IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パルステック工業株式会社の特許一覧 ▶ 国立大学法人東北大学の特許一覧

<>
  • 特許-搬送物の応力測定装置 図1
  • 特許-搬送物の応力測定装置 図2
  • 特許-搬送物の応力測定装置 図3
  • 特許-搬送物の応力測定装置 図4
  • 特許-搬送物の応力測定装置 図5
  • 特許-搬送物の応力測定装置 図6
  • 特許-搬送物の応力測定装置 図7
  • 特許-搬送物の応力測定装置 図8
  • 特許-搬送物の応力測定装置 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-02
(45)【発行日】2022-03-10
(54)【発明の名称】搬送物の応力測定装置
(51)【国際特許分類】
   G01N 23/205 20180101AFI20220303BHJP
   G01N 23/2055 20180101ALI20220303BHJP
【FI】
G01N23/205
G01N23/2055 310
【請求項の数】 4
(21)【出願番号】P 2018012484
(22)【出願日】2018-01-29
(65)【公開番号】P2019132599
(43)【公開日】2019-08-08
【審査請求日】2020-11-25
(73)【特許権者】
【識別番号】000112004
【氏名又は名称】パルステック工業株式会社
(73)【特許権者】
【識別番号】504157024
【氏名又は名称】国立大学法人東北大学
(72)【発明者】
【氏名】田中 俊一郎
(72)【発明者】
【氏名】丸山 洋一
【審査官】平田 佳規
(56)【参考文献】
【文献】特開平07-311164(JP,A)
【文献】特開2014-190899(JP,A)
【文献】特開2002-282941(JP,A)
【文献】特許第5339253(JP,B2)
【文献】特開昭51-041661(JP,A)
【文献】特開平03-071008(JP,A)
【文献】特開2014-013203(JP,A)
【文献】特開2017-187352(JP,A)
【文献】米国特許出願公開第2003/0012334(US,A1)
【文献】特表2007-501395(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 23/00- G01N 23/2276
G01L 1/25
(57)【特許請求の範囲】
【請求項1】
一定の速度で搬送される1または複数の搬送物の残留応力を測定するための搬送物の応力測定装置であって、
前記搬送物に対して所定強度のX線を間欠的に照射するX線照射手段と、
前記X線照射手段からX線が照射されたとき、前記搬送物で発生する回折X線を撮像面にて受光し、前記撮像面に回折X線の像を形成するとともに回折X線の像の形状を検出する受光手段と、
前記受光手段にて検出された回折X線の像の形状に基づいて、前記搬送物の残留応力を計算する残留応力取得手段とを有し、
前記受光手段は、前記回折X線の像の形状として回折環の形状を検出するものであり、
前記残留応力取得手段は、前記受光手段で検出された前記回折環の形状に基づいて、cosα法により残留応力を計算するものであり、
前記受光手段は、
イメージングプレートと、
前記イメージングプレートにレーザ光を走査し、前記走査の位置及び前記レーザ光の照射点から発生する蛍光の強度を同じタイミングで検出することで回折環の形状を検出する回折環検出手段と、
前記イメージングプレートに形成された回折環を消去するための消去光を照射するとともに前記消去光を走査する回折環消去手段とから構成され、
前記イメージングプレートは2組あり、
それぞれの組の前記イメージングプレートを、交互に回折X線が入射する位置まで移動させる移動手段と、
一方の組の前記イメージングプレートに回折環が形成されている間、前記回折環検出手段及び前記回折環消去手段を制御して、別の組の前記イメージングプレートに形成された回折環の形状検出及び消去を行う測定制御手段とを有することを特徴とする搬送物の応力測定装置。
【請求項2】
一定の速度で搬送される1または複数の搬送物の残留応力を測定するための搬送物の応力測定装置であって、
前記搬送物に対して所定強度のX線を間欠的に照射するX線照射手段と、
前記X線照射手段からX線が照射されたとき、前記搬送物で発生する回折X線を撮像面にて受光し、前記撮像面に回折X線の像を形成するとともに回折X線の像の形状を検出する受光手段と、
前記受光手段にて検出された回折X線の像の形状に基づいて、前記搬送物の残留応力を計算する残留応力取得手段とを有し、
前記受光手段は、前記回折X線の像の形状として回折環の形状を検出するものであり、
前記残留応力取得手段は、前記受光手段で検出された前記回折環の形状に基づいて、cosα法により残留応力を計算するものであり、
前記受光手段は、
イメージングプレートと、
前記イメージングプレートにレーザ光を走査し、前記走査の位置及び前記レーザ光の照射点から発生する蛍光の強度を同じタイミングで検出することで回折環の形状を検出する回折環検出手段と、
前記イメージングプレートに形成された回折環を消去するための消去光を照射するとともに前記消去光を走査する回折環消去手段とから構成され、
前記イメージングプレートは3組あり、
それぞれの組の前記イメージングプレートを、順に回折X線が入射する位置まで移動させる移動手段と、
1つの組の前記イメージングプレートに回折環が形成されている間、前記回折環検出手段を制御して別の1つの組の前記イメージングプレートに形成された回折環の形状検出を行うとともに、前記回折環消去手段を制御して、別のもう1つの組の前記イメージングプレートに形成された回折環の消去を行う測定制御手段とを有することを特徴とする搬送物の応力測定装置。
【請求項3】
前記X線照射手段及び前記受光手段は複数組設けられるとともに、それぞれの前記X線照射手段は異なる位置にX線が照射され、
それぞれの前記X線照射手段を制御して、それぞれの前記X線照射手段から照射されるX線が、前記搬送物の搬送方向の異なる位置に照射されるようにする照射制御手段を有し、
前記残留応力取得手段は、それぞれの前記受光手段で検出された回折X線の像の形状に基づいて、各X線が照射された位置での残留応力を求めるよう構成されていることを特徴とする請求項1又は請求項2に記載の搬送物の応力測定装置。
【請求項4】
一定の速度で搬送される1または複数の搬送物の残留応力を測定するための搬送物の応力測定装置であって、
前記搬送物に対して所定強度のX線を間欠的に照射するX線照射手段と、
前記X線照射手段からX線が照射されたとき、前記搬送物で発生する回折X線を撮像面にて受光し、前記撮像面に回折X線の像を形成するとともに回折X線の像の形状を検出する受光手段と、
前記受光手段にて検出された回折X線の像の形状に基づいて、前記搬送物の残留応力を計算する残留応力取得手段とを有し、
前記受光手段は、前記回折X線の像の形状として回折環の形状を検出するものであり、
前記X線照射手段及び前記受光手段は複数組設けられるとともに、前記X線照射手段及び前記受光手段のそれぞれの組は、前記搬送物の搬送方向に沿って配置され、それぞれのX線照射手段から照射されるX線は、前記搬送物に対してそれぞれ異なった方向から照射され、
それぞれの前記X線照射手段を制御して、それぞれの前記X線照射手段から照射されるX線が、異なったタイミングで前記搬送物の同一の位置に照射されるようにする照射制御手段を有し、
前記残留応力取得手段は、それぞれの前記受光手段で検出された回折環の形状に基づいて、X線が照射された位置での3軸残留応力を求めるよう構成されていることを特徴とする搬送物の応力測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、搬送物の応力測定装置に関する。
【背景技術】
【0002】
従来、鉄鋼材料連続鋳造工程や熱間圧延工程、冷間圧延工程、鍛造工程、線引き工程など、連続的に材料が生産されている現場では、生産された材料の品質を管理するために、搬送されている材料の中から所定の割合で測定用の材料を取り出し、X線回折を用いた応力測定装置により、材料の各部の平面残留応力を測定することが行われている。引張残留応力が材料の降伏強度を超過すると塑性変形やき裂が発生し、残留応力値が低くてもクリープ変形などで加工後の寸法変化や形状変化が起こるからである。このような応力測定装置には、特許文献1に示されるようにsinψ法による応力測定装置がある。この装置は、材料に対するX線の入射角を変更し、それぞれの入射角において回折角2θを検出することで平面残留応力を測定するものである。
【0003】
sinψ法による応力測定装置は、材料に対するX線の入射角を変更して測定する必要があるため、装置が大型化し測定に時間がかかるという問題がある。これに対し、材料に対するX線の入射角を固定して測定するX線回折を用いた応力測定装置として、特許文献2に示されるようにcosα法による応力測定装置がある。この装置は、材料からの回折X線により撮像面に回折環を形成し、この回折環の形状から平面残留応力を測定するものである。この装置は、装置を小型化でき測定時間を短くすることができるというメリットがある。なお、回折環を形成する撮像面には、特許文献2に示されるようにイメージングプレートの他、特許文献3に示されるように2次元に固体撮像素子を並べたものがある。
【0004】
また、特許文献4に示されるように、移動する対象物に対してX線回折測定を行う装置が本発明者により開発されている。この装置は、X線を連続して対象物に照射し、対象物の移動に同期させてイメージングプレートを回転させ、スリットを介して回折X線の像をイメージングプレートに形成している。そして、回折X線の像の形成と並行して形成した像の半価幅を測定し、該半価幅により対象物の異常箇所を検出している。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2013-36861号公報
【文献】特許第5505361号公報
【文献】特開2015-78934号公報
【文献】特許第5920593号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献2及び特許文献3に示されるX線回折を用いた応力測定装置は、材料を固定した状態でX線を照射して測定を行う場合を前提にした装置であり、搬送されている材料の応力をそのまま測定することはできない。また、特許文献4に示されるX線回折測定装置は、移動する対象物の回折X線の像の半価幅を測定する装置であり、残留応力を測定することを目的とした装置ではない。このように、これまでのX線回折を用いた応力測定装置には搬送されている材料の残留応力を精度よく測定する装置はなかった。
【0007】
このため、搬送されている材料の残留応力を測定するには、搬送されている材料の中から所定の割合で測定用の材料を取り出す必要があり、測定用の材料を取り出してから残留応力の測定結果を得るまでには時間がかかり、得られた測定結果を搬送されている材料にフィードバックするのが困難であるという課題がある。また、材料を全数検査することができないため、異常がある材料を確実に検出することができないという課題がある。
【0008】
本発明は、このような課題に着目してなされたもので、搬送されている全ての搬送物の残留応力をリアルタイムで精度よく測定することができ、検査結果を搬送物の生産工程に即座に反映させることができる応力測定装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記目的を達成するために、本発明に係る搬送物の応力測定装置は、一定の速度で搬送される1 または複数の搬送物の残留応力を測定するための搬送物の応力測定装置であって、搬送物に対して所定強度のX線を間欠的に照射するX線照射手段と、X線照射手段からX線が照射されたとき、搬送物で発生する回折X線を撮像面にて受光し、撮像面に回折X線の像を形成するとともに回折X線の像の形状を検出する受光手段と、受光手段にて検出された回折X線の像の形状に基づいて、搬送物の残留応力を計算する残留応力取得手段とを有し、受光手段は、回折X線の像の形状として回折環の形状を検出するものであり、残留応力取得手段は、受光手段で検出された回折環の形状に基づいて、cosα法により残留応力を計算するものであり、受光手段は、イメージングプレートと、 イメージングプレートにレーザ光を走査し、走査の位置及びレーザ光の照射点から発生する蛍光の強度を同じタイミングで検出することで回折環の形状を検出する回折環検出手段と、イメージングプレートに形成された回折環を消去するための消去光を照射するとともに消去光を走査する回折環消去手段とから構成され、イメージングプレートは2組あり、それぞれの組のイメージングプレートを、交互に回折X線が入射する位置まで移動させる移動手段と、一方の組のイメージングプレートに回折環が形成されている間、回折環検出手段及び回折環消去手段を制御して、別の組のイメージングプレートに形成された回折環の形状検出及び消去を行う測定制御手段とを有することを特徴とする。
【0010】
本装置によれば、X線照射手段により短時間で撮像面に回折X線の像が形成される強度のX線を短時間照射し、次のX線照射手段によるX線照射の前に受光手段により撮像面に形成された回折X線の像の形状を検出し、回折X線の像の形状が得られるごとに残留応力取得手段が残留応力を計算すれば、搬送物の残留応力を短い時間間隔でリアルタイムに測定することができる。すなわち、搬送物の残留応力を所定長さの間隔でリアルタイムに測定することができる。そして、測定される残留応力は、回折X線の像全体の形状に基づいて計算されるので高精度である。また、複数の搬送物が順次搬送されている場合は、それぞれの搬送物ごとに残留応力をリアルタイムで測定することができる。
【0011】
これによれば、検査のために、所定の割合で搬送物をサンプリングしたり、応力測定のための試料を搬送物から切り出したりする必要がなく、経済的である。また、受光手段が回折X線の像の形状を検出した後、残留応力取得手段がすぐに残留応力の計算を行えば、各搬送物の残留応力を各搬送物へのX線照射後の比較的早い段階で得ることができる。これにより、各搬送物の検査結果を、搬送物の生産工程に即座に反映させることができ、搬送物の応力不足などの品質低下を迅速に是正することができる。また、応力不足の箇所や応力不足の搬送物自体を、次の工程に行く前の段階で取り除くことができ、無駄な工程が発生するのを防ぐこともできる。よって、この搬送物の応力測定装置は、鉄鋼材料連続鋳造工程や熱間圧延工程、冷間圧延工程、鍛造工程、線引き工程など、連続的に材料が生産されて搬送される現場等で好適に使用することができる。他にはアルミニウム合金や銅合金などの非鉄材料の加工工程はもちろんのこと、セラミックスや複合材料、デバイスの量産ラインでの検査など、応用範囲は多岐にわたる。
【0012】
X線照射手段は、短時間で撮像面に回折X線の像が形成される強度のX線を短時間照射することができれば、どのようなものでもよく、例えば、チョッパ制御等により断続的にパルスX線を照射するものでもよいし、連続的に照射されるX線をシャッタの開閉制御で短時間通過させるものでもよい。また、受光手段は、撮像面に回折X線の像が形成され、形成された回折X線の像の形状を検出することができればどのようなものでも用いることができ、例えば、X線CCDやX線CMOS等の撮像素子を2次元に並べたイメージセンサ、2次元のマイクロギャップ方式、X線強度を検出する微小開口のセンサ(シンチレーションカウンタ等)を2次元で走査する手段、又はイメージングプレートと該イメージングプレートにレーザ光を走査して走査位置と蛍光強度を検出する手段等がある。
【0013】
また、回折X線の像の形状から残留応力を計算する残留応力取得手段は、背景技術で説明したようにsinψ法とcosα法があり、どちらの方法も用いることができるが、sinψ法は、搬送物に対するX線の入射角を変更してそれぞれの入射角ごとに回折X線の像を得る必要があるため、装置が大型化し測定に時間がかかるという問題があり、cosα法の方が望ましい。なお、cosα法における回折X線の像は回折環である。
【0014】
残留応力取得手段をcosα法によるものにし、受光手段をイメージングプレートと該イメージングプレートにレーザ光を走査して走査位置と蛍光強度を検出する回折環検出手段にすれば、装置を小型化でき、残留応力測定は周囲の温度の影響を大きく受けることはないという利点がある。そして、イメージングプレートは2組あり、それぞれの組のイメージングプレートを、交互に回折X線が入射する位置まで移動させる移動手段と、一方の組のイメージングプレートに回折環が形成されている間、回折環検出手段及び回折環消去手段を制御して、別の組のイメージングプレートに形成された回折環の形状検出及び消去を行う測定制御手段とを有するようにすれば、回折環の形成と回折環の検出、消去の2つを並行して行うことができるため、1つのX線照射手段及び受光手段の組でX線照射と次のX線照射との間の時間を短くし、搬送物の残留応力を測定する位置の間隔を短くすることができる。
【0015】
また、イメージングプレートは3組あり、それぞれの組のイメージングプレートを、順に回折X線が入射する位置まで移動させる移動手段と、1つの組のイメージングプレートに回折環が形成されている間、回折環検出手段を制御して別の1つの組のイメージングプレートに形成された回折環の形状検出を行うとともに、回折環消去手段を制御して、別のもう1つの組のイメージングプレートに形成された回折環の消去を行う測定制御手段とを有するようにしてもよい。
【0016】
これによれば、回折環の形成、回折環の検出及び回折環の消去の3つを並行して行うことができるため、1つのX線照射手段及び受光手段の組でX線照射と次のX線照射との間の時間をさらに短くし、搬送物の残留応力を測定する位置の間隔をさらに短くすることができる。

【0017】
受光手段をイメージングプレートと該イメージングプレートにレーザ光を走査して走査位置と蛍光強度を検出する手段にした場合、受光手段を撮像素子を2次元に並べたイメージセンサにした場合に比べ、回折X線の像の形状を得るまでの時間は長くなり、X線照射と次のX線照射との間の時間が長くなる。すなわち、搬送物の残留応力を測定する位置の間隔が長くなる。
【0018】
搬送物の残留応力を測定する位置の間隔を限界値以上に短くするには、X線照射手段及び受光手段は複数組設けられるとともに、それぞれのX線照射手段は搬送物の搬送方向の異なる位置にX線が照射され、それぞれのX線照射手段を制御して、それぞれのX線照射手段から照射されるX線が、搬送物の異なる位置に照射されるようにする照射制御手段を有し、残留応力取得手段は、それぞれの受光手段で検出された回折X線の像の形状に基づいて、各X線が照射された位置での残留応力を求めるよう構成されているようにすればよい。
【0019】
この場合、X線照射手段及び受光手段のそれぞれの組の間隔を長くして、それぞれの組からX線が搬送物に照射されるタイミングが異なるようにしてもよいし、該間隔を狭くして、それぞれの組からX線が搬送物に照射されるタイミングが同時になるようにしてもよい。いずれの場合も照射制御手段が、それぞれのX線照射手段から照射されるX線が、搬送物の異なる位置に照射されるように制御すればよい。
【0023】
また、搬送物を3軸残留応力で検査したい場合は、受光手段は、回折X線の像の形状として回折環の形状を検出するものであり、X線照射手段及び受光手段は複数組設けられるとともに、X線照射手段及び受光手段のそれぞれの組は、搬送物の搬送方向に沿って配置され、それぞれのX線照射手段から照射されるX線は、搬送物に対してそれぞれ異なった方向から照射され、それぞれのX線照射手段を制御して、それぞれのX線照射手段から照射されるX線が、異なったタイミングで搬送物の同一の位置に照射されるようにする照射制御手段を有し、残留応力取得手段は、それぞれの受光手段で検出された回折環の形状に基づいて、X線が照射された位置での3軸残留応力を求めるよう構成されているようにすればよい。
【0024】
これによれば、それぞれのX線照射手段から照射されるX線を、同一位置に照射されるようにし、照射制御手段はそれぞれのX線照射手段を同時に照射するよう制御した場合に比べ、それぞれのX 線照射手段及び受光手段の組をコンパクトにしなければならないという制約を受けることはなくなる。
【発明の効果】
【0025】
このように本発明による搬送物の応力測定装置によれば、搬送されている全ての搬送物の平面残留応力を短い間隔でリアルタイムで精度よく測定することができる。また、搬送物を3軸残留応力で検査したい場合でも、3軸残留応力をリアルタイムで精度よく測定することができる。これにより、検査結果を搬送物の生産工程に即座に反映させることができる。
【図面の簡単な説明】
【0026】
図1】本発明の第1実施形態における搬送物の応力測定装置を示す全体外略図である。
図2】本発明の第2実施形態における搬送物の応力測定装置を示す全体外略図である。
図3】本発明の第3実施形態における搬送物の応力測定装置を示す全体外略図である。
図4】本発明の第3実施形態の変形例における搬送物の応力測定装置を示す全体外略図である。
図5】本発明の第4実施形態における搬送物の応力測定装置を示す全体外略図である。
図6】本発明の第5実施形態における搬送物の応力測定装置のX線回折装置を示す全体外略図である。
図7】本発明の第6実施形態における搬送物の応力測定装置を示す全体外略図である。
図8】本発明の第6実施形態の変形例における搬送物の応力測定装置を示す全体外略図である。
図9】本発明の第6実施形態の別の変形例における搬送物の応力測定装置を示す全体外略図である。
【発明を実施するための形態】
【0027】
(第1実施形態)
図1は本発明の第1実施形態における搬送物の応力測定装置を示す全体外略図である。この応力測定装置は、X線回折装置10及びコンピュータ装置30から構成され、X線回折装置10は、搬送物1を一定方向に一定速度で搬送する搬送装置2の移動ステージの上方に搬送物1に対して適切な位置になるよう固定具16で固定されている。搬送物1の搬送速度は、具体的な例では0.5cm/秒~10m/秒である。また、コンピュータ装置30はX線回折装置10と電力線及び信号線等でX線回折装置10と接続され、X線回折装置10の近傍に設置されている。なお、図1では省略されているが、コンピュータ装置30の近傍には、X線回折装置10に高電圧の電力を供給する高電圧電源が設置されており、X線回折装置10と電力線で接続されている。
【0028】
X線回折装置10は、筐体内に長尺の円柱状の形状を有するX線出射器11を備えており、X線出射器11は、X線制御回路20により制御され、高電圧電源から高電圧が供給されると、X線を出射口から出射する。X線制御回路20はコンピュータ装置30から指令が入力すると、X線出射器11が設定された強度のX線を出射するように、高電圧電源から供給される電力を制御する。この設定された強度は、搬送物1に照射されると搬送物1にて発生する回折X線により後述する2次元撮像素子12に極短時間(例えば1秒以内)で回折環が形成される強度である。正確な表現をすると、2次元撮像素子12に回折X線が入射してから、2次元撮像素子12が回折環の形状を高精度に計算することができる信号を出力するまでの時間を、極短時間にすることができる強度である。
【0029】
X線出射器11の出射口の近傍にはシャッタ15が固定されており、X線出射器11からX線が照射されたとき、シャッタ15が開状態になるとX線は後述する円筒状パイプ14を通過して搬送物1に照射される。シャッタ15は開閉制御回路21により制御され、開閉制御回路21はコンピュータ装置30から「開」および「閉」の指令が入力する度に、シャッタ15の駆動部に電力を供給してシャッタ15の開閉を行う。コンピュータ装置30が「開」の指令を出力してから「閉」の指令を出力するまでの時間は極短時間(例えば1秒以内)であり、X線は搬送物1に極短時間照射される。また、コンピュータ装置30が「閉」の指令を出力してから次の「開」の指令を出力するまでの時間は、搬送物1の搬送速度と搬送物1の測定位置の間隔とから適宜設定される。
【0030】
X線出射器11からX線が出射され、シャッタ15が開状態であると、X線は円盤状のテーブル13の中心部分に固定されている円筒状パイプ14に入射し、円筒状パイプ14内部を通過して円筒状パイプ14の先端から出射される。円筒状パイプ14のそれぞれの端の内部には内径をそれ以外の箇所の内径より小さくする通路部材が固定されており、X線出射器11から出射されるX線は進行方向に拡がるX線であるが、円筒状パイプ14の内部を通過することで略平行なX線になる。
【0031】
テーブル13の表面には2次元撮像素子12が固定されている。2次元撮像素子12は例えばX線CCDやX線CMOS等の撮像素子を2次元に配置したイメージセンサであり、それぞれの撮像素子は入射したX線強度に相当する強度の信号を、設定された時間間隔でデータ取出回路22に出力する。データ取出回路22は入力したそれぞれの撮像素子の信号を処理することで、2次元撮像素子12に入射したX線から形成される像のデータを作成する。X線が搬送物1に照射されると照射箇所では回折X線が発生するが、ブラッグの条件を満たす箇所では回折X線の強度が大きくなり、2次元撮像素子12に回折X線が入射すると、X線の像として回折環が形成される。よって、X線が搬送物1に照射されると、データ取出回路22では回折環の形状のデータが作成される。データ取出回路22はコンピュータ装置22から作動開始の指令が入力すると、回折環の形状のデータを設定された時間間隔で出力することを開始し、コンピュータ装置30は「開」の指令の後「閉」の指令を開閉制御回路21に出力した直後に、データ取出回路22から入力したデータをメモリに記憶することで、回折環の形状のデータを取得する。
【0032】
なお、上述したX線制御回路20、開閉制御回路21及びデータ取出回路22は図1では、X線回折装置10の筐体外にあるように描かれているが、実際はX線回折装置10の筐体内に納められている。
【0033】
搬送装置2の移動ステージの側面近傍には、移動する搬送物1の先端及び後端を検出するための端検出センサ3が固定されている。端検出センサ3は移動ステージの反対側の側面近傍にあるレーザ光の受光の有無から、測定対象物OBの先端及び後端を検出するもの等を用いることができる。端検出センサ3は搬送物1の先端及び後端を検出するごとに、コンピュータ装置30に「先端検出」及び「後端検出」を意味する信号を出力する。
【0034】
コンピュータ装置30は、CPU、ROM、RAM、大容量記憶装置などを備えたマイクロコンピュータを主要部とした電子制御装置であり、端検出センサ3からの信号を入力するとともに、上述したX線制御回路20、開閉制御回路21及びデータ取出回路22に指令を出力することでX線回折装置10を制御する制御部32と、データ取出回路22から入力した回折環の形状のデータを処理することで残留応力を計算する計算部31がある。これらは、コンピュータ装置30にインストールされたプログラムである。
【0035】
測定制御部32は端検出センサ3から「先端検出」の信号を入力すると、X線制御回路20とデータ取出回路22に作動開始の指令を出力し、設定された時間が経過した後、設定された時間間隔で開閉制御回路21に「開」と「閉」の指令を出力することを繰り返す。そして、「閉」の指令を出力した直後ごとに、データ取出回路22から入力するデータをメモリに記憶する。そして、端検出センサ3から「後端検出」の信号を入力すると、X線制御回路20とデータ取出回路22に作動停止の指令を出力する。
【0036】
計算部31は、回折環の像のデータがメモリに記憶されると残留応力を算出する演算処理を行う。この演算方法は公知技術であるcosα法によるものであり、例えば特開2005-241308号公報等に示されている。得られる残留応力は、図1の横方向(搬送物1の搬送方向)をX方向とし図1の紙面垂直方向をY方向とすると、X方向の残留垂直応力σx、Y方向の残留垂直応力σy、及び残留せん断応力τxyであり、平面残留応力である。計算部31は残留応力が得られると予め設定されている閾値と比較することで合否判定を行う。
【0037】
コンピュータ装置30にはキーボードやタッチパネル等の入力装置とディスプレイ等の表示装置があり、コンピュータ装置30は得られた残留応力の値と合否判定結果を、搬送物1の識別情報とともに表示装置に表示する。また、応力測定装置に残留応力の測定を開始させる場合及び終了させる場合は、入力装置から測定開始及び測定停止の指令を入力することにより行う。さらに、コンピュータ装置30に設定される、閉制御回路21に出力する指令の時間間隔といった測定条件、X線の入射角、X線照射点から2次元撮像素子12までの距離といった残留応力の計算に必要なパラメータ値、及び合否判定を行う際の閾値といった判定条件は、入力装置から作業者が入力することで設定される。
【0038】
このように構成された第1実施形態の搬送物の応力測定装置によれば、搬送物1の平面残留応力を短い時間間隔で、すなわち搬送物1の搬送方向に短い間隔で精度よく測定することができる。また、リアルタイムで平面残留応力の測定結果と合否判定を表示することができる。
【0039】
(第2実施形態)
上述した第1実施形態の搬送物の応力測定装置は、上述した効果を得ることはできるが、2次元撮像素子12は温度の影響を強く受けるため、温度変動が大きい環境下では平面残留応力を精度よく測定することが困難である。これに対し、本発明の第2実施形態における搬送物の応力測定装置は、温度の影響を強く受けることはないものである。
【0040】
図2は本発明の第2実施形態における搬送物の応力測定装置を示す全体外略図である。この応力測定装置のX線回折装置40が、先行技術文献の特許文献2に示されるX線回折装置と異なっている点は、装置が固定具16で固定されている点とシャッタ15が設けられている点であり、他は同じである。そして、固定具16とシャッタ15は第1実施形態のものと同一である。
【0041】
第2実施形態における搬送物の応力測定装置は、2次元撮像素子12の替わりにイメージングプレート46に回折X線が入射し、イメージングプレート46に回折環が形成される。そして、イメージングプレート46に形成された回折環は移動機構41の移動により光ヘッド47の位置まで移動され、回折環の形状が検出される。この検出は、移動機構41の移動及びイメージングプレート46が取り付けられたテーブル44に連結しているモータ42の回転とともに光ヘッド47からレーザ光が照射され、イメージングプレート46で発生する蛍光の強度データを、モータ42の回転角度データ及び移動機構41の移動位置データとともにコンピュータ装置30が取得することで行われる。また、回折環の形状検出の後、光ヘッド47から消去用のLED光が照射されて回折環が消去され、イメージングプレート46は回折X線が入射する位置である元の位置まで移動する。
【0042】
第2実施形態における搬送物の応力測定装置は、データ取出回路22の替わりに移動制御回路43と光ヘッド制御回路48があり、コンピュータ装置30からの指令により、モータ42の回転、移動機構41の移動及び光ヘッド47からのレーザ光照射と消去用のLED光照射を制御するとともに、上述したモータ42の回転角度データ、移動機構41の移動位置データ及びイメージングプレート46で発生する蛍光の強度データをコンピュータ装置30に送信する。
【0043】
第2実施形態におけるコンピュータ装置30の制御部32は、開閉制御回路21に「閉」の指令を出力した後、移動制御回路43及び光ヘッド制御回路48へ様々な指令を出力して上述した作動を行わせるとともに、回折環の形状データである上述したデータを入力することを行う。それ以外は、第1実施形態のコンピュータ装置30と同じである。
【0044】
このように構成された第2実施形態の搬送物の応力測定装置によれば、第1実施形態と同様の効果を得ることができ、温度変動が大きい環境下でも平面残留応力を精度よく測定することができるという効果がある。なお、第2実施形態の搬送物の応力測定装置は第1実施形態のものに比べ、X線を照射した後、回折X線の像の形状を検出するまでの時間が長くなり、搬送物1の測定位置の間隔を短くするのが困難である。この問題は、イメージングプレート46へのレーザ光照射及び消去用のLED光照射を、回折環が形成されている位置のみに限定して行うようにすれば、ある程度改善することができる。
【0045】
(第3実施形態)
上述した第1実施形態および第2実施形態の搬送物の応力測定装置は、回折X線の像の形状を検出する機能、残留応力を計算する機能の特性及び搬送物1の搬送速度により、搬送物1の測定位置の間隔を小さくしていくと限界値があり、特に第2実施形態の搬送物の応力測定装置においては、この限界値が大きい。本発明の第3実施形態は、搬送物1の測定位置の間隔をこの限界値よりも小さくすることができるものである。
【0046】
図3は本発明の第3実施形態における搬送物の応力測定装置を示す全体外略図である。この応力測定装置は図2のX線回折装置40を搬送物1の搬送方向に複数台、図2と同様に配置したものである。なお、X線回折装置40は図1のX線回折装置10であってもよく、X線回折装置40は搬送物1の測定位置の間隔により別の台数を配置してもよい。
【0047】
コンピュータ装置30には、それぞれのX線回折装置40を独立して制御する、個別制御部32-1,32-2,32-3とそれぞれの個別制御部32-1,32-2,32-3を制御する統括制御部33がある。個別制御部32-1,32-2,32-3は、第2実施形態の制御部32と同一の制御を、X線回折装置40-1,40-2,40-3に対してそれぞれ独立して行う。統括制御部33はX線回折装置40-1,40-2,40-3による搬送物1の測定位置が等しい間隔になるよう、個別制御部32-1,32-2,32-3のそれぞれに作動を指令する。
【0048】
第1実施形態および第2実施形態の端検出センサ3は、第3実施形態においてはX線回折装置40-1,40-2,40-3に対してそれぞれ設けられており、コンピュータ装置30の統括制御部33は、それぞれの端検出センサ3からの信号を識別して、個別制御部32-1,32-2,32-3のそれぞれに作動を指令する。端検出センサ3から信号が入力してから個別制御部32-1,32-2,32-3のそれぞれが作動する時間を適切に設定することで、搬送物1の測定位置は等しい間隔になる。
【0049】
図3は、X線回折装置40-1,40-2,40-3をそれぞれ異なる搬送物1にX線が照射されるよう配置した場合であるが、図4に示すように、X線回折装置40-1,40-2を同一の搬送物1の互いに微小距離離れた位置にX線が照射するように配置し、同時にX線を照射して残留応力を測定するようにしてもよい。この場合、互いに微小距離離れた位置にX線を照射し、搬送物1に対するX線の入射角を所定の角度にするには、図4に示すように、図2のX線回折装置40の長尺方向を紙面垂直方向にし、該長尺方向周りにX線回折装置40を傾けてX線を照射するようにすればよい。
【0050】
そして、この場合のX線回折装置40-1,40-2の筐体の形状は、搬送物1に接触せず、互いのX線回折装置40-1,40-2を近づけることができるような形状にすればよい。この筐体の形状は特許第5967394号公報に詳細に示されている。なお、X線の照射方向を搬送物1の表面に投影した方向が、残留垂直応力を精度よく測定したい方向にする必要があるので、X線回折装置40を非常にコンパクトにしない限り、同一の搬送物1の互いに微小距離離れた位置にX線が照射する場合の照射点数は、図4に示すように2点が限度である。
【0051】
このように構成された第3実施形態の搬送物の応力測定装置によれば、第1実施形態と同様の効果を得ることができ、搬送物1の測定位置の間隔をX線回折装置が1台のときの限界値よりも小さくすることができるという効果がある。
【0052】
(第4実施形態)
上述した第3実施形態は、X線回折装置の台数を増やすため、搬送物の応力測定装置のコストがUPする。本発明の第4実施形態は、第2実施形態の方式のX線回折装置1台におけるX線照射と次のX線照射との時間間隔を小さくして、搬送物の応力測定装置のコストUPを抑制することができるものである。
【0053】
図5は本発明の第4実施形態における搬送物の応力測定装置を示す全体外略図である。この応力測定装置のX線回折装置50は、イメージングプレート46-1,46-2を2組備え、イメージングプレート46-1,46-2を交互に回折X線が入射する位置(回折環が形成される位置)まで移動する移動機構41を備えている。そして、イメージングプレート46-1,46-2に形成された回折環の形状を検出する機能と回折環を消去する機能も2組備え、片方のイメージングプレートに回折X線が入射しているとき(回折環を形成しているとき)、もう片方のイメージングプレートに形成された回折環の形状を検出し、次いでその回折環を消去するようになっている。
【0054】
回折環の形状検出機能及び消去機能は、イメージングプレート46-1,46-2を取り付けたテーブル44-1,44-2に連結されているモータ42-1,42-2、光ヘッド47-1,47-2及び光ヘッド移動機構51-1,51-2と、これらの作動を制御し、回折環の形状データを得る、移動制御回路43、光ヘッド制御回路48-1,48-2及び光ヘッド移動制御回路52-1,52-2である。第2実施形態と異なっているのは、移動制御回路43以外は2組ある点と、回折環の形状を検出する際、移動機構41による移動に替えて、光ヘッド移動機構51-1,51-2により光ヘッド47-1,47-2を移動させる点である。
【0055】
すなわち、回折環の形状を検出する際、第2実施形態では移動機構41によるイメージングプレート46の移動で、レーザ光照射点をイメージングプレート46の半径方向に移動させたが、第4実施形態では、光ヘッド移動機構51-1,51-2による光ヘッド47-1,47-2の移動で、レーザ光照射点をイメージングプレート46-1,46-2の半径方向に移動させている。
【0056】
なお、図5では、X線回折装置50の長尺方向と搬送物1の搬送方向は同一であるように描かれているが、実際は、X線回折装置50の長尺方向は紙面垂直方向であり、該長尺方向周りに、X線回折装置50は傾けられており、X線は搬送物1に所定の入射角度で入射するようになっている。
【0057】
このように構成された第4実施形態の搬送物の応力測定装置によれば、第2実施形態と同様の効果を得ることができ、搬送物1の測定位置の間隔を第2実施形態より小さくすることができるという効果がある。そして、第3実施形態のようにX線回折装置を複数台設ける場合は、その台数を減らして搬送物の応力測定装置のコストUPを抑制することができる。
【0058】
(第5実施形態)
上述した第4実施形態は、イメージングプレート46と回折環の形状検出機能、消去機能とを2組にしたが、イメージングプレート46を3組にし、回折環の形状検出機能及び消去機能を別々にして、第2実施形態の方式のX線回折装置1台におけるX線照射と次のX線照射との時間間隔をさらに小さくしたものが、本発明の第5実施形態である。
【0059】
図6は本発明の第5実施形態における搬送物の応力測定装置のX線回折装置60の構成を示す概略図であり、X線回折装置60を上方から見た図である。このX線回折装置60は、イメージングプレートを3組備え、それぞれのイメージングプレートを順に回折X線が入射する位置(回折環が形成される位置)まで移動する移動機構を備えている。図6ではイメージングプレートはテーブル44-1,44-2,44-3の裏側に取り付けられている。移動機構はモータ61及びテーブル44-1,44-2,44-3と連結しているモータ42-1,42-2,42-3を取り付けているプレート62からなり、モータ61を所定角度回転させることで、それぞれのイメージングプレートを順に回折X線が入射する位置にする。
【0060】
そして1つのイメージングプレートが回折X線が入射する位置になっているとき、残りの1つのイメージングプレートに形成されている回折環が、光ヘッド47-1の作動と光ヘッド移動機構51-1の作動とモータ42-1,42-2,42-3のいずれか1つの回転により検出される。さらに、残りのもう1つのイメージングプレートに形成されている回折環が、光ヘッド47-2の作動と光ヘッド移動機構51-2の作動とモータ42-1,42-2,42-3のいずれか1つの回転により消去される。
【0061】
すなわち、第4実施形態が回折環の形成及び回折環の形状検出と消去の2つを並行して行うのに対し、第5実施形態では回折環の形成、回折環の形状検出、及び回折環の消去の3つを並行して行う。そして、回折環の形状検出の時間と回折環の消去の時間は、回折環の形成(X線の照射)の時間よりも長いため、第5実施形態ではX線回折装置1台におけるX線照射と次のX線照射との時間間隔をさらに小さくすることができる。
【0062】
なお、図6において、X線回折装置60は搬送物1が載置されている移動ステージの面に対して、X線出射器11の長尺方向周りに傾斜しており、X線は搬送物1に対して所定の入射角度で照射される。傾斜の回転軸はX線出射器11の中心軸付近で、X線回折装置60はモータ42-2,42-3がモータ42-1より上側になるように傾斜している。
【0063】
また、モータ61は120度ずつ回転し、設定した角度だけ回転すると、反対方向に240度ずつ回転し、プラスマイナスの回転角度が0度になった後、元の方向に120度ずつ回転するようになっている。これは、モータ42-1,42-2,42-3へ接続されている電力線、信号線がねじれるのを防止するためである。
【0064】
このように構成された第5実施形態の搬送物の応力測定装置によれば、第2実施形態と同様の効果を得ることができ、搬送物1の測定位置の間隔を第4実施形態より小さくすることができるという効果がある。そして、第3実施形態のようにX線回折装置を複数台設ける場合は、その台数を第4実施形態より減らして搬送物の応力測定装置のコストUPを抑制することができる。
【0065】
(第6実施形態)
上述した第1実施形態乃至第5実施形態は、搬送物1の平面残留応力を測定するものであるが、本発明の第6実施形態は3軸残留応力を測定するものである。
【0066】
図7は本発明の第6実施形態における搬送物の応力測定装置を示す全体外略図である。この応力測定装置は図1のX線回折装置10を搬送物1の搬送方向に複数台、図1と同様に固定したものである。なお、X線回折装置10は図2のX線回折装置40、図5のX線回折装置50又は図6のX線回折装置60であってもよい。
【0067】
X線回折装置10-1はX線光軸を搬送物1の表面に投影すると搬送方向と平行になるようにし、X線を搬送物1に所定の入射角度で照射する。また、X線回折装置10-2はX線光軸を搬送物1の表面に投影すると搬送方向と垂直になるようにし、X線を搬送物1に所定の入射角度で照射する。そして、X線回折装置10-3はX線光軸が搬送物1の表面に垂直になるようX線を照射する。
【0068】
第3実施形態と同様、コンピュータ装置30には、それぞれのX線回折装置10-1,10-2,10-3を独立して制御する個別制御部32-1,32-2,32-3と、それぞれの個別制御部32-1,32-2,32-3を制御する統括制御部33がある。第6実施形態においては、統括制御部33はX線回折装置10-1,10-2,10-3による搬送物1へのX線照射位置が等しくなるよう、個別制御部32-1,32-2,32-3のそれぞれに作動を指令する。
【0069】
それぞれのX線回折装置10-1,10-2,10-3にて得られる回折環の形状から3軸残留応力を計算する方法は既存技術であり、特許5339253号公報に詳細に説明されている。
【0070】
3軸残留応力を測定するためのX線回折装置の配置の仕方は図7以外にもある。図8は3軸残留応力を計算するためのX線回折装置の別の配置の仕方である。この場合は、X線光軸を搬送物1の表面に投影すると、搬送方向と搬送方向の直角方向に平行で、それぞれにおいて反対側の方向を有し、それぞれのX線の入射角度が所定の入射角度になるようX線回折装置10-1,10-2,10-3,10-4を配置する。この場合のそれぞれのX線回折装置10-1,10-2,10-3,10-4にて得られる回折環の形状から3軸残留応力を計算する方法も、特許5339253号公報に詳細に説明されている。
【0071】
また、3軸残留応力を計算するためのX線回折装置の別の配置の仕方としては、搬送方向の垂直方向の残留垂直応力の精度を落としてもよい場合は、図7においてX線回折装置10-1,10-3のみにする配置の仕方もある。この場合のそれぞれのX線回折装置10-1,10-3にて得られる回折環の形状から3軸残留応力を計算する方法は、特許6011846号公報に詳細に説明されている。
【0072】
さらに、3軸残留応力を計算するためのX線回折装置の別の配置の仕方としては、搬送方向の垂直方向の残留応力の精度を落としてもよい場合は、図8においてX線回折装置10-1,10-3のみにし、X線回折装置10-3のX線光軸を搬送物1の表面に投影すると搬送方向と平行になるようにし、X線を搬送物1にX線回折装置10-1と異なる入射角度で照射する配置の仕方もある。この場合のそれぞれのX線回折装置10-1,10-3にて得られる回折環の形状から3軸残留応力を計算する方法は、特許6060474 号公報に詳細に説明されている。
【0073】
また、上述した図7図8及び図7の変形例におけるそれぞれのX線回折装置は、X線が異なる搬送物1に照射されるよう配置し、X線を照射するタイミングを調整して、X線の照射位置が等しくなるようにした。しかし、それぞれのX線回折装置を、X線が同一箇所に照射されるよう配置し、同時にX線を照射するようにしてもよい。この場合、X線回折装置10を非常にコンパクトにしない限り、考えられるX線回折装置10の配置の仕方は、図4に示すようにX線回折装置10を長尺方向周りに傾けてX線が照射されるようにし、上方から見ると図9に示すようにX線回折装置を配置する仕方である。
【0074】
このように構成された第6実施形態の搬送物の応力測定装置によれば、第1実施形態と同様の効果を得ることができ、搬送物1の3軸残留応力をリアルタイムで精度よく測定することができる。
【0075】
なお、本発明の実施にあたっては、上述した実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。
【0076】
上述した実施形態においては、残留応力の測定方法はいずれもcosα法によるものであった。しかし、sinΨ法であっても、測定時間を短縮することができるならば、残留応力の測定方法として用いてもよい。
【0077】
また、上述した実施形態においては、X線出射器11からは連続してX線を出射し、シャッタ15の開閉により短時間X線が搬送物1に照射されるようにした。しかし、短時間で回折X線の像が形成される強度のX線を短時間出射することができるならば、X線照射手段はどのようなものでもよい。例えば、チョッパ制御等により断続的にパルスX線を照射するようにしてもよい。
【0078】
また、上述した実施形態においては、回折環を形成し該回折環の形状を検出する手段として、2次元撮像素子12、及びイメージングプレート46と該イメージングプレート46にレーザ光を走査して走査位置と蛍光強度を検出する手段を用いた。しかし、回折環の形状を精度よく時間をかけずに検出できるならば、どのような手段を用いてもよい。例えば、2次元のマイクロギャップ方式の機器を用いてもよいし、微小開口のセンサ(シンチレーションカウンタ等)をテーブル44の半径方向に複数設け、X線が照射される間にテーブル44を1回転させて、半径位置と回転角度ごとにX線強度を検出するようにしてもよい。
【0079】
また、上述した実施形態においては、コンピュータ装置30がX線回折装置にX線を出射させるタイミングを定めるため、端検出センサ3で搬送物1の端を検出するようにした。しかし、搬送物1の設定した箇所にX線を照射することができるならば、どのような方法を用いてもよい。例えば、X線回折装置からX線の光軸と同じ光軸の可視の平行光を照射し、その反射光の受光強度が閾値を超えることで、搬送物1の端を検出するようにしてもよい。
【実施例1】
【0080】
本発明の第3実施形態の搬送物の応力測定装置により、搬送物1の平面残留応力測定を行った。X線回折装置としてはパルステック工業株式会社製のポータブル型X線残留応力測定装置「μ-X360」を用いた。これは本発明の第2実施形態に示されたX線回折装置40に相当する装置である。測定対象の搬送物1として、冷間圧延工程により搬送されているSS400のH形鋼,断面寸法100mm×200mmを用いた。H形鋼の圧延速度(搬送速度)は1cm/秒であり、X線回折装置40をH形鋼の圧延方向に複数台を配置し、圧延方向を20cmの間隔で測定した。X線回折装置40のX線出射器11におけるX線源を空冷のCr-Kα線源とし、管電圧を30kV、管電流を1.5mAとして、X線を照射した。H形鋼における測定点(X線の照射点)は圧延方向の中心線付近であり、X線の照射点の直径は1mm、X線の入射角は35°でイメージングプレート46に回折環を形成した。また、回折環におけるX線の回折角をα-Fe(211)の2θ=156.4°とし、形成された回折環の形状に基づいて、コンピュータ装置30の計算部31により、cosα法でH形鋼の平面残留応力を求めた。
【0081】
X線出射器11はまだ短時間で回折環が形成される強度のX線を出射するものではなかったため、1回でのX線の照射時間を15秒とし、その間にH形鋼が移動する距離(X線照射点が移動する距離)15cmにおける平均の平面残留応力を求めた。また、求められる平面残留応力は、深さ約10μmまでの平均値である。H形鋼の圧延方向をx、それに垂直な方向をyとしたとき、H形鋼の各点で求められた平面残留応力σx、σyの範囲は、それぞれσx=-35~-69MPa、σy=28~-6MPaであった。
【符号の説明】
【0082】
1 搬送物
2 搬送装置
3 端検出センサ
10 X線回折装置
11 X線出射器
12 2次元撮像素子
13 テーブル
14 円柱状パイプ
15 シャッタ
16 固定具
20 X線制御回路
21 開閉制御回路
22 データ取出回路
30 コンピュータ装置
31 計算部
32 制御部
32-1,32-2,32-3 個別制御部
33 統括制御部
40 X線回折装置
41 移動機構
42 モータ
43 移動制御回路
44 テーブル
46 イメージングプレート
47 光ヘッド
48 光ヘッド制御回路
50 X線回折装置
51-1,51-2 光ヘッド移動機構
52-1,52-2 光ヘッド移動制御回路
60 X線回折装置
61 モータ
62 プレート
図1
図2
図3
図4
図5
図6
図7
図8
図9