IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ブリルニクスジャパン株式会社の特許一覧 ▶ 学校法人立命館の特許一覧

特許7031326固体撮像装置、固体撮像装置の駆動方法、および電子機器
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-28
(45)【発行日】2022-03-08
(54)【発明の名称】固体撮像装置、固体撮像装置の駆動方法、および電子機器
(51)【国際特許分類】
   H04N 5/378 20110101AFI20220301BHJP
   H01L 27/146 20060101ALI20220301BHJP
   H04L 9/10 20060101ALI20220301BHJP
   H04L 9/32 20060101ALI20220301BHJP
   H04N 1/028 20060101ALI20220301BHJP
   H04N 5/374 20110101ALI20220301BHJP
   H04N 5/3745 20110101ALI20220301BHJP
【FI】
H04N5/378
H01L27/146 A
H04L9/10 Z
H04L9/32 200A
H04N1/028 Z
H04N5/374
H04N5/3745 700
【請求項の数】 17
(21)【出願番号】P 2018008399
(22)【出願日】2018-01-22
(65)【公開番号】P2019129354
(43)【公開日】2019-08-01
【審査請求日】2020-11-18
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成29年度、国立研究開発法人新エネルギー・産業技術総合開発機構 IoT推進のための横断技術開発プロジェクト 複製不可能デバイスを活用したIoTハードウェアセキュリティ基盤の研究開発委託研究、産業技術力強化法第19条の適用を受ける特許出願
(73)【特許権者】
【識別番号】514179562
【氏名又は名称】ブリルニクスジャパン株式会社
(73)【特許権者】
【識別番号】593006630
【氏名又は名称】学校法人立命館
(74)【代理人】
【識別番号】110001863
【氏名又は名称】特許業務法人アテンダ国際特許事務所
(72)【発明者】
【氏名】大倉 俊介
(72)【発明者】
【氏名】白畑 正芳
(72)【発明者】
【氏名】藤野 毅
(72)【発明者】
【氏名】汐崎 充
(72)【発明者】
【氏名】久保田 貴也
【審査官】大室 秀明
(56)【参考文献】
【文献】国際公開第2016/167076(WO,A1)
【文献】特開2010-028423(JP,A)
【文献】特開2017-118229(JP,A)
【文献】特開2017-216679(JP,A)
【文献】特開2017-216030(JP,A)
【文献】特開2009-089178(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G09C 1/00-5/00
H01L21/339
H01L27/14-27/148
H01L27/30
H01L29/762
H04K 1/00-3/00
H04L 9/00-9/38
H04N 1/024-1/036
H04N 5/30-5/378
(57)【特許請求の範囲】
【請求項1】
光電変換機能を有する複数の画素が行列状に配列された画素部と、
前記画素部から画素信号の読み出しを行う読み出し部と、
前記画素のばらつき情報および前記読み出し部のばらつき情報の少なくともいずれかに関連付けてレスポンスデータを生成するレスポスデータ生成部を含み、通常画像を生成する通常動作モードとは異なるセキュリティモードでレスポンスデータの生成処理を含む情報セキュリティ信号処理が可能な信号処理回路と、を有し、
前記信号処理回路は、
前記情報セキュリティ信号処理を、画像信号処理のブランキング期間の信号処理または行ごとの信号処理として実行し、
前記情報セキュリティ信号処理は、
少なくとも、デバイス認証、データ整合性認証、およびデータ暗号化のいずれかであり、
前記信号処理回路は、
前記データ整合性認証では、
垂直ブランキング期間中にアドレス指定された画素のばらつき情報からデバイスIDを取得し、
ライン画素信号を読み込み、メッセージ認証符号(MAC)機能により、取得された前記デバイスIDを固有鍵、ライン画素信号をメッセージとするデータタグを生成し、
水平ブランキング期間中または垂直ブランキング期間中に、画素アドレス、ライン画素信号、およびデータタグを、整合性認証を行う制御装置側に転送する
固体撮像装置。
【請求項2】
光電変換機能を有する複数の画素が行列状に配列された画素部と、
前記画素部から画素信号の読み出しを行う読み出し部と、
前記画素のばらつき情報および前記読み出し部のばらつき情報の少なくともいずれかに関連付けてレスポンスデータを生成するレスポスデータ生成部を含み、通常画像を生成する通常動作モードとは異なるセキュリティモードでレスポンスデータの生成処理を含む情報セキュリティ信号処理が可能な信号処理回路と、を有し、
前記信号処理回路は、
前記情報セキュリティ信号処理を、画像信号処理のブランキング期間の信号処理または行ごとの信号処理として実行し、
前記情報セキュリティ信号処理は、
少なくとも、デバイス認証、データ整合性認証、およびデータ暗号化のいずれかであり、
前記信号処理回路は、
前記データ暗号化では、
垂直ブランキング期間中にアドレス指定された画素のばらつき情報からデバイスIDを取得し、
前記画素部から第1行の画素信号を読み出し、当該画素信号を内部のラインメモリに保存し、
前記画素部から第2行の画素信号を読み出し中に、前記第1行の画素信号を取得された前記デバイスIDである鍵で暗号化し、
前記画素部から第3行の画素信号を読み出し中に、暗号化された前記第1行の画素信号および画素アドレスを、暗号解読処理を行う制御装置側に転送する
固体撮像装置。
【請求項3】
前記情報セキュリティ信号処理は、
画素アドレスをチャレンジ(Challenge)とし、所定の手順で生成したレスポンスデータをレスポンス(Response)とする認証処理を含み、
前記信号処理回路は、
前記デバイス認証では、
画素読み出し中に制御装置からの画素のアドレスチャレンジを受信し、
セキュリティモードにおいて、垂直ブランキング期間中に前記受信したアドレスに従って画素にアクセスし、
当該垂直ブランキング期間中に画素信号を処理してデバイスIDを取得し、
前記垂直ブランキング期間中または次の画素読み出し期間中に取得したデバイスIDを前記チャレンジに対するレスポンスとして送信する
請求項1または2記載の固体撮像装置。
【請求項4】
前記情報セキュリティ信号処理は、
画素アドレスをチャレンジ(Challenge)とし、所定の手順で生成したレスポンスデータをレスポンス(Response)とする認証処理を含み、
前記ばらつき情報は、複数ビットのデジタル値として取得され、
前記信号処理回路は、
前記レスポンスデータ生成のために読み出したばらつき情報を多ビット化する機能を有する
請求項1から3のいずれか一に記載の固体撮像装置。
【請求項5】
光電変換機能を有する複数の画素が行列状に配列された画素部と、
前記画素部から画素信号の読み出しを行う読み出し部と、
前記画素のばらつき情報および前記読み出し部のばらつき情報の少なくともいずれかに関連付けてレスポンスデータを生成するレスポスデータ生成部を含み、通常画像を生成する通常動作モードとは異なるセキュリティモードでレスポンスデータの生成処理を含む情報セキュリティ信号処理が可能な信号処理回路と、を有し、
前記信号処理回路は、
前記情報セキュリティ信号処理を、画像信号処理のブランキング期間の信号処理または行ごとの信号処理として実行し、
前記情報セキュリティ信号処理は、
画素アドレスをチャレンジ(Challenge)とし、所定の手順で生成したレスポンスデータをレスポンス(Response)とする認証処理を含み、
前記ばらつき情報は、複数ビットのデジタル値として取得され、
前記信号処理回路は、
前記レスポンスデータを生成のために読み出したばらつき情報を多ビット化する機能を有する
固体撮像装置。
【請求項6】
前記信号処理回路は、
多ビット化処理を、前記ばらつき情報を複数の出力を1ブロックとして取り出して、レーマー(Lehmer)符号により符号化し、レーマー(Lehmer)符号化した情報をグレイコードに変換して行う
請求項4または5記載の固体撮像装置。
【請求項7】
認証を行う際に確保すべき認証精度は、
前記情報セキュリティ信号処理のユニーク性と再現性のデータより認証精度の指標として、偽物を本物と認識する確率FPRと本物を偽物と認識する確率FNRを求め、確率FPRと確率FNRにより評価可能である
請求項4から6のいずれか一に記載の固体撮像装置。
【請求項8】
光電変換機能を有する複数の画素が行列状に配列された画素部と、
前記画素部から画素信号の読み出しを行う読み出し部と、
前記画素のばらつき情報および前記読み出し部のばらつき情報の少なくともいずれかに関連付けてレスポンスデータを生成するレスポスデータ生成部を含み、通常画像を生成する通常動作モードとは異なるセキュリティモードでレスポンスデータの生成処理を含む情報セキュリティ信号処理が可能な信号処理回路と、を有し、
前記情報セキュリティ信号処理は、
画素アドレスをチャレンジ(Challenge)とし、所定の手順で生成したレスポンスデータをレスポンス(Response)とする認証処理を含み、
前記ばらつき情報は、複数ビットのデジタル値として取得され、
前記信号処理回路は、
前記レスポンスデータ生成のために読み出したばらつき情報を多ビット化する機能を有する
固体撮像装置。
【請求項9】
前記信号処理回路は、
多ビット化処理を、前記ばらつき情報を複数の出力を1ブロックとして取り出して、レーマー(Lehmer)符号により符号化し、レーマー(Lehmer)符号化した情報をグレイコードに変換して行う
請求項8記載の固体撮像装置。
【請求項10】
認証を行う際に確保すべき認証精度は、
前記情報セキュリティ信号処理のユニーク性と再現性のデータより認証精度の指標として、偽物を本物と認識する確率FPRと本物を偽物と認識する確率FNRを求め、確率FPRと確率FNRにより評価可能である
請求項8または9記載の固体撮像装置。
【請求項11】
前記画素は、
蓄積期間に光電変換により生成した電荷を蓄積する光電変換素子と、
前記光電変換素子に蓄積された電荷を転送期間に転送可能な転送素子と、
前記転送素子を通じて前記光電変換素子で蓄積された電荷が転送されるフローティングディフュージョンと、
前記フローティングディフュージョンの電荷を電荷量に応じた利得をもって電圧信号に変換するソースフォロワ素子と、
前記フローティングディフュージョンを所定電位にリセットするリセット素子と、を含む
請求項1から10のいずれか一に記載の固体撮像装置。
【請求項12】
前記画素部は、
一つの前記フローティングディフュージョン、一つの前記ソースフォロワ素子、および一つのリセット素子を複数の前記光電変換素子および前記転送素子で共有する画素共有構造を有する
請求項11記載の固体撮像装置。
【請求項13】
画素アレイ端に画素出力電圧振幅を制限するクリップ回路が配置されている
請求項12記載の固体撮像装置。
【請求項14】
光電変換機能を有する複数の画素が行列状に配列された画素部と、
前記画素部から画素信号の読み出しを行う読み出し部と、
を含む固体撮像装置の駆動方法であって、
前記画素のばらつき情報および前記読み出し部のばらつき情報の少なくともいずれかの情報を取得する情報取得ステップと、
前記情報取得ステップで取得したばらつき情報に関連付けて固有鍵を含むレスポンスデータを生成するレスポスデータ生成ステップを含み、通常画像を生成する通常動作モードとは異なるセキュリティモードでレスポンスデータの生成処理を含む情報セキュリティ信号処理が可能な信号処理ステップと、を有し、
前記信号処理ステップでは、
前記情報セキュリティ信号処理を、画像信号処理のブランキング期間の信号処理または行ごとの信号処理として実行し、
前記情報セキュリティ信号処理は、
少なくとも、デバイス認証、データ整合性認証、およびデータ暗号化のいずれかであり、
前記データ整合性認証では、
垂直ブランキング期間中にアドレス指定された画素のばらつき情報からデバイスIDを取得し、
ライン画素信号を読み込み、メッセージ認証符号(MAC)機能により、取得された前記デバイスIDを固有鍵、ライン画素信号をメッセージとするデータタグを生成し、
水平ブランキング期間中または垂直ブランキング期間中に、画素アドレス、ライン画素信号、およびデータタグを、整合性認証を行う制御装置側に転送する
固体撮像装置の駆動方法。
【請求項15】
光電変換機能を有する複数の画素が行列状に配列された画素部と、
前記画素部から画素信号の読み出しを行う読み出し部と、
を含む固体撮像装置の駆動方法であって、
前記画素のばらつき情報および前記読み出し部のばらつき情報の少なくともいずれかの情報を取得する情報取得ステップと、
前記情報取得ステップで取得したばらつき情報に関連付けて固有鍵を含むレスポンスデータを生成するレスポスデータ生成ステップを含み、通常画像を生成する通常動作モードとは異なるセキュリティモードでレスポンスデータの生成処理を含む情報セキュリティ信号処理が可能な信号処理ステップと、を有し、
前記情報セキュリティ信号処理は、
画素アドレスをチャレンジ(Challenge)とし、所定の手順で生成したレスポンスデータをレスポンス(Response)とする認証処理を含み、
前記ばらつき情報は、複数ビットのデジタル値として取得され、
前記信号処理ステップは、
前記レスポンスデータ生成のために読み出したばらつき情報を多ビット化するステップを含む
固体撮像装置の駆動方法。
【請求項16】
固体撮像装置と、
前記固体撮像装置に被写体像を結像する光学系と、を有し、
前記固体撮像装置は、
光電変換機能を有する複数の画素が行列状に配列された画素部と、
前記画素部から画素信号の読み出しを行う読み出し部と、
前記画素のばらつき情報および前記読み出し部のばらつき情報の少なくともいずれかに関連付けてレスポンスデータを生成するレスポスデータ生成部を含み、通常画像を生成する通常動作モードとは異なるセキュリティモードでレスポンスデータの生成処理を含む情報セキュリティ信号処理が可能な信号処理回路と、を有し、
前記信号処理回路は、
前記情報セキュリティ信号処理を、画像信号処理のブランキング期間の信号処理または行ごとの信号処理として実行し、
前記情報セキュリティ信号処理は、
少なくとも、デバイス認証、データ整合性認証、およびデータ暗号化のいずれかであり、
前記信号処理回路は、
前記データ整合性認証では、
垂直ブランキング期間中にアドレス指定された画素のばらつき情報からデバイスIDを取得し、
ライン画素信号を読み込み、メッセージ認証符号(MAC)機能により、取得された前記デバイスIDを固有鍵、ライン画素信号をメッセージとするデータタグを生成し、
水平ブランキング期間中または垂直ブランキング期間中に、画素アドレス、ライン画素信号、およびデータタグを、整合性認証を行う制御装置側に転送する
電子機器。
【請求項17】
固体撮像装置と、
前記固体撮像装置に被写体像を結像する光学系と、を有し、
前記固体撮像装置は、
光電変換機能を有する複数の画素が行列状に配列された画素部と、
前記画素部から画素信号の読み出しを行う読み出し部と、
前記画素のばらつき情報および前記読み出し部のばらつき情報の少なくともいずれかに関連付けてレスポンスデータを生成するレスポスデータ生成部を含み、通常画像を生成する通常動作モードとは異なるセキュリティモードでレスポンスデータの生成処理を含む情報セキュリティ信号処理が可能な信号処理回路と、を有し、
前記情報セキュリティ信号処理は、
画素アドレスをチャレンジ(Challenge)とし、所定の手順で生成したレスポンスデータをレスポンス(Response)とする認証処理を含み、
前記ばらつき情報は、複数ビットのデジタル値として取得され、
前記信号処理回路は、
前記レスポンスデータ生成のために読み出したばらつき情報を多ビット化する機能を有する
電子機器。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固体撮像装置、固体撮像装置の駆動方法、および電子機器に関するものである。
【背景技術】
【0002】
光を検出して電荷を発生させる光電変換素子を用いた固体撮像装置(イメージセンサ)として、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサが実用に供されている。
CMOSイメージセンサは、デジタルカメラ、ビデオカメラ、監視カメラ、医療用内視鏡、パーソナルコンピュータ(PC)、携帯電話等の携帯端末装置(モバイル機器)等の各種電子機器の一部として広く適用されている。
【0003】
このように、様々な分野の光撮像に利用されるCMOSイメージセンサの市場規模は大きく、今後も車載カメラをはじめとする搭載アプリケーションの増加により需要が伸びることが予想される。
【0004】
そして、近年、身の回りのあらゆるモノをインターネットに接続するIoT(Internet of Things)が大きく注目を集めている。IoTによって得られたデータが、インターネットを通じてクラウド側の計算機に収集され,解析された結果を再びIoT側に情報として伝えることが可能になっている。
たとえば,完全自動運転などを実現する場合の車載センサもIoTとみなすことができ、取得データの改ざんは事故など重大な被害を生じるおそれがある。
【0005】
このように、IoT時代の情報の入り口であるIoTセンサのセキュリティを高めることが重要になってくる。IoTセンサのセキュリティを高める要件としては、まずは不正なセンサが接続されていないこと、次の段階として、センサで取得されたデータが改ざんされていないことを確認する手段が必要となる。
従来の暗号技術ではデジタル化されたマイコンチップ以降の信号は守られているが、センサチップから出てくる直後の信号が必ずしも守られていない。その理由は、部品としてのセンサ単体には低コストが求められ、余分な回路となるセキュリティ技術が普及していないためである。
【0006】
一方、LSIのセキュリティ技術としてPUF (Physically Unclonable Function;物理複製困難関数)と呼ばれる技術が近年注目を集めている。PUFは半導体におけるばらつきを物理特徴量として抽出し、デバイス固有の出力を得る技術である。
また、半導体デバイスにおいてPUFとは、製造時に発生するトランジスタのしきい値のばらつきなどにより起こる微小な性能のずれを抽出し、固有のIDとして出力する回路である。
このPUFで発生させた固有IDを用いてデバイスを認証したり,取得データに真正性を確保するためのメッセージ認証符号(MAC)を付与したりすることで情報の改ざんを防止できる。
【0007】
以上のような状況において、CMOSイメージセンサ(CIS)に余分な回路を追加せず、CISの画素ばらつきを取り出し、それを個体固有の情報として利用することでセキュリティ機能をもたせられるCMOSイメージセンサPUF(CIS-PUF)が提案されている。
【0008】
たとえば、非特許文献1および2には、センサのデバイス認証と画像データの改ざんを防止する対策として、CMOSイメージセンサにおける画素ばらつき情報からPUFの固有IDを生成するCMOSイメージセンサPUF (CIS-PUF)が提案されている。
【0009】
これらのCIS-PUFではPUFレスポンスを生成する際に、画素トランジスタのばらつきに相当する複数ビットのデジタル値を出力し,隣接するトランジスタのしきい値電圧の大小関係より1/0のレスポンスを得る。
大小比較する画素トランジスタの値の差が大きい場合は、ノイズや温度・電圧などの環境条件が変動しても、しきい値電圧の大小関係は反転しないため、安定なビットであることが判断できる。
【0010】
なお、PUFレスポンス生成時に、レスポンス中で、エラービットになりやすいビットを予測できる性質は、従来典型的なPUFとして提案されている(非特許文献3,4参照)。
【先行技術文献】
【特許文献】
【0011】
【文献】大倉,名倉,白畑,汐崎,久保田,石川,高柳,藤野,“CMOSイメージセンサの画素ばらつきを活用した PUF(CIS-PUF) の提案 (1) ‐基本コンセプトとシミュレーション検討‐”,2017年暗号と情報セキュリティシンポジウム(SCIS2017),3C4-4,2017.
【文献】名倉,大倉,白畑,汐崎,久保田,石川,高柳,藤野,“CMOSイメージセンサの画素ばらつきを活用した PUF(CIS-PUF) の提案 (2) ‐実データによるPUF性能評価‐”, 2017年暗号と情報セキュリティシンポジウム(SCIS2017),3C4-5,2017.
【文献】D. Lim,J. W. Lee, B. Gassend, G. E. Suh, M. van Dijk, S. Devadas, “Extracting secret keys from integrated circuits”, IEEE Trans. on VLSI System,vol 13,no. 10,pp.1200-1205,2005.
【文献】G.E. Suh,S. Devadas,“Physical Unclonable Functions for Device Authentication and Secret Key Generation”DAC’07,pp.9-14,2007.
【文献】Y. Cao, L. Zhang, S. S. Zalivaka, C. Chang, S. Chen, “CMOS Image Sensor Based Physical Unclonable Function for Coherent Sensor-Level Authentication”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 62, NO. 11, NOVEMBER 2015.
【発明の概要】
【発明が解決しようとする課題】
【0012】
ところで、デバイス個体固有のばらつきをセキュリティに利用するPUFの応用としてチャレンジおよびレスポンス認証(Challenge & Response(CR認証)、またはデバイス認証)、データ整合性認証、データ暗号化(暗号鍵(固有鍵)生成)の利用がある。
【0013】
しかしながら、これら認証等のCMOSイメージセンサ(CIS)の高度な情報セキュリティのための信号処理は、処理時間による画像データフレームレートの低下を招き、処理回路による装置コストの増加を招く。
【0014】
また、CIS-PUFを利用したCR認証では、リプレイ攻撃を防ぐために同じCRペアを使いまわすことはできない。
また、CIS-PUFは他のメモリ型PUFと同様にCR空間が狭いため、CR認証可能な回数が少ない。
たとえば、1回の認証で128ビットのレスポンスを消費すると、3,840回の認証でIDが枯渇してしまうおそれがある。使い方にもよるが、たとえば1日4回の認証を行うと3年以内にIDを使い切ってしまうおそれがある。
【0015】
そのため、CIS-PUFのCRペアを増やす必要があるとの考えのもとに、CMOSイメージセンサの特性ばらつきをPUFとして利用し、さらにCRペア空間を広げる技術が提案されている(非特許文献5参照)。
しかしこの方法では、出力ペアを組み替えるための計算が必要であり、また離れた位置の画素を比較する場合、列ごとに固有な成分や、製造時に広域的に発生するばらつきの影響を受けてしまうという問題がある。
【0016】
本発明は、情報セキュリティのための信号処理の処理時間による画像データフレームレートの低下を防止でき、処理回路による装置コストの増加を防止することが可能で、また煩雑な手間を要することなく、認証精度を確保しながらCR認証回数を増大させることが可能な固体撮像装置、固体撮像装置の駆動方法、および電子機器を提供することにある。
【課題を解決するための手段】
【0017】
本発明の第1の観点の固体撮像装置は、光電変換機能を有する複数の画素が行列状に配列された画素部と、前記画素部から画素信号の読み出しを行う読み出し部と、前記画素のばらつき情報および前記読み出し部のばらつき情報の少なくともいずれかに関連付けてレスポンスデータを生成するレスポスデータ生成部を含み、通常画像を生成する通常動作モードとは異なるセキュリティモードでレスポンスデータの生成処理を含む情報セキュリティ信号処理が可能な信号処理回路と、を有し、前記信号処理回路は、前記情報セキュリティ信号処理を、画像信号処理のブランキング期間の信号処理または行ごとの信号処理として実行する。
また、本発明の固体撮像装置は、光電変換機能を有する複数の画素が行列状に配列された画素部と、前記画素部から画素信号の読み出しを行う読み出し部と、前記画素のばらつき情報および前記読み出し部のばらつき情報の少なくともいずれかに関連付けてレスポンスデータを生成するレスポスデータ生成部を含み、通常画像を生成する通常動作モードとは異なるセキュリティモードでレスポンスデータの生成処理を含む情報セキュリティ信号処理が可能な信号処理回路と、を有し、前記情報セキュリティ信号処理は、画素アドレスをチャレンジ(Challenge)とし、所定の手順で生成したレスポンスデータをレスポンス(Response)とする認証処理を含み、前記ばらつき情報は、複数ビットのデジタル値として取得され、前記信号処理回路は、前記レスポンスデータ生成のために読み出したばらつき情報を多ビット化する機能を有する。
【0018】
本発明の第2の観点は、光電変換機能を有する複数の画素が行列状に配列された画素部と、前記画素部から画素信号の読み出しを行う読み出し部と、を含む固体撮像装置の駆動方法であって、前記画素のばらつき情報および前記読み出し部のばらつき情報の少なくともいずれかの情報を取得する情報取得ステップと、前記情報取得ステップで取得したばらつき情報に関連付けて固有鍵を含むレスポンスデータを生成するレスポスデータ生成ステップを含み、通常画像を生成する通常動作モードとは異なるセキュリティモードでレスポンスデータの生成処理を含む情報セキュリティ信号処理が可能な信号処理ステップと、を有し、前記信号処理ステップでは、前記情報セキュリティ信号処理を、画像信号処理のブランキング期間の信号処理または行ごとの信号処理として実行する。
また、本発明は、光電変換機能を有する複数の画素が行列状に配列された画素部と、前記画素部から画素信号の読み出しを行う読み出し部と、を含む固体撮像装置の駆動方法であって、前記画素のばらつき情報および前記読み出し部のばらつき情報の少なくともいずれかの情報を取得する情報取得ステップと、前記情報取得ステップで取得したばらつき情報に関連付けて固有鍵を含むレスポンスデータを生成するレスポスデータ生成ステップを含み、通常画像を生成する通常動作モードとは異なるセキュリティモードでレスポンスデータの生成処理を含む情報セキュリティ信号処理が可能な信号処理ステップと、を有し、前記情報セキュリティ信号処理は、画素アドレスをチャレンジ(Challenge)とし、所定の手順で生成したレスポンスデータをレスポンス(Response)とする認証処理を含み、前記ばらつき情報は、複数ビットのデジタル値として取得され、前記信号処理ステップは、前記レスポンスデータ生成のために読み出したばらつき情報を多ビット化するステップを含む。
【0019】
本発明の第3の観点の電子機器は、固体撮像装置と、前記固体撮像装置に被写体像を結像する光学系と、を有し、前記固体撮像装置は、光電変換機能を有する複数の画素が行列状に配列された画素部と、前記画素部から画素信号の読み出しを行う読み出し部と、前記画素のばらつき情報および前記読み出し部のばらつき情報の少なくともいずれかに関連付けてレスポンスデータを生成するレスポスデータ生成部を含み、通常画像を生成する通常動作モードとは異なるセキュリティモードでレスポンスデータの生成処理を含む情報セキュリティ信号処理が可能な信号処理回路と、を有し、前記信号処理回路は、前記情報セキュリティ信号処理を、画像信号処理のブランキング期間の信号処理または行ごとの信号処理として実行する。
また、本発明の電子機器は、固体撮像装置と、前記固体撮像装置に被写体像を結像する光学系と、を有し、前記固体撮像装置は、光電変換機能を有する複数の画素が行列状に配列された画素部と、前記画素部から画素信号の読み出しを行う読み出し部と、前記画素のばらつき情報および前記読み出し部のばらつき情報の少なくともいずれかに関連付けてレスポンスデータを生成するレスポスデータ生成部を含み、通常画像を生成する通常動作モードとは異なるセキュリティモードでレスポンスデータの生成処理を含む情報セキュリティ信号処理が可能な信号処理回路と、を有し、前記情報セキュリティ信号処理は、画素アドレスをチャレンジ(Challenge)とし、所定の手順で生成したレスポンスデータをレスポンス(Response)とする認証処理を含み、前記ばらつき情報は、複数ビットのデジタル値として取得され、前記信号処理回路は、前記レスポンスデータ生成のために読み出したばらつき情報を多ビット化する機能を有する。
【発明の効果】
【0020】
本発明によれば、情報セキュリティのための信号処理の処理時間による画像データフレームレートの低下を防止でき、処理回路による装置コストの増加を防止することが可能で、また煩雑な手間を要することなく、認証精度を確保しながらCR認証回数を増大させることが可能となる。
【図面の簡単な説明】
【0021】
図1】本発明の実施形態に係る固体撮像装置の構成例を示すブロック図である。
図2】チャレンジおよびレスポンス認証(Challenge & Response(CR認証))システムの概要について説明するための図である。
図3】本実施形態におけるデバイス認証について説明するための図である。
図4】本実施形態におけるデータ整合性認証について説明するための図である。
図5】本実施形態におけるデータ暗号化処理について説明するための第1図である。
図6】本実施形態におけるデータ暗号化処理について説明するための第2図である。
図7】本実施形態に係る画素の一例を示す回路図である。
図8】本発明の実施形態に係る固体撮像装置の画素部の列出力の読み出し系の構成例を説明するための図である。
図9】本実施形態に係る暗号化処理系であるレスポンス生成部の全体的な概要を示すブロック図である。
図10図9の暗号化処理系であるレスポンスデータ作成の処理を模式的に示す図である。
図11】画素のばらつき情報としてリーク電流を採用した理由について説明するための図である。
図12】1画素当たりの情報量についての一例を示す図である。
図13】9つの要素の場合の出力と情報量について説明するための図である。
図14】16の要素の場合の偏った出力と情報量について説明するための図である。
図15】画素のリーク電流としてフォトダイオードのリーク電流を採用した場合の通常動作モードとレスポンス作成モードにおける要部の動作波形等を示す図である。
図16】画素のばらつき情報として、画素部の有効画素以外の無効画素領域の情報を採用することを説明するための図である。
図17】画素のばらつき情報としてソースフォロワトランジスタのしきい値のばらつき情報を採用した場合の通常動作モードとレスポンス作成モードにおける要部の動作波形等を示す図である。
図18】CMOSイメージセンサPUF(CIS-PUF)の要部を形成するばらつき情報を取得するのに好適な情報取得部を含む、本実施形態に係る画素部および列毎に配置された列読出し回路の概要を示す図である。
図19図18のCIS-PUFの画素ばらつきを利用したPUFレスポンス生成の様子を示す図である。
図20図18および図19に示すようなレスポンス生成方式によって得られたPUF性能としての再現性とユニーク性を示す図である。
図21】ユニーク性と再現性からもとめたFPRとFNRを示す図である。
図22】Lehmer符号の例を示す図である。
図23】2進コードとGrayコードの対応表を示す図である。
図24】CIS-PUFにLehmer-Gray法(LG法)を適用した場合の処理手順について説明するための図である。
図25】CIS-PUFにLehmer-Gray法を適用した場合のレスポンスの出現割合を示す図である。
図26】用意した5つのチップについて、N=2,4,8,16,32,64としたとき,それぞれのユニーク性と再現性の分布を示す図である。
図27】再現性とユニーク性のHDの平均と標準偏差をまとめた表を示す図である。
図28】再現性とユニーク性から求めたFNRとFPRを示す図である。
図29】FNRとFPRが0.001ppm以下になるしきい値を表として示す図である。
図30】N個の出力から生成されるレスポンスの長さを表にまとめて示す図である。
図31】128ビットのIDがもつ情報量Iと、求めたしきい値から識別可能な個体数を計算し、まとめた表を示す図である。
図32】1回の認証で128ビットのレスポンスを消費するとき、N=2~64の場合についてCR認証可能な回数を試算し表にまとめて示す図である。
図33】本発明の実施形態に係る固体撮像装置が適用される電子機器の構成の一例を示す図である。
【発明を実施するための形態】
【0022】
以下、本発明の実施形態を図面に関連付けて説明する。
【0023】
図1は、本発明の実施形態に係る固体撮像装置の構成例を示すブロック図である。
本実施形態において、固体撮像装置10は、たとえばCMOSイメージセンサにより構成される。
【0024】
この固体撮像装置10は、図1に示すように、撮像部としての画素部20、垂直走査回路(行走査回路)30、読み出し回路(列(カラム)読み出し回路)40、水平走査回路(列走査回路)50、タイミング制御回路60、および信号処理回路70を主構成要素として有している。
これらの構成要素のうち、たとえば垂直走査回路30、読み出し回路40、水平走査回路50、およびタイミング制御回路60により画素信号の読み出し部90が構成される。
【0025】
本実施形態に係る固体撮像装置10は、センサのデバイス認証と画像データの改ざんを防止する対策として、CMOSイメージセンサにおける画素ばらつきからPUFの固有IDを生成するCMOSイメージセンサPUF(CIS-PUF)として形成されている。
固体撮像装置10は、CIS-PUFではPUFのレスポンス(以下、PUFレスポンスという場合もある)を生成する際に、画素のばらつき情報および読み出し部のばらつき情報のうちの少なくともいずれか一方に関連付けて固有鍵を含むレスポンスデータを生成することが可能に構成される。
【0026】
本実施形態に係る固体撮像装置10は、後で詳述するように、PUFレスポンスである画素や読み出し部90のばらつき情報を生成する際に、一例として、画素トランジスタのばらつき情報に相当する複数ビットのデジタル値(LSB値)を出力し、隣接するトランジスタのしきい値電圧の大小関係より1/0のレスポンスデータを取得する。
固体撮像装置10は、大小比較する画素トランジスタのデジタル値の差が大きい場合は、ノイズや温度・電圧などの環境条件が変動しても、しきい値電圧VTHとの大小関係は反転しないため、安定なビットであることが判断できる。
【0027】
また、本実施形態において、CMOSイメージセンサPUF(CIS-PUF)は、CMOSイメージセンサの画素ばらつきおよび読み出し部のばらつき情報のうちの少なくともいずれか一方を抽出しPUFに応用したものである。
本来、画素ばらつきの多くはCDS回路によって除去されるが、CIS-PUFは相関二重サンプリング(CDS:Correlated Double Sampling)回路を動作させて撮影する通常の撮像モード(通常動作モード)と、CDS回路を動作させずに撮影するセキュリティモード(PUFモードあるいはレスポンス作成モードMDR)を有している。
【0028】
そして、本実施形態に係る固体撮像装置10において、信号処理回路70は、レスポンスデータ生成部80を含んで構成され、通常画像を生成する通常動作モードMDUとは異なるセキュリティモードでレスポンスデータの生成処理を含む情報セキュリティ信号処理が可能に構成される。
本実施形態の信号処理回路70は、制御装置であるマイクロコンピュータ(以下、マイコンという)と認証処理等にかかわる通信を行うことが可能なビデオインタフェース(I/F)710を有している。
信号処理回路70は、情報セキュリティのための信号処理の処理時間による画像データフレームレートの低下を防止でき、処理回路による装置コストの増加を防止することが可能となるように、情報セキュリティ信号処理を、画像信号処理のブランキング期間の信号処理または行(ライン)ごとの信号処理として実行する。
【0029】
本実施形態において、信号処理回路70が実施する情報セキュリティ信号処理は、少なくとも、レスポンスデータの生成処理、デバイス認証、データ整合性認証、およびデータ暗号化のいずれかである。
そして、情報セキュリティ信号処理は、画素アドレスをチャレンジ(Challenge)とし、所定の手順で生成したレスポンスデータをレスポンス(Response)とする認証処理を含む。
【0030】
また、本実施形態の信号処理回路70は、煩雑な手間を要することなく、認証精度を確保しながらCR認証回数を増大させることが可能となるように、レスポンスデータ生成のために読み出したPUFレスポンスであるばらつき情報を多ビット化する機能を有する多ビット化部720を含んで構成される。
信号処理回路70の多ビット化部720は、多ビット化処理として、ばらつき情報を複数の出力を1ブロックとして取り出して、レーマー(Lehmer)符号により符号化し、レーマー(Lehmer)符号化した情報をグレイコード(Gray code)に変換して行うLG(Lehmer-Gray)法を採用している。
このLG法による多ビット化処理については後で詳述する。
【0031】
なお、認証を行う際に確保すべき認証精度は、後で詳述するように、情報セキュリティ信号処理のユニーク性と再現性のデータより認証精度の指標として、偽物を本物と認識する確率FPR(False Positive Rate)と本物を偽物と認識する確率FNR(False Negative Rate)を求め、確率FPRと確率FNRにより評価(決定、選定)可能である。
【0032】
また、CIS-PUFは画素のアドレスをチャレンジ(Challenge)とし、所定の手順で生成した1/0データをレスポンス(Response)とするPUFである。
ここで、デバイス個体固有のばらつきをセキュリティに利用するPUFの応用としてのチャレンジおよびレスポンス認証(Challenge & Response(CR認証))の概要について説明する。
その後、本実施形態の特徴の一つであるデバイス認証、データ整合性認証、およびデータ暗号化の各処理について説明する。
【0033】
(レスポンス認証システムの概要)
図2は、チャレンジおよびレスポンス認証(Challenge & Response(CR認証))システムの概要について説明するための図である。
【0034】
図2のCR認証システム100は、本実施形態に係る固体撮像装置10を搭載したCIS-PUFチップ200、およびマイコン300を含んで構成されている。
CIS-PUFチップ200は、図1のビデオインタフェース710としてのビデオインタフェース(Video I/F)210を有し、マイコン300はコントロールインタフェース(Control I/F)310を有する。
【0035】
CIS-PUFを用いたCR認証システム100には、事前登録モードと認証モードがあり、認証を行う前にCIS-PUFチップ200の情報をマイコン300側に登録する必要がある。
事前登録モードでは、PUFモード側から全画素のIDを生成し、これをマイコン300の安全な領域に保管する。
【0036】
このCIS-PUFを用いたCR認証システム100において、認証モードでは、初めに認証側のマイコン300がCIS-PUFチップ200に対してPUFモードコマンドを送信する(ステップST1)。
これを受けてCIS-PUFチップ200はPUFモードで撮影を行いPUFモード画像を得る。
次に、マイコン300は乱数発生器(RNG)301によりどの画素を使用してIDを生成するかを乱数で決定し、そのアドレス指定をチャレンジ情報としてCIS-PUFチップ200に送信する(ステップST2)。
CIS-PUFチップ200は受け取ったアドレス指定に従ってPUFモード画像を切り出し、1/0データを生成する。CIS-PUFチップ200は、このIDをチャレンジに対するレスポンスとしてマイコン300に送信する(ステップST3)。
マイコン300は事前に登録しておいた1/0データから指定したアドレスのIDを切り出し、CIS-PUFチップ200から受け取ったIDと比較する。IDが一致すれば認証成功となる(ステップST4)。
【0037】
このCR認証システム100の通信処理等を踏まえて、CIS-PUFチップ200の一部である信号処理回路70およびマイコン300における本実施形態の特徴の一つであるデバイス認証、データ整合性認証、およびデータ暗号化の各処理について説明する。
デバイス認証、データ整合性認証、およびデータ暗号化の各処理について説明する。
【0038】
(デバイス認証)
図3(A)および(B)は、本実施形態におけるデバイス認証について説明するための図である。
【0039】
デバイス認証において、CIS-PUFチップ200の一部である信号処理回路70は、画素読み出し中に制御装置としてのマイコン300からの画素のアドレスXYのチャレンジを受信し、CIS-PUFチップ内部のレジスタに受信したアドレスを書き込む。
次に、セキュリティモード(PUFモード)において、垂直ブランキング期間PVB中に受信したYアドレスに従って画素にアクセスする。
垂直ブランキング期間PVB中に画素信号を処理して再現性およびユニーク性が改善されたデバイスIDを取得する。
そして、垂直ブランキング期間PVB中または次の画素読み出し期間中に取得したデバイスIDをチャレンジに対するレスポンスとしてマイコン300に送信する。
マイコン300は、認証のためにデバイスIDをチェックする。
認証は、ストリーミングビデオデータの場合、1フレーム、1秒、1分、1時間、または1日のいずれかの期間で実行される。
【0040】
(データ整合性認証)
図4(A)および(B)は、本実施形態におけるデータ整合性認証について説明するための図である。
【0041】
データ整合性認証において、CIS-PUFチップ200の一部である信号処理回路80は、デバイスIDを取得するための画素アドレスを設定する。
垂直ブランキング期間PVB中にアドレス指定された画素のばらつき情報からデバイスIDを取得する。
そして、行(ライン)画素信号を読み込み、メッセージ認証符号(MAC)機能により、デバイスIDを固有鍵、ライン画素信号をメッセージとするデータタグを生成する。
次に、ビデオI/F210またはコントロールI/F310を介した水平ブランキング期間PHB中またはビデオI/F210またはコントロールI/F310を介した垂直ブランキング期間PVB中に、画素アドレス、ライン画素信号、およびデータタグを、整合性認証を行う制御装置であるマイコン300側に転送する。
受信機側のマイコン300は、画素アドレスとともに生成されたのと同じキーと、整合性検証のための画素データとを用いてMAC処理を実行する。
なお、画素アドレスはいつでも任意に変更することができる。
【0042】
(データ暗号化)
図5(A)および(B)は、本実施形態におけるデータ暗号化処理について説明するための第1図である。
図6(A)~(C)は、本実施形態におけるデータ暗号化処理について説明するための第2図である。
【0043】
データ暗号化処理において、CIS-PUFチップ200の一部である信号処理回路70は、デバイスIDを取得するための画素アドレスを設定する。
垂直ブランキング期間PVB中にアドレス指定された画素のばらつき情報からデバイスIDを取得する。
画素部20から第1行(Line1)の画素信号を読み出し、画素信号を内部のラインメモリに保存する。
画素部20から第2行(Line2)の画素信号を読み出し中に、第1行(Line1)の画素信号をデバイスIDである鍵で暗号化する。
画素部20から第3行(Line3)の画素信号を読み出し中に、暗号化された第1行(Line1)の画素信号および画素アドレスを、暗号解読処理を行う制御装置側ISP(Image Signal Processor)としてのマイコン300に転送する。
マイコン300では、暗号化された第1行(Line1)の画素値を同じ鍵で解読する。
【0044】
なお、暗号化はライン画素の一部のみに適用でき、画素部の画素アレイ全体に対して行う必要なない。
バックグラウンド暗号化処理にはより多くの時間がかかるが、1行の読み取り期間中に行う必要はない。
通常、CMOSイメージセンサ(CIS)は数行のメモリを装備しており、このラインメモリの再利用によって、ラインバイライン暗号化は無視できるほどの小さな回路コストをも実現する。
【0045】
以上のように、本実施形態において、デバイス認証、データ整合性認証、およびデータ暗号化等の情報セキュリティ信号処理を、画像信号処理のブランキング期間の信号処理または行(ライン)ごとの信号処理として実行することから、情報セキュリティのための信号処理の処理時間による画像データフレームレートの低下を防止でき、処理回路による装置コストの増加を防止することが可能となる。
【0046】
以上、認証システムの処理について説明した。
以下、固体撮像装置10の各部の構成および機能の概要、特に、画素部20の構成および機能等について説明する。
その後、本実施形態の固体撮像装置10の特徴的な構成、機能について、固有鍵の生成、並びに固有鍵を含む識別データと画像データの一体化を行ってレスポンスデータを作成する、いわゆる暗号化処理であるレスポンスデータ作成処理、レスポンスデータ生成のために読み出したPUFレスポンスであるばらつき情報を多ビット化する機能、認証の評価等を中心に説明する。
【0047】
(画素並びに画素部20の基本的な構成)
画素部20は、フォトダイオード(光電変換素子)と画素内アンプとを含む複数の画素がn行×m列の2次元の行列状(マトリクス状)に配列されている。
【0048】
図7は、本実施形態に係る画素の一例を示す回路図である。
【0049】
この画素PXLは、たとえば光電変換素子であるフォトダイオード(PD)を有する。
そして、このフォトダイオードPDに対して、転送トランジスタTG-Tr、リセットトランジスタRST-Tr、ソースフォロワトランジスタSF-Tr、および選択トランジスタSEL-Trをそれぞれ一つずつ有する。
【0050】
フォトダイオードPDは、入射光量に応じた量の信号電荷(ここでは電子)を発生し、蓄積する。
以下、信号電荷は電子であり、各トランジスタがn型トランジスタである場合について説明するが、信号電荷がホールであったり、各トランジスタがp型トランジスタであっても構わない。
また、本実施形態は、後で例示するように、複数のフォトダイオード間で、リセットトランジスタRST-Tr、ソースフォロワトランジスタSF-Tr、および選択トランジスタSEL-Trの各トランジスタを共有している場合にも有効であり、また、選択トランジスタを有していない3トランジスタ(3Tr)画素を採用している場合にも有効である。
【0051】
転送トランジスタTG-Trは、フォトダイオードPDとフローティングディフュージョンFD(Floating Diffusion;浮遊拡散層)の間に接続され、制御信号TGを通じて制御される。
転送トランジスタTG-Trは、制御信号TGがハイレベル(H)の期間に選択されて導通状態となり、フォトダイオードPDで光電変換された電子をフローティングディフュージョンFDに転送する。
【0052】
リセットトランジスタRST-Trは、電源線VRstとフローティングディフュージョンFDの間に接続され、制御信号RSTを通じて制御される。
なお、リセットトランジスタRST-Trは、電源線VDDとフローティングディフュージョンFDの間に接続され、制御信号RSTを通じて制御されるように構成してもよい。
リセットトランジスタRST-Trは、制御信号RSTがHレベルの期間に選択されて導通状態となり、フローティングディフュージョンFDを電源線VRst(またはVDD)の電位にリセットする。
【0053】
ソースフォロワトランジスタSF-Trと選択トランジスタSEL-Trは、電源線VDDと垂直信号線LSGNの間に直列に接続されている。
ソースフォロワトランジスタSF-TrのゲートにはフローティングディフュージョンFDが接続され、選択トランジスタSEL-Trは制御信号SELを通じて制御される。
選択トランジスタSEL-Trは、制御信号SELがHの期間に選択されて導通状態となる。これにより、ソースフォロワトランジスタSF-TrはフローティングディフュージョンFDの電位に応じた列出力アナログ信号VSLを垂直信号線LSGNに出力する。
これらの動作は、たとえば転送トランジスタTG-Tr、リセットトランジスタRST-Tr、および選択トランジスタSEL-Trの各ゲートが行単位で接続されていることから、1行分の各画素について同時並列的に行われる。
【0054】
画素部20には、画素PXLがn行×m列配置されているので、各制御線LSEL、LRST、LTGはそれぞれn本、垂直信号線LSGNはm本ある。
図1においては、各制御線LSEL、LRST、LTGを1本の行走査制御線として表している。
【0055】
垂直走査回路30は、タイミング制御回路60の制御に応じてシャッター行および読み出し行において行走査制御線を通して画素の駆動を行う。
また、垂直走査回路30は、アドレス信号に従い、信号の読み出しを行うリード行と、フォトダイオードPDに蓄積された電荷をリセットするシャッター行の行アドレスの行選択信号を出力する。
【0056】
読み出し回路40は、画素部20の各列出力に対応して配置された複数の列(カラム)信号処理回路(図示せず)を含み、複数の列信号処理回路で列並列処理が可能に構成されてもよい。
【0057】
読み出し回路40は、相関二重サンプリング(CDS:Correlated Double Sampling)回路やADC(アナログデジタルコンバータ;AD変換器)、アンプ(AMP,増幅器)、サンプルホールド(S/H)回路等を含んで構成可能である。
【0058】
このように、読み出し回路40は、たとえば図8(A)に示すように、画素部20の各列出力アナログ信号VSLをデジタル信号に変換するADC41を含んで構成されてもよい。
あるいは、読み出し回路40は、たとえば図8(B)に示すように、画素部20の各列出力アナログ信号VSLを増幅するアンプ(AMP)42が配置されてもよい。
また、読み出し回路40は、たとえば図8(C)に示すように、画素部20の各列出力アナログ信号VSLをサンプル、ホールドするサンプルホールド(S/H)回路43が配置されてもよい。
また、読み出し回路40は、画素部20の各列から出力される画素信号に対して所定の処理が施された信号を記憶するカラムメモリとしてのSRAMが配置されてもよい。
【0059】
水平走査回路50は、読み出し回路40のADC等の複数の列信号処理回路で処理された信号を走査して水平方向に転送し、信号処理回路70に出力する。
【0060】
タイミング制御回路60は、画素部20、垂直走査回路30、読み出し回路40、水平走査回路50等の信号処理に必要なタイミング信号を生成する。
【0061】
信号処理回路70は、通常読み出しモードMDUのときには、読み出し回路40により読み出され所定の処理が施された読み出し信号に対する所定の信号処理により2次元画像データを生成する。
【0062】
上述したように、固体撮像装置(CMOSイメージセンサ)では、わずかな光で光電変換により発生した電子を、微小容量で電圧に変換し、さらに微小面積のソースフォロワトランジスタSF-Trを用いて、出力している。そのため、容量をリセットする際に発生するノイズやトランジスタの素子ばらつきなどの微小なノイズを除去する必要があり、画素毎のリセットレベル(VRST)と輝度レベル(信号レベル:VSIG)の差分を出力している。
このように、CMOSイメージセンサでは、画素毎のリセットレベルと輝度レベルの差分を出力することで、リセットノイズと閾値ばらつきを除去し、数電子の信号を検出することができる。この差分を検出する動作は、CDS(相関二重サンプリング)と呼ばれ、広く用いられている技術であり、アレイ状に配置された全て画素に対して、CDS読出しを順次行い、1フレーム分の通常の2次元画像データを出力する。
【0063】
本実施形態の固体撮像装置10では、この通常の2次元画像データを生成するための動作は、通常動作モードMDUで動作可能に構成されている。
【0064】
ただし、本実施形態における信号処理回路70においては、画像の無断使用や改ざん、ねつ造等が行われてしまうことを防止するために、固体撮像装置10の固有のばらつき情報(画素、読み出し回路のばらつき情報)から固有鍵を生成し、固有鍵と固体撮像装置10から得られる取得データを組み合わせて識別データを生成し、この識別データを画像データに一体化してレスポンスデータRPDとして出力し、固有鍵に関する情報を認識していない場合には識別データを正しく作成できないように構成されている。
【0065】
本実施形態の固体撮像装置10では、この固有鍵の生成に関する動作は、レスポンス作成モードMDR(PUFモード、セキュリティモード)で動作可能に構成されている。
【0066】
本実施形態のレスポンス作成モードMDRにおいては、周辺輝度に依存しない、チップ毎に固有な画素ばらつきパターン(ばらつき情報)を固有IDとして出力する。
このように、本実施形態のレスポンス作成モードMDRにおいては、画素毎のばらつきパターンのみを出力する。輝度レベルを出力しないため、イメージセンサの露光条件に依存しないパターン画像を出力することができる。また、各画素の出力には、FPNとフレーム毎にランダムに変動する熱雑音が含まれるが、レスポンス作成モードMDRにおけるFPNは熱雑音に対して10倍以上大きいため、安定した固定ばらつきパターンをレスポンスデータRPDとして出力することができる。
【0067】
本実施形態のレスポンス作成モードMDRにおいては、固有鍵の生成に際し、画素のばらつき情報および読み出し部のばらつき情報の少なくともいずれかに関連付けて固有鍵を含むレスポンスデータを生成する。
【0068】
以上、固体撮像装置10の各部の構成および機能の概要、特に、画素部20の基本的な構成および機能等について説明した。
以下、本実施形態の固体撮像装置10の特徴的な構成、機能について、固有鍵の生成、並びに固有鍵を含む識別データと画像データの一体化を行ってレスポンスデータを作成する、いわゆる暗号化処理であるレスポンスデータ作成処理、レスポンスデータ生成のために読み出したPUFレスポンスであるばらつき情報を多ビット化する機能、認証の評価を中心に説明する。
【0069】
図9は、本実施形態に係る暗号化処理系であるレスポンスデータ作成の全体的な概要を示すブロック図である。
図10は、図9の暗号化処理系であるレスポンスデータ作成の処理を模式的に示す図である。
【0070】
図9の暗号化処理系であるレスポンスデータ作成部80は、情報取得部81、鍵生成部82、画像データ生成部83、識別データ生成部84、一体化部85、およびメモリ86を主構成要素として有している。
なお、図9の例では情報取得部81と鍵生成部82が別の機能ブロックとして構成されているが、情報取得部81と鍵生成部82を一つの機能ブロックとして構成することも可能である。
【0071】
情報取得部81は、画素PXLのばらつき情報PFLCおよび読み出し回路40の構成回路のばらつき情報CFLCの少なくともいずれかを取得し、取得したばらつき情報を鍵生成部82に供給する。
【0072】
ここで、一例として画素PXLのばらつき情報PFLCについての概略を説明する。
【0073】
(画素PXLのばらつき情報PFLCについて)
まず、画素PXLのばらつき情報PFLCについて説明する。
本実施形態においては、画素PXLのばらつき情報PFLCとして、基本的に、リーク電流と位置情報を用いる。
ここで、リーク電流を採用した理由について述べる。
【0074】
図11(A)および(B)は、画素のばらつき情報としてリーク電流を採用した理由について説明するための図である。図11(A)は画素リーク電流の強度分布を示し、図11(B)は白キズの場所分布の一例を示している。
【0075】
固体撮像装置10のセンサ画素には、図11に示すように、100%抑制することのできないリーク電流が存在する。これの特に極端なもの(暗視野露光でも一瞬で白とびする)を白キズ、または白点という。以下では白キズという。
固体撮像装置10は、出荷前に極力この白キズを減らす努力がはらわれるが、また抑えきれない白キズは後段の画像処理で回りの画素デ-タから白キズ画素を補完し画像出力している。
この白キズは画素アレイのどこに出現するかは作製してみなければわからず、しかも再現性がある。そのため個体固有の情報と見なせる。
そこで、本実施形態では、画素PXLのばらつき情報PFLCとして、リーク電流と位置情報を用い固有鍵KYを生成する。たとえば図11に示すように、白キズの発生場所(発生位置)と個数を固有情報として固有鍵KYを生成することが可能である。
本実施形態においては、この情報を固有鍵として、セキュリティ分野で用いられるPUF技術を応用して暗号化処理を行う。
【0076】
図12は、1画素当たりの情報量についての一例を示す図である。
1画素あたりの情報量Hは次式で与えられる。
【0077】
H = -P0・log2(P0) -P1・log2(P1)
ここで、P0 : 白キズの出る確率、P1 : 白キズが出ない確率1 - P0
【0078】
たとえば、100万画素(1E6)の場合、白キズ100ppmは100個に相当し、情報量として次のようになる。
【0079】
1.47E-3×1E6 = 1.47E3 bit= 1,470bit
【0080】
ちなみに、鍵生成に必要な要件(セキュリティ側から)は1画素あたりの白キズ発生確率は次のように与えられる。
【0081】
100~3,000ppm = 0.01%~0.3%
【0082】
次に、出力と情報量について図13および図14に関連付けて考察する。
図13は、9つの要素の場合の出力と情報量について説明するための図である。
図14は、16の要素の場合の偏った出力と情報量について説明するための図である。
【0083】
9つ(3×3)の要素の場合、図13(A)に示すように、各要素に1/2の確率で1または0が出る場合、この出力はそのまま鍵として用いることができ、9bit分の鍵情報として有効である。
もしノイズにより、エラー訂正に5bit必要であるとすると、図13(B)に示すように、有効な鍵情報は4bit分となり、鍵としては4bit分の情報として出力する。
【0084】
次に、16(4×4)の要素で、偏った出力の場合について説明する。
16(4×4)の要素の場合、図13に示すように、各要素に1の出る確率が1/16で、1要素のどこかに必ず1が出るサンプル群の場合、これは全部で16通りしかなく、4bitの情報しかない。
白キズの情報量もこれと同じ考え方で、100万画素中の各画素に1/2の確率で1または0が出る場合の情報量は100万bitであるが、100万画素中に100ppm存在する白キズの情報量は1,400bit程度となる。
これだけの情報量であれば、鍵としては有効活用可能である。
【0085】
画素のばらつき情報PFLCを取得する情報取得部81は、図11(A)に示すように、画素のリーク情報を、しきい値VTHに関連付けて取得する。
図7の例の場合、リーク電流Ileakがしきい値VTH1より大きいときに、白キズであると判別できる。
また、情報取得部81は、しきい値が複数設定されてもよく(図11の例ではVH1、VTH2)、複数のしきい値VTH1、VTH2との関連で情報を区別することも可能である。
なお、しきい値VTHを温度等の環境に応じて変化させることも可能である。
【0086】
また、情報取得部81は、画素のばらつき情報PFLCとして、一定以上のリーク電流を示す画素の位置情報を採用することができる。
また、情報取得部81は、画素のばらつき情報PFLCとして、リーク電流順の上位の画素の集合を採用することができる。
また、情報取得部81は、画素のばらつき情報PFLCとして、集合の列方向および行方向アドレスを採用することができる。
【0087】
(フォトダイオードのリーク電流)
情報取得部81は、たとえば画素のリーク電流IleakとしてフォトダイオードPDのリーク電流を採用することができる。
【0088】
図15は、画素のリーク電流IleakとしてフォトダイオードPDのリーク電流を採用した場合の通常動作モードとレスポンス作成モードMDRにおける要部の動作波形等を示す図である。
図15(A)が通常動作モードMDU時の動作波形を、図15(B)がレスポンス作成モードMDRの動作波形を、図15(C)がばらつき情報を二値化した鍵パターンイメージを示し、図15(D)が出力信号と画素数としきい値VTHとの関係を示している。
なお、前述したように、本実施形態において、固体撮像装置10は、通常動作モードMDUとレスポンス作成モードMDRで動作可能に構成されている。
【0089】
通常動作モードMDUにおいては、図15(A)に示すように、シャッターを閉じた状態で画素PXLをリセットし、シャッター開放中に露光する。
また、シャッターを閉じた状態で信号を読み出す。
【0090】
レスポンス作成モードMDRにおいては、図15(B)に示すように、シャッターを閉じた状態で画素をリセットし、一定時間後に画素信号を読み出す。
この場合、露光されないため、フォトダイオードPDに生じるリーク電流のみが固有の鍵パターンとして出力される。
この固有の鍵パターンは、図15(D)に示すように、重金属汚染等により極大値をもつため、再現性が高い。
【0091】
また、情報取得部81は、画素のばらつき情報PFLCとして、画素部20の有効画素以外の無効画素領域のフォトダイオードの情報を採用することができる。
図16は、画素のばらつき情報PFLCとして、画素部20の有効画素以外の無効画素領域の情報を採用することを説明するための図である。
【0092】
通常、画素部20は、図16(A)に示すように、有効画素領域21と有効画素領域21の周辺の無効画素領域(OB;Optical Black領域等)22を含んで構成されている。
また、無効画素領域(OB;Optical Black領域)22は、図16(B)に示すように、遮光膜23により遮光されている。
本実施形態においては、OB画素領域22の画素等、有効画素以外の画素領域の白キズや暗電流の情報を採用して鍵とすることで、鍵の検出を困難にすることが可能である(鍵検出には専用の読み出しタイミングを必要とする)。
【0093】
また、フォトダイオード(PD)としては、埋め込みフォトダイオード(Buried Photo Diode;BPD)が広く用いられている。
フォトダイオード(PD)を形成する基板表面にはダングリングボンドなどの欠陥による表面準位が存在するため、熱エネルギーによって多くの電荷(暗電流)が発生し、正しい信号が読み出せなくなってしまう。埋め込みフォトダイオード(BPD)では、フォトダイオード(PD)の電荷蓄積部を基板内に埋め込むことで、暗電流の信号への混入を低減する。
埋め込みフォトダイオードBPDは、有効画素領域21においては、表面側から第1導電型のp+層201、第2導電型のn+層202が形成されている。
本実施形態においては、OB領域22において、図16(B)に示すように、フォトダイオードPD表面のp+層のpシールドを除去し、暗電流・白キズ(=鍵、Key)が発生しやすくすることも可能である。
【0094】
また、本実施形態では、フォトダイオードPDのリーク電流が変動し、この変動を考慮して鍵作成の情報に付加することも可能である。
鍵とする白キズ等のディフェクト(defect、欠陥)の個数について考察すると、たとえば白キズの場合、後発白キズ(後から増える白キズ)や消滅する白キズがある。
後発キズ対策としては、一定数の白キズをチップ内の座標指定で鍵として指定する。
消滅白キズ対策としては、白キズは必要な最低の白キズ個数よりあらかじめ多くのキズを鍵として設定する。
後発傷対策としては、特定の出力レンジに収まる傷を鍵として使用する。
【0095】
また、本実施形態では、たとえば、情報取得部81は、画素のばらつき情報PFLCを取得する画素領域を任意に指定可能である。また、情報取得部81は、指定する領域を、ダイナミックに変化させることも可能である。
【0096】
(ソースフォロワトランジスタSFのしきい値)
情報取得部81は、画素のばらつき情報としてソースフォロワトランジスタSFのしきい値VTHのばらつき情報を採用することができる。
【0097】
図17は、画素のばらつき情報としてソースフォロワトランジスタSFのしきい値VTHのばらつき情報を採用した場合の通常動作モードとレスポンス作成モードにおける要部の動作波形等を示す図である。
図17(A)が画素PXLの読み出し系の回路図を、図17(B)が通常動作モードMDU時の動作波形を、図17(C)がレスポンス作成モードMDRの動作波形を、図17(D)がばらつき情報を二値化した鍵パターンイメージを示し、図17(E)が出力信号と画素数としきい値VTHとの関係を示している。
図17(A)の画素PXLの読み出し系においては、垂直信号線LSGNにCDS回路44がスイッチSW0の一端子を介して接続されている。スイッチSW0の他端子は基準電圧Vrefの供給ラインに接続されている。
【0098】
通常動作モードMDUにおいては、図17(B)に示すように、差分信号を画素の出力信号として用いることで、各画素PXLが備えるソースフォロワトランジスタSFのしきい値のばらつきを除去している。
【0099】
レスポンス作成モードMDRにおいては、図17(C)に示すように、時刻t1に後段回路は基準電圧レベル(Vref)、時刻t2に後段回路は画素のリセット電圧レベルを取り込む。
これらの信号の差分を読み出すことで、各画素PXLのリセット電圧のばらつきを取り出すことができる。
本例では、このばらつき分布を鍵として用いる。
上記ばらつきは100mV程度なので、アンプ等で増幅しても良い。
【0100】
鍵生成部82(図9図10)は、情報取得部81により取得され供給される画素のばらつき情報および読み出し回路40のばらつき情報の少なくともいずれかを用いて固有鍵を生成する。
鍵生成部82は、生成した固有鍵KYを識別データ生成部84に供給する。
鍵生成部82は、たとえば画素部20の有効画素の読み出し時以外の期間(たとえばブランキング期間)に固有鍵KYの生成を行う。
【0101】
図9および図10の画像データ生成部83は、通常読み出しモードで読み出し回路40を通して読み出され所定の処理が施された読み出し信号に対する所定の信号処理により、たとえば図5に示すような2次元画像データIMGを生成する。
画像データ生成部83は、生成した画像データIMGを一体化部85に供給する。
【0102】
画像データ生成部83は、固体撮像装置10から取得した取得データAQDを識別データ生成部84に供給する。
ここで、取得データAQDは、少なくとも画素、日付、温度、GPS(Global Positioning System)に関するデータのうちの少なくともいずれかのデータである。
【0103】
識別データ生成部84は、鍵生成部82で生成された固有鍵KYと、本固体撮像装置10で取得した取得データAQDを組み合わせて識別データDSCDを生成する。
識別データ生成部84は、生成した識別データDSCDを一体化部85に供給する。
【0104】
一体化部85は、図10に示すように、識別データ生成部84で生成された識別データDSCDと画像データ生成部83による読み出しデータに基づく画像データIMGを一体化して、センサチップの最終のレスポンスデータRPDとして出力する。
一体化部85は、たとえば図10に示すように、一体化データが、ヘッダHD、識別データDSCD、画像データIMGの順となるように一体化する。
【0105】
前述したように、本実施形態に係る固体撮像装置10は、センサのデバイス認証と画像データの改ざんを防止する対策として、CMOSイメージセンサにおける画素ばらつきからPUFの固有IDを生成するCMOSイメージセンサPUF (CIS-PUF)として形成されている。
次に、PUFのレスポンス(以下、PUFレスポンスという場合もある)を生成する際に、画素のばらつき情報および読み出し部のばらつき情報のうちの少なくともいずれか一方に関連付けて固有鍵を含むレスポンスデータを生成することが可能なCIS-PUFの好適な構成例について説明する。
その後、本実施形態の固体撮像装置10の特徴的な構成、機能について、固有鍵の生成、並びに固有鍵を含む識別データと画像データの一体化を行ってレスポンスデータを作成する、いわゆる暗号化処理であるレスポンスデータ作成処理、レスポンスデータ生成のために読み出したPUFレスポンスであるばらつき情報を多ビット化する機能、認証の評価等を中心に説明する。
【0106】
図18は、CMOSイメージセンサPUF (CIS-PUF)の要部を形成するばらつき情報を取得するのに好適な情報取得部を含む、本実施形態に係る画素部および列毎に配置された列読出し回路の概要を示す図である。
【0107】
図18の画素部20Aおよび列(カラム)読出し回路40は、ばらつき信号の再現性を高め、ばらつきパターンのユニーク性を改善するために、垂直(図では上下)の2画素間で大小判定(引き算等)して2値化を行うことが可能となるように構成されている。
【0108】
図18の画素部20Aは、一つのフローティングディフュージョンFD、一つのソースフォロワ素子としてのソースフォロワトランジスタSF-Tr、一つのリセット素子としてのリセットトランジスタRST-Tr、および一つの選択素子としての選択トランジスタSEL-Trを、複数(本例では2)の光電変換素子であるフォトダイオードPD1、PD22および転送素子としての転送トランジスタTG-Tr1,TG-Tr2で共有する画素共有構造を有する。
【0109】
すなわち、図18のCMOSイメージセンサの画素PXLAは、フォトダイオードPD1およびPD2、転送クロックである制御信号TG1およびTG2で駆動する転送トランジスタTG-Tr1,TG-Tr2、リセットクロックである制御信号RSTで駆動するリセットトランジスタRST-Tr、ソースフォロワ(SF)トランジスタSF-Tr、選択クロックである制御信号SELで駆動する選択トランジスタSEL-Trにより構成されている。
ここで、2個のフォトダイオードPD1,PD2がリセットトランジスタRST-Tr、ソースフォロワ(SF)トランジスタSF-Tr、選択トランジスタSEL-Trを共有している。
これは、近年の微細な画素に対して広く用いられる方式であり、各トランジスタをPD間で共有することにより、PDの面積を所定の素サイズに対して大きくとり、光電変換可能な領域を広げることで、入射光に対する検出感度を高めている。
【0110】
選択トランジスタSEL-Trがオンした画素では、電源電圧Vddの電源線VDD、ソースフォロワ(SF)トランジスタSF-Tr、電流源Idが直列となり、ソースフォロワ回路を構成する。
このソースフォロワ回路により、フローティングディフュージョンFDの電圧が読み出し回路40のAMP42を介してADC41に入力されて、デジタル変換され、図示しないインターフェス回路に出力される。
また、クリップ回路44が画素アレイ端に配置され、クリップクロックである制御信号CLIPによって駆動するクリップゲートCGおよびダイオード接続トランジスタM0は、画素アレイ端に配置され、画素出力電圧振幅を制限することで、安定的に動作させるために用いられる。
【0111】
図18のCIS-PUFの概要)
ここで、図18のCIS-PUFの概要について説明する。
CIS-PUFは、CMOSイメージセンサの画素毎の特性ばらつきを利用してデバイスごとに固有のPUFレスポンス(画素のばらつき情報)を生成する。前述したように、特性ばらつきには固定した位置に生じる固定パターンノイズ(FPN:Fixed Pattern Noise)や画素等の位置に関係なくランダムに生じるランダムノイズがある。
CMOSイメージセンサは、通常動作モードMDUにおいては、これら特性ばらつきを除去するために,画素毎にリセット電位(VRST)と信号電位(VSIG)の差分を取るCDS(相関二重サンプリング:Correlated Double Sampling)を行っている。
【0112】
一方でCIS-PUFは、PUFレスポンスを生成する目的でばらつき情報を得るために、CDSを動作させない信号読み出しモードであるレスポンス作成モード(PUFモード)MDRを持つ。このPUFモードにより画素ばらつきが支配的となる出力を得ることができる。
【0113】
図18のCIS-PUFとしての固体撮像装置(CMOSイメージセンサ)10Aは、画素数1,920×1,080(フルHD)のアレイ構造を有している。
この固体撮像装置(CMOSイメージセンサ)10Aは、垂直方向(図では上下)に隣接した2画素でソースフォロワトランジスタSF-Trを共有しており、ソースフォロワトランジスタSF-Trの数は1,920×540である。
【0114】
PUFモードでは,列毎に存在するクリップ回路44から得られる電位を基準電位とし、各画素のリセット電位と差分を取ることで、画素毎のばらつきを抽出している。
PUFモードでは、最初に列ごとに配置されているクリップ回路44を選択する。このとき、ダイオード接続されたトランジスタM0のゲート電圧はVDDであり、アンプ42を介して電源電圧からオフセット電圧分シフトした電圧がADC41に保持される。次に、対象の画素を選択し、リセットトランジスタRST-Trと転送トランジスタTG-Trを同時にオンすることでフォトダイオードPDに蓄積された電荷を排出する。このとき、微小容量であるフローティングディフュージョンFDの電位はVDDとなり、同様に電源電圧からオフセット電圧分降下した電圧がADC41に保持される。
ADC41ではこれらの電圧の差分を取ることで、画素のソースフォロワトランジスタSF-Trとクリップ回路44のトランジスタCGのオフセットばらつきは、再現性の高い固定パターンノイズであり、これを利用してIDを生成する。
【0115】
図18のCIS-PUFにおけるPUFレスポンスの生成)
次に、図18のCIS-PUFにおけるPUFレスポンスの生成の概要について説明する。
図19は、図18のCIS-PUFの画素ばらつきを利用したPUFレスポンス生成の様子を示す図である。
【0116】
CIS-PUFの画素ばらつきを利用したPUFレスポンス生成は、垂直方向(上下)に隣接した2つのソースフォロワトランジスタSF-Trの出力値(LSB値)を大小比較し、1/0データを生成する。
図19の例では、上下の出力値を大小比較し、上側の出力値が下側の出力値より大きい場合(上>下)「1」、上側の出力値が下側の出力値より小さい場合(上<下)「0」とする。
【0117】
この例では、上述したように、ソースフォロワトランジスタSF-Trが上下2画素で共有されている。そのため、まず上下に隣接した出力の平均を取ることで1つのソースフォロワトランジスタSF-Trにつき1つの出力値をとり、540×1,920の出力のマップを得る。
さらに上下に隣接した出力を大小比較し270×1,920の1/0データを生成する。
このように、CIS-PUFは画素のアドレスをチャレンジとし、上記手順で生成した1/0データをレスポンスとするPUFである。
【0118】
(ユニーク性と再現性の評価)
次に、ユニーク性と再現性の評価結果について述べる。
図20は、図18および図19に示すようなレスポンス生成方式によって得られたPUF性能としての再現性とユニーク性を示す図である。
【0119】
CIS-PUFの性能評価としてユニーク性と再現性の評価を行った。
ユニーク性は、2つのチップのIDを比較したときどれだけ異なっているかを示す指標である。ユニーク性は各チップで100枚分の画像を平均化した画像から128ビット長のIDを3,840ブロック作り、異なる2つのチップで生成したID間のHD(ハミングでスタンス)を算出し平均値を求めることで得られる。
ID長をLとしたとき、ユニーク性のHDの分布の平均はL/2、標準偏差は√L/2が理想値である。
【0120】
再現性は,あるチップが生成するIDがどの程度の安定性をもつのかを示す指標であり、各チップで100枚分の画像を平均化した画像から128ビット長のIDを3,840ブロック作り、これを基準として、基準IDと100枚それぞれの画像から作ったIDとのHDを算出し平均値を求めることで得られる。
PUFの出力を認証に使う場合、IDが安定して出力されることが求められる。そのため再現性のHDは0付近に多く分布していることが理想である。
【0121】
図20は、用意した5つのチップについて、ID長を128ビットとして評価を行ったときのユニーク性と再現性の分布を示している。
ユニーク性のHDは平均値μ=63.9,標準偏差σ=5.66であり、ほぼ理想値(μ=64,σ=5.66)となっている。再現性のHDは平均値μ=1.49,標準偏差σ=1.21であり、CIS-PUFで生成したIDが高い再現性を持つことを示している。
【0122】
(FPRとFNRによる認証評価)
次に、FPRとFNRによる認証評価した結果について述べる。
【0123】
前述したように、PUFを用いたCR認証では、あらかじめマイコン300側に登録しておいたIDとPUFが生成したIDが一致しているかを検証することで認証を行う。
しかし、上述の再現性の評価結果からわかるように、PUFは完全に同じIDを毎回出力するわけではなく、いくらかのビット反転が起こる。そのため、認証の際はある程度の誤りを許容する必要がある。
【0124】
ここでは、CIS-PUFを利用したCRR認証はどの程度の認証精度を実現できるのか、また何ビットまでの誤りを許容するよう設定すれば良いのかを評価するため、ユニーク性と再現性からFalse Positive Rate(FPR)とFalse Negative Rate(FNR)という2つの指標を導出し評価を行った。
FPRは偽物を本物と認識する確率を表し、FNRは本物を偽物と認識する確率を表す。認証に用いるID長をL,ユニーク性のHDがMビットとなる確率をPu (M)、再現性のHDがMビットとなる確率をPs (M)とすると、誤り許容ビット(しきい値)をTと設定したときのFNRとFPRは式(1), 式(2)で導出できる。
【0125】
【数1】
【0126】
【数2】
【0127】
図21は、ユニーク性と再現性からもとめたFPRとFNRを示す図である。
図21において、横軸はしきい値、縦軸はそのときのFPR,FNRの値を表している。
【0128】
認証を行う際に確保すべき認証精度は、生体認証の認証精度を参考に決定した.現在運用されている生体認証システムでは認証精度が0.1ppm以下とされている。生体認証が対象とするのは人間であり、その総数は75億程度である。これに対して、CIS-PUFを用いたCR認証が対象とするものはセンサであり、その総数は多く見積もって1兆程度と考えられる。
よって対象物の数の違いを考慮し、FPRとFNRが共に0.001ppm以下を基準とした。図21より、誤りを許容するビット数を9-29bitの間に設定すると誤り率を0.001ppm以下にできることがわかる。
【0129】
(CIS-PUFのレスポンス多ビット化)
次に、CIS-PUFのレスポンスの多ビット化について詳述する。
【0130】
CIS-PUFを利用したCR認証では、リプレイ攻撃を防ぐために同じCRペアを使いまわすことはできない。
また、CIS-PUFは他のメモリ型PUFと同様にCR空間が狭いため、CR認証可能な回数が少ない。たとえば1回の認証で128ビットのレスポンスを消費すると、3,840回の認証でIDが枯渇してしまうおそれがある。使い方にもよるが、例えば1日4回の認証を行うと3年以内にIDを使い切ってしまうおそれがある。
そのため、CIS-PUFのCRペアを増やす必要があり、同様なCMOSイメージセンサの特性ばらつきをPUFとして利用し、さらにCRペア空間を広げる提案がされている。しかしこの方法では、出力ペアを組み替えるための計算が必要であり、また離れた位置の画素を比較する場合、列ごとに固有な成分や、製造時に広域的に発生するばらつきの影響を受けてしまうという問題がある。
そこで、本実施形態においては、これらの影響を除去しつつCRペアを増やすために、多ビット化を実現するLehmer-Gray法(LG法)を採用している。
【0131】
(Lehmer-Gray法 (LG法))
以下に、多ビット化の方法として、CRペアを増やすLG法について詳述する。
LG法は、Lehmer符号とGrayコードを組み合わせたレスポンス生成手法である。
Lehmer符号は、n個の数値があるとき、その並び順がn!通り存在する点に着目した符号である。たとえば、A,B,Cの3つの値があるとき,この並びは次の6(=3!)通りあり、この並び順を符号として扱う。
【0132】
(A, B, C) (A, C, B) (B, A, C)
(B, C, A) (C, A, B) (C, B, A)
【0133】
Lehmer符号の簡単な符号化の手法として、ある数値について注目したとき、その数値より大きい(または小さい)数値が右(または左)にいくつあるかを数えることで符号化を行う手法がある。
【0134】
図22は、Lehmer符号の例を示す図である。
図23は、2進コードとGrayコードの対応表を示す図である。
【0135】
たとえば、図22のように,(1 5 2 7)という4つの数値を符号化すると、(3 1 1)となる。
またGrayコードとは、通常の2進表現とは異なる”0”と”1”による数の表現法である。Grayコードは、隣り合う数のハミングディスタンスが必ず1になるという性質を持つ。これを用いることにより、ノイズによるビットエラーの低減を期待できる。
【0136】
(CIS-PUFにおけるLG法)
ここでは、CIS-PUFにLehmer-Gray法(LG法)を適用した場合の処理手順について説明する。
図24は、CIS-PUFにLehmer-Gray法(LG法)を適用した場合の処理手順について説明するための図である。
【0137】
Lehmer-Gray法ではN個の縦に連なった出力の置換を符号化し,レスポンスを生成する。
たとえばN=4の場合、4つの出力を1ブロックとして取り出し符号化を行う。取り出した出力が上からLSB=(1649,1753, 1757, 2060)だった場合、Lehmer符号でこの4つの出力の置換を表すと、L=(3,2,1)となる。
そして、Lehmer符号で表した数列の中身をGrayコードで表現すると、G=(10,11,1)となる。
【0138】
この例では、4つの出力から5ビットのレスポンスが生成されるので、画像全体では1,296,000ビットのレスポンスを得られる。従来手法の総レスポンスは518,400ビットであったことから、CRペアが増加したことが確認できる。
また、Lehmer-Gray法では、N個の出力の比較から、N!通りのレスポンスを得る。N=4の場合について、各レスポンスが同じ割合で生成されているかを確認できる。
【0139】
図25は、CIS-PUFにLehmer-Gray法を適用した場合のレスポンスの出現割合を示す図である。
図25において、横軸に4!=24種のレスポンスを、縦軸に各レスポンスの出現回数をプロットしたものである。
【0140】
24種のレスポンスが完全に同じ割合で出現するとき、各レスポンスの出現回数の期待値は10,800であり、図25中に線LVで示してある。図25より、N=4において各レスポンスが同程度の割合で出現していることが確認できる。
【0141】
(ユニーク性と再現性評価 (LG法))
次に、Lehmer-Gray法を用いて、N個の出力の大小比較からレスポンスを生成したときの再現性とユニーク性を前述と同様の方法で評価した結果について述べる。
図26は、用意した5つのチップについて、N=2,4,8,16,32,64としたとき,それぞれのユニーク性と再現性の分布を示す図である。
また、図27(A)および(B)は、再現性とユニーク性のHDの平均と標準偏差をまとめた表を示す図である。
【0142】
図26より、Nが大きくなるとビット反転の影響が拡大するために再現性が悪くなることが確認できる。
また、Nが大きくなるとユニーク性の値がやや小さくなっているが、これはLehmer-Gray法において使用しないコードが存在するためである。
具体的には、N=4のとき、4つの出力から5ビットのレスポンスが得られるが、このうち3ビット目と4ビット目は(00,01,11)のいずれかであり、10は使用しない。そのため、使用しないコードを考慮したときのN=4のユニーク性の理想値はμ=61.44となる。
【0143】
(FNRとFPRによる評価 (LG法))
FNRとFPRによる評価した結果について述べる。
図28は、再現性とユニーク性から求めたFNRとFPRを示す図である。
また、図29は、FNRとFPRが0.001ppm以下になるしきい値を表として示す図である。
【0144】
図29より、N=32までで基準の認証精度を確保でき、N=64では基準を満たすしきい値が存在しないことがわかる。Nを大きくする程CRペアが増加するため、N=32でしきい値を20~26ビットに設定すると最も性能が良くなることがわかる。
【0145】
(多ビット化の認証性能評価)
次に、多ビット化の認証性能を評価した結果について述べる。
ここでは、レスポンスの多ビット化により、CIS-PUFを用いたCRR認証が実用可能な性能に至ったかの判断材料として、認証精度以外の評価についてまとめてある。
【0146】
(識別可能なデバイス数)
想定しているCIS-PUFのCR認証では、1つのIDがもつ情報量をI,しきい値をTとして、以下の式で識別可能な個体数が求められる.
【0147】
【数3】
【0148】
Lehmer-Gray法の特性上、使用されないコードがあるため、128ビットのIDがもつ情報量は128ビットより少なくなる。各レスポンスが同じ割合で生成されるとき、N個の出力から生成されるレスポンスの情報量Hは、以下の式で求められる。
【0149】
【数4】
【0150】
また、図30は、N個の出力から生成されるレスポンスの長さLRを表にまとめて示す図である。
128ビットのIDがもつ情報量Iは、レスポンスの長さLRと情報量Hを用いて次式で求められる。
【0151】
【数5】
【0152】
図31は、128ビットのIDがもつ情報量Iと、求めたしきい値から識別可能な個体数を計算し、まとめた表を示す図である。
図31中のT1は、基準を満たす範囲で、FNRが最も小さくなるように設定したしきい値であり、T2はFPRが最も小さくなるように設定したしきい値である。
既に述べたように、識別対象となるセンサの総数は多く見積もっても1兆個(10の12乗)程度と考えられるので、基準を満たすしきい値を設定すれば,十分な識別可能個体数をもつといえる。
【0153】
(CRペアの増加量)
これまで述べてきたように、レスポンスの多ビット化の目的はCRペアの増加である。1回の認証で128ビットのレスポンスを消費するとき、N=2~64の場合についてCR認証可能な回数を試算し図32の表にまとめた。
【0154】
従来手法に相当するN=2では、CR認証可能回数は3,840回である。それに対し、N=32ではCR認証可能な回数が30,720回に増加する。よって多ビット化を行うことにより、CR認証可能な回数を8倍まで増やせることがわかる。
【0155】
上記したように、CIS-PUFを利用したCR認証システムの検討と,レスポンスの多ビット化について評価を行った。
これまでCIS-PUFはユニ-ク性,再現性ともに優れた特性を持つこと示されてきたが、本実施形態では、さらに認証性能の指標としてFNRとFPRを利用し、誤り率0.001ppm以下の認証精度を確保した運用を想定したときのトータルのCR認証可能な回数を試算した。
その結果、1日4回の認証を行うと3年以内にCRペアを使い切ってしまうおそれがあることがわかったが、Lehmer-Gray法を用いたレスポンスの多ビット化を適用することよにより、N=32のとき、既存システムと同程度の認証精度を確保しながら、CR認証回数を8倍にできる。
これにより、本実施形態に係る固体撮像装置は、長期間利用されるIoTデバイスへの搭載が可能になる。
【0156】
以上説明したように、本実施形態によれば、レスポンスデータの生成処理、少なくとも、デバイス認証、データ整合性認証、およびデータ暗号化のいずれかであって、画素アドレスをチャレンジ(Challenge)とし、所定の手順で生成したレスポンスデータをレスポンス(Response)とする認証処理を含む情報セキュリティ信号処理を、画像信号処理のブランキング期間の信号処理または行(ライン)ごとの信号処理として実行する。
これにより、情報セキュリティのための信号処理の処理時間による画像データフレームレートの低下を防止でき、処理回路による装置コストの増加を防止することが可能となる。
【0157】
また、本実施形態によれば、信号処理回路70は、レスポンスデータ生成のために読み出したPUFレスポンスであるばらつき情報を多ビット化する機能を有する多ビット化部720を含んで構成されている。
そして、信号処理回路70の多ビット化部720は、多ビット化処理として、ばらつき情報を複数の出力を1ブロックとして取り出して、レーマー(Lehmer)符号により符号化し、レーマー(Lehmer)符号化した情報をグレイコード(Gray code)に変換して行うLG(Lehmer-Gray)法を採用している。
認証を行う際に確保すべき認証精度は、情報セキュリティ信号処理のユニーク性と再現性のデータより認証精度の指標として、偽物を本物と認識する確率FPR(False Positive Rate)と本物を偽物と認識する確率FNR(False Negative Rate)を求め、確率FPRと確率FNRにより評価(決定、選定)可能である。
これにより、煩雑な手間を要することなく、認証精度を確保しながらCR認証回数を増大させることが可能となる。
【0158】
このように、本実施形態によれば、情報セキュリティのための信号処理の処理時間による画像データフレームレートの低下を防止でき、処理回路による装置コストの増加を防止することが可能で、また煩雑な手間を要することなく、認証精度を確保しながらCR認証回数を増大させることが可能となり、秘匿性の高い固有のレスポンスデータを生成することが可能で、ひいては画像の改ざん、ねつ造を確実に防止することが可能となる。
【0159】
なお、上記の鍵生成部82は、画素または読み出し回路40のばらつき情報に基づいて固有鍵を生成する例について説明したが、異なるばらつき情報により生成した固有鍵同士の演算を行って最終的な固有鍵を得るように構成することも可能である。
たとえば、次のように構成することも可能である。
【0160】
すなわち、鍵生成部82は、たとえば、読み出し回路40のADC41、アンプ(AMP)42、またはS/H回路43のばらつき情報を用いて第1固有鍵を生成する第1機能と、読み出し回路40のカラムメモリ45のSRAMの出力を用いて第2固有鍵を生成する第2機能と、を含み、第1機能により生成された第1固有鍵と、第2機能により生成された第2固有鍵とを演算することにより最終的な固有鍵を生成するように構成することも可能である。
【0161】
この構成は、画素のばらつき情報に関しても同様に適用可能である。
【0162】
なお、一体化部85は、一体化する鍵情報を用いて階層的に画像部分にマスクをする機能を含むように構成してもよい。
また、一体化部85は、一体化する鍵情報を用いて画像に電子透かしを入れる機能を含むように構成してもよい。
【0163】
なお、本実施形態において、固体撮像装置10の各構成要素が同一パッケージ内に搭載されている構成を採用可能である。
【0164】
固体撮像装置(CIS)10とISP(Image Signal Processor)を同一パッケージに封止したSiP (Silicon in Package)にて、鍵および識別データを生成する信号処理をパッケージ内部にて完結し、パッケージ外部に固有鍵データを出力することなく、識別データを生成可能な構成を採用可能である。
【0165】
また、イメージセンサと信号処理回路とを備えたSoC (System on Chip)において、鍵および識別データを生成する信号処理をチップ内部にて完結し、チップ外部に固有鍵データを出力することなく、識別データを生成可能な構成を採用可能である。
【0166】
また、本実施形態の固体撮像装置10は、前述したように、通常の読出し駆動タイミングとは別に、リーク電流などを長時間蓄積するための駆動タイミングを備えるように構成可能である。また、アナログアンプ、デジタルアンプ、または、ADCのフルスケール電圧を縮小し、リーク電圧の蓄積電圧を強調して出力しても良い。また、複数行あるいは複数フレームのデータを平均化、または加算することで、ランダムノイズ成分を低減しても良い。
【0167】
また、読み出し回路40の構成回路のばらつき情報CFLCについて、情報取得部81は、読み出し回路40の構成回路のばらつき情報CFLCとして、ADCのばらつき情報を採用することができる。
また、情報取得部81は、読み出し回路40の構成回路のばらつき情報CFLCとして、アンプ(AMP、増幅器)のばらつき情報を採用することができる。
また、情報取得部81は、読み出し回路40の構成回路のばらつき情報CFLCとして、S/H回路のばらつき情報を採用することができる。
また、情報取得部81は、読み出し回路40の構成回路のばらつき情報CFLCとして、カラムメモリのSRAMの出力(ばらつき)情報を採用することができる。
【0168】
以上説明した固体撮像装置10,10Aは、デジタルカメラやビデオカメラ、携帯端末、あるいは監視用カメラ、医療用内視鏡用カメラなどの電子機器に、撮像デバイスとして適用することができる。
【0169】
図33は、本発明の実施形態に係る固体撮像装置が適用されるカメラシステムを搭載した電子機器の構成の一例を示す図である。
【0170】
本電子機器400は、図33に示すように、本実施形態に係る固体撮像装置10,10Aが適用可能なCMOSイメージセンサ(IMGSNS)410を有する。
さらに、電子機器400は、このCMOSイメージセンサ410の画素領域に入射光を導く(被写体像を結像する)光学系(レンズ等)420を有する。
電子機器400は、CMOSイメージセンサ410の出力信号を処理する信号処理回路(PRC)430を有する。
【0171】
信号処理回路430は、CMOSイメージセンサ410の出力信号に対して所定の信号処理を施す。
信号処理回路430で処理された画像信号は、液晶ディスプレイ等からなるモニタに動画として映し出し、あるいはプリンタに出力することも可能であり、またメモリカード等の記録媒体に直接記録する等、種々の態様が可能である。
【0172】
上述したように、CMOSイメージセンサ410として、前述した固体撮像装置10,10Aを搭載することで、高性能、小型、低コストのカメラシステムを提供することが可能となる。
そして、カメラの設置の要件に実装サイズ、接続可能ケーブル本数、ケーブル長さ、設置高さなどの制約がある用途に使われる、たとえば、監視用カメラ、医療用内視鏡用カメラなどの電子機器を実現することができる。
【符号の説明】
【0173】
10,10A・・・固体撮像装置、20,20A・・・画素部、30・・・垂直走査回路、40・・・読み出し回路、44・・・クリップ回路、50・・・水平走査回路、60・・・タイミング制御回路、70・・・信号処理回路、710・・・ビデオI/F、720・・・多ビット化部、80・・・レスポンスデータ成セブ(暗号化処理系)、81・・・情報取得部、82,82A・・・鍵生成部、83・・・画像データ生成部、84・・・識別データ生成部、85・・・一体化部、86・・・メモリ、90・・・読み出し部、10・・・CR認証システム、200・・・CIS-PUFチップ、300・・・マイクロコンピュータ(マイコン)、310・・・コントロールI/F、400・・・電子機器、410・・・CMOSイメージセンサ(IMGSNS)、420・・・光学系、430・・・信号処理回路(PRC)。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33