」ポリペプチドと実質的に同一のアミノ酸配列を有するポリペプチドを表す。ポリペプチド変異体が、天然アミノ酸配列の特定の位置に1つまたは複数のアミノ酸交換、欠失および/または挿入を有していてもよい。
【0029】
「ヒト」抗体という用語は、ヒトから得ることができる、または合成ヒト抗体である抗体を指す。「合成」ヒト抗体は、ヒト抗体配列の分析に基づく合成配列から、インシリコで部分的または完全に得ることができる抗体である。ヒト抗体は、例えば、ヒト由来の抗体配列のライブラリーから単離された核酸によってコードされ得る。このような抗体の例は、Soderlindら、Nature Biotech.2000、18:853~856に見出すことができる。このような「ヒト」および「合成」抗体には、PNGaseFによる脱グリコシル化または重鎖のN297(Kabat番号付け)の任意の他のアミノ酸への突然変異のいずれかによって産生された非グリコシル化変異体も含まれる。
【0030】
「ヒト化」または「キメラ」抗体という用語は、非ヒト部分およびヒト部分の配列からなる抗体を記載する。これらの抗体では、ヒト免疫グロブリン(レシピエント)の配列の一部が、非ヒト免疫グロブリン(ドナー)の配列部分によって置き換えられる。多くの場合、ドナーはマウス免疫グロブリンである。ヒト化抗体の場合、レシピエントのCDRのアミノ酸が、ドナーのアミノ酸によって置き換えられる。時折、フレームワークのアミノ酸も、ドナーの対応するアミノ酸によって置き換えられる。場合によっては、ヒト化抗体は、抗体の最適化の間に導入された、レシピエントにもドナーにも存在しないアミノ酸を含む。キメラ抗体の場合、ドナー免疫グロブリンの可変ドメインが、ヒト抗体の定常領域と融合される。このような「ヒト化」および「キメラ」抗体には、PNGaseFによる脱グリコシル化または重鎖のN297(Kabat番号付け)の任意の他のアミノ酸への突然変異のいずれかによって産生された非グリコシル化変異体も含まれる。
【0031】
本明細書で使用される相補性決定領域(CDR)という用語は、抗原との結合に必要とされる可変抗体ドメインのアミノ酸を指す。典型的には、各可変領域が、CDR1、CDR2およびCDR3と呼ばれる3つのCDR領域を有する。各CDR領域は、Kabatの定義によるアミノ酸および/またはChotiaによって定義される超可変ループのアミノ酸を包含し得る。Kabatによる定義は、例えば、およそ可変軽鎖/ドメイン(VL)のアミノ酸位置24~34(CDR1)、50~56(CDR2)および89~97(CDR3)と可変重鎖/ドメイン(VH)の31~35(CDR1)、50~65(CDR2)および95~102(CDR3)の領域を含む(Kabatら、Sequences of Proteins of Immunological Interest、第5版Public Health Service、National Institutes of Health、Bethesda、MD.(1991))。Chotiaによる定義は、例えば、およそ可変軽鎖(VL)の約アミノ酸位置26~32(CDR1)、50~52(CDR2)および91~96(CDR3)と可変重鎖(VH)の26~32(CDR1)、53~55(CDR2)および96~101(CDR3)の領域を含む(ChothiaおよびLesk;J Mol Biol 196:901~917(1987))。場合によっては、CDRは、KabatおよびChotiaによって定義されるCDR領域由来のアミノ酸を含み得る。
【0032】
重鎖の定常ドメインのアミノ酸配列に応じて、抗体を異なるクラスに分類することができる。インタクト抗体には5つの主なクラス:IgA、IgD、IgE、IgGおよびIgMがあり、これらのいくつかをさらなるサブクラス(アイソタイプ)、例えばIgG1、IgG2、IgG3、IgG4、IgA1およびIgA2に分けることができる。様々なクラスに対応する重鎖の定常ドメインは、[アルファ/α]、[デルタ/δ]、[イプシロン/ε]、[ガンマ/γ]および[ミュー/μ]と呼ばれる。抗体の三次元構造とサブユニット構造の両方が知られている。
【0033】
抗体/免疫グロブリンの「機能的断片」または「抗原結合抗体断片」という用語は、抗体/免疫グロブリンの抗原結合ドメインを依然として含む抗体/免疫グロブリンの断片(例えば、IgGの可変ドメイン)として定義される。抗体の「抗原結合ドメイン」は、典型的には、抗体の1つまたは複数の超可変領域、例えばCDR、CDR2および/またはCDR3領域を含む。しかしながら、抗体の「フレームワーク」または「骨格」領域もまた、抗体と抗原の結合の間に役割を果たし得る。フレームワーク領域は、CDRの骨格を形成する。好ましくは、抗原結合ドメインは、少なくとも可変軽鎖のアミノ酸4~103と可変重鎖のアミノ酸5~109、より好ましくは可変軽鎖のアミノ酸3~107と可変軽鎖の4~111、特に好ましくは完全可変軽鎖と完全可変重鎖、すなわちVLのアミノ酸1~109とVHの1~113(国際公開第97/08320号パンフレットによる番号付け)を含む。
【0034】
本発明の「機能的断片」または「抗原結合抗体断片」は、Fab、Fab’、F(ab’)2およびFvフラグメント、ダイアボディ、単一ドメイン抗体(DAb)、線状抗体、抗体の個々の鎖(一本鎖Fv、略してscFv);および多重特異性抗体、例えば抗体断片C.A.K Borrebaeck編(1995)Antibody Engineering(Breakthroughs in Molecular Biology)、Oxford University Press;R.Kontermann&S.Duebel編(2001)Antibody Engineering(Springer Laboratory Manual)、Springer Verlagから形成される二重および三重特異性抗体を非決定的に包含する。「多重特異性」または「多機能性」抗体以外の抗体は、同一の結合部位を有する抗体である。多重特異性抗体は、抗原の異なるエピトープに特異的であり得る、または2つ以上の抗原のエピトープに特異的であり得る(例えば、国際公開第93/17715号パンフレット;国際公開第92/08802号パンフレット;国際公開第91/00360号パンフレット;国際公開第92/05793号パンフレット;Tuttら、1991、J.Immunol.14760 69;米国特許第4474893号明細書;同第4714681号明細書;同第4925648号明細書;同第5573920号明細書;同第5601819号明細書;またはKostelnyら、1992、J.Immunol.148 1547 1553参照)。Ch1ドメインとCLドメインとの間に生じる分子間ジスルフィド相互作用の数を減らすことができる、または完全に防ぐことができるように、F(ab’)2またはFab分子を構築することができる。
【0035】
「エピトープ」とは、免疫グロブリンまたはT細胞受容体に特異的に結合することができるタンパク質決定基を指す。エピトープ決定基は、通常、アミノ酸もしくは糖側鎖またはその組み合わせなどの分子の化学的に活性な表面基からなり、通常、特異的三次元構造特性および特異的電荷特性も有する。
【0036】
「機能的断片」または「抗原結合抗体断片」は、共有結合(例えば、ペプチド結合)によって、そのアミノ末端またはカルボキシル末端を介して、抗体に由来しない別のポリペプチドまたはタンパク質と融合され得る。さらに、toxophoreとのカップリングを促進するために、抗体および抗原結合フラグメントを、規定された位置に反応性システインを導入することによって改変することができる(Junutulaら、Nat Biotechnol.2008年8月;26(8):925~32参照)。
【0037】
ポリクローナル抗体は、当業者に公知の方法によって調製することができる。モノクローナル抗体は、当業者に公知の方法(KohlerおよびMilstein、Nature、256、495-497、1975)によって調製することができる。ヒトおよびヒト化モノクローナル抗体は、当業者に公知の方法(Olssonら、Meth Enzymol.92、3~16またはCabillyらの米国特許第4816567号明細書またはBossらの米国特許第4,816,397号明細書)によって調製することができる。
【0038】
当業者であれば、例えば、トランスジェニックマウス(N LonbergおよびD Huszar、Int Rev Immunol.1995;13(1):65~93)またはファージディスプレイ技術(Clacksonら、Nature.1991年8月15日;352(6336):624~8)によって、ヒト抗体およびその断片を調製する多様な方法を認識している。本発明の抗体は、例えば多数の健康なボランティアから集められた多数の抗体のアミノ酸配列からなる組換え抗体ライブラリーから得ることができる。抗体を、公知の組換えDNA技術によって産生することもできる。抗体の核酸配列は、日常的な配列決定によって得ることができる、または公的に入手可能なデータベースから入手可能である。
【0039】
「単離された」抗体または結合剤は、細胞の他の成分を除去するために精製されている。診断的または治療的使用を妨害し得る細胞の汚染成分は、例えば、酵素、ホルモン、または細胞の他のペプチド性もしくは非ペプチド性成分である。好ましい抗体または結合剤は、抗体または結合剤に関して、95重量%超の程度まで精製されたものである(例えば、ローリー法、UV-Vis分光法またはSDSキャピラリーゲル電気泳動によって測定される)。さらに、アミノ末端もしくは内部アミノ酸配列の少なくとも15個のアミノ酸を決定することが可能である程度に精製された、または均質性まで精製された抗体(均質性は還元または非還元条件下SDS-PAGEによって決定される(検出は、クマシーブルー染色によって、または好ましくは銀着色によって測定され得る))。しかしながら、抗体は、通常、1つまたは複数の精製ステップによって調製される。
【0040】
「特異的結合」または「特異的に結合する」という用語は、所定の抗原/標的分子に結合する抗体または結合剤を指す。抗体または結合剤の特異的結合は、典型的には、少なくとも10-7M(Kd値として、すなわち好ましくは10-7Mより小さいKd値を有するもの)の親和性を有する抗体または結合剤を記載し、抗体または結合剤は、所定の抗原/標的分子または密接に関連する抗原/標的分子ではない非特異的抗原/標的分子(例えば、ウシ血清アルブミンまたはカゼイン)よりも、所定の抗原/標的分子に対して少なくとも2倍高い親和性を有する。抗体または結合剤の特異的結合は、複数の抗原/標的分子(例えば、異なる種のオルソログ)への抗体または結合剤の結合を排除するものではない。抗体は、好ましくは、少なくとも10-7M(Kd値として、換言すれば好ましくは10-7Mより小さいKd値を有するもの)、好ましくは少なくとも10-8M、より好ましくは10-9M~10-11Mの範囲の親和性を有する。Kd値は、例えば、表面プラズモン共鳴分光法によって測定することができる。
【0041】
本発明の抗体-薬物コンジュゲートも同様にこれらの範囲の親和性を示す。親和性は、好ましくは、薬物のコンジュゲーションによって実質的に影響されない(一般に、親和性は、1桁未満低下し、換言すれば、例えば、最大で10-8Mから10-7Mである)。
【0042】
本発明によって使用される抗体はまた、好ましくは高い選択性のために注目に値する。本発明の抗体が、独立した他の抗原、例えばヒト血清アルブミンよりも、少なくとも2倍、好ましくは5倍、より好ましくは10倍優れた標的タンパク質に対する親和性を示す場合に、高い選択性が存在する(親和性は、例えば、表面プラズモン共鳴分光法によって測定することができる)。
【0043】
さらに、使用される本発明の抗体は、好ましくは交差反応性である。前臨床研究、例えば、毒物学的研究または活性研究(例えば、異種移植マウスにおける)を容易にし、よりよく解釈できるようにするために、本発明により使用される抗体がヒト標的タンパク質に結合するだけでなく、研究に使用される種の種標的タンパク質にも結合する場合が有利である。一実施形態では、本発明により使用される抗体が、ヒト標的タンパク質に加えて、少なくとも1つのさらなる種の標的タンパク質に対して交差反応性である。毒物学的研究および活性研究のために、げっ歯類、イヌおよび非ヒト霊長類の科の種を使用することが好ましい。好ましいげっ歯類種はマウスおよびラットである。好ましい非ヒト霊長類は、アカゲザル、チンパンジーおよび尾長マカクである。
【0044】
一実施形態では、本発明により使用される抗体が、ヒト標的タンパク質に加えて、マウス、ラットおよび尾長マカク(カニクイザル(Macaca fascicularis))からなる種の群から選択される少なくとも1つのさらなる種の標的タンパク質に対して交差反応性である。ヒト標的タンパク質に加えて、少なくともマウス標的タンパク質に対して交差反応性である、本発明により使用される抗体が特に好ましい。さらなる非ヒト種の標的タンパク質に対する親和性が、ヒト標的タンパク質に対する親和性と50倍以下、さらに特に10倍以下異なる交差反応性抗体が好ましい。
【0045】
がん標的分子に対する抗体
結合剤、例えば抗体またはその抗原結合フラグメントが向けられる標的分子は、好ましくはがん標的分子である。「がん標的分子」という用語は、同じ組織型の非がん細胞よりも1つまたは複数のがん細胞種上に豊富に存在する標的分子を記載する。好ましくは、がん標的分子は、同じ組織型の非がん細胞と比較して1つまたは複数のがん細胞種上に選択的に存在し、選択的にとは同じ組織型の非がん細胞と比較してがん細胞上に少なくとも2倍豊富であることを記載する(「選択的がん標的分子」)。がん標的分子の使用により、本発明によるコンジュゲートを使用したがん細胞の選択的治療が可能になる。
【0046】
抗原、例えばがん細胞抗原に対して特異的な抗体は、当業者が精通している方法(例えば、組換え発現など)によって当業者によって調製され得る、または商業的に獲得され得る(例えばドイツのMerck KGaAから)。がん治療において知られている市販の抗体の例は、Erbitux(登録商標)(セツキシマブ、Merck KGaA)、Avastin(登録商標)(ベバシズマブ、Roche)およびHerceptin(登録商標)(トラスツズマブ、Genentech)である。トラスツズマブは、細胞ベースのアッセイ(Kd=5nM)においてヒト上皮成長受容体の細胞外ドメインに高い親和性で結合するIgG1κ型の組換えヒト化モノクローナル抗体である。抗体はCHO細胞中で組換え的に産生される。これらの抗体は全て、PNGase Fによる脱グリコシル化または重鎖のN297(Kabat番号付け)の任意のアミノ酸への突然変異のいずれかによって、これらの抗体の非グリコシル化変異体としても産生され得る。
【0047】
本発明では、がん標的分子が、
(1)受容体タンパク質CXCR5(CD185;SwissProt:P32302;NCBI Gene ID 643、NCBI参照配列:NP_001707.1;配列番号61)
(2)表面受容体CD123(IL3RA;NCBI遺伝子ID:3563;NCBI参照配列:NP_002174.1;Swiss-Prot:P26951;配列番号62)
である。
【0048】
本発明の特に好ましい主題では、結合剤ががん標的分子CXCR5およびCD123からなる群から選択される細胞外がん標的分子に特異的に結合する。好ましい実施形態では、結合剤が、標的細胞上のその細胞外標的分子に結合した後、結合を通して標的細胞によって内在化される。これにより、結合剤-薬物コンジュゲート(免疫コンジュゲートまたはADCであり得る)が標的細胞に取り込まれる。次いで、結合剤が、好ましくは細胞内で、好ましくはリソソームで処理される。
【0049】
一実施形態では、結合剤が結合タンパク質である。好ましい実施形態では、結合剤が抗体、抗原結合抗体フラグメント、多重特異性抗体または抗体模倣物である。
【0050】
好ましい抗体模倣物は、アフィボディ、アドネクチン、アンチカリン(登録商標)、DARPins、アビマーまたはナノボディである。好ましい多重特異性抗体は二重特異性抗体および三重特異性抗体である。
【0051】
好ましい実施形態では、結合剤が抗体または抗原結合抗体フラグメント、より好ましくは単離抗体または単離抗原結合抗体フラグメントである。
【0052】
好ましい抗原結合抗体フラグメントは、Fab、Fab’、F(ab’)2およびFvフラグメント、ダイアボディ、DAb、線状抗体およびscFvである。Fab、ダイアボディおよびscFvが特に好ましい。
【0053】
特に好ましい実施形態では、結合剤が抗体である。モノクローナル抗体またはその抗原結合抗体フラグメントが特に好ましい。ヒト抗体、ヒト化抗体もしくはキメラ抗体またはこれらの抗原結合抗体フラグメントがさらに特に好ましい。
【0054】
がん標的分子に結合する抗体または抗原結合抗体フラグメントは、例えば化学合成または組換え発現などの公知の方法を使用して当業者によって調製され得る。がん標的分子のための結合剤は、商業的に獲得され得る、または例えば化学合成もしくは組換え発現などの公知の方法を使用して当業者によって調製され得る。抗体または抗原結合抗体断片を調製するさらなる方法は、国際公開第2007/070538号パンフレット(22頁の「抗体」参照)に記載されている。当業者であれば、どのようにファージディスプレイライブラリー(例えば、Morphosys HuCAL Gold)などの方法を編集して、抗体または抗原結合抗体断片を発見するために使用することができるか知っている(国際公開第2007/070538号パンフレット、24ff頁および70頁のAK実施例1、72頁のAK実施例2参照)。B細胞からのDNAライブラリーを使用する抗体を調製するさらなる方法は、例えば26頁に記載されている(国際公開第2007/070538号パンフレット)。抗体をヒト化する方法は、国際公開第2007070538号パンフレットの30~32頁およびQueenら、Pros.Natl.Acad.Sci.USA 8610029~10033、1989または国際公開第90/0786号パンフレットに詳細に記載されている。さらに、一般にタンパク質および特に抗体の組換え発現のための方法は、当業者に公知である(例えば、BergerおよびKimrnel(Guide to Molecular Cloning Techniques、Methods in Enzymology、第152巻、Academic Press,Inc.);Sambrookら(Molecular Cloning A Laboratory Manual(第2版、Cold Spring Harbor Laboratory Press;Cold Spring Harbor、N.Y.;1989)第1~3巻);Current Protocols in Molecular Biology、(F.M.Ausabelら[編]、Current Protocols、Green Publishing Associates、Inc./John Wiley&Sons,Inc.);Harlowら(Monoclonal Antibodies A Laboratory Manual、Cold Spring Harbor Laboratory Press(19881、Paul[編]);Fundamental Immunology、(Lippincott Williams&Wilkins(1998));およびHarlowら(Using Antibodies A Laboratory Manual、Cold Spring Harbor Laboratory Press(1998)参照)。当業者であれば、タンパク質/抗体の発現に必要な対応するベクター、プロモーターおよびシグナルペプチドを知っている。一般的な方法は、国際公開第2007/070538号パンフレットの41~45頁にも記載されている。IgG1抗体を調製する方法は、例えば、国際公開第2007/070538号パンフレットの74ff頁の実施例6に記載されている。その抗原に結合した後の抗体の内在化の決定を可能にする方法は当業者に公知であり、例えば国際公開第2007/070538号パンフレットの80頁に記載されている。当業者であれば、異なる標的分子特異性を有する抗体の調製と同様に、カルボアンヒドラーゼIX(Mn)抗体を調製するために使用されている国際公開第2007/070538号パンフレットに記載される方法を使用することができる。
【0055】
細菌発現
当業者であれば、抗体、その抗原結合フラグメントまたはその変異体を細菌発現の助けを借りて産生することができる方法を知っている。
【0056】
所望のタンパク質の細菌発現に適した発現ベクターは、適切な翻訳開始シグナルおよび翻訳終結シグナル、ならびに機能的プロモーターと共に、機能的リーディングフレーム内に所望のタンパク質をコードするDNA配列の挿入によって構築される。ベクターは、ベクターの保持、および所望であれば宿主内でのその増幅を可能にするために、1つまたは複数の表現型選択マーカーおよび複製起点を含む。形質転換に適した原核宿主には、それだけに限らないが、大腸菌(E.coli)、枯草菌(Bacillus subtilis)、ネズミチフス菌(Salmonella typhimurium)ならびにシュードモナス属(Pseudomonas)、ストレプトミセス属(Streptomyces)およびブドウ球菌属(Staphylococcus)の種々の種が含まれる。細菌ベクターは、例えばバクテリオファージ、プラスミド、またはファージミドに基づき得る。これらのベクターは、市販のプラスミドに由来する選択マーカーおよび細菌複製起点を含み得る。多くの市販のプラスミドは、典型的には周知のクローニングベクターpBR322(ATCC 37017)の要素を含む。細菌系では、発現させるタンパク質の意図する使用に基づいて、いくつかの有利な発現ベクターを選択することができる。
【0057】
適切な宿主株の形質転換および宿主株の適切な細胞密度への増殖の後、選択されたプロモーターを、適切な手段(例えば、温度変化または化学的誘導)によって再プライミング/誘導し、細胞をさらなる期間培養する。細胞を、典型的には遠心分離によって収穫し、必要であれば、物理的様式または化学的手段で消化し、得られた生抽出物をさらなる精製のために保持する。
【0058】
したがって、本発明のさらなる実施形態は、本発明の新規な抗体をコードする核酸を含む発現ベクターである。
【0059】
本発明の抗体またはその抗原結合フラグメントには、天然の精製産物、化学合成に由来する産物、ならびに原核宿主、例えば大腸菌(E.coli)、枯草菌(Bacillus subtilis)、ネズミチフス菌(Salmonella typhimurium)ならびにシュードモナス属(Pseudomonas)、ストレプトミセス属(Streptomyces)およびブドウ球菌属(Staphylococcus)の種々の種、好ましくは大腸菌(E.coli)で組換え技術によって産生された産物が含まれる。
【0060】
哺乳動物細胞発現
当業者であれば、抗体、その抗原結合フラグメントまたはその変異体を哺乳動物細胞発現の助けを借りて産生することができる方法を知っている。
【0061】
哺乳動物細胞宿主における発現のための好ましい調節配列には、哺乳動物細胞中での高い発現をもたらすウイルスエレメント、例えばサイトメガロウイルス(CMV)(expression amplifier)(CMVプロモーター/エンハンサーなど)、シミアンウイルス40(SV40)(SV40プロモーター/エンハンサーなど)、アデノウイルス(例えば、アデノウイルス主要後期プロモーター(AdMLP))およびポリオーマ由来のプロモーターおよび/または発現増幅因子が含まれる。抗体の発現は、構成的であっても調節されていてもよい(例えば、Tet系と併せてテトラサイクリンなどの小分子誘導物質の添加または除去により誘導)。
【0062】
ウイルス調節エレメントおよびその配列のさらなる説明については、例えば、Stinskiによる米国特許第5168062号明細書、Bellらによる米国特許第4510245号明細書およびSchaffnerらによる米国特許第4968615号明細書が参照される。組換え発現ベクターはまた、複製起点および選択マーカーを含むことができる(例えば、米国特許第4399216号明細書、同第4634665号明細書および米国特許第5179017号明細書参照)。適切な選択マーカーには、ベクターが細胞に導入されると、G418、ピューロマイシン、ハイグロマイシン、ブラストサイジン、ゼオシン/ブレオマイシンもしくはメトトレキサートなどの薬剤に対する耐性を付与する遺伝子またはグルタミン合成酵素などの宿主の栄養要求性をもたらす選択マーカーが含まれる(Bebbingtonら、Biotechnology(NY).1992年2月;10(2):169~75)。
【0063】
例えば、ジヒドロ葉酸レダクターゼ(DHFR)遺伝子はメトトレキサートに対する耐性を付与し、neo遺伝子はG418に対する耐性を付与し、アスペルギルス・テレウス(Aspergillus terreus)由来のbsd遺伝子はブラストサイジンに対する耐性を付与し、ピューロマイシンN-アセチルトランスフェラーゼはピューロマイシンに対する耐性を付与し、Sh ble遺伝子産物はゼオシンへの耐性を付与し、ハイグロマイシンに対する耐性は、大腸菌(E.coli)ハイグロマイシン耐性遺伝子(hygまたはhph)によって付与される。DHFRまたはグルタミンシンターゼなどの選択マーカーも、MTXおよびMSXと併せて増幅技術に有用である。
【0064】
発現ベクターの宿主細胞へのトランスフェクションは、電気穿孔、ヌクレオフェクション(nucleofection)、リン酸カルシウム沈殿、リポフェクション、ポリカチオンベースのトランスフェクション(ポリエチレンイミン(PEI)ベースのトランスフェクションなど)およびDEAE-デキストラントランスフェクションを含む標準的な技術を用いて行うことができる。
【0065】
抗体、その抗原結合フラグメントまたはその変異体を発現するのに適した哺乳動物宿主細胞には、チャイニーズハムスター卵巣(CHO細胞)、例えばCHO-K1、CHO-S、CHO-K1SV[R.J.KaufmanおよびP.A.Sharp(1982)Mol.Biol.159:601~621に記載されるDHFR選択マーカーと共に使用される、UrlaubおよびChasin、(1980)Proc.Natl.Acad.Sci.USA 77:4216~4220およびUrlaubら、Cell.1983年6月;33(2):405~12に記載されるDHFR-CHO細胞;およびFanら、Biotechnol Bioeng.2012年4月109(4):1007~15に例示される他のノックアウト細胞を含む]、NS0骨髄腫細胞、COS細胞、HEK293細胞、HKB11細胞、BHK21細胞、CAP細胞、EB66細胞およびSP2細胞が含まれる。
【0066】
抗体、その抗原結合フラグメントまたはその変異体発現はまた、HEK293、HEK293T、HEK293-EBNA、HEK293E、HEK293-6E、HEK293-Freestyle、HKB11、Expi293F、293EBNALT75、CHO Freestyle、CHO-S、CHO-K1、CHO-K1SV、CHOEBNALT85、CHOS-XE、CHO-3E7またはCAP-T細胞などの発現系において一過性または半安定性であり得る(例えば、Durocherら、Nucleic Acids Res.2002年1月15日;30(2):E9)などの発現系で一過性または半安定様式で行われ得る。
【0067】
いくつかの実施形態では、発現されるタンパク質が宿主細胞が増殖している細胞培養培地に分泌されるように、発現ベクターが構築される。抗体、その抗原結合フラグメントまたはその変異体を、当業者に知られているタンパク質精製法を用いて細胞培養培地から得ることができる。
【0068】
精製
抗体、その抗原結合フラグメントまたはその変異体は、例として硫酸アンモニウムまたはエタノール沈殿、酸抽出、プロテインAクロマトグラフィー、プロテインGクロマトグラフィー、陰イオンまたは陽イオン交換クロマトグラフィー、ホスホセルロースクロマトグラフィー、疎水性相互作用クロマトグラフィー(HIC)、アフィニティークロマトグラフィー、ヒドロキシアパタイトクロマトグラフィーおよびレクチンクロマトグラフィーが挙げられる周知の方法によって組換え細胞培養物から回収および精製することができる。高速液体クロマトグラフィー(「HPLC」)も同様に精製に使用することができる。例えば、Colligan、Current Protocols in Immunology、またはCurrent Protocols in Protein Science、John Wiley&Sons、NY、N.Y.、(1997~2001)、例えば、第1、4、6、8、9、10章を参照されたい。
【0069】
本発明の抗体またはその抗原結合フラグメントまたはその変異体には、天然精製産物、化学合成法からの産物、および原核生物または真核生物の宿主細胞において組換え技術を用いて産生される産物が含まれる。真核生物宿主には、例えば、酵母細胞、高等植物細胞、昆虫細胞および哺乳動物細胞が含まれる。組換え発現のために選択された宿主細胞に応じて、発現されるタンパク質はグリコシル化形態または非グリコシル化形態であり得る。
【0070】
好ましい実施形態では、抗体が、(1)例えばローリー法、UV-vis分光法もしくはSDSキャピラリーゲル電気泳動(例えば、Caliper LabChip GXII、GX 90もしくはBiorad Bioanalyzer機器で)によって測定される95重量%超の程度まで、より好ましい実施形態では、99重量%超まで、(2)N末端もしくは内部アミノ酸配列の少なくとも15残基を決定するのに適した程度まで、または(3)クーマシーブルーもしくは好ましくは銀染色を用いて還元もしくは非還元条件下でSDS-PAGEによって決定される均質性まで、精製される。
【0071】
通常、単離抗体は少なくとも1つのタンパク質精製ステップを用いて得られる。
【0072】
抗CD123抗体
本発明によると、抗CD123抗体を使用することが可能である。
【0073】
「抗CD123抗体」または「CD123に特異的に結合する抗体」という表現は、がん標的分子CD123(NCBI参照配列:NP_002174.1;配列番号62)に、好ましくは診断および/または治療用途に十分な親和性で結合する抗体に関する。特定の実施形態では、抗体が、≦1μM、≦100nM、≦10nM、≦1nM、≦0.1nM、≦0.01nMまたは≦0.001nMの解離定数(KD)でCD123に結合する。
【0074】
Sunら(Sunら、1996、Blood 87(1):83~92)は、IL-3Rα、CD123のN末端ドメインに結合するモノクローナル抗体7G3の作製および特性を記載している。米国特許第6,177,078号明細書(Lopez)は、抗CD123抗体7G3に関する。この抗体のキメラ変異体(CSL360)は、国際公開第2009/070844号パンフレットに記載されており、ヒト化バージョン(CSL362)は、国際公開第2012/021934号パンフレットに記載されている。7G3抗体の配列は、欧州特許第2426148号明細書に開示されている。この配列は、CDR移植によって得られたヒト化抗体の出発点を構成する。
【0075】
細胞表面抗原結合後に特に良好に内在化される抗体は、Kuoら(Kuoら、2009、Bioconjug Chem.20(10):1975~82)によって開示されている抗CD123抗体12F1である。抗体12F1は、抗体7G3よりもCD123に高い親和性で結合し、細胞表面抗原結合後、7G3よりも著しく早く内在化される。12F1に基づく二重特異性scFv免疫融合タンパク質は、国際公開第2013/173820号パンフレットに開示されている。抗体TPP-6013は12F1のキメラ変異体である。
【0076】
本発明は、特に、マウスに由来する抗体7G3(Sunら、1996、Blood 87(1):83~92)および12F1(Kuoら、2009、Bioconjug Chem.20(10):1975~82)から誘導された抗体もしくはその抗原結合抗体断片もしくはその変異体を含むコンジュゲート、またはマウスに由来する抗体12F1(Kuoら、2009、Bioconjug Chem.20(10):1975~82)から誘導された抗体もしくはその抗原結合抗体断片もしくはその変異体を含むコンジュゲートに関する。
【0077】
本発明の文脈において、抗CD123抗体TPP-9476、TPP-8988およびTPP-8987が特に好ましい。
【0078】
抗CXCR5抗体
本発明によると、抗CXCR5抗体を使用することが可能である。
【0079】
「抗CXCR5抗体」または「CXCR5に特異的に結合する抗体」という表現は、がん標的分子CXCR5(NCBI参照配列:NP_001707.1;配列番号61)に、好ましくは診断および/または治療用途に十分な親和性で結合する抗体に関する。特定の実施形態では、抗体が、≦1μM、≦100nM、≦10nM、≦1nM、≦0.1nM、≦0.01nMまたは≦0.001nMの解離定数(KD)でCXCR5に結合する。
【0080】
CXCR5に結合する抗体および抗原結合フラグメントの例は当業者に知られており、例えば欧州特許第2195023号明細書に記載されている。
【0081】
ラット抗体RF8B2(ACC2153)のハイブリドーマ細胞をDSMZから購入し、抗体の配列を標準的な方法によって識別した。TPP-9024、67位に点突然変異を有するこの抗体のキメラ変異体(S67F)を調製した。さらに、ラット抗体配列は、ヒトフレームワークへのCDR移植によって得られたヒト化抗体の出発点を構成した。
【0082】
これらの抗体および抗原結合フラグメントを本発明の文脈において使用することができる。
【0083】
本発明の文脈において、ヒト化抗CXCR5抗体TPP-9574、TPP-9580およびキメラ抗体TPP-9024が特に好ましい。
本発明による結合剤-薬物コンジュゲートのための好ましい抗体および抗原結合抗体フラグメント
【0084】
本出願において、結合剤-薬物コンジュゲートの文脈において、以下の表に示される以下の好ましい抗体が参照される:抗CD123抗体TPP-8987、TPP-8988およびTPP-9476ならびに抗CXCR5抗体TPP-9024、TPP-9574およびTPP-9580。
【0085】
【0086】
TPP-8987、TPP-8988、TPP-9476、TPP-9024、TPP-9574およびTPP-9580は、重鎖可変領域(VH)または軽鎖可変領域(VL)中に上記の表に特定されるCDR配列(H-CDR1、H-CDR2、H-CDR3、L-CDR1、L-CDR2、L-CDR3)の1つまたは複数を含む抗体である。好ましくは、抗体は、特定の重鎖可変領域(VH)および/または軽鎖可変領域(VL)を含む。好ましくは、抗体は、重鎖の特定の領域(IgG重鎖)および/または軽鎖の特定の領域(IgG軽鎖)を含む。
【0087】
TPP-8987は、配列番号2によって示される重鎖の可変CDR1配列(H-CDR1)、配列番号3によって示される重鎖の可変CDR2配列(H-CDR2)および配列番号4によって示される重鎖の可変CDR3配列(H-CDR3)を含む重鎖の可変領域(VH)と配列番号6によって示される軽鎖の可変CDR1配列(L-CDR1)、配列番号7によって示される軽鎖の可変CDR2配列(L-CDR2)および配列番号8によって示される軽鎖の可変CDR3配列(L-CDR3)を含む軽鎖の可変領域(VL)を含む抗CD123抗体である。
【0088】
TPP-8988は、配列番号12によって示される重鎖の可変CDR1配列(H-CDR1)、配列番号13によって示される重鎖の可変CDR2配列(H-CDR2)および配列番号14によって示される重鎖の可変CDR3配列(H-CDR3)を含む重鎖の可変領域(VH)と配列番号16によって示される軽鎖の可変CDR1配列(L-CDR1)、配列番号17によって示される軽鎖の可変CDR2配列(L-CDR2)および配列番号18によって示される軽鎖の可変CDR3配列(L-CDR3)を含む軽鎖の可変領域(VL)を含む抗CD123抗体である。
【0089】
TPP-9024は、配列番号22によって示される重鎖の可変CDR1配列(H-CDR1)、配列番号23によって示される重鎖の可変CDR2配列(H-CDR2)および配列番号24によって示される重鎖の可変CDR3配列(H-CDR3)を含む重鎖の可変領域(VH)と配列番号26によって示される軽鎖の可変CDR1配列(L-CDR1)、配列番号27によって示される軽鎖の可変CDR2配列(L-CDR2)および配列番号28によって示される軽鎖の可変CDR3配列(L-CDR3)を含む軽鎖の可変領域(VL)を含む抗CXCR5抗体である。
【0090】
TPP-9476は、配列番号32によって示される重鎖の可変CDR1配列(H-CDR1)、配列番号33によって示される重鎖の可変CDR2配列(H-CDR2)および配列番号34によって示される重鎖の可変CDR3配列(H-CDR3)を含む重鎖の可変領域(VH)と配列番号36によって示される軽鎖の可変CDR1配列(L-CDR1)、配列番号37によって示される軽鎖の可変CDR2配列(L-CDR2)および配列番号38によって示される軽鎖の可変CDR3配列(L-CDR3)を含む軽鎖の可変領域(VL)を含む抗CD123抗体である。
【0091】
TPP-9574は、配列番号42によって示される重鎖の可変CDR1配列(H-CDR1)、配列番号43によって示される重鎖の可変CDR2配列(H-CDR2)および配列番号44によって示される重鎖の可変CDR3配列(H-CDR3)を含む重鎖の可変領域(VH)と配列番号46によって示される軽鎖の可変CDR1配列(L-CDR1)、配列番号47によって示される軽鎖の可変CDR2配列(L-CDR2)および配列番号48によって示される軽鎖の可変CDR3配列(L-CDR3)を含む軽鎖の可変領域(VL)を含む抗CXCR5抗体である。
【0092】
TPP-9580は、配列番号52によって示される重鎖の可変CDR1配列(H-CDR1)、配列番号53によって示される重鎖の可変CDR2配列(H-CDR2)および配列番号54によって示される重鎖の可変CDR3配列(H-CDR3)を含む重鎖の可変領域(VH)と配列番号56によって示される軽鎖の可変CDR1配列(L-CDR1)、配列番号57によって示される軽鎖の可変CDR2配列(L-CDR2)および配列番号58によって示される軽鎖の可変CDR3配列(L-CDR3)を含む軽鎖の可変領域(VL)を含む抗CXCR5抗体である。
【0093】
TPP-8987は、好ましくは配列番号1に示される重鎖の可変領域(VH)および配列番号5に示される軽鎖の可変領域(VL)を含む抗CD123抗体である。
【0094】
TPP-8988は、好ましくは配列番号11に示される重鎖の可変領域(VH)および配列番号15に示される軽鎖の可変領域(VL)を含む抗CD123抗体である。
【0095】
TPP-9024は、好ましくは配列番号21に示される重鎖の可変領域(VH)および配列番号25に示される軽鎖の可変領域(VL)を含む抗CXCR5抗体である。
【0096】
TPP-9476は、好ましくは配列番号31に示される重鎖の可変領域(VH)および配列番号35に示される軽鎖の可変領域(VL)を含む抗CD123抗体である。
【0097】
TPP-9574は、好ましくは配列番号41に示される重鎖の可変領域(VH)および配列番号45に示される軽鎖の可変領域(VL)を含む抗CXCR5抗体である。
【0098】
TPP-9580は、好ましくは配列番号51に示される重鎖の可変領域(VH)および配列番号55に示される軽鎖の可変領域(VL)を含む抗CXCR5抗体である。
【0099】
TPP-8987は、好ましくは配列番号9に示される重鎖の領域および配列番号10に示される軽鎖の領域を含む抗CD123抗体である。
【0100】
TPP-8988は、好ましくは配列番号19に示される重鎖の領域および配列番号20に示される軽鎖の領域を含む抗CD123抗体である。
【0101】
TPP-9024は、好ましくは配列番号29に示される重鎖の領域および配列番号30に示される軽鎖の領域を含む抗CXCR5抗体である。
【0102】
TPP-9476は、好ましくは配列番号39に示される重鎖の領域および配列番号40に示される軽鎖の領域を含む抗CD123抗体である。
【0103】
TPP-9574は、好ましくは配列番号49に示される重鎖の領域および配列番号50に示される軽鎖の領域を含む抗CXCR5抗体である。
【0104】
TPP-9580は、好ましくは配列番号59に示される重鎖の領域および配列番号60に示される軽鎖の領域を含む抗CXCR5抗体である。
【0105】
治療上の使用
その治療に本発明による化合物が使用され得る過増殖性疾患には、特に、がんおよび腫瘍疾患の群が含まれる。本発明の文脈において、これらは、それだけに限らないが、以下の疾患を特に意味すると理解される:乳癌および乳腫瘍(乳腺管および小葉形態、原位置も含む乳癌)、気道の腫瘍(小細胞および非小細胞癌、気管支癌)、脳腫瘍(例えば、脳幹および視床下部のもの、星細胞腫、上衣腫、膠芽腫、神経膠腫、髄芽腫、髄膜腫および神経外胚葉性腫瘍および松果体腫瘍)、消化器官の腫瘍(食道、胃、胆嚢、小腸、大腸、直腸の癌および肛門癌)、肝臓腫瘍(とりわけ、肝細胞癌、胆管癌および混合肝細胞性胆管癌)、頭頸部領域の腫瘍(喉頭、下咽頭、上咽頭、中喉頭、口唇および口腔癌、口腔黒色腫)、皮膚腫瘍(基底細胞腫、棘細胞癌、扁平上皮細胞癌、カポジ肉腫、悪性黒色腫、非黒色腫性皮膚がん、メルケル細胞皮膚がん、肥満細胞腫瘍)、結合組織の腫瘍(とりわけ、軟組織肉腫、骨肉腫、悪性線維性組織球腫、軟骨肉腫、線維肉腫、血管肉腫、平滑筋肉腫、脂肪肉腫、リンパ肉腫および横紋筋肉腫)、眼の腫瘍(とりわけ、眼内黒色腫および網膜芽細胞腫)、内分泌腺および外分泌腺の腫瘍(例えば、甲状腺および副甲状腺、膵臓および唾液腺癌、腺癌)、尿路の腫瘍(膀胱、陰茎、腎臓、腎盂および尿管の腫瘍)ならびに生殖器官の腫瘍(女性の子宮内膜、子宮頸部、卵巣、膣、外陰および子宮ならびに男性の前立腺および精巣の癌)。これらにはまた、固形および循環細胞としての血液、リンパ系および脊髄の増殖性疾患、例えば、白血病、リンパ腫および骨髄増殖性疾患、例えば急性骨髄性、急性リンパ芽球性、慢性リンパ球性、慢性骨髄性および有毛細胞白血病ならびにAIDS関連リンパ腫、ホジキンリンパ腫、非ホジキンリンパ腫、皮膚T細胞リンパ腫、バーキットリンパ腫および中枢神経系のリンパ腫も含まれる。
【0106】
ヒトにおけるこれらの十分に特徴付けられた疾患はまた、他の哺乳動物においても同等の病因で生じ得るので、そこでも同様に本発明の化合物で治療され得る。
【0107】
本明細書に記載されCD123に対する抗体-薬物コンジュゲート(ADC)は、CD123発現がん疾患などのCD123発現障害の治療に使用することができる。典型的には、このようながん細胞は、タンパク質(例えば、免疫測定法を使用して)またはRNAレベルで測定される測定可能な量のCD123を示す。これらのがん組織のいくつかは、好ましくは同じ患者において測定された、同じ型の非癌性組織と比較して上昇したレベルのCD123を示す。場合により、CD123含量を、本発明による抗体-薬物コンジュゲート(ADC)を用いたがん治療の開始前に測定する(患者層別化)。CD123に対する抗体-薬物コンジュゲート(ADC)は、造血およびリンパ組織の腫瘍または造血およびリンパ性悪性腫瘍などのCD123発現がん疾患などのCD123発現障害の治療に使用することができる。CD123発現に関連するがん疾患の例としては、急性骨髄性白血病(AML)および骨髄異形成症候群(MDS)などの骨髄疾患が挙げられる。他の種類のがんには、B細胞急性リンパ芽球性白血病(B-ALL)、有毛細胞白血病、芽球性形質細胞様樹状細胞腫瘍(BPDCN)、ホジキンリンパ腫、未成熟T細胞急性リンパ芽球性白血病(未成熟T-ALL)、バーキットリンパ腫、濾胞性リンパ腫、慢性リンパ球性白血病(CLL)、マントル細胞リンパ腫(MCL)が含まれる。記載される発明の方法は、CD123発現がんを患っている患者の治療を含み、該方法は本発明による抗体-薬物コンジュゲート(ADC)の投与を含む。
【0108】
本発明による化合物を用いた上記のがん疾患の治療は、固形腫瘍の治療とその転移形態または循環形態の治療の両方を含む。
【0109】
本発明の文脈において、「治療」または「治療する」という用語は、慣用的な意味で使用され、疾患または健康異常に対抗する、これを低減する、減弱するまたは緩和する目的で患者に接する、患者を世話する、および患者を介護する、ならびに例えば、がんイベントのように、この疾患によって損なわれる生活状態を改善することを意味する。
【0110】
よって、本発明はさらに、障害、特に上記障害を治療および/または予防するための本発明の化合物の使用を提供する。
【0111】
本発明はさらに、障害、特に上記障害を治療および/または予防するための医薬品を製造するための本発明の化合物の使用を提供する。
【0112】
本発明はさらに、障害、特に上記障害を治療および/または予防する方法における本発明の化合物の使用を提供する。
【0113】
本発明はさらに、有効量の本発明の化合物の少なくとも1種を使用して、障害、特に上記障害を治療および/または予防する方法を提供する。
【0114】
本発明の化合物は、単独で、または必要に応じて、1種または複数の他の薬理学的に活性な物質と組み合わせて使用することができ、ただし、この組み合わせは望ましくないおよび許容できない副作用をもたらさない。そのため、本発明は、特に上記障害を治療および/または予防するための、本発明の化合物の少なくとも1種と、1種または複数のさらなる薬物とを含む医薬品を提供する。
【0115】
例えば、本発明の化合物を、がん疾患を治療するために公知の抗過剰増殖、細胞増殖抑制性、細胞傷害性または免疫療法物質と組み合わせることができる。適切な組み合わせ薬物の例としては以下が挙げられる:
131I-chTNT、アバレリクス、アビラテロン、アクラルビシン、アダリムマブ、Ado-トラスツズマブ・エムタンシン、アファチニブ、アフリベルセプト、アルデスロイキン、アレムツズマブ、アレンドロン酸、アリトレチノイン、アルトレタミン、アミホスチン、アミノグルテチミド、ヘキシル-5-アミノレブリン酸、アムルビシン、アムサクリン、アナストロゾール、アンセスチム、アネトールジチオールチオン、アネツマブ・ラブタンシン、アンギオテンシンII、アンチトロンビンIII、アプレピタント、アルシツモマブ、アルグラビン、三酸化ヒ素、アスパラギナーゼ、アテゾリズマブ、アベルマブ、アキシチニブ、アザシチジン、ベロテカン、ベンダムスチン、ベシレソマブ、ベリノスタット、ベバシズマブ、ベキサロテン、ビカルタミド、ビサントレン、ブレオマイシン、ブリナツモマブ、ボルテゾミブ、ブセレリン、ボスチニブ、ブレンツキシマブベドチン、ブスルファン、カバジタキセル、カボザンチニブ、カルシトニン、ホリナートカルシウム、レボホリナートカルシウム、カペシタビン、カプロマブ、カルボマゼピン、カルボプラチン、カルボコン、カーフィルゾミブ、カルモフール、カルムスチン、カツマキソマブ、セレコキシブ、セルモロイキン、セリチニブ、セツキシマブ、クロラムブシル、クロルマジノン、クロルメチン、シドフォビル、シナカルセト、シスプラチン、クラドリビン、クロドロン酸、クロファラビン、コビメチニブ、コパンリシブ、クリサンタスパーゼ、クリゾチニブ、シクロホスファミド、シプロテロン、シタラビン、ダカルバジン、ダクチノマイシン、ダラツムマブ、ダブラフェニブ、ダロルタミド、ダサチニブ、ダウノルビシン、デシタビン、デガレリクス、デニロイキンジフチトクス、デノスマブ、デプレオチド、デスロレリン、デクスラゾキサン、塩化ジブロスピジウム、ジアンヒドロガラクチトール、ジクロフェナク、ドセタキセル、ドラセトロン、ドキシフルリジン、ドキソルビシン、ドキソルビシン+エストロン、ドロナビノール、デュルバルマブ、エドレコロマブ、酢酸エリプチニウム、エンドスタチン、エノシタビン、エンザルタミド、エパカドスタット、エピルビシン、エピチオスタノール、エポエチンα、エポエチンβ、エポエチンζ、エプタプラチン、エリブリン、エルロチニブ、エソメプラゾール、エストラムスチン、エトポシド、エチニルエストラジオール、エベロリムス、エキセメスタン、ファドロゾール、フェンタニル、フルオキシメステロン、フロクスウリジン、フルダラビン、フルオロウラシル、フルタミド、葉酸、フォルメスタン、ホスアプレピタント、フォテムスチン、フルベストラント、ガドブトロール、ガドテリドール、ガドテル酸メグルミン塩、ガドベルセタミド、ガドキセト酸二ナトリウム塩(gd-EOB-DTPA二ナトリウム塩)、硝酸ガリウム、ガニレリクス、ゲフィチニブ、ゲムシタビン、ゲムツズマブ、グルカルピダーゼ、グルトキシム、ゴセレリン、グラニセトロン、顆粒球コロニー刺激因子(G-CSF)、顆粒球マクロファージコロニー刺激因子(GM-CSF)、ヒスタミン二塩酸塩、ヒストレリン、ヒドロキシカルバミド、I-125種、イバンドロン酸、イブリツモマブ・チウキセタン、イブルチニブ、イダルビシン、イホスファミド、イマチニブ、イミキモド、インプロスルファン、インジセトロン、インカドロン酸、インゲノールメブテート、インターフェロンα、インターフェロンβ、インターフェロンγ、イオビトリドール、イオベングアン(123I)、イオメプロール、イピリムマブ、イリノテカン、イトラコナゾール、イクサベピロン、イキサゾミブ、
ランレオチド、ランソプラゾール、ラパチニブ、ラソコリン、レナリドミド、レンバチニブ、レノグラスチム、レンチナン、レトロゾール、リュープロレリン、レバミソール、レボノルゲストレル、レボチロキシンナトリウム、リペグフィルグラスチム、リスリド、ロバプラチン、ロムスチン、ロニダミン、マソプロコール、メドロキシプロゲステロン、メゲストロール、メラルソプロール、メルファラン、メピチオスタン、メルカプトプリン、メスナ、メタドン、メトトレキサート、メトキサレン、アミノレブリン酸メチル、メチルプレドニゾロン、メチルテストステロン、メチロシン、ミファムルチド、ミルテフォシン、ミリプラチン、ミトブロニトール、ミトグアゾン、ミトラクトール、マイトマイシン、ミトタン、ミトキサントロン、モガムリズマブ、モルグラモスチム、モピダモール、塩酸モルヒネ、硫酸モルヒネ、ナビロン、ナビキシモルス、ナファレリン、ナロキソン+ペンタゾシン、ナルトレキソン、ナルトグラスチム、ネシツムマブ、ネダプラチン、ネララビン、ネリドロン酸、ネツピタント/パロノセトロン、ニボルマブ、ニボルマブ、ペンテトレオチド、ニロチニブ、ニルタミド、ニモラゾール、ニモツズマブ、ニムスチン、ニンテダニブ、ニトラクリン、ニボルマブ、オビヌツズマブ、オクトレオチド、オファツムマブ、オラパリブ、オララツマブ、オマセタキシン・メペサクシネート、オメプラゾール、オンダンセトロン、オルゴテイン、オリロチモド、オシメルチニブ、オキサリプラチン、オキシコドン、オキシメトロン、オゾガマイシン、p53遺伝子療法、パクリタキセル、パルボシクリブ、パリフェルミン、パラジウム103種、パロノセトロン、パミドロン酸、パニツムマブ、パノビノスタット、パントプラゾール、パゾパニブ、ペガスパルガーゼ、ペンブロリズマブ、ペグインターフェロンα-2b、ペンブロリズマブ、ペメトレキセド、ペントスタチン、ペプロマイシン、ペルフルブタン、ペルホスファミド、ペルツズマブ、ピシバニール、ピロカルピン、ピラルビシン、ピキサントロン、プレリキサフォール、プリカマイシン、ポリグルサム、リン酸ポリエストラジオール、ポリビニルピロリドン+ヒアルロン酸ナトリウム、ポリサッカリド-K、ポマリドマイド、ポナチニブ、ポルフィマーナトリウム、プララトレキサート、プレドニムスチン、プレドニゾン、プロカルバジン、プロコダゾール、プロプラノロール、キナゴリド、ラベプラゾール、ラコツモマブ、塩化ラジウム-223、ラドチニブ、ラロキシフェン、ラルチトレキセド、ラモセトロン、ラムシルマブ、ラニムスチン、ラスブリカーゼ、ラゾキサン、レファメチニブ、レゴラフェニブ、リセドロン酸、レニウム-186エチドロネート、リツキシマブ、ロガラチニブ、ロラピタント、ロミデプシン、ロムルチド、ロニシクリブ、サマリウム(153Sm)レキシドロナム、サツモマブ、セクレチン、シルツキシマブ、シプレウセル-T、シゾフィラン、ソブゾキサン、グリシダゾールナトリウム、ソニデジブ、ソラフェニブ、スタノゾロール、ストレプトゾシン、スニチニブ、タラポルフィン、タリモジーン・ラハーパレプベック、タミバロテン、タモキシフェン、タペンタドール、タソネルミン、テセロイキン、テクネチウム(99mTc)ノフェツモマブメルペンタン、99mTc-HYNIC-[Tyr3]-オクトレオチド、テガフール、テガフール+ギメラシル+オテラシル、テモポルフィン、テモゾロミド、テムシロリムス、テニポシド、テストステロン、テトロフォスミン、サリドマイド、チオテパ、チマルファシン、サイロトロピンα、チオグアニン、トシリズマブ、トポテカン、トレミフェン、トシツモマブ、トラベクテジン、トラメチニブ、トラマドール、トラスツズマブ、トレオスルファン、トレチノイン、トリフルリジン+チピラシル、トラメチニブ、トリロスタン、トリプトレリン、トロホスファミド、トロンボポエチン、ウベニメクス、バルルビシン、バンデタニブ、バプレオチド、バタラニブ、ベムラフェニブ、ビンブラスチン、ビンクリスチン、ビンデシン、ビンフルニン、ビノレルビン、ビスモデギブ、ボリノスタット、イットリウム90ガラスマイクロビーズ、ジノスタチン、ジノスタチンスチマラマー、ゾレドロン酸、ゾルビシン。
【0116】
さらに、本発明の化合物を、例えば、例として、以下の標的:OX-40、CD137/4-1BB、DR3、IDO1/IDO2、LAG-3、CD40に結合することができる結合剤(例えば、抗体)と組み合わせることができる。
【0117】
抗体-薬物コンジュゲート(ADC)の非細胞透過性toxophore代謝産物は、適応免疫系の細胞に対して有害な効果を及ぼさないはずであるので、本発明はさらに、本発明による抗体-薬物コンジュゲート(ADC)とがんまたは腫瘍の治療に使用するためのがん免疫療法の組み合わせを提供する。細胞傷害性抗体-薬物コンジュゲートの固有の作用機序は、腫瘍細胞の細胞死の直接的な誘発、したがって免疫応答を刺激し得る腫瘍抗原の放出を含む。さらに、KSP阻害剤toxophoreクラスがインビトロで免疫原性細胞死(ICD)のマーカーを誘導する兆しがある。したがって、本発明の結合剤-薬物コンジュゲート(ADC)と、1つもしくは複数のがん免疫療法の治療アプローチまたは1つもしくは複数の活性化合物、好ましくはがん免疫療法の分子標的に対する抗体の組み合わせは、がんまたは腫瘍を治療する好ましい方法となる。i)がん免疫療法の治療アプローチの例としては、免疫調節性モノクローナル抗体およびがん免疫療法の標的に対する低分子量物質、ワクチン、CAR T細胞、二重特異性T細胞動員抗体、腫瘍溶解性ウイルス、細胞ベースのワクチン接種アプローチが挙げられる。ii)免疫調節モノクローナル抗体に適したがん免疫療法の選択された標的の例としては、CTLA-4、PD-1/PDL-1、OX-40、CD137、DR3、IDO1、IDO2、TDO2、LAG-3、TIM-3 CD40、ICOS/ICOSL、TIGIT;GITR/GITRL、VISTA、CD70、CD27、HVEM/BTLA、CEACAM1、CEACAM6、ILDR2、CD73、CD47、B7H3、TLRが挙げられる。したがって、本発明による抗体-薬物コンジュゲート(ADC)とがん免疫療法との組み合わせは、一方では、弱い免疫原性特性を有する腫瘍をより免疫原性にし、がん免疫療法の有効性を高め、さらに長期持続性の治療作用を展開することができるだろう。
【0118】
さらに、本発明による化合物を放射線療法および/または外科的介入と組み合わせて使用することもできる。
【0119】
一般に、以下の目的を、本発明の化合物と他の細胞増殖抑制活性剤、細胞傷害活性剤または免疫療法活性剤との組み合わせによって追求することができる:
・個々の有効成分による治療と比較して、腫瘍の成長を遅くし、そのサイズを縮小し、またはそれを完全に排除する有効性の改善;
・単独療法の場合よりも低投与量で使用される化学療法剤を使用する可能性;
・個々の投与と比較してより少ない副作用でのより耐容性のある療法の可能性;
・より広範囲の新生物障害の治療の可能性;
・療法に対するより高い反応率の達成;
・現在の標準療法と比較してより長い患者の生存時間。
【0120】
さらに、本発明による化合物を放射線療法および/または外科的介入と組み合わせて使用することもできる。
【0121】
本発明はさらに、典型的には1種または複数の不活性で、非毒性の、薬学的に適した賦形剤と共に少なくとも1種の本発明の化合物を含む医薬品、および上記目的のためのその使用を提供する。
【0122】
本発明の化合物は全身的におよび/または局所的に作用することができる。この目的のために、これらを適切な様式で、例えば非経口的に、おそらく吸入により、またはインプラントもしくはステントとして投与することができる。
【0123】
本発明の化合物をこれらの投与経路に適した投与形態で投与することができる。
【0124】
非経口投与は、吸収ステップを迂回することができる(例えば、静脈内、動脈内、心臓内、脊髄内または腰椎内)または吸収を含むことができる(例えば、筋肉内、皮下、皮内、経皮または腹腔内)。非経口投与に適した投与形態には、液剤、懸濁剤、乳剤または凍結乾燥物の形態の注射および注入用製剤が含まれる。非経口投与、特に、静脈内投与が好ましい。
【0125】
一般に、非経口投与の場合、有効な結果を達成するために、約0.1~20mg/kg、好ましくは約0.3~7mg/kg体重の量を投与することが有利であることが分かった。
【0126】
それにもかかわらず、具体的には体重、投与経路、有効成分に対する個体の反応、製剤の性質および投与が行われる時間または間隔の関数として言及する量から逸脱することが必要となり得る場合もある。したがって、上記最小量未満で間に合わせることで十分となり得る場合がある一方で、言及する上限を超過しなければならない場合がある。より多くの量を投与する場合は、それを1日に数回の個別の用量に分割することが得策であり得る。
【0127】
実施例
以下の実施例は、本発明を例示する。本発明はこれらの実施例に制限されない。
【0128】
特に明言しない限り、以下の試験および実施例中の百分率は、重量百分率であり、部は重量部である。液体/液体溶液の溶媒比、希釈比および濃度データは各場合において体積に基づく。
【0129】
実験の説明において反応が行われる温度に関する情報が与えられていない場合、室温を想定すべきである。
【0130】
合成経路:
実施例の例として、以下のスキームは、実施例に至る例示的な合成経路を示す:合成順序と保護基戦略の両方を、標的化合物への経路上で変えることができる。
【0131】
スキーム1:中間体の合成
【化2】
[a):例えば、ナトリウムトリアセトキシボロヒドリド、酢酸、DCM、室温;b)例えば、アセトキシアセチルクロリド、NEt3、DCM、室温;c)例えばLiOH、THF/水、室温;d)例えばH
2、Pd-C、EtOH、室温;e)例えば、Teoc-OSu、NEt3、ジオキサン、室温;f)例えば、Fmoc-Cl、ジイソプロピルエチルアミン、ジオキサン/水2:1、室温]
【0132】
スキーム2:開環スクシンイミドを介したシステイン結合ADCの合成
【化3】
[a):HATU、DMF、N,N-ジイソプロピルエチルアミン、室温;b):H
2、10%Pd-C、メタノール、室温 c):1,1’-[(1,5-ジオキソピロリジン-1-イル)オキシ]-2-オキソエチル}-1H-ピロール-2,5-ジオン、N,N-ジイソプロピル-エチル-アミン、DMF、室温で撹拌;d)2,2,2-トリフルオロエタノール、4~8当量の塩化亜鉛、50℃で2~6時間;e)AKをPBSに溶解し、PBS緩衝液中3~4当量のTCEPをアルゴン下で添加し、室温で約30分間撹拌し、次いで、DMSOに溶解した5~10当量の化合物Dを添加し、室温で約90分間撹拌し、次いで、PBS緩衝液(pH8)(Sephadex(登録商標)G-25、GE Healthcare)で平衡化したPD10カラムを用いてpH8に再緩衝化し、次いで、室温で一晩撹拌し、次いで、場合によりPBS緩衝液(pH7.2)(Sephadex(登録商標)G-25、GE Healthcare)で平衡化したPD10カラムを用いて精製し、その後超遠心分離による濃縮し、PBS緩衝液(pH7.2)で所望の濃度に設定する]。インビボバッチの場合、これに場合により滅菌濾過が続く。
【0133】
A.実施例
略語および頭字語:
ABCB1 ATP結合カセットサブファミリーBメンバー1(P-gpおよびMDR1の同義語)
abs. 無水
Ac アセチル
ACN アセトニトリル
aq. 水性、水溶液
ATP アデノシン三リン酸
BCRP
BEP 乳がん耐性タンパク質、流出輸送体
2-ブロモ-1-エチルピリジニウムテトラフルオロボレート
Boc tert-ブトキシカルボニル
br. ブロードな(NMRにおける)
Ex. 実施例
C 濃度
ca. およそ、約
CI 化学イオン化(MSにおける)
d 二重項(NMRにおける)
d 日
DAR 薬物-対-抗体の比
TLC 薄層クロマトグラフィー
DCI 直接化学イオン化(MSにおける)
DCM ジクロロメタン
dd 二重項の二重項(NMRにおける)
DMAP 4-N,N-ジメチルアミノピリジン
DME 1,2-ジメトキシエタン
DMEM ダルベッコ改変イーグル培地(細胞培養のための標準栄養培地)
DMF N,N-ジメチルホルムアミド
DMSO ジメチルスルホキシド
D/P 色素(蛍光色素)/タンパク質比
DPBS,D-PBS, ダルベッコリン酸緩衝塩溶液
DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen(ドイツ微生物細胞培養コレクション)
PBS PBS=DPBS=D-PBS、pH7.4、Sigma、番号D8537
組成:
KCl 0.2g
KH2PO4(無水物)0.2g
NaCl 8.0g
Na2HPO4(無水物)1.15g
H2Oを用いて1lにした
dt 三重項の二重項(NMRにおける)
DTT DL-ジチオトレイトール
EDC N’-(3-ジメチルアミノプロピル)-N-エチルカルボジイミド塩酸塩
EGFR 上皮成長因子受容体
EI 電子衝突イオン化(MSにおける)
ELISA 酵素結合免疫吸着測定法
eq. 当量
ESI エレクトロスプレーイオン化(MSにおける)
ESI-MicroTofq ESI-MicroTofq(Tof=飛行時間およびq=四重極による質量分析計の名称)
FCS ウシ胎仔血清
Fmoc (9H-フルオレン-9-イルメトキシ)カルボニル
sat. 飽和
GTP グアノシン-5’-三リン酸
H 時間
HATU O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスフェート
HEPES 4-(2-ヒドロキシエチル)ピペラジン-1-エタンスルホン酸
HOAc
HOAt 酢酸
1-ヒドロキシ-7-アザベンゾトリアゾール
HOBt 1-ヒドロキシ-1H-ベンゾトリアゾール水和物
HOSu N-ヒドロキシスクシンイミド
HPLC 高圧、高速液体クロマトグラフィー
IC50 最大半数阻害濃度
i.m. 筋肉内、筋肉への投与
i.v. 静脈内、静脈内への投与
KPL-4 ヒト腫瘍細胞株
conc. 濃縮
LC-MS 液体クロマトグラフィー結合質量分析
LLC-PK1 cells ルイス肺癌ブタ腎臓細胞株
L-MDR ヒトMDR1トランスフェクトLLC-PK1細胞
M 多重項(NMRにおける)
MDR1
MeCN 多剤耐性タンパク質1
アセトニトリル
Me メチル
min 分
MOLM-13 ヒト腫瘍細胞株
MS 質量分析
MTT 3-(4,5-ジメチルチアゾール-2-イル)-2,5-ジフェニル-2H-テトラゾリウムブロミド
MV-4-11 ヒト腫瘍細胞株
NCI-H292 ヒト腫瘍細胞株
NMM N-メチルモルホリン
NMP N-メチル-2-ピロリジノン
NMR 核磁気共鳴分光法
NMRI 海軍医学研究所(NMRI)に由来するマウス系統
Nude mice 実験動物
NSCLC 非小細胞肺がん
PBS リン酸緩衝塩溶液
Pd/C パラジウム活性炭
P-gp P-糖タンパク質、トランスポータータンパク質
PNGaseF 糖を切断する酵素
quant. 定量的(収率における)
quart 四重項(NMRにおける)
quint 五重項(NMRにおける)
Rec-1 ヒト腫瘍細胞株
Rf 保持指数(TLCにおける)
RT 室温
Rt 保持時間(HPLCにおける)
s 一重項(NMRにおける)
s.c. 皮下投与、皮膚下への投与
SCID mice 重度の複合免疫不全を有する試験マウス
SK-HEP-1 ヒト腫瘍細胞株
T 三重項(NMRにおける)
TBAF テトラ-n-ブチルアンモニウムフルオリド
TEMPO (2,2,6,6-テトラメチルピペリジン-1-イル)オキシル
Teoc トリメチルシリルエトキシカルボニル
Teoc-OSu 1-({[2-(トリメチルシリル)エトキシ]カルボニル}オキシ)ピロリジン-2,5-ジオン
tert 第三級
TFA トリフルオロ酢酸
THF テトラヒドロフラン
T3P(登録商標) 2,4,6-トリプロピル-1,3,5,2,4,6-トリオキサトリホスフィナン2,4,6-トリオキシド
UV 紫外分光法
v/v (溶液の)体積-対-体積の比
Z ベンジルオキシカルボニル
【0134】
HPLCおよびLC-MS法:
方法1(LC-MS):
機器:Waters ACQUITY SQD UPLCシステム;カラム:Waters Acquity UPLC HSS T3 1.8μ50×1mm;移動相A:水1l+99%濃度ギ酸0.25ml;移動相B:アセトニトリル1l+99%濃度ギ酸0.25ml;勾配:0.0分90%A→1.2分5%A→2.0分5%A;オーブン:50℃;流量:0.40ml/分;UV検出:208~400nm。
【0135】
方法2(LC-MS):
MS機器型:Waters Synapt G2S;UPLC機器型:Waters Acquity I-CLASS;カラム:Waters、BEH300、2.1×150mm、C18 1.7μm;移動相A:水1l+0.01%ギ酸;移動相B:アセトニトリル1l+0.01%ギ酸;勾配:0.0分2%B→1.5分2%B→8.5分95%B→10.0分95%B;オーブン:50℃;流量:0.50ml/分;UV検出:220nm
【0136】
方法3(LC-MS):
MS機器:Waters(Micromass)QM;HPLC機器:Agilent 1100シリーズ;カラム:Agilent ZORBAX Extend-C18 3.0×50mm 3.5ミクロン;移動相A:水1l+0.01molの炭酸アンモニウム、移動相B:アセトニトリル1l;勾配:0.0分98%A→0.2分98%A→3.0分5%A→4.5分5%A;オーブン:40℃;流量:1.75ml/分;UV検出:210nm
【0137】
方法4(LC-MS):
MS機器型:Waters Synapt G2S;UPLC機器型:Waters Acquity I-CLASS;カラム:Waters、HSST3、2.1×50mm、C18 1.8μm;移動相A:水1l+0.01%ギ酸;移動相B:アセトニトリル1l+0.01%ギ酸;勾配:0.0分10%B→0.3分10%B→1.7分95%B→2.5分95%B;オーブン:50℃;流量:1.20ml/分;UV検出:210nm
【0138】
方法5(LC-MS):
機器:Waters ACQUITY SQD UPLCシステム;カラム:Waters Acquity UPLC HSS T3 1.8μ50×1mm;移動相A:水1l+99%濃度ギ酸0.25ml;移動相B:アセトニトリル1l+99%濃度ギ酸0.25ml;勾配:0.0分95%A→6.0分5%A→7.5分5%A;オーブン:50℃;流量:0.35ml/分;UV検出:210~400nm。
【0139】
方法6(LC-MS):
機器:Micromass Quattro Premier with Waters UPLC Acquity;カラム:Thermo Hypersil GOLD 1.9μ、50×1mm;移動相A:水1l+50%濃度ギ酸0.5ml;移動相B:アセトニトリル1l+50%濃度ギ酸0.5ml;勾配:0.0分97%A→0.5分97%A→3.2分5%A→4.0分5%Aオーブン:50℃;流量:0.3ml/分;UV検出:210nm。
【0140】
方法7(LC-MS):
機器:Agilent MS Quad 6150;HPLC:Agilent 1290;カラム:Waters Acquity UPLC HSS T3 1.8μ50×2.1mm;移動相A:水1l+99%濃度ギ酸0.25ml;移動相B:アセトニトリル1l+99%濃度ギ酸0.25ml;勾配:0.0分90%A→0.3分90%A→1.7分5%A→3.0分5%Aオーブン:50℃;流量:1.20ml/分;UV検出:205~305nm。
【0141】
方法8(LC-MS):
MS機器型:Waters Synapt G2S;UPLC機器型:Waters Acquity I-CLASS;カラム:Waters、HSST3、2.1×50mm、C18 1.8μm;移動相A:水1l+0.01%ギ酸;移動相B:アセトニトリル1l+0.01%ギ酸;勾配:0.0分2%B→2.0分2%B→13.0分90%B→15.0分90%B;オーブン:50℃;流量:1.20ml/分;UV検出:210nm。
【0142】
方法9:(LC-MS分取精製法)
MS機器:Waters;HPLC機器:Waters(カラムWaters X-Bridge C18、19mm×50mm、5μm、溶離液A:水+0.05%アンモニア、移動相B:アセトニトリル(ULC)、勾配;流量:40ml/分;UV検出:DAD;210~400nm)
または
MS機器:Waters、HPLC機器:Waters(カラムPhenomenex Luna 5μC18(2)100A、AXIA Tech.50×21.2mm、溶離液A:水+0.05%ギ酸、溶離液B:アセトニトリル(ULC)、勾配;流量:40ml/分;UV検出:DAD;210~400nm)。
【0143】
方法10:(LC-MS分析法)
MS機器:Waters SQD;HPLC機器:Waters UPLC;カラム:Zorbax SB-Aq(Agilent)、50mm×2.1mm、1.8μm;移動相A:水+0.025%ギ酸、溶離液B:アセトニトリル(ULC)+0.025%ギ酸;勾配:0.0分98%A-0.9分25%A-1.0分5%A-1.4分5%A-1.41分98%A-1.5分98%A;オーブン:40℃;流量:0.600ml/分;UV検出:DAD;210nm。
【0144】
方法11(HPLC):
機器:HP1100シリーズ、カラム:Merck Chromolith SpeedROD RP-18e、50-4.6mm、カタログ番号1.51450.0001、プレカラムChromolith Guardカートリッジキット、RP-18e、5-4.6mm、カタログ番号1.51470.0001;勾配:流量5ml/分;注入量5μl;溶媒A:水中HClO4(70%)(4ml/l)、溶媒B:アセトニトリル開始20%B、0.50分20%B、3.00分90%B、3.50分90%B、3.51分20%B、4.00分、20%B、カラム温度:40℃、波長:210nm
【0145】
方法12(LC-MS):
MS機器型:Thermo Scientific FT-MS;機器型:UHPLC+:Thermo Scientific UltiMate 3000;カラム:Waters、HSST3、2.1×75mm、C18 1.8μm;移動相A:水1l+0.01%ギ酸;移動相B:アセトニトリル1l+0.01%ギ酸;勾配:0.0分10%B→2.5分95%B→3.5分95%B;オーブン:50℃;流量:0.90ml/分;UV検出:210nm/最適積分路210~300nm
【0146】
方法13:(LC-MS):
MS機器:Waters(Micromass)Quattro Micro;機器Waters UPLC Acquity;カラム:Waters BEH C18 1.7μ 50×2.1mm;移動相A:水1l+0.01molのギ酸アンモニウム、移動相B:アセトニトリル1l;勾配:0.0分95%A→0.1分95%A→2.0分15%A→2.5分15%A→2.51分10%A→3.0分10%A;オーブン:40℃;流量:0.5ml/分;UV検出:210nm。
【0147】
方法14:(LC-MS):
MS機器型:ThermoFisherScientific LTQ-Orbitrap-XL;HPLC機器型:Agilent 1200SL;カラム:Agilent、POROSHELL 120、3×150mm、SB-C18 2.7μm;移動相A:水1l+0.1%トリフルオロ酢酸;移動相B:アセトニトリル1l+0.1%トリフルオロ酢酸;勾配:0.0分2%B→0.3分2%B→5.0分95%B→10.0分95%B;オーブン:40℃;流量:0.75ml/分;UV検出:210nm
【0148】
その調製が以下で明示的に記載されていない全ての反応物質または試薬は、一般的に利用可能な供給業者から商業的に購入した。同様にその調製が以下で記載されておらず、商業的に入手可能でなく一般的に利用可能でない供給業者から得た全ての他の反応物質または試薬については、その調製が記載されている公開参考文献を参照する。
【0149】
出発化合物および中間体:
中間体C52
(1R)-1-[1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-イル]-2,2-ジメチルプロパン-1-アミン
【化4】
メチル4-ブロモ-1H-ピロール-2-カルボキシレート10.00g(49.01mmol)を最初にDMF100.0mlに装入し、炭酸セシウム20.76g(63.72mmol)および臭化ベンジル9.22g(53.91mmol)を添加した。反応混合物を室温で一晩撹拌した。反応混合物を水と酢酸エチルに分配し、水相を酢酸エチルで抽出した。合わせた有機相を硫酸マグネシウム上で乾燥させ、溶媒を減圧下で蒸発させた。この反応をメチル4-ブロモ-1H-ピロール-2-カルボキシレート90.0gで繰り返した。
【0150】
2つの合わせた反応物を分取RP-HPLC(カラム:Daiso 300x100;10μ、流量:250ml/分、MeCN/水)によって精製した。溶媒を減圧下で蒸発させ、残渣を高真空下で乾燥させた。これにより、化合物メチル1-ベンジル-4-ブロモ-1H-ピロール-2-カルボキシレート125.15g(理論値の87%)が得られた。
LC-MS(方法1):Rt=1.18分;MS(ESIpos):m/z=295[M+H]+。
【0151】
アルゴン下で、メチル1-ベンジル-4-ブロモ-1H-ピロール-2-カルボキシレート4.80g(16.32mmol)を最初にDMFに装入し、(2,5-ジフルオロフェニル)ボロン酸3.61g(22.85mmol)、飽和炭酸ナトリウム溶液19.20mlおよび[1,1’-ビス(ジフェニルホスフィノ)フェロセン]-ジクロロパラジウム(II):ジクロロメタン1.33g(1.63mmol)を添加した。反応混合物を85℃で一晩撹拌した。反応混合物をCelite(登録商標)に通して濾過し、濾過ケークを酢酸エチルで洗浄した。有機相を水で抽出し、次いで、飽和NaCl溶液で洗浄した。有機相を硫酸マグネシウム上で乾燥させ、溶媒を減圧下で蒸発させた。残渣をシリカゲルで精製した(移動相シクロヘキサン/酢酸エチル100:3)。溶媒を減圧下で蒸発させ、残渣を高真空下で乾燥させた。これにより、化合物メチル1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-カルボキシレート3.60g(理論値の67%)が得られた。
LC-MS(方法7):Rt=1.59分;MS(ESIpos):m/z=328[M+H]+。
【0152】
メチル1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-カルボキシレート3.60g(11.00mmol)を最初にTHF 90.0mlに装入し、水素化アルミニウムリチウム1.04g(27.50mmol)(THF中2.4M)を0℃で添加した。反応混合物を0℃で30分間撹拌した。飽和酒石酸カリウムナトリウム溶液を0℃で添加し、反応混合物を酢酸エチルと混和した。有機相を飽和酒石酸カリウムナトリウム溶液で3回抽出した。有機相を飽和NaCl溶液で1回洗浄し、硫酸マグネシウム上で乾燥させた。溶媒を減圧下で蒸発させ、残渣をジクロロメタン30.0mlに溶解した。酸化マンガン(IV)3.38g(32.99mmol)を添加し、混合物を室温で48時間撹拌した。酸化マンガン(IV)さらに2.20g(21.47mmol)を添加し、混合物を室温で一晩撹拌した。反応混合物をCelite(登録商標)に通して濾過し、濾過ケークをジクロロメタンで洗浄した。溶媒を減圧下で蒸発させ、残渣(1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-カルバルデヒド)2.80gをさらに精製することなく合成の次のステップに使用した。
LC-MS(方法7):Rt=1.48分;MS(ESIpos):m/z=298[M+H]+。
【0153】
1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-カルバルデヒド28.21g(94.88mmol)を、(R)-2-メチルプロパン-2-スルフィンアミド23.00g(189.77mmol)と共に最初に無水THF403.0mlに装入し、チタン(IV)イソプロポキシド67.42g(237.21mmol)を添加し、混合物を室温で一晩撹拌した。飽和NaCl溶液500mlおよび酢酸エチル1000.0mlを添加し、混合物を室温で1時間撹拌した。混合物を珪藻土に通して濾過し、濾液を飽和NaCl溶液で2回洗浄した。有機相を硫酸マグネシウム上で乾燥させ、溶媒を減圧下で蒸発させ、残渣をBiotage Isolera(シリカゲル、カラム1500+340g SNAP、流量200ml/分、酢酸エチル/シクロヘキサン1:10)を用いて精製した。
LC-MS(方法7):Rt=1.63分;MS(ESIpos):m/z=401[M+H]+。
【0154】
(R)-N-{(E/Z)-[1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-イル]メチレン}-2-メチルプロパン-2-スルフィンアミド25.00g(62.42mmol)を最初にアルゴン下、無水THFに装入し、-78℃に冷却した。次いで、tert-ブチルリチウム(ペンタン中1.7M溶液)12.00g(187.27mmol)を-78℃で添加し、混合物をこの温度で3時間撹拌した。次いで、-78℃で、メタノール71.4mlおよび飽和塩化アンモニウム溶液214.3mlを連続で添加し、反応混合物を室温に加温させ、室温で1時間撹拌した。混合物を酢酸エチルで希釈し、水で洗浄した。有機相を硫酸マグネシウム上で乾燥させ、溶媒を減圧下で蒸発させた。残渣(R)-N-{(1R)-1-[1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-イル]-2,2-ジメチルプロピル}-2-メチルプロパン-2-スルフィンアミドをさらに精製することなく合成の次のステップに使用した。
LC-MS(方法6):Rt=2.97分;MS(ESIpos):m/z=459[M+H]+。
【0155】
(R)-N-{(1R)-1-[1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-イル]-2,2-ジメチルプロピル}-2-メチルプロパン-2-スルフィンアミド28.00g(61.05mmol)を最初に1,4-ジオキサン186.7mlに装入し、次いで、1,4-ジオキサン中HCl溶液(4.0M)45.8mlを添加した。反応混合物を室温で2時間撹拌し、溶媒を減圧下で蒸発させた。残渣を分取HPLC(カラム:Kinetix 100x30;流量:60ml/分、MeCN/水)によって精製した。アセトニトリルを減圧下で蒸発させ、ジクロロメタンを水性残渣に添加した。有機相を重炭酸ナトリウム溶液で洗浄し、硫酸マグネシウム上で乾燥させた。溶媒を減圧下で蒸発させ、残渣を高真空下で乾燥させた。これにより、標記化合物16.2g(理論値の75%)が得られた。
LC-MS(方法6):Rt=2.10分;MS(ESIpos):m/z=338[M-NH2]+、709[2M+H]+。
1H-NMR(400 MHz,DMSO-d6):δ[ppm]= 0.87(s,9H),1.53(s,2H),3.59(s,1H),5.24(d,2H),6.56(s,1H),6.94(m,1H),7.10(d,2H),7.20(m,1H),7.26(m,2H),7.34(m,2H),7.46(m,1H).
【0156】
中間体C58
(2S)-4-[{(1R)-1-[1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-イル]-2,2-ジメチルプロピル}(グリコロイル)アミノ]-2-({[2-(トリメチルシリル)エトキシ]カルボニル}アミノ)ブタン酸
【化5】
中間体C52 4.3g(12.2mmol)をDCM525mlに溶解し、ナトリウムトリアセトキシボロヒドリド3.63g(17.12mmol)および酢酸8.4mlを添加した。室温で5分間撹拌した後、DCM175mlに溶解した中間体L57 8.99g(24.5mmol)を添加し、反応物を室温でさらに45分間撹拌した。次いで、反応物をDCM300mlで希釈し、重炭酸ナトリウム溶液100mlで2回および飽和NaCl溶液で1回洗浄した。有機相を硫酸マグネシウム上で乾燥させ、溶媒を減圧下で蒸発させ、残渣を高真空下で乾燥させた。次いで、残渣を分取RP-HPLC(カラム:Chromatorex C18)によって精製した。適切な画分を合わせた後、溶媒を減圧下で蒸発させ、残渣を高真空下で乾燥させた。これにより、メチル(2S)-4-({(1R)-1-[1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-イル]-2,2-ジメチルプロピル}アミノ)-2-({[2-(トリメチルシリル)エトキシ]カルボニル}アミノ)ブタノエート4.6g(理論値の61%)が得られた。
LC-MS(方法12)R
t=1.97分;MS(ESIpos):m/z=614(M+H)
+。
【0157】
この中間体2.06g(3.36mmol)を最初にDCM76mlに装入し、トリエチルアミン2.1mlの存在下、2-クロロ-2-オキソエチルアセテート0.81ml(7.17mmol)でアシル化した。室温で20時間撹拌した後、2-クロロ-2-オキソエチルアセテート0.36mlおよびトリエチルアミン0.94mlを添加し、反応物を室温でさらに15分間撹拌した。次いで、混合物を酢酸エチル500mlで希釈し、5%クエン酸300mlで2回、飽和炭酸水素ナトリウム溶液300mlで2回および飽和塩化ナトリウム溶液100mlで1回連続で抽出し、次いで、硫酸マグネシウム上で乾燥させ、濃縮した。高真空下で乾燥させると、保護された中間体2.17g(理論値の79%)が得られた。
LC-MS(方法1)Rt=1.48分;MS(ESIpos):m/z=714(M+H)+。
【0158】
この中間体2.17mg(2.64mmol)をTHF54mlおよび水27mlに溶解し、2モル濃度水酸化リチウム溶液26mlを添加した。混合物を室温で30分間撹拌し、次いで、TFA1.4mlを用いてpH3~4に調整した。混合物を減圧下で濃縮した。THFの大部分を留去したら、水溶液をDCMで2回抽出し、次いで、減圧下で濃縮乾固した。残渣を分取HPLC(カラム:Chromatorex C18)によって精製した。適切な画分を合わせた後、溶媒を減圧下で蒸発させ、残渣をアセトニトリル/水から凍結乾燥させた。これにより、標記化合物1.1g(理論値の63%)が得られた。
LC-MS(方法1):Rt=1.34分;MS(ESIpos):m/z=656(M-H)-。
1H-NMR(400 MHz,DMSO-d6):δ[ppm]=0.03(s,9H),0.58(m,1H),0.74-0.92(m,11H),1.40(m,1H),3.3(m,2H),3.7(m,1H),3.8-4.0(m,2H),4.15(q,2H),4.9 and 5.2(2d,2H),5.61(s,1H),6.94(m,2H),7.13-7.38(m,7H),7.48(s,1H),7.60(m,1H),12.35(s,1H).
【0159】
中間体C66
2-(トリメチルシリル)エチル[(2S)-4-[{(1R)-1-[1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-イル]-2,2-ジメチルプロピル}(グリコロイル)アミノ]-1-{[2-(グリシルアミノ)エチル]アミノ}-1-オキソブタン-2-イル]-カルバメート
【化6】
最初に、ペプチド化学の従来の方法(HATUカップリングおよびBoc切断)によって、N-[(ベンジルオキシ)カルボニル]グリシンおよびtert-ブチル(2-アミノエチル)カルバメートから、トリフルオロ酢酸ベンジル{2-[(2-アミノエチル)アミノ]-2-オキソエチル}カルバメートを調製した。
【0160】
この中間体13mg(0.036mmol)および中間体C58 25mg(0.033mmol)をDMF3mLに溶解し、HATU19mg(0.05mmol)およびN,N-ジイソプロピルエチルアミン17μlを添加した。室温で10分間撹拌した後、混合物を濃縮し、残渣を分取HPLCによって精製した。これにより、中間体17.8mg(理論値の60%)が得られた。
LC-MS(方法1):Rt=1.36分;MS(ESIpos):m/z=891(M+H)+。
【0161】
この中間体17mg(0.019mmol)をエタノール10mlに溶解し、パラジウム炭素(10%)を添加し、混合物を標準圧力下、室温で水素を用いて室温で2時間水素化した。触媒を濾別し、溶媒を減圧下で蒸発させ、残渣を高真空下で乾燥させた。これにより、標記化合物9mg(理論値の62%)が得られた。
LC-MS(方法1):Rt=1.03分;MS(ESIpos):m/z=757(M+H)+。
【0162】
中間体C118
tert-ブチルN-[(8S)-8-{2-[{(1R)-1-[1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-イル]-2,2-ジメチルプロピル}(グリコロイル)アミノ]エチル}-2,2-ジメチル-6,9-ジオキソ-5-オキサ-7,10-ジアザ-2-シラドデカン-12-イル]-D-α-グルタミネート
【化7】
HATUの存在下で中間体L119および中間体C58をカップリングし、その後Z保護基を水素化分解的に開裂することによって、ペプチド化学の従来の方法により、標記化合物を調製した。
LC-MS(方法1):R
t=1.05分;MS(ESIpos):m/z=885(M+H)
+。
【0163】
中間体C119
tert-ブチルグリシル-N-[(8S)-8-{2-[{(1R)-1-[1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-イル]-2,2-ジメチルプロピル}(グリコロイル)アミノ]エチル}-2,2-ジメチル-6,9-ジオキソ-5-オキサ-7,10-ジアザ-2-シラドデカン-12-イル]-D-α-グルタミネート
【化8】
HATUの存在下で2,5-ジオキソピロリジン-1-イルN-[(ベンジルオキシ)カルボニル]グリシネートおよび中間体C118をカップリングし、その後水素標準圧力下、室温でメタノール/ジクロロメタン中10%パラジウム活性炭素上での水素化によってZ保護基を除去することによって、ペプチド化学の従来の方法により、中間体C119を調製した。
LC-MS(方法1):R
t=1.03分;MS(ESIpos):m/z=942(M+H)
+。
【0164】
中間体L1
トリフルオロ酢酸N-(2-アミノエチル)-2-(2,5-ジオキソ-2,5-ジヒドロ-1H-ピロール-1-イル)アセトアミド
【化9】
市販の(2,5-ジオキソ-2,5-ジヒドロ-1H-ピロール-1-イル)酢酸およびtert-ブチル(2-アミノエチル)カルバメートから、ペプチド化学の従来の方法によって、標記化合物を調製した。
LC-MS(方法1):R
t=0.17分;MS(ESIpos):m/z=198(M+H)
+。
【0165】
中間体L57
メチル(2S)-4-オキソ-2-({[2-(トリメチルシリル)エトキシ]カルボニル}アミノ)ブタノエート
【化10】
メチルL-アスパラギネート塩酸塩500.0mg(2.72mmol)および2-(トリメチルシリル)エチル2,5-ジオキソピロリジン-1-カルボキシレート706.3mg(2.72mmol)を最初に1,4-ジオキサン5.0mlに装入し、トリエチルアミン826.8mg(8.17mmol)を添加した。反応混合物を室温で一晩撹拌した。反応混合物を分取RP-HPLC(カラム:Reprosil 250x40;10μ、流量50ml/分、MeCN/水、0.1%TFA)によって直接精製した。次いで、溶媒を減圧下で蒸発させ、残渣を高真空下で乾燥させた。これにより、化合物(3S)-4-メトキシ-4-オキソ-3-({[2-(トリメチルシリル)エトキシ]カルボニル}アミノ)ブタン酸583.9mg(理論値の74%)が得られた。
LC-MS(方法1):R
t=0.89分;MS(ESIneg):m/z=290(M-H)
-。
【0166】
(3S)-4-メトキシ-4-オキソ-3-({[2-(トリメチルシリル)エトキシ]カルボニル}アミノ)ブタン酸592.9mgを最初に1,2-ジメトキシエタン10.0mlに装入し、混合物を-15℃に冷却し、4-メチルモルホリン205.8mg(2.04mmol)およびイソブチルクロロホルメート277.9mg(2.04mmol)を添加した。沈殿を15分後に吸引濾別し、それぞれ1,2-ジメトキシエタン10.0mlで2回濾別した。濾液を-10℃に冷却し、水10mlに溶解した水素化ホウ素ナトリウム115.5mg(3.05mmol)を激しく撹拌しながら添加した。相を分離し、有機相を飽和炭酸水素ナトリウム溶液および飽和NaCl溶液でそれぞれ1回洗浄した。有機相を硫酸マグネシウム上で乾燥させ、溶媒を減圧下で蒸発させ、残渣を高真空下で乾燥させた。これにより、化合物メチルN-{[2-(トリメチルシリル)エトキシ]カルボニル}-L-ホモセリネート515.9mg(理論値の91%)が得られた。
LC-MS(方法1)Rt=0.87分;MS(ESIpos):m/z=278(M+H)+。
【0167】
メチルN-{[2-(トリメチルシリル)エトキシ]カルボニル}-L-ホモセリネート554.9mg(2.00mmol)を最初にジクロロメタン30.0mlに装入し、Dess-Martinペルヨージナン1.27g(3.0mmol)およびピリジン474.7mg(6.00mmol)を添加した。混合物を室温で一晩撹拌した。4時間後、反応物をジクロロメタンで希釈し、有機相を10%濃度のNa2S2O3溶液、10%濃度のクエン酸溶液および飽和炭酸水素ナトリウム溶液でそれぞれ3回洗浄した。有機相を硫酸マグネシウム上で乾燥させ、溶媒を減圧下で蒸発させた。これにより、標記化合物565.7mg(理論値の97%)が得られた。
1H-NMR(400 MHz,DMSO-d6):δ[ppm]=0.03(s,9H),0.91(m,2H),2.70-2.79(m,1H),2.88(dd,1H),3.63(s,3H),4.04(m,2H),4.55(m,1H),7.54(d,1H),9.60(t,1H).
【0168】
中間体L119
トリフルオロ酢酸tert-ブチルN-(2-アミノエチル)-N
2-[(ベンジルオキシ)カルボニル]-D-α-グルタミネート塩
【化11】
HATUの存在下で市販の(2R)-2-{[(ベンジルオキシ)カルボニル]アミノ}-5-tert-ブトキシ-5-オキソペンタン酸(1.00g、2.96mmol)およびtert-ブチル(2-アミノエチル)カルバメート(560μl、3.6mmol)をカップリングし、その後t-ブチルエステル保護基を実質的に保護しながら、ジクロロメタン中10%濃度TFAを用いてBoc保護基を酸性除去することによって、ペプチド化学の従来の方法により、中間体L119を調製した。分取HPLCによる精製によって標記化合物が得られた。
LC-MS(方法1)R
t=0.62分;MS(ESI-pos):m/z=380(M+H)
+。
【0169】
中間体L120
ベンジルN-(2-アミノエチル)-N2-[(ベンジルオキシ)カルボニル]-D-アルファ-グルタミメート
【化12】
【0170】
HATUの存在下で市販の(2R)-5-(ベンジルオキシ)-2-{[(ベンジルオキシ)カルボニル]アミノ}-5-オキソペンタン酸(830mg、2.23mmol)およびtert-ブチル(2-アミノエチル)カルバメート(420μl、2.7mmol)をカップリングし、その後ジクロロメタン中TFAを用いてBoc保護基を酸性除去することによって、ペプチド化学の従来の方法により、中間体L120を調製した。
【0171】
中間体F104
トリフルオロ酢酸(2S)-2-アミノ-4-[{(1R)-1-[1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-イル]-2,2-ジメチルプロピル}(グリコロイル)アミノ]-N-(2-{[(2,5-ジオキソ-2,5-ジヒドロ-1H-ピロール-1-イル)アセチル]アミノ}エチル)ブタンアミド塩
【化13】
中間体C58 300mg(0.456mmol)をDMF38mlに溶解し、中間体L1 142mg(0.456mmol)およびHATU260mg(0.684mmol)およびN,N-ジイソプロピルエチルアミン318μlを添加した。混合物を室温で60分間撹拌し、次いで、濃縮した。残渣を分取HPLCによって精製すると、凍結乾燥後、保護中間体338mg(理論値の87%)が得られた。
LC-MS(方法1)R
t=1.30分;MS(ESIpos):m/z=837(M+H)
+。
【0172】
第2のステップで、この中間体338mg(0.404mmol)を2,2,2-トリフルオロエタノール40mlに溶解した。塩化亜鉛330.2mg(2.42mmol)を添加し、混合物を50℃で3時間撹拌した。次いで、エチレンジアミン-N,N,N’,N’-四酢酸708mg(2.42mmol)および0.1%濃度のトリフルオロ酢酸水溶液4mlを添加した。混合物を分取HPLCによって精製した。適切な画分を濃縮し、残渣をアセトニトリル/水から凍結乾燥すると、標記化合物265mg(理論値の81%)が得られた。
LC-MS(方法1)Rt=0.82分;MS(ESIpos):m/z=693(M+H)+。
【0173】
中間体F325
N-[2-({(2S)-2-アミノ-4-[{(1R)-1-[1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-イル]-2,2-ジメチルプロピル}(グリコロイル)アミノ]ブタノイル}アミノ)エチル]-N
2-[(2,5-ジオキソ-2,5-ジヒドロ-1H-ピロール-1-イル)アセチル]-D-α-グルタミントリフルオロ酢酸塩
【化14】
【0174】
中間体C58 30mg(0.046mmol)を、1.5当量のHATUおよび3当量のN,N-ジイソプロピルエチルアミンの存在下、トリフルオロ酢酸ベンジルN-(2-アミノエチル)-N2-[(ベンジルオキシ)カルボニル]-D-α-グルタミネート塩(中間体L120)29mg(0.055mmol)とカップリングした。分取HPLCによって精製すると、保護中間体39.5mg(理論値の82%)が得られた。この中間体から、最初にベンジルエステル基を水素化分解的に除去した。その後、3当量のN,N-ジイソプロピルエチルアミンの存在下、DMF中で1-{2-[(2,5-ジオキソピロリジン-1-イル)-オキシ]-2-オキソエチル}-1H-ピロール-2,5-ジオンとのカップリングを行った。最後のステップで、この中間体13.5mg(0.012mmol)を2,2,2-トリフルオロエタノール5mlに溶解した。塩化亜鉛13mg(0.096mmol)を添加し、混合物を50℃で3時間撹拌した。その後、エチレンジアミン-N,N,N’,N’-四酢酸28mg(0.096mmol)を添加した。混合物を分取HPLCによって精製した。適切な画分を濃縮し、残渣をアセトニトリル/水から凍結乾燥すると、標記化合物9mg(理論値の81%)が得られた。
LC-MS(方法12)Rt=1.44分;MS(ESIpos):m/z=822(M+H)+。
【0175】
B:抗体-薬物コンジュゲート(ADC)の調製
B-1.抗CD123および抗CXCR5抗体ならびに抗CD123および抗CXCR5抗体のキメラおよびヒト化変異体を作製するための一般的方法
使用した抗体、例えば抗CD123抗体TPP-8987、TPP-8988およびTPP-9476ならびに抗CXCR5抗体TPP-9024、TPP-9574およびTPP-9580のタンパク質配列(アミノ酸配列)を、当業者に公知の方法によってそれぞれのタンパク質をコードするDNA配列に変換し、一過性哺乳動物細胞培養に適した発現ベクターに挿入する(Tomら、Methods Express:Expression Systemsの第12章、Michael R.DysonおよびYves Durocher編、Scion Publishing Ltd、2007に記載されているように)。
【0176】
B-2.哺乳動物細胞で抗体を発現させるための一般的方法
抗体、例えば、抗CD123抗体TPP-8987、TPP-8988およびTPP-9476、ならびに抗CXCR5抗体TPP-9024、TPP-9574およびTPP-9580を、Tomら、Methods Express:Expression Systemsの第12章、Michael R.DysonおよびYves Durocher編、Scion Publishing Ltd、2007に記載されるように、一過性哺乳動物細胞培養で作製した。
【0177】
B-3.細胞上清から抗体を精製するための一般的な方法
抗体、例えば抗CD123抗体TPP-8987、TPP-8988およびTPP-9476ならびに抗CXCR5抗体TPP-9024、TPP-9574およびTPP-9580を細胞培養上清から得た。細胞上清を細胞の遠心分離によって清澄化した。次いで、細胞上清を、MabSelect Sure(GE Healthcare)クロマトグラフィーカラムでのアフィニティークロマトグラフィーによって精製した。この目的のために、カラムをDPBS pH7.4(Sigma/Aldrich)で平衡化し、細胞上清をアプライし、カラムを約10カラム容量のDPBS pH7.4+500mM塩化ナトリウムで洗浄した。抗体を50mM酢酸ナトリウムpH3.5+500mM塩化ナトリウムに溶出し、次いで、DPBS pH7.4中Superdex 200カラム(GE Healthcare)でゲル濾過クロマトグラフィーによってさらに精製した。
【0178】
市販の抗体を、市販品から標準的なクロマトグラフィー法(プロテインAクロマトグラフィー、分取ゲル濾過クロマトグラフィー(SEC-サイズ排除クロマトグラフィー))によって精製した。
【0179】
B-4.システイン側鎖へのカップリングのための一般的方法
以下の抗体をカップリング反応に使用した:
抗CD123 AK TPP-8987
抗CD123 AK TPP-8988
抗CD123 AK TPP-9476
抗CXCR5 AK TPP-9024
抗CXCR5 AK TPP-9574
抗CXCR5 AK TPP-9580
【0180】
小規模カップリング:
PBS緩衝液に溶解した2~5当量のトリス(2-カルボキシエチル)ホスフィン塩酸塩(TCEP)を、適切な抗体2~5mgのPBS緩衝液中溶液に、1mg/ml~20mg/mlの濃度範囲、好ましくは約5mg/ml~15mg/mlの範囲で添加し、混合物を室温で30分~1時間撹拌した。その後、意図する充填に応じて、2~12当量、好ましくは約5~10当量のカップリングするマレイミド前駆体化合物をDMSO中溶液として添加した。ここで、DMSOの量は全体積の10%を超えるべきでない。混合物を室温で60~240分間撹拌し、その後、予めpH8に調整したPBS緩衝液で2.5~7.5mlの容量に希釈し、次いで、PBS緩衝液pH8で平衡化したPD10カラム(Sephadex(登録商標)G-25、GE Healthcare)を通過させ、PBS緩衝液pH8で溶出した。溶出液をアルゴン下室温で一晩撹拌した。その後、溶液を超遠心分離によって濃縮し、PBS緩衝液(pH7.2)で再希釈した。
【0181】
中規模カップリング:
アルゴン下で、PBS緩衝液中2~5当量、好ましくは3当量のTCEP溶液(c約0.2~0.8mg/ml、好ましくは0.5mg/ml)を、PBS緩衝液中当の抗体20~200mg(c約5~15mg/ml)に添加した。混合物を室温で30分間撹拌し、次いで、DMSOに溶解した2~12当量、好ましくは5~10当量のマレイミド前駆体化合物を添加した。室温でさらに1.5時間~2時間撹拌した後、混合物を予めpH8に調整したPBS緩衝液で希釈した。
【0182】
次いで、この溶液を、PBS緩衝液pH8で平衡化したPD10カラム(Sephadex(登録商標)G-25、GE Healthcare)にアプライし、PBS緩衝液pH8で溶出した。溶出液をPBS緩衝液pH8で1~5mg/mlの濃度に希釈した。この溶液をアルゴン下室温で一晩撹拌した。次いで、必要であれば、溶液をpH7.2に再緩衝化した。ADC溶液を超遠心分離によって濃縮し、PBS緩衝液(pH7.2)で再希釈し、次いで、場合により再び約10mg/mlの濃度に濃縮した。
【0183】
示される構造式において、AKは、実施例により表から得られる意味を有することができる:
抗CD123 AK TPP-8987(部分的に還元された)-S§1
抗CD123 AK TPP-8988(部分的に還元された)-S§1
抗CD123 AK TPP-9476(部分的に還元された)-S§1
抗CXCR5 AK TPP-9024(部分的に還元された)-S§1
抗CXCR5 AK TPP-9574(部分的に還元された)-S§1
抗CXCR5 AK TPP-9580(部分的に還元された)-S§1
(式中、
§1は、スクシンイミド基または任意の異性体加水分解開鎖スクシンアミドまたはそこから生じたアルキレン基との結合を表し、
Sは部分的に還元された抗体のシステイン残基の硫黄原子を表す)。
【0184】
本発明によるコンジュゲートのさらなる精製および特徴付け
反応後、場合によって、反応混合物を、例えば限外濾過によって濃縮し、次いで、例えばSephadex(登録商標)G-25カラムを使用してクロマトグラフィーによって脱塩および精製した。溶出を、例えば、リン酸緩衝生理食塩水(PBS)を用いて行った。次いで、溶液を滅菌濾過し、凍結させた。あるいは、コンジュゲートを凍結乾燥することができる。
【0185】
B-7.抗体、toxophore搭載量(loading)および開いたシステイン付加物の割合の決定
脱グリコシル化および/または変性後の分子量決定に加えてタンパク質識別のために、トリプシン消化を行って、変性、還元および誘導体化後に、発見されたトリプシン性ペプチドを介したタンパク質の識別を確認した。
【0186】
実施例に記載されるコンジュゲートの得られたPBS緩衝液のtoxophore搭載量(表中、DAR、すなわち薬物-対-抗体の比と称される)を以下のように決定した:
個々のコンジュゲート種の分子量の質量分析測定によって、リジン結合ADCのtoxophore搭載量の決定を行った。ここで、抗体コンジュゲートをまずPNGaseFで脱グリコシル化し、試料を酸性化し、HPLC分離/脱塩後、ESI-MicroTofQ(Bruker Daltonik)を用いた質量分析によって分析した。TIC(全イオンクロマトグラム)中のシグナル上の全てのスペクトルを加え、MaxEnt逆重畳積分に基づいて異なるコンジュゲート種の分子量を計算した。次いで、DAR(=薬物/抗体比)を、異なる種のシグナル積分後に計算した。この目的のために、toxophore数によって重み付けされた全ての種についての積分結果の合計を、全ての種について単純に重み付けされた積分結果の合計で割った。
【0187】
還元および変性ADCの逆相クロマトグラフィーによって、システイン結合コンジュゲートのtoxophore搭載量を決定した。グアニジニウム塩酸塩(GuHCl)(28.6mg)およびDL-ジチオトレイトール(DTT)(500mM、3μl)の溶液を、ADC溶液(1mg/ml、50μl)に添加した。混合物を55℃で1時間インキュベートし、HPLCによって分析した。
【0188】
220nmでの検出を伴うAgilent 1260HPLCシステムでHPLC分析を行った。Polymer Laboratories PLRP-Sポリマー逆相カラム(カタログ番号PL1912-3802)(2.1×150mm、粒径8μm、1000Å)を、以下の勾配:0分、25%B;3分、25%B;28分、50%Bで、1ml/分の流量で使用した。溶離液Aは水中0.05%トリフルオロ酢酸(TFA)からなり、溶離液Bはアセトニトリル中0.05%トリフルオロ酢酸からなっていた。
【0189】
検出されたピークを、非コンジュゲート抗体の軽鎖(L0)および重鎖(H0)との保持時間比較によって割り当てた。もっぱらコンジュゲート試料中で検出されたピークを、1つのtoxophoreを有する軽鎖(L1)、ならびに1、2および3つのtoxophoreを有する重鎖(H1、H2、H3)に割り当てた。
【0190】
Toxophoreを有する抗体の平均搭載量(DAR、すなわち薬物-対-抗体の比と称される)を、HC搭載量とLC搭載量の和の2倍として積分によって決定されるピーク面積から計算した(LC搭載量は全LCピークのtoxophoreの数平均荷重積分(number-average weighted integration)結果の和÷全LCピークの単一荷重積分(singly weighted integration)結果の和から計算され、HC搭載量は全HCピークのtoxophore数平均荷重積分結果の和÷全HCピークの単一荷重積分結果の和から計算される)。個々の場合で、いくつかのピークの共溶出のために、toxophore搭載量を正確に決定することは不可能であった可能性があった。
【0191】
軽鎖および重鎖をHPLCによって十分に分離できなかった場合、軽鎖および重鎖での個々のコンジュゲート種の分子量の質量分析決定によって、システイン結合コンジュゲートのtoxophore搭載量の決定を行った。
【0192】
この目的のために、グアニジニウム塩酸塩(GuHCl)(28.6mg)およびDL-ジチオトレイトール(DTT)(500mM、3μl)の溶液を、ADC溶液(1mg/ml、50μl)に添加した。混合物を55℃で1時間インキュベートし、ESI-MicroTofQ(Bruker Daltonik)を用いてオンライン脱塩後の質量分析によって分析した。
【0193】
DAR決定のために、全スペクトルをTIC(全イオンクロマトグラム)のシグナルに加え、MaxEnt逆重畳積分に基づいて軽鎖および重鎖での異なるコンジュゲート種の分子量を計算した。抗体のtoxophoreによる平均搭載量を、HC搭載量とLC搭載量の合計の2倍として積分によって決定されたピーク面積から決定した。これに関連して、LC搭載量を、toxophore数によって重み付けされた全てのLCピークについての積分結果の合計÷全てのLCピークについての単純に重み付けされた積分結果合計から計算し、HC搭載量を、toxophore数によって重み付けされた全てのHCピークについての積分結果の合計÷全てのHCピークについての単純に重み付けされた積分結果合計から計算する。
【0194】
開いた構築物の場合、開いたシステイン付加物の割合を決定するために、全ての単一コンジュゲート軽鎖および重鎖変異体の閉じたシステイン付加物と開いたシステイン付加物の分子量面積比(分子量δ18ダルトン)を決定した。全ての変異体の平均により、開いたシステイン付加物の割合を得た。
【0195】
B-8.ADCの抗原結合の検証
カップリングが行われた後、結合剤が標的分子に結合する能力を確認した。当業者であれば、この目的のために使用することができる種々の方法に精通している;例えば、コンジュゲートの親和性を、ELISA技術または表面プラズモン共鳴分析(BIAcore(商標)測定)を用いて確認することができる。コンジュゲート濃度は、例えばタンパク質決定によって抗体コンジュゲートのための慣用的な方法を用いて当業者によって測定され得る(Doroninaら;Nature Biotechnol.2003;21:778~784およびPolsonら、Blood 2007;1102:616~623も参照)。
【0196】
実施例ADC
マレイミド基を介して抗体のシステイン側鎖にカップリングした実施例および参照実施例の構造式に示されるADCは、リンカーおよびカップリング手順に応じて、主に示される開環形態で存在する。しかしながら、調製物は、少量の閉環形態を含んでもよい。
【0197】
実施例1:
【化15】
代表的な手順A:
アルゴン下、TCEP0.029mgのPBS緩衝液0.05ml中溶液を、PBS0.5ml中当の抗体5mg(c=10mg/ml)に添加した。混合物を室温で30分間撹拌し、次いで、DMSO50μlに溶解した中間体F325 0.26mg(0.00023mmol)を添加した。室温でさらに90分間撹拌した後、混合物を予めpH8に調整したPBS緩衝液2.5ml容量に希釈し、次いで、PBS緩衝液pH8で平衡化したPD10カラム(Sephadex(登録商標)G-25、GE Healthcare)を通過させ、PBS緩衝液pH8で溶出した。次いで、溶出液をアルゴン下室温で一晩撹拌した。これに続いて超遠心分離による濃縮およびPBS緩衝液(pH7.2)による再希釈を行った。
【0198】
代表的な手順B:
アルゴン下、TCEP0.172mgのPBS緩衝液0.3ml中溶液を、PBS3ml中当の抗体30mg(c=10mg/ml)に添加した。混合物を室温で30分間撹拌し、次いで、DMSO300μlに溶解した中間体F325 1.57mg(0.0014mmol)を添加した。室温でさらに90分間撹拌した後、混合物を予めpH8に調整したPBS緩衝液5ml容量に希釈し、次いで、PBS緩衝液pH8で平衡化したPD10カラム(Sephadex(登録商標)G-25、GE Healthcare)を通過させ、PBS緩衝液pH8で溶出した。次いで、溶出液をアルゴン下室温で一晩撹拌した。次いで、この溶液を、PBS緩衝液pH7.2で平衡化したPD10カラム(Sephadex(登録商標)G-25、GE Healthcare)にアプライし、PBS緩衝液pH7.2で溶出した。次いで、溶出液を超遠心分離によって濃縮し、PBS緩衝液(pH7.2)で再希釈し、再濃縮し、次いで、滅菌濾過した。
【0199】
以下のADCをこれらの手順と同様に調製し、表に示されるように特徴付けた:
【0200】
【0201】
代謝産物の実施例
実施例M1
N-(3-{[(2R)-2-アミノ-2-カルボキシエチル]スルファニル}-3-カルボキシプロパノイル)グリシル-N-[2-({(2S)-2-アミノ-4-[{(1R)})-1-[1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-イル]-2,2-ジメチルプロピル}(グリコロイル)アミノ]ブタノイル}アミノ)エチル]-D-α-グルタミントリフルオロ酢酸塩
位置異性体1、エピマー混合物
【化16】
および
【化17】
トリエチルアミン(10ml、73mmol)、次いで1-({[2-(トリメチルシリル)エトキシ]カルボニル}オキシ)ピロリジン-2,5-ジオン(8.31g、32.0mmol)をメチルL-システイネート塩酸塩(1:1)(5.00g、29.1mmol)の1,4-ジオキサン(200ml)中溶液に添加した。反応物を室温で20時間撹拌した。次いで、固体を濾別し、濾液を高真空下で濃縮した。残渣を分取HPLCによって精製した。
【0202】
1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン210μl(1.4mmol)を、得られたメチルN-{[2-(トリメチルシリル)エトキシ]カルボニル}-L-システイネート(130mg、465μmol)および3-ブロモ-4-メトキシ-4-オキソブタン酸(393mg、1.86mmol)のDMF(6.5ml)中溶液に添加し、反応物を室温で10分間撹拌した。次いで、反応物を減圧下で濃縮し、残渣を分取HPLCによって精製した。溶媒を減圧下で蒸発させ、残渣を高真空下で乾燥させた。
【0203】
得られた中間体を、HATUの存在下で中間体C119とペプチド化学の従来の方法によってカップリングさせた。次いで、メチルエステルを水酸化リチウムのTHF/水(1:1)中溶液で処理することによって加水分解した。
【0204】
最後のステップで、得られた中間体22mgを2,2,2-トリフルオロエタノール10mlに溶解した。塩化亜鉛34mg(0.252mmol)を添加し、反応物を50℃で1時間撹拌した。次いで、エチレンジアミン-N,N,N’,N’-四酢酸74mg(0.252mmol)、水10mlおよびTFA500μlを添加した。混合物を濾過し、溶媒を減圧下で蒸発させた。残渣を分取HPLCによって精製した。適切な画分を濃縮し、残渣をアセトニトリル/水から凍結乾燥すると、標記化合物13mg(理論値の72%)が得られた。
LC-MS(方法5):Rt=2.44分;MS(ESIneg):m/z=959[M-H]-
【0205】
実施例M2
N-(2-{[(2R)-2-アミノ-2-カルボキシエチル]スルファニル}-3-カルボキシプロパノイル)グリシル-N-[2-({(2S)-2-アミノ-4-[{(1R)})-1-[1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-イル]-2,2-ジメチルプロピル}(グリコロイル)アミノ]ブタノイル}アミノ)エチル]-D-α-グルタミントリフルオロ酢酸塩
位置異性体2、エピマー混合物
【化18】
および
【化19】
標記化合物M2を、実施例M1と同様にエピマー混合物として調製した:
1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン801μl(5.4mmol)を、メチルN-{[2-(トリメチルシリル)エトキシ]カルボニル}-L-システイネート(1000mg、3.58mmol)および2-ブロモ-4-エトキシ-4-オキソブタン酸(926mg、4.11mmol)のDMF(40ml)中溶液に添加し、反応物を室温で2時間撹拌した。次いで、反応物を減圧下で濃縮し、残渣を分取HPLCによって精製した。
【0206】
得られた中間体を、HATUおよびメチルモルホリンの存在下で中間体C119とペプチド化学の従来の方法によってカップリングさせた。次いで、メチルエステルおよびエチルエステルを水酸化リチウムのTHF/水(1:1)中溶液で処理することによって加水分解した。
【0207】
最後のステップで、この中間体48mgを2,2,2-トリフルオロエタノール5mlに溶解した。塩化亜鉛75mg(0.550mmol)を添加し、反応物を50℃で3時間撹拌した。次いで、エチレンジアミン-N,N,N’,N’-四酢酸160mg(0.550mmol)、水2mlおよびTFA20μlを添加した。溶媒を減圧下で濃縮し、残渣を分取HPLCによって精製した。適切な画分を濃縮し、残渣をアセトニトリル/水から凍結乾燥すると、標記化合物14mg(理論値の39%)が得られた。
LC-MS(方法5):Rt=2.41分;MS(ESIneg):m/z=959[M-H]-
【0208】
比較のために、参照ADC R1を調製した。C節では、対応する参照ADC R1に対する実施例1の本発明によるADCの優位性を代表的な様式で示す。
【0209】
参照実施例R1
【化20】
代表的な手順
アルゴン下、TCEP0.172mgのPBS緩衝液300μl中溶液を、PBS3ml中適切なAK 30mg(c=10mg/ml)に添加した。混合物を室温で30分間撹拌し、次いで、DMSO300μlに溶解した中間体F104 1.291mg(1.6μmol)を添加した。室温でさらに90分間撹拌した後、混合物を予めpH8に調整したPBS緩衝液1.4mlで希釈した。
【0210】
次いで、この溶液を、PBS緩衝液pH8で平衡化したPD10カラム(Sephadex(登録商標)G-25、GE Healthcare)に通過させ、PBS緩衝液pH8で溶出した。溶出液をPBS緩衝液pH8で総容量7.5mlに希釈した。この溶液をアルゴン下、室温で一晩撹拌し、次いで、もう一度PD-10カラムを用いてpH7.2に再緩衝化した。溶出液を総容量14mlに希釈した。次いで、超遠心分離により、混合物を2mlに濃縮し、PBS緩衝液(pH7.2)で14mlに再希釈し、容量3mlに再濃縮した。試料を遠心管(Microsep Advance Centrifugal Device0.2μmSupor Membrane/PALL製)を通して濾過する。得られたADCバッチを以下のように特徴付けた:
以下のADCをこれらの手順と同様に調製し、表に明言されるように特徴付けた:
【0211】
【0212】
また比較のために、参照実施例R1から形成される代謝産物Rm1およびRm2を調製した:
【0213】
参照実施例Rm1
4-[(2-{[2-({(2S)-2-アミノ-4-[{(1R)-1-[1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-イル]-2,2-ジメチルプロピル}(グリコロイル)アミノ]ブタノイル}アミノ)エチル]アミノ}-2-オキソエチル)アミノ]-2-{[(2R)-2-アミノ-2-カルボキシエチル]スルファニル}-4-オキソブタン酸トリフルオロ酢酸塩
エピマー混合物としての位置異性体1:
【化21】
および
【化22】
まず、メチルL-システイネート塩酸塩(1:1)を、N,N-ジイソプロピルエチルアミンの存在下、DMF中1-({[2-(トリメチルシリル)エトキシ]カルボニル}オキシ)ピロリジン-2,5-ジオンを用いてメチルN-{[2-(トリメチルシリル)エトキシ]カルボニル}-L-システイネートに変換した。
【0214】
一度に少しずつ、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン208μl(1.4mmol)を、メチルN-{[2-(トリメチルシリル)エトキシ]カルボニル}-L-システイネート(130mg、465μmol)および3-ブロモ-4-メトキシ-4-オキソブタン酸(393mg、1.86mmol)のDMF(6.5ml)中溶液に添加し、反応物を室温で10分間撹拌した。次いで、混合物を減圧下で濃縮し、残渣を分取HPLCによって精製した。溶媒を減圧下で蒸発させ、残渣を高真空下で乾燥させた。
【0215】
得られた中間体を、HATUの存在下で中間体C66とペプチド化学の従来の方法によってカップリングさせた。次いで、メチルエステルを水酸化リチウムのTHF/水(1:1)中溶液で処理することによって加水分解した。
【0216】
最後のステップで、この中間体18mgを2,2,2-トリフルオロエタノール10.6mlに溶解した。塩化亜鉛22mg(0.16mmol)を添加し、反応物を50℃で2時間撹拌した。次いで、エチレンジアミン-N,N,N’,N’-四酢酸47mg(0.16mmol)および水2mlおよびTFA2~3滴を添加した。混合物を濾過し、溶媒を減圧下で蒸発させた。残渣を分取HPLCによって精製した。適切な画分を濃縮し、残渣をアセトニトリル/水から凍結乾燥すると、標記化合物(異性体2)10.5mg(理論値の78.5%)が位置異性体混合物として得られた。
LC-MS(方法5):Rt=2.43分;MS(ESIpos):m/z=832[M+H]+
【0217】
参照実施例Rm2
4-[(2-{[2-({(2S)-2-アミノ-4-[{(1R)-1-[1-ベンジル-4-(2,5-ジフルオロフェニル)-1H-ピロール-2-イル]-2,2-ジメチルプロピル}(グリコロイル)アミノ]ブタノイル}アミノ)エチル]アミノ}-2-オキソエチル)アミノ]-3-{[(2R)-2-アミノ-2-カルボキシエチル]スルファニル}-4-オキソブタン酸トリフルオロ酢酸塩
エピマー混合物としての異性体2:
【化23】
まず、メチルL-システイネート塩酸塩(1:1)を、N,N-ジイソプロピルエチルアミンの存在下、DMF中1-({[2-(トリメチルシリル)エトキシ]カルボニル}オキシ)ピロリジン-2,5-ジオンを用いてメチルN-{[2-(トリメチルシリル)エトキシ]カルボニル}-L-システイネートに変換した。
【0218】
1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン801μl(5.4mmol)を、メチルN-{[2-(トリメチルシリル)エトキシ]カルボニル}-L-システイネート(1000mg、3.58mmol)および2-ブロモ-4-エトキシ-4-オキソブタン酸(926mg、4.11mmol)のDMF(40ml)中溶液に添加し、反応物を室温で2時間撹拌した。次いで、混合物を減圧下で濃縮し、残渣を分取HPLCによって精製した。溶媒を減圧下で蒸発させ、残渣を高真空下で乾燥させた。
【0219】
得られた中間体を、HATUの存在下で中間体C66とペプチド化学の従来の方法によってカップリングさせた。次いで、メチルエステルおよびエチルエステルを水酸化リチウムのTHF/水(1:1)中溶液で処理することによって加水分解した。
【0220】
最後のステップで、この中間体24mgを2,2,2-トリフルオロエタノール6.4mlに溶解した。塩化亜鉛28.5mg(0.21mmol)を添加し、反応物を50℃で2時間撹拌した。次いで、エチレンジアミン-N,N,N’,N’-四酢酸61mg(0.21mmol)および水2mlおよびTFA2~3滴を添加した。混合物を濾過し、溶媒を減圧下で蒸発させた。残渣を分取HPLCによって精製した。適切な画分を濃縮し、残渣をアセトニトリル/水から凍結乾燥すると、標記化合物14.5mg(理論値の71%)が得られた。
LC-MS(方法5):Rt=2.41分;MS(ESIpos):m/z=832[M+H]+
【0221】
C:生物学的有効性の評価
本発明による化合物の生物学的活性を以下に記載されるアッセイで示すことができる:
C-1a:CD123およびCXCR5に対するADCの細胞傷害性効果の決定
代表的なADCの細胞傷害効果の分析を、種々の細胞株を用いて行った:
NCI-H292:ヒト粘表皮肺癌細胞、ATCC-CRL-1848、標準培地:RPMI 1640(Biochrom;番号FG1215、stab.グルタミン)+10%FCS(Sigma;番号F2442)、TWEAKR陽性;EGFR陽性、
KPL4:ヒト乳がん細胞株、Bayer Pharma AG(DSMZで2012年7月19日に同一性を検査および確認)、標準培地:RPMI 1640(Gibco製;番号21875-059、stab.L-グルタミン)+10%熱不活性化FCS(Gibco、番号10500-064);HER2陽性。
【0222】
SK-HEP-1:ヒト肝細胞癌細胞株、ATCC番号HTB-52、標準培地:アール塩を含むMEM+Glutamax I(Invitrogen 41090)+10%熱不活性化FCS(Gibco製、番号10500-064);TWEAKR陽性
【0223】
MOLM-13:ヒト急性単球性白血病細胞(AML-M5a)、DSMZ、番号ACC554、標準培地:RPMI1640(Gibco製;番号21875-059、stab.L-グルタミン)+20%熱不活性化FCS(Gibco、番号10500-064);CD123陽性。
【0224】
MV-4-11:末梢血から得たヒト二重表現型(biphenotypic)B骨髄単球性白血病細胞、ATCC-CRL-9591、標準培地:IMDM(ATCC:30-2005)+10%熱不活性化FCS(Gibco、番号10500-064);CD123陽性
【0225】
NB4:骨髄から得たヒト急性前骨髄球性白血病細胞、DSMZ、番号ACC 207、標準培地:RPMI 1640+GlutaMAX I(Invitrogen 61870)+10%熱不活性化FCS(Gibco、番号10500-064)+グルコース2.5g(20%グルコース溶液、Gibco、番号19002)+10mM Hepes(Invitrogen 15630)+1mMピルビン酸ナトリウム(Invitrogen 11360);CD123陰性
【0226】
Rec-1:ヒトマントル細胞リンパ腫細胞(B細胞非ホジキンリンパ腫)ATCC CRL-3004、標準培地:RPMI 1640+GlutaMAX I(Invitrogen 61870)+10%熱不活性化FCS(Gibco、番号10500-064)CXCR 5陽性
【0227】
当の細胞株について、アメリカ培養細胞系統保存機関(ATCC)またはLeibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH(DSMZ)によって明言されている標準的方法によって細胞を培養した。
MTTアッセイ
【0228】
細胞を、C-1節に指定されている増殖培地を用いて標準的な方法によって培養した。細胞をAccutase(登録商標)のPBS中溶液(Biochrom AG製 番号L2143)で剥離し、ペレット化し、培養培地に再懸濁し、計数し、白色底の96ウェル培養プレート(Costar製 番号3610)に播種することによって(NCI H292:2500細胞/ウェル;SK-HEP-1:1000細胞/ウェル;KPL-4:1200細胞/ウェル;総容量100μl)、試験を行った。次いで、細胞を37℃および5%二酸化炭素のインキュベーター内でインキュベートした。48時間後、培地を交換した。次いで、10-5M~10-13Mの濃度の培養培地10μl中の抗体薬物コンジュゲートを細胞にピペットで分注し(3連で)、次いで、アッセイを37℃および5%二酸化炭素のインキュベーター内でインキュベートした。懸濁細胞を計数し、白色底の96ウェルプレート(Costar製 番号3610)(番号3610)に播種した(総容量100μl中MOLM-13:2000細胞/ウェル;NB4:7000細胞/ウェル;MV-4-11:5000細胞/ウェル)。37℃および5%二酸化炭素で6時間インキュベートした後、培地を交換し、抗体-薬物コンジュゲートまたは代謝産物を、90μl中細胞に(3連)、10-5M~10-13Mの濃度で培養培地10μlにピペットによって添加した。バッチをインキュベーター中、37℃および5%二酸化炭素でインキュベートした。96時間後、MTTアッセイ(ATCC、Manassas、Virginia、米国、カタログ番号30-1010K)を用いて細胞増殖を検出した。この目的のために、MTT試薬を細胞と共に4時間インキュベートし、引き続いて界面活性剤を添加して細胞を一晩溶解させた。形成された色素を570nmで検出した(Infinite M1000 pro、Tecan)。測定したデータを使用して、DRC(用量応答曲線)を用いて増殖阻害のIC50を計算した。試験物質で処理しなかったが、それ以外は同様に処理した細胞の増殖を100%の数値として定義した。
以下の表1aは、このアッセイからの代表的な実施例についてのIC50値を示す:
【0229】
【0230】
以下の表1bは、このアッセイからの代表的な参照実施例についてのIC50値を列挙する。
【0231】
【0232】
報告される活性データは、薬物/mAB比が示される本実験節に記載される実施例に関連する。この値は、薬物/mAB比が異なる場合に逸脱する可能性がある。IC50値は、いくつかの独立した実験または個々の値の平均である。抗体薬物コンジュゲートの作用は、それぞれのリンカーおよびtoxophoreを含むそれぞれのアイソタイプ対照に対して選択的であった。さらに、CD123に対する抗体-薬物コンジュゲートの標的特異性を、CD123陰性細胞(NB4)で試験することによって実証した。
【0233】
C-1b:選択された実施例によるキネシンスピンドルタンパク質KSP/Eg5の阻害の測定
ヒトキネシンスピンドルタンパク質KSP/Eg5(tebu-bio/Cytoskeleton Inc、番号027EG01-XL)のモータードメインを、10nMの濃度で、50μg/mlのタキソール(Sigma番号T7191-5MG)で安定化した微小管(ウシまたはブタ、tebu-bio/Cytoskeleton Inc)と共に、15mM PIPES、pH6.8(5mM MgCl2および10mM DTT、Sigma)中室温で5分間インキュベートした。新たに調製した混合物を、384MTP(Corning製)に等分した。次いで、1.0×10-6M~1.0×10-13Mの濃度で試験する阻害剤およびATP(最終濃度500μM、Sigma)を添加した。インキュベーションを室温で2時間行った。マラカイトグリーン(Biomol)を用いて形成された無機リン酸塩を検出することによってATPアーゼ活性を検出した。試薬の添加後、アッセイを室温で50分間インキュベートした後、620nmの波長での吸収を検出した。使用した陽性対照は、モナストロール(Sigma、M8515-1mg)およびイスピネシブ(AdooQ Bioscience A10486)であった。用量-活性曲線の個々のデータは、8倍の測定値である。IC50値は、2つの独立した実験の平均である。100%対照は阻害剤で処理しなかった試料とした。
以下の表2は、記載されるアッセイからの代表的な実施例のIC50値を列挙し、対応する細胞傷害性データ(MTTアッセイ)を要約している:
【0234】
【0235】
報告される活性データは、本実験節に記載される実施例に関連する。
【0236】
C-2a 内在化アッセイ
内在化は、抗体薬物コンジュゲート(ADC)を介した抗原発現がん細胞における細胞傷害性ペイロードの特異的かつ効率的な提供を可能にする重要な過程である。この過程を、特異的抗体の蛍光標識およびアイソタイプ対照抗体を介して監視する。まず、蛍光色素を抗体のリジンにコンジュゲートした。コンジュゲーションは、2倍モル過剰のCypHer 5EモノNHSエステル(バッチ357392、GE Healthcare)を用いてpH8.3で行った。カップリング後、反応混合物をゲルクロマトグラフィー(Zeba Spin Desalting Columns、40K、Thermo Scientific、番号87768;溶出緩衝液:ダルベッコPBS、Sigma-Aldrich、番号D8537)によって精製して、過剰の色素を除去し、pHを調整した。タンパク質溶液をVIVASPIN 500カラム(Sartorius stedim biotec)を用いて濃縮した。抗体の色素搭載量を、分光光度分析(NanoDrop製)およびその後の計算(D/P=A色素εタンパク質:(A280-0.16A色素)ε色素)によって決定した。
【0237】
ここで試験する抗体およびアイソタイプ対照の色素搭載量は同程度であった。細胞結合アッセイで、カップリングが抗体の親和性の変化をもたらさないことが確認された。
【0238】
標識抗体を内在化アッセイに使用した。処理開始前に、細胞(2×104/ウェル)を96ウェルMTP(脂肪、黒色、透明底番号4308776、Applied Biosystems製)中の100μl培地に播種した。37℃/5%CO2で18時間インキュベートした後、培地を交換し、標識抗体を様々な濃度(10、5、2.5、1、0.1μg/ml)で添加した。標識アイソタイプ対照(陰性対照)にも同じ処理プロトコルを適用した。選択したインキュベーション時間は、0時間、0.25時間、0.5時間、1時間、1.5時間、2時間、3時間、6時間および24時間であった。蛍光測定を、InCellAnalyzer 1000(GE Healthcare製)を用いて行った。これに続いて、顆粒数/細胞および総顆粒強度/細胞のパラメータの測定を介した速度論的評価を行った。
【0239】
受容体への結合後、抗体をそれらの内在化能力について調査した。この目的のために、様々な受容体発現レベルを有する腫瘍細胞を選択した。標的媒介の高度に特異的な内在化が本発明の抗体で観察されたが、アイソタイプ対照は内在化を示さなかった。
【0240】
C-2b:懸濁細胞を用いた内在化アッセイ
蛍光色素のカップリングを、C-2節に記載されるように行った。調査する抗原を造血懸濁細胞によって発現させる;結果として、内在化をFACSベースの内在化アッセイで調査した。
【0241】
様々な標的発現レベルを有する細胞を調査した。細胞(5×104個/ウェル)を96-MTP(Greiner bio-one、CELLSTAR、650 180、U底)中に全量100μlで播種した。標的特異的抗体を最終濃度10μg/mlで添加した後、バッチを様々な期間(3連で1時間、2時間、6時間)、37℃でインキュベートした。アイソタイプ対照を同一条件下で処理した。並行バッチを処理し、絶えず4℃でインキュベートした(陰性対照)。Guavaフローサイトメーター(Millipore)を用いてFACS分析を行った。蛍光強度を測定することによって速度論的評価を行い、評価をguavaSoft 2.6ソフトウェア(Millipore)を用いて行った。ここで記載される標的および標的特異的抗体については、有意で特異的な内在化が種々の細胞において検出された;アイソタイプ対照は内在化を示さなかった。
【0242】
C-2c:共局在化:抗CD123抗体のアッセイ
リンカーのおかげで、抗体-薬物コンジュゲートの活性代謝産物がリソソーム分解によって産生される。したがって、内在化が起こった後の細胞内輸送は本質的に重要である。リソソームオルガネラに特異的な標識(例えば、表面分子または小型GTPアーゼ)を用いた抗体の共局在化に関する研究により、所望のプロファイルを有する抗体の選択が可能になる。この目的のために、全量100μlの標的陽性細胞(5×104/ウェル)を96-MTP(Greiner bio-one、CELLSTAR、650 180、U底)に播種した。CypHer5E標識抗標的抗体(最終濃度20μg/ml)を添加した後、バッチ(1時点あたり複製)をインキュベーター(5%CO2)内で37℃で30分間、2時間および6時間インキュベートした。選択されたインキュベーション時間の終了の30分前に、リソソーム特異的標識を試験するバッチに添加した。CytoPainter LysoGreen指示薬(最終濃度1:2000;abcam、ab176826)を用いて、リソソームを染色した。インキュベーション後、氷冷FACS緩衝液200μl(ダルベッコPBS、Sigma-Aldrich、番号D8537+3%FBS熱不活性化FBS、Gibco、番号10500-064)を添加し、細胞懸濁液を400×gおよび4℃で5分間遠心分離した。細胞ペレットを氷冷FACS緩衝液300μlに再懸濁し、再度遠心分離した(4分間、4℃で400×g)。遠心分離後、上清を捨て、細胞ペレットを氷冷FACS緩衝液30μlに溶解した。次いで、試料を直ちにFACS/画像分析(FlowSight amnis、Millipore)に供した。特別なソフトウェア(共局在ソフトウェアIDEAS Application v6.1)を用いて共局在を評価した。表3は、抗CD123抗体の例についてのこのアッセイからの結果を要約している。
【0243】
【0244】
抗体TPP-8987およびTPP-9476は、親マウス抗体と比較して著しく改善したプロファイルを示す。
【0245】
C-3 細胞透過性を決定するためのインビトロ試験
Caco-2細胞を用いるフラックスアッセイでのインビトロ試験によって、物質の細胞透過性を調査することができる[M.D.TroutmanおよびD.R.Thakker、Pharm.Res.20(8)、1210~1224(2003)]。この目的のために、細胞を24ウェルフィルタープレート上で15~16日間培養した。透過性を測定するために、それぞれの試験物質をHEPES緩衝液中で細胞に頂端に(A)または基底に(B)適用し、2時間インキュベートした。0時間後および2時間後、試料をシスおよびトランス区画から採取した。試料を逆相カラムを用いてHPLC(Agilent 1200、Boblingen、ドイツ)によって分離した。HPLCシステムを、ターボイオンスプレーインターフェースを介してトリプル四重極質量分析計API 4000(AB SCIEX Deutschland GmbH、Darmstadt、ドイツ)に連結した。透過性を、Schwabら[D.Schwabら、J.Med.Chem.46、1716~1725(2003)]によって公開された式を用いて計算したPapp値に基づいて評価した。Papp(B-A)とPapp(A-B)の比(流出比)が2超または0.5未満である場合、物質が能動的に輸送されたと分類した。
【0246】
細胞内に放出されるtoxophoreにとって非常に重要なのは、BからAへの透過性[Papp(B-A)]およびPapp(B-A)とPapp(A-B)の比(流出率)である:この透過性が低いほど、Caco-2細胞の単層を通した物質の能動的および受動的輸送過程が遅くなる。さらに、流出比が能動輸送に関して何の示唆も与えない場合、細胞内放出後の物質は細胞内にもっと長く留まることができる。結果として、生化学的標的(ここでは:キネシンスピンドルタンパク質、KSP/Eg5)との相互作用に利用可能な時間も増加する。
以下の表4は、このアッセイからの代表的な実施例についての透過性データを示す:
【0247】
【0248】
実施例1の本発明によるADCから形成され得る代謝産物M1およびM2は、参照実施例1のADCから形成される参照代謝産物RM1およびRM2と比較して、細胞からの輸送の減少と排出比の低下の両方を示す。
【0249】
C-4 P-糖タンパク質(P-gp)の基質特性を決定するためのインビトロ試験
多くの腫瘍細胞は薬物のためにトランスポータータンパク質を発現し、これはしばしば細胞増殖抑制剤に対する耐性の発達を伴う。したがって、例えば、P-糖タンパク質(P-gp)またはBCRPなどの、このようなトランスポータータンパク質の基質ではない物質は、改善された活性プロファイルを示すことができるだろう。
【0250】
P-gpを過剰発現するLLC-PK1細胞(L-MDR1細胞)を用いた流出アッセイによって[A.H.Schinkelら、J.Clin.Invest.96、1698~1705(1995)]、P-gp(ABCB1)についての物質の基質特性を決定した。この目的のために、LLC-PK1細胞またはL-MDR1細胞を96ウェルフィルタープレート上で3~4日間培養した。透過性を測定するために、それぞれの試験物質を、単独でまたは阻害剤(例えば、イベルメクチンもしくはベラパミルなど)の存在下で、HEPES緩衝液中で細胞に頂端に(A)または基底に(B)適用し、2時間インキュベートした。0時間後および2時間後、試料をシスおよびトランス区画から採取した。試料を逆相カラムを用いてHPLCによって分離した。HPLCシステムを、ターボイオンスプレーインターフェースを介してAPI 3000トリプル四重極質量分析計(Applied Biosystems Applera、Darmstadt、ドイツ)に連結した。透過性を、Schwabら[D.Schwabら、J.Med.Chem.46、1716~1725(2003)]によって公開された式を用いて計算したPapp値に基づいて評価した。Papp(B-A)とPapp(A-B)の流出比が2超である場合、物質をP-gp基質と分類した。
【0251】
P-gp基質特性を評価するためのさらなる基準として、L-MDR1およびLLC-PK1細胞における流出比または阻害剤の存在下もしくは非存在下での流出比を比較することができる。これらの値が2倍超異なる場合、当の物質はP-gp基質である。
【0252】
C-5a:インビトロでの内在化後のADC代謝産物の識別
方法の説明:
イムノコンジュゲート(immunoconjugate)による内在化試験を行って、細胞内で形成される代謝産物を分析した。この目的のために、ヒト肺腫瘍細胞NCI H292(3×105個/ウェル)を6ウェルプレートに播種し、一晩(37℃、5%CO2)インキュベートした。細胞を、10μg/ml(66nM)の試験するADCで処理した。内在化を、37℃および5%CO2で行った。細胞試料を種々の時点(0、4、24、48、72時間)でさらなる分析のために採取した。まず、上清(約5ml)を収穫し、遠心分離(2分間、室温、1000rpm、Heraeus Variofuge 3.0R)後、-80℃で保存した。細胞をPBSで洗浄し、Accutase(登録商標)で剥離し、細胞数を決定した。さらなる洗浄後、規定の数の細胞(2×105個)を溶解緩衝液100ml(Mammalian Cell Lysis Kit(Sigma MCL1))で処理し、連続振盪(Thermomixer、15分間、4℃、650rpm)しながら、Protein LoBindチューブ(Eppendorfカタログ番号0030 108.116)中でインキュベートした。インキュベーション後、溶解液を遠心分離し(10分間、4℃、12000g、Eppendorf 5415R)、上清を収穫した。得られた上清を-80℃で保存した。次いで、全ての試料を以下のように分析した。
【0253】
培養上清または細胞溶解液中の化合物を、トリプル四重極質量分析計(MS)に連結された高圧液体クロマトグラフィー(HPLC)によって、メタノールまたはアセトニトリルによるタンパク質の沈殿後に分析した。
【0254】
培養上清/細胞溶解液50μlの精密検査のために、沈殿試薬(メタノール)150μlを添加し、混合物を10秒間振盪する。沈殿試薬は、適切な濃度(一般に20~100μg/lの範囲内)の内部標準(ISTD)を含有する。1881gで10分間遠心分離した後、上清をオートサンプラーバイアルに移し、溶離液に合わせた緩衝液300μlで構成し、再度振盪し、1881gで10分間遠心分離する。
【0255】
細胞溶解液および上清試料を、AB SCIEX Deutschland GmbH製のHPLC連結API4200トリプル四重極質量分析計を使用して最後に分析する。
【0256】
較正のために、ブランク溶解液またはブランク上清を適切な濃度(0.1~1000μg/l)で混和する。検出限界(LLOQ)は約0.2μg/lである。
【0257】
妥当性を試験するための品質管理には、4μg/lおよび40μg/lが含まれる。
【0258】
C-5b:インビボでのADC代謝産物の識別
潜在的代謝産物の定量のための分析
10mg/kgの本発明による様々なコンジュゲートを異種移植マウスに静脈内投与した後、これらのコンジュゲートの投与24時間後に生じる抗体および任意の代謝産物の血漿、腫瘍、肝臓、脾臓および腎臓濃度を測定することが可能である。異種移植モデルに関する方法のさらに詳細な説明は、C-6に見出すことができる。ここでは、本発明によるコンジュゲートの代謝産物の濃度のみを扱う。言及されるマトリックス中の代謝産物について測定された値はさらに、代謝産物の量が、腫瘍における量と比較して、血漿、腎臓、脾臓および肝臓においてどれほど顕著であるかを示す。
【0259】
潜在的代謝産物の定量のための分析
血漿、腫瘍、肝臓、脾臓および腎臓中の化合物の分析は、トリプル四重極質量分析計(MS)に連結された高圧液体クロマトグラフィー(HPLC)によって、一般的にメタノールによるタンパク質の沈殿後に行われる。
【0260】
血漿50μlの精密検査のために、沈殿試薬(一般にメタノール)150μlを添加し、混合物を10秒間振盪する。沈殿試薬は、適切な濃度(一般に20~100μg/lの範囲内)の内部標準(ISTD)を含有する。1881gで10分間遠心分離した後、上清をオートサンプラーバイアルに移し、溶離液に合わせた緩衝液300μlで構成し、再度振盪する。
【0261】
腫瘍または臓器材料の精密検査では、特定の材料を3~20倍量の抽出緩衝液と混合する。抽出緩衝液は、組織タンパク質抽出試薬50ml(Pierce、Rockford、IL)、2ペレットの完全プロテアーゼ阻害剤カクテル(Roche Diagnostics GmbH、Mannheim、ドイツ)および最終濃度1mMのフェニルメチルスルホニルフルオリド(Sigma、St.Louis、MO)を含有する。組織の種類(硬い:腫瘍、柔らかい:肝臓、腎臓、脾臓)に従って、Prescellys 24溶解およびホモジナイゼーションシステム(Bertin Technologies)の溶解およびホモジナイゼーションプログラムを選択する(www.prescellys.com)。ホモジナイズした試料を4℃で一晩放置する。ホモジネート50μlをオートサンプラーバイアルに移し、ISTDを含むメタノール150μlで構成し、10秒間撹拌し、次いで、5分間放置する。酢酸アンモニウム緩衝液(pH6.8)300μlを添加し、短時間撹拌した後、試料を1881 gで10分間遠心分離する。
【0262】
較正のために、血漿試料用の血漿および組織試料用の対応するブランクマトリックスを0.6~1000μg/lの濃度で混和する。試料の種類または組織の種類に応じて、検出限界(LOQ)は1~20μg/lとなる。
【0263】
血漿およびマトリックス試料を、AB SCIEX Deutschland GmbH製のHPLC連結API4200トリプル四重極質量分析計を使用して最後に分析する。
【0264】
妥当性を試験するための品質管理には、4、40および400μg/lが含まれる。
【0265】
表5:REC-1異種移植nunuマウスにおいてアイソタイプ対照と比較した、実施例1x-9024の単回10mg/kg静脈内投与の24時間後の腫瘍、肝臓、腎臓、脾臓および血漿中の代謝産物M1の濃度。
【0266】
【0267】
C-6 インビボでの活性試験
本発明によるコンジュゲートの活性を、例えば異種移植片モデルを用いてインビボで試験することができる。当業者であれば、本発明による化合物の活性を試験することを可能にする先行技術の方法に精通している(例えば、国際公開第2005/081711号パンフレット;Polsonら、Cancer Res.2009年3月15日;69(6):2358-64参照)。
【0268】
抗体-薬物コンジュゲートの抗原を発現するヒト腫瘍細胞を、免疫抑制マウス、例えばNMRiヌードマウスまたはSCIDマウスの側腹部に皮下接種する。100万~1000万個の細胞を細胞培養液から剥離し、遠心分離し、培地または培地/matrigelに再懸濁する。細胞懸濁液をマウスの皮下に注射する。
【0269】
数日以内に、腫瘍が成長する。腫瘍が確立された後、約40mm2の腫瘍サイズで処置を開始する。より大きな腫瘍への効果を調べるために、処置を50~100mm2の腫瘍サイズでのみ開始してもよい。
【0270】
ADCによる処置を、マウスの尾静脈への静脈内(i.v.)経路を介して行う。ADCを5ml/kgの容量で投与する。
【0271】
治療プロトコルは抗体コンジュゲートの薬物動態に依存する。標準として7日毎に連続して3回処置を行った。素早い評価のためには、単一処置によるプロトコルもまた適切であり得る。しかしながら、処置を継続してもよく、またはさらなる処置日の第2のサイクルが後に続いてもよい。
【0272】
標準として、1処置群あたり8匹の動物を使用する。活性物質が投与される群に加えて、1つの群を、同じプロトコルに従って、緩衝液または等張塩溶液のみを用いる対照群として処置する。
【0273】
実験中、ノギスを用いて腫瘍面積を二次元(長さ/幅)で定期的に測定する。腫瘍面積を長さ×幅として決定する。処置群の平均腫瘍面積と対照群の平均腫瘍面積の比を、T/C面積として記載する。
【0274】
処置終了後、実験の全ての群を同時に終了したら、腫瘍を取り出し、秤量することができる。処置群の平均腫瘍重量と対照群の平均腫瘍重量の比を、T/C重量として記載する。
【0275】
C-6a.マウスにおける実験腫瘍の増殖阻害/退行
腫瘍細胞(REC-1、MOLM-13またはMV-4-11)を雌NMRIヌードマウス(Janvier)の側腹部に皮下接種する。40~50mm2の腫瘍サイズで、2~3週間にわたって週に1回抗体-薬物コンジュゲートを用いて静脈内処置を行う。
【0276】
本発明によるADCによる処置は、対照群と比較して腫瘍増殖の明確な阻害をもたらす。表6は、処置の開始から計算された、実験の終了のそれぞれの日に腫瘍面積について決定されたT/C値を示す。
【0277】
【配列表】