(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-04
(45)【発行日】2022-03-14
(54)【発明の名称】誘電熱量システム
(51)【国際特許分類】
F25B 21/00 20060101AFI20220307BHJP
【FI】
F25B21/00 Z
(21)【出願番号】P 2017220548
(22)【出願日】2017-11-16
【審査請求日】2020-11-13
(32)【優先日】2016-12-12
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】504407000
【氏名又は名称】パロ アルト リサーチ センター インコーポレイテッド
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100088694
【氏名又は名称】弟子丸 健
(74)【代理人】
【識別番号】100067013
【氏名又は名称】大塚 文昭
(74)【代理人】
【識別番号】100086771
【氏名又は名称】西島 孝喜
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100109335
【氏名又は名称】上杉 浩
(74)【代理人】
【識別番号】100120525
【氏名又は名称】近藤 直樹
(72)【発明者】
【氏名】デイヴィット・イー・シュワルツ
(72)【発明者】
【氏名】ユンダ・ワン
【審査官】飯星 潤耶
(56)【参考文献】
【文献】特開2016-005429(JP,A)
【文献】米国特許出願公開第2015/0033762(US,A1)
【文献】特開2015-059739(JP,A)
【文献】特開平04-313297(JP,A)
【文献】特開平08-178470(JP,A)
【文献】国際公開第2014/041621(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F25B 21/00-21/04
B60H 1/32
H01F 1/01
H02N 11/00
H01L 37/02
F24F 1/0097
F24F 1/0378
(57)【特許請求の範囲】
【請求項1】
第1の列の誘電熱量コンデンサのコンデンサが第1の組の絶縁領域によって分離された第1の列の誘電熱量コンデンサと、
前記第1の列の誘電熱量コンデンサに近接しており、第2の列の誘電熱量コンデンサのコンデンサが第2の組の絶縁領域によって分離された第2の列の誘電熱量コンデンサとを備え、
前記第1の列の誘電熱量コンデンサに第1の電界が印加され且つ前記第2の列の誘電熱量コンデンサに第2の電界が印加され、
前記第1及び第2の電界が各誘電熱量コンデンサに印加されると、前記第1の電界の上昇に応じて前記第1の誘電熱量コンデンサの温度が上昇し且つ前記第2の電界の下降に応じて前記第2の誘電熱量コンデンサの温度が下降するように、又は、前記第1の電界の下降に応じて前記第1の誘電熱量コンデンサの温度が下降し且つ前記第2の電界の上昇に応じて前記第2の誘電熱量コンデンサの温度が上昇するように、前記第1及び第2の電界が相補的であ
り、
さらに、前記第1の列の誘電熱量コンデンサと前記第2の列の誘電熱量コンデンサとの間に支持層を備え、
さらに、前記支持層を通る少なくとも1つの熱伝導性ビアを備える、システム。
【請求項2】
第1の列の誘電熱量コンデンサのコンデンサが第1の組の絶縁領域によって分離された第1の列の誘電熱量コンデンサと、
前記第1の列の誘電熱量コンデンサに近接しており、第2の列の誘電熱量コンデンサのコンデンサが第2の組の絶縁領域によって分離された第2の列の誘電熱量コンデンサとを備え、
前記第1の列の誘電熱量コンデンサに第1の電界が印加され且つ前記第2の列の誘電熱量コンデンサに第2の電界が印加され、
前記第1及び第2の電界が各誘電熱量コンデンサに印加されると、前記第1の電界の上昇に応じて前記第1の誘電熱量コンデンサの温度が上昇し且つ前記第2の電界の下降に応じて前記第2の誘電熱量コンデンサの温度が下降するように、又は、前記第1の電界の下降に応じて前記第1の誘電熱量コンデンサの温度が下降し且つ前記第2の電界の上昇に応じて前記第2の誘電熱量コンデンサの温度が上昇するように、前記第1及び第2の電界が相補的であり、
さらに、前記第1の列の誘電熱量コンデンサと前記第2の列の誘電熱量コンデンサとの間に支持層を備え、
前記支持層が断熱材料を含む、システム。
【請求項3】
第1の層の誘電熱量コンデンサのコンデンサが第1の列の絶縁領域によって分離された第1の層の誘電熱量コンデンサと、
前記第1の層の誘電熱量コンデンサに近接した第2の層の誘電熱量コンデンサであって、前記第1及び第2の誘電熱量コンデンサの間の熱伝達
が可能
であり、前記第2の層の誘電熱量コンデンサのコンデンサが第
2の列の絶縁領域によって分離された第2の層の誘電熱量コンデンサと、
前記第2の層の誘電熱量コンデンサに対して前記第1の層の誘電熱量コンデンサを移動させるように構成されたアクチュエータとを備え、
前記第1の層の誘電熱量コンデンサに第1の電界が印加され且つ前記第2の層の誘電熱量コンデンサに第2の電界が印加され、
前記第1及び第2の電界が各誘電熱量コンデンサに印加されると、前記第1の電界の上昇に応じて前記第1の誘電熱量コンデンサの温度が上昇し且つ前記第2の電界の下降に応じて前記第2の誘電熱量コンデンサの温度が下降するように、又は、前記第1の電界の下降に応じて前記第1の誘電熱量コンデンサの温度が下降し且つ前記第2の電界の上昇に応じて前記第2の誘電熱量コンデンサの温度が上昇するように、前記第1及び第2の電界が相補的であり、
前記アクチュエータが、前記第1及び第2の電界の上昇及び下降に対応して前記第2の層の誘電熱量コンデンサに対して前記第1の層の誘電熱量コンデンサを移動させるように構成されて
おり、
さらに、前記第1の列の誘電熱量コンデンサと前記第2の列の誘電熱量コンデンサとの間に支持層を備え、
さらに、前記支持層を通る少なくとも1つの熱伝導性ビアを備え、システム。
【請求項4】
第1の層の誘電熱量コンデンサに対して第2の層の誘電熱量コンデンサを第1の方向に移動させることであって、前記第1の層の誘電熱量コンデンサのコンデンサが、第1の絶縁領域によって分離され、前記第2の層の誘電熱量コンデンサのコンデンサが、第2の絶縁領域によって分離されることと、
前記第2の層の誘電熱量コンデンサにおける電界を下降させたときに前記第1の層の誘電熱量コンデンサにおける電界を上昇させ、それにより、熱が前記第1の層の誘電熱量コンデンサから前記第2の層の誘電熱量コンデンサへと伝達されることと、
前記第1の層の誘電熱量コンデンサに対して前記第1の方向と反対方向に前記第2の層の誘電熱量コンデンサを移動させることと、
前記第1の層の誘電熱量コンデンサにおける電界を下降させたときに前記第2の層の誘電熱量コンデンサにおける電界を上昇させ、それにより、熱が前記第2の層の誘電熱量コンデンサから前記第1の層の誘電熱量コンデンサへと伝達されることとを備え
、
前記第1の列の誘電熱量コンデンサと前記第2の列の誘電熱量コンデンサとの間の支持層を通って配設された少なくとも1つのビアを使用して前記第1及び第2のコンデンサ層間において垂直方向に熱を伝達することをさらに備える、方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、誘電熱量冷却及び/又は加熱装置並びにそのような装置に関連する方法に関する。
【背景技術】
【0002】
近年、ヒートポンプ、空調、及び/又は他のエネルギ変換用途についてのいくつかの技術が研究されている。これらの技術は、エネルギ効率の向上、コンパクト化、騒音レベルの低減、並びに環境への影響の低減をもたらすことがある誘電熱量エネルギ変換の使用を含む。
【発明の概要】
【課題を解決するための手段】
【0003】
システムは、第1の列の誘電熱量コンデンサを備える。誘電熱量コンデンサの第1の列のコンデンサは、第1の組の絶縁領域によって分離される。第2の列の誘電熱量コンデンサは、第1の列の誘電熱量コンデンサに近接して配設される。第2の列の誘電熱量コンデンサのコンデンサは、第2の組の絶縁領域によって分離される。第1の電界が第1の列の誘電熱量コンデンサに印加され、第2の電界が第2の列の誘電熱量コンデンサに印加される。第1及び第2の電界が各誘電熱量コンデンサに印加されると、第1の電界の上昇に応じて第1の誘電熱量コンデンサの温度が上昇し且つ第2の電界の下降に応じて第2の誘電熱量コンデンサの温度が下降するように、又は、第1の電界の下降に応じて第1の誘電熱量コンデンサの温度が下降し且つ第2の電界の上昇に応じて第2の誘電熱量コンデンサの温度が上昇するように、第1及び第2の電界は相補的である。
【0004】
本願明細書に記載された様々な実施形態は、第1の層の誘電熱量コンデンサを備えるシステムを含む。第1の列の第1の誘電熱量コンデンサのコンデンサは、第1の絶縁領域によって分離される。第2の層の誘電熱量コンデンサは、第1の誘電熱量コンデンサに近接して配設され、近接性は、第1及び第2の誘電熱量コンデンサの間の熱伝達を可能とする。第2の列の誘電熱量コンデンサのコンデンサは、第2の絶縁領域によって分離される。アクチュエータは、第2の層の誘電熱量コンデンサに対して第1の層の誘電熱量コンデンサを移動させるように構成されている。第1の電界が第1の層の誘電熱量コンデンサに印加され、第2の電界が第2の層の誘電熱量コンデンサに印加される。第1及び第2の電界が各誘電熱量コンデンサに印加されると、第1の電界の上昇に応じて第1の誘電熱量コンデンサの温度が上昇し且つ第2の電界の下降に応じて第2の誘電熱量コンデンサの温度が下降するように、又は、第1の電界の下降に応じて第1の誘電熱量コンデンサの温度が下降し且つ第2の電界の上昇に応じて第2の誘電熱量コンデンサの温度が上昇するように、第1及び第2の電界は相補的である。アクチュエータは、第1及び第2の電界の上昇及び下降に対応して第2の層の誘電熱量コンデンサに対して第1の層の誘電熱量コンデンサを移動させるように構成されている。
【0005】
方法は、第1の層の誘電熱量コンデンサに対して第2の層の誘電熱量コンデンサを第1の方向に移動させることを備え、第1の層の誘電熱量コンデンサのコンデンサが、第1の絶縁領域によって分離され、第2の層の誘電熱量コンデンサのコンデンサが、第2の絶縁領域によって分離される。第2の層の誘電熱量コンデンサにおける電界を下降させると第1の層の誘電熱量コンデンサにおける電界が上昇し、それにより、熱が第1の層の誘電熱量コンデンサから第2の層の誘電熱量コンデンサへと伝達される。第2の層の誘電熱量コンデンサは、第1の層の誘電熱量コンデンサに対して第1の方向と反対方向に移動される。第1の層の誘電熱量コンデンサにおける電界を下降させると第2の層の誘電熱量コンデンサにおける電界が上昇し、それにより、熱が第2の層の誘電熱量コンデンサから第1の層の誘電熱量コンデンサへと伝達される。
【0006】
上記概要は、各実施形態又は全ての実装を記載するように意図するものではない。添付図面とともに以下の詳細な説明及び特許請求の範囲を参照することにより、より完全な理解が明らかになって理解されるであろう。
【図面の簡単な説明】
【0007】
【
図1A】
図1Aは、本願明細書に開示された様々な実施形態にかかる能動的再生を介して誘電熱量冷却するためのシステムを示している。
【
図1B】
図1Bは、本願明細書に開示された様々な実施形態にかかる能動的再生を介して誘電熱量冷却するためのシステムを示している。
【
図1C】
図1Cは、本願明細書に開示された様々な実施形態にかかる能動的再生を介して誘電熱量冷却するためのシステムを示している。
【
図2A】
図2Aは、本願明細書に開示された様々な実施形態にかかる能動的再生を介して誘電熱量冷却するためのシステムを示している。
【
図2B】
図2Bは、本願明細書に開示された様々な実施形態にかかる能動的再生を介して誘電熱量冷却するためのシステムを示している。
【
図3A】
図3Aは、本願明細書に開示された様々な実施形態にかかる能動的再生を介して誘電熱量冷却するためのシステムに関連付けられることができる波形の例を示している。
【
図3B】
図3Bは、本願明細書に開示された様々な実施形態にかかる能動的再生を介して誘電熱量冷却するためのシステムに関連付けられることができる波形の例を示している。
【
図4A】
図4Aは、本願明細書に開示された様々な実施形態にかかる複数の積層誘電熱量コンデンサを組み込んだ能動的再生を介して誘電熱量冷却するためのシステムを示している。
【
図4B】
図4Bは、本願明細書に開示された様々な実施形態にかかる複数の積層誘電熱量コンデンサを組み込んだ能動的再生を介して誘電熱量冷却するためのシステムを示している。
【
図5A】
図5Aは、本願明細書に開示された様々な実施形態にかかる固体結合ブロックを組み込んだ能動的再生を介して誘電熱量冷却するためのシステムを示している。
【
図5B】
図5Bは、本願明細書に開示された様々な実施形態にかかる固体結合ブロックを組み込んだ能動的再生を介して誘電熱量冷却するためのシステムを示している。
【
図6A】
図6Aは、本願明細書に開示された様々な実施形態にかかる能動的再生を介して誘電熱量冷却するためのシステムの代替構成を示している。
【
図6B】
図6Bは、本願明細書に開示された様々な実施形態にかかる能動的再生を介して誘電熱量冷却するためのシステムの代替構成を示している。
【
図7A】
図7Aは、本願明細書に開示された様々な実施形態にかかる能動的再生による焦電式環境発電のためのシステムを示している。
【
図7B】
図7Bは、本願明細書に開示された様々な実施形態にかかる能動的再生による焦電式環境発電のためのシステムを示している。
【
図7C】
図7Cは、本願明細書に開示された様々な実施形態にかかる能動的再生による焦電式環境発電のためのシステムを示している。
【
図8A】
図8Aは、様々な実装にかかる誘電熱量冷却システムについての熱スイッチを使用するプロセスを示している。
【
図8B】
図8Bは、様々な実装にかかる誘電熱量冷却システムについての熱スイッチを使用するプロセスを示している。
【
図8C】
図8Cは、様々な実装にかかる誘電熱量冷却システムについての熱スイッチを使用するプロセスを示している。
【
図8D】
図8Dは、様々な実装にかかる誘電熱量冷却システムについての熱スイッチを使用するプロセスを示している。
【
図8E】
図8Eは、様々な実装にかかる誘電熱量冷却システムについての熱スイッチを使用するプロセスを示している。
【
図9A】
図9Aは、本願明細書に記載された実施形態にかかる熱スイッチ及び/又は能動的再生を利用するECコンデンサシステムを示している。
【
図9B】
図9Bは、本願明細書に記載された実施形態にかかる熱スイッチ及び/又は能動的再生を利用するECコンデンサシステムを示している。
【
図10A】
図10Aは、いくつかの態様にかかる互いに対して横方向に移動するように構成された絶縁領域及び列を有するECコンデンサシステムを示している。
【
図10B】
図10Bは、いくつかの態様にかかる互いに対して横方向に移動するように構成された絶縁領域及び列を有するECコンデンサシステムを示している。
【
図10C】
図10Cは、いくつかの態様にかかる互いに対して横方向に移動するように構成された絶縁領域及び列を有するECコンデンサシステムを示している。
【
図10D】
図10Dは、いくつかの態様にかかる互いに対して横方向に移動するように構成された絶縁領域及び列を有するECコンデンサシステムを示している。
【
図11A】
図11Aは、本願明細書に記載された様々な実施形態にかかる複数の第1のECコンデンサ列1112及び複数の第2のECコンデンサ列を有する実施形態を示している。
【
図11B】
図11Bは、本願明細書に記載された様々な実施形態にかかる複数の第1のECコンデンサ列1112及び複数の第2のECコンデンサ列を有する実施形態を示している。
【
図11C】
図11Cは、いくつかの実装にかかる第1のECコンデンサ層及び第2のECコンデンサ層の3次元アレイを示している。
【
図12】
図12は、本願明細書に記載された様々な実施形態にかかるECコンデンサシステムを使用して冷却するためのプロセスを示している。
【発明を実施するための形態】
【0008】
図面は必ずしも縮尺どおりではない。図面において使用されている同様の符号は、同様の構成要素を指している。しかしながら、所定の図面において構成要素を指すための符号の使用は、同じ符号によってラベル付けされた他の図面における構成要素を限定することを意図するものではないことが理解される。
【0009】
誘電熱量効果(ECE)及び焦電効果は、同じ現象、すなわち、変化する電界に関連する材料の温度の変化を指す。冷却又は冷凍用途に材料が使用される場合、用語「誘電熱量」が一般に使用される。熱から電気又は機械的仕事を発生させるために材料が使用される場合(すなわち、熱機関として)、用語「焦電」が使用される。
【0010】
誘電熱量システムにおいて使用されるコンデンサは、BaTiO3、PLZT、及び/又はPbBaZrO3などの誘電熱量誘電体を含むことができる。特定の材料、特にP(VDF-TrFE)ベースの重合体及び共重合体及びジルコン酸チタン酸鉛(PZT)などのセラミック材料は、大きなECEを有することが示されている。本願明細書に記載された実施形態によれば、コンデンサモジュールは、温度変化に応答したコンデンサの表面電荷の変化を指す焦電効果を発揮することができ、熱機関を形成するために使用することができる。
【0011】
冷却装置においてECE(「EC材料」)を呈する材料を使用するために、電界を印加することによって誘導される温度変化は、熱が装置の一方側から抽出されて他方に供給されるように、熱流束に方向性を形成するいくつかの手段と同期させることができる。これを行う1つの手段は、ECコンデンサの両側に高熱伝導経路を交互に形成する熱スイッチである。他の手段は再生によるものである。様々な実装によれば、熱スイッチ及び能動的再生の組み合わせが使用可能である。
【0012】
ここで
図1A~
図1Cを参照すると、能動的再生を介して誘電熱量冷却するためのシステム200を示す概略が理解されることができる。システム200は、第1のECコンデンサ202及び第2のECコンデンサ204を設けている。この第2のECコンデンサ204に印加される電界は、第1のECコンデンサ202の温度が下降すると第2のECコンデンサ204の温度が上昇し且つその逆でもあるように、第1のECコンデンサ202に印加される電界に相補的である。
図1Cは、様々なシステム段階においてECコンデンサ202及び204のそれぞれにわたる温度の解釈を助けるように温度スケールを提供していることに留意されたい。
図1A~
図1Cは、コンデンサ202及び204のそれぞれの内部の別個のセクションを示しており、セクションは、実際には異なる温度で最適に動作するように調整された異なるEC材料から構成されてもよく、又は、セクションは、均質なEC材料にわたって温度勾配を示すセクションを有する均質なEC材料から構成されてもよいことに留意すべきである。
【0013】
図1Aは、システム200の再生段階を示している。再生段階において、第1のECコンデンサ202は、比較的高温である(高電界が印加されている)一方で、第2のECコンデンサ204は、比較的低温である(低電界がされている)。熱は、第1のECコンデンサ202から第2のECコンデンサ204へと伝達される。第1及び第2のECコンデンサ202及び204のそれぞれは、複数の誘電熱量材料212を含むことに留意されたい。本構成において、複数の誘電熱量材料212は、直列又は並列の向きであるが、誘電熱量材料はまた、所望の誘電熱量機能を有する所望の誘電熱量コンデンサを製造するために、層状にしてもよく、あるいは混合してもよい。
【0014】
図1Bは、システム200の熱伝達段階を示している。熱伝達段階において、第2のECコンデンサ204は、第1のECコンデンサ202の固定位置に対して移動又は変位されており、ECコンデンサ202及び204のいずれか又は双方は、特定の用途に応じて適切に変位されることができる。さらに、熱伝達段階において、第2のECコンデンサ204は、比較的高温である(高電界が印加されている)一方で、第1のECコンデンサ202は、比較的低温であり(低電界がされている)、そのため、熱は、第2のECコンデンサ204から第1のECコンデンサ202へと伝達される。さらに、熱伝達段階において、第2のECコンデンサ204の高温側は、高温T
hにおいてヒートシンク206と接触しており、第1のECコンデンサ202の低温側は、低温T
cにおいて冷却されるべき物体208と接触している。ここで、T
c<T
hである。
図1A及び
図1Bにおける垂直方向矢印は、熱流の方向を示している。2つのコンデンサ202及び204の温度は一定ではなく、常時コンデンサ202及び204のそれぞれにわたって温度勾配がある、すなわち、右が高温であり且つ左が低温であることに留意すべきである。
【0015】
図2A及び
図2Bは、第1のECコンデンサ202及び第2のECコンデンサ204を有するシステム200を同様に示している。
図2Aは、電圧源がないことによって示される低電界に第2のECコンデンサ204が供され、第2のECコンデンサ204を比較的低温に保持しつつ、第1のECコンデンサ202に高電界を印加する電圧源210を有するシステム200の再生段階を示している。側方矢印は、ECコンデンサ202及び204の変位運動を示しており、いずれか又は双方が変位されることができる。垂直方向矢印は、第1のECコンデンサ202から第2のECコンデンサ204への熱伝達の方向を示している。
【0016】
図2Bは、システム200の熱伝達段階を示しており、電圧源210によって生成された高電界は、第2のECコンデンサ204に印加され、電圧源がないことによって示される低電界は、第1のコンデンサ202に印加される。ヒートシンク206は、第2のECコンデンサ204の高温側に同様に設けられ、冷却されるべき物体208は、第1のECコンデンサ202の低温側に同様に設けられる。垂直方向矢印は、熱伝達の方向を同様に示している。
図2A及び
図2Bは、さらに、ECコンデンサのそれぞれが、誘電熱量重合体、誘電熱量共重合体及び/又は誘電熱量セラミックを含むことができる1つ以上のEC材料212から製造されることを強調している。重合体は、一般に、低弾性率を有するが、セラミックスは脆い可能性がある。そのため、金属箔又は他の支持材料によってECコンデンサを強化する必要があることがある。
【0017】
図1及び
図2の能動的再生システム200を介した誘電熱量冷却は、以下の4段階サイクルである:(1)1方向に移動させる、例えば、第1のECコンデンサ202に対して左に第2のECコンデンサ204を移動させる;(2)2つの電界のうちの他方の低く保持しつつ第1を上昇させる、例えば、第1のECコンデンサ202における電界を上昇させる;(3)他の方向に移動させる、例えば、第1のECコンデンサ202に対して右に第2のECコンデンサ204を移動させる;及び(4)2つの電界のうちの他方を低く保持しつつ第2を上昇させる、例えば、第2のECコンデンサ204における電界を上昇させる。ステップのそれぞれは、離散的な運動及び電界変化を提供するが、システム200はまた、連続的であってもよい。
【0018】
図3Aは、離散運動及び電界変化に関連付けられる波形を示しており、具体的には、時間に対する位置、第1のECコンデンサ202における電界、及び第2のECコンデンサ204における電界を示している。
図3Bは、連続運動及び電界変化に関連付けられる波形を示しており、具体的には、時間に対する位置、第1のECコンデンサ202における電界、及び第2のECコンデンサ204における電界を示している。
図3Bは、ランプ波形を示しているが、システム200が適切に同期される限り、例えば正弦波などの他の種類の連続波形も可能であることに留意すべきである。
【0019】
図1及び
図2は、2つのECコンデンサ層(202及び204)のみを有するシステム200の例示的な実施形態を示しているが、実際には、多くの層のECコンデンサが積層されてもよい。
図4A及び
図4Bは、例えば202(a)~(d)などの複数の第1のECコンデンサが複数の第2のECコンデンサ204(a)~(d)と交互に積層されているシステム200の例示的な実施形態を示している。同様に、側方矢印は、運動方向を示し、垂直方向矢印は、熱伝達の方向を示している。ヒートシンク206及び冷却すべき物体208はまた、
図4Bの構成にも組み込まれる。任意数のECコンデンサ層が特定の用途に適したものとして使用可能である。
【0020】
ECコンデンサ202及び204のうちの一方又は双方の運動は、モータ及び/又は他のアクチュエータによって達成されることができる。積層ECコンデンサの場合、代替のECコンデンサ層は、略均一で且つ同時の移動を提供するように互いに取り付けられることができる。ECコンデンサ層間の良好な熱接触を可能とし且つ運動中の摩擦を低減するために、各ECコンデンサ層の中間に潤滑層を設けることができる。潤滑剤は、熱伝導性オイルを含むことができ、あるいは、任意の他の適切なオイル若しくは液体潤滑剤及び/又はグラファイトなどの固体潤滑剤、又は熱伝導若しくは断熱材料の粒子を含有するオイルを含むことができる。ECコンデンサ層についての運動の長さ(又は変位距離)、ECコンデンサ層の厚さ、電界発生電圧などは材料及びシステムの選択に依存し、それゆえに、特定の用途に応じて適切に選択されることができる。
【0021】
ヒートシンク206及び冷却されるべき物体208は、特定の用途に適した任意の方法でシステム200に接続されることができる。例えば、ヒートシンク206及び物体208は、液体ループ又は他のポンピング液体冷却を介してシステム200に接続されることができる。他の例示的な実施形態において、金属ブロック222の形態などの固体連結が使用可能である。ECコンデンサ層202及び204が金属ブロック222に近接して配置される
図5A及び運動がECコンデンサを金属ブロック222と熱伝達接触させる
図5Bを参照のこと。金属ブロック222は、順次、ヒートシンク及び冷却されるべき物体及び/又は空気熱交換器又は液体ループなどに結合されることができる。システム200のコネクタの例が本願明細書に記載されているが、システム200に接続するために任意の他の適切な熱交換機構が使用されてもよい。
【0022】
上記開示は、直線往復運動を有する直線状に構成されたECコンデンサに焦点をあててきたが、ECコンデンサ及びそれらの運動は、直線又は往復である必要はないことに留意すべきである。例えば、ECコンデンサは、例えば、くさび、半ディスクなどのディスクの一部であってもよく、運動は回転式であってもよい。回転運動が可能とされる熱伝達材料224内のくさび構成でシステム200を示す
図6Aを参照のこと。
図6Bは、第1のECコンデンサ202及び第1のECコンデンサ202に対して回転運動可能な第2のECコンデンサ204を示す
図6Aの断面図である。
【0023】
本願明細書に記載されたシステム200の様々な実施形態は、より多くの活性物質の量によるより高い電力密度及び/又はより高い温度上昇並びにより効果的な熱伝達によるより高い効率という利点を提供することができる。
【0024】
上述したコアシステムは、焦電式熱機関として構成されることができる。焦電式熱機関の構成において、焦電材料は、誘電熱量材料に代替される。焦電材料は、熱環境発電を最適化するように選択される。上述した冷却構成とは対照的に、熱は、高温側において装置によって吸収され、低温側において排除される。冷却構成の高電圧供給は、熱機関構成における負荷に置き換えられる。負荷は、コンデンサの運動に同期したインピーダンス又は電圧によって受動的又は能動的とすることができる。
【0025】
図7A~
図7Cは、能動的再生による焦電式発電用のシステム700を示している。システム700は、第1の焦電(PE)コンデンサ702及び第2のPEコンデンサ704を設けている。熱源706及びヒートシンク708もまた設けられる。
図7Cは、様々なシステム段階においてPEコンデンサ702及び704のそれぞれにわたる温度の解釈を助けるように温度スケールを提供していることに留意されたい。
図7A~
図7Cは、コンデンサ702及び704のそれぞれの内部の別個のセクションを示しており、セクションは、実際には異なる温度で最適に動作するように調整された異なるPE材料から構成されてもよく、又は、セクションは、均質なPE材料にわたって温度勾配を示すセクションを有する均質なPE材料から構成されてもよいことに留意すべきである。
【0026】
図7Aは、焦電式熱機関内の熱力学サイクルの1つの相を示している。PEコンデンサ702は、その高温側が熱源706と連通する一方で、熱を吸収するようにその電圧が下降するように移動される。同時に、PEコンデンサ702と連通しているPEコンデンサ704は、PEコンデンサ702への熱を排除するようにその電圧が上昇している。第2の段階において、
図7Bを通じて、PEコンデンサ702は、その低温側がヒートシンク708と連通しているように移動される。ヒートシンク708並びにその電圧が下降したPEコンデンサ704への熱を排除するように、その電圧は上昇する。焦電効果のために、サイクルあたりにシステムに投入される充電時間電圧の観点からの正味の電気エネルギは、抽出されるエネルギよりも少ない。このようにして、装置は熱機関として動作する。焦電コンデンサ、熱源、及びヒートシンクの他の構成が可能であり、他の焦電式環境発電も可能である。
【0027】
本願明細書に記載された様々な実施形態によれば、熱スイッチは、単独で又は上述した能動的再生システムを介した誘電熱量冷却と組み合わせて使用可能である。熱スイッチシステムは、ECコンデンサの両側において高熱伝導経路を交互に形成する。熱スイッチベースのシステムにおいて、誘電熱量EC誘電体を有するコンデンサに対する熱流束は、熱スイッチによって制御される。熱スイッチベースのシステムにおいて、熱伝導性は、高値と低値との間で能動的に切り替えられることができる。
【0028】
図8A~
図8Eは、誘電熱量冷却システムについての熱スイッチを使用するプロセスを示している。まず、
図8Aにおいて、ヌル及び/又は低電界(E
L)がECコンデンサモジュール820にわたって印加される。ECコンデンサシステムは、温度T
c875を有する低温浴側810と、温度T
hを有する高温浴側830とを有する。第1のステップにおいて、ECコンデンサモジュール820の低温側810の熱スイッチ860は、閉鎖(オン)位置にあり、ECコンデンサ820の高温側830の熱スイッチ865は、開放(オフ)位置にある。スイッチが閉鎖すると、回路は完全し、それゆえに、熱スイッチはアクティブになる。スイッチが開放すると、回路は不完全であり、熱スイッチは非アクティブ状態にある。ECコンデンサモジュール820の平均温度(T
EC)は、
図8Eにおける第1の温度(T
1)880で始まる。ここで、T
1はT
cよりも小さい。ECコンデンサモジュール820の温度は、
図8Cに示されるように、ECモジュール820が低温浴から熱815を吸収するのにともない、温度T
2882まで上昇する。熱スイッチの有限のオフ抵抗のために、少量の熱がECコンデンサモジュールの高温側から吸収されることができる825。
【0029】
双方の熱スイッチ861、866がオフ(開放)状態にされた
図8Bにプロセスの第2の状態が示されている。ECコンデンサモジュール822に印加される電界は、高値(E
H)に切り替えられる。高電界値は、
図8Eに示されるようにT
2からT
3へと温度を上昇させる884。これは、誘電熱量効果によって引き起こされる。T
2からT
3への温度上昇884は、
図8Cに示されるように、電界が上昇するのにともない略瞬時に起こる。様々な実装によれば、T
3は、高温浴温度T
h870よりも高い。矢印817及び827によって示されるようにスイッチの有限オフ抵抗のために、ECモジュールと高温及び/又は低温側との間に少量の熱伝達が存在してもよい。熱伝達の量は、プロセスの第2の状態の短い持続時間によって制限される。
【0030】
E
Hにおいて電界を維持しつつ、ECコンデンサモジュール824の高温側834についての熱スイッチ867は、
図8Cに示されるようにオン(閉鎖)される。ECコンデンサモジュール824は、高温浴の温度よりも高い温度であることから、ECモジュールからの熱が高温浴によって吸収されるのにともない855、ECモジュールの温度は、T
3からT
4へと下降する886。一部の熱はまた、熱スイッチの有限オフ抵抗に起因して低温側における熱スイッチ862が開放状態であるにもかかわらず、ECモジュール824の低温側814に漏れてもよい845。
【0031】
図8Dに示される最終ステップにおいて、双方の熱スイッチは、オフ(開放)され863、868、電界は、E
Lに戻される。この電界の下降は、
図8Eに示されるように、T
4からT
1へと戻る890ECコンデンサモジュール826における略瞬時の温度低下888をもたらす。コンデンサモジュールが温度T
1へと戻ることが記載されているが、最終温度は、初期温度(T
1)とは異なる温度であってもよいことが理解されるべきである。同様に、矢印847及び857によって示されるようにスイッチの有限オフ抵抗のために、ECモジュールと高温及び/又は低温側との間に少量の熱伝達が存在してもよい。熱伝達の量は、プロセスの最終状態の短い持続時間によって制限される。
【0032】
図9A及び
図9Bは、本願明細書に記載された実施形態にかかる熱スイッチ及び/又は能動的再生を利用するECコンデンサシステムを示している。ECコンデンサシステムのコンデンサは、単層又は多層コンデンサとすることができる。場合によっては、ECコンデンサは、多層チップコンデンサである。ECコンデンサシステムのコンデンサは、コンデンサのアレイを表すことができる。
図9A及び
図9Bは、第1の列のECコンデンサ910、912及び第2の列のECコンデンサ920、922を示している。第1の列のECコンデンサ910、912のコンデンサは、第1の組の絶縁領域930、932によって分離され、第2の列のECコンデンサ920のコンデンサは、第2の組の絶縁領域935、937によって分離される。絶縁領域930、932、935、937は、低い熱伝導率を有することができる。例えば、絶縁領域は、約0.02から1W/mK未満の熱伝導率を有することができる。各列における隣接するコンデンサ間の熱伝導は、コンデンサ列のコンデンサ間の間隔の大きさに関連することができる。より大きい間隔量は、より低い熱伝導性を生じさせる。この間隔は、装置の所望のサイズ及びコンデンサ列のコンデンサ間の所望の量の熱伝導によってバランスをとることができる。コンデンサ間の間隔は、例えば、約100μmから1cmとすることができる。場合によっては、システムにおける少なくともいくつかの隣接するコンデンサ間の間隔は、特定の用途の要件に応じて100μm未満であるか及び/又は1cmよりも大きい。絶縁領域は、熱が装置において横方向に伝達するのを防止する(すなわち、熱が装置の単一列又は層のコンデンサ間において伝達するのを防止する)。横方向の熱伝導の量はまた、絶縁領域の材料に依存することができる。絶縁領域は、例えば、空気、真空、エーロゲル、及び/又はキセノンなどのガスを含むことができる。
図9A~
図9Bは、コンデンサ列のコンデンサ間の絶縁領域が略同じ大きさであることを示しているが、間隔及び/又はコンデンサ幅は、コンデンサの間隔及び幅の合計の大きさがシステムにおけるコンデンサの全て又は一部について略同一である限り、異なってもよいことが理解されるべきである。
【0033】
様々な実施形態によれば、第1の電界が第1の列のECコンデンサ910、912に印加され、第2の電界が第2の列のECコンデンサ920、922に印加される。場合によっては、第1及び第2の電界が各ECコンデンサ列に印加されると、第1の電界の上昇に応じて第1の列のECコンデンサ910、912の温度が上昇し且つ第2の電界の下降に応じて第2の列のECコンデンサ920、922の温度が下降するように、第1及び第2の電界は相補的である。場合によっては、第1の電界の下降に応じて第1の列のECコンデンサ910、912の温度は下降し、第2の電界の上昇に応じて第2の列のECコンデンサ920、922の温度は上昇する。
【0034】
様々な実施形態によれば、
図9A及び
図9Bに示されるように、2つの列のECコンデンサ912、922の間に少なくとも1つの支持層950、960、965がある。少なくとも1つの支持層は、構造的支持層及び/又は構造とすることができる。支持構造部950、960、965は、以下のうちの1つ以上を行う:コンデンサについての機械的支持を提供し、他のコンデンサ層に対する摺動のために滑らかな表面を提供し、隣接するコンデンサ間において低熱伝導性を維持するように断熱し、及び/又は2つの列のコンデンサ間の良好な熱接触を可能とする。構造的支持層は、可能な限り薄いが、できるだけ低い熱伝導率を有することができる。例えば、構造的支持層は、約50μmから2mmの厚さとすることができる。場合によっては、構造的支持層は、例えば、ガラス、重合体、セラミック、及び/又はFR-4などの印刷回路基板(PCB)材料を含む。
【0035】
図9Bにおいて、第1の支持層960は、第1の列のECコンデンサ912に近接して示されており、第2の支持構造部965は、第2の列のECコンデンサ922に近接して示されている。場合によっては、第1の支持構造部及び/又は他方の支持構造部に面している第2の支持構造部の各側面は、ECコンデンサ列間の横方向の運動を容易とするように略平坦である。ECコンデンサ列間の横方向運動の促進は、支持構造部の少なくとも一部を研磨することによって達成されることができる。場合によっては、ECコンデンサ列912、922の間における横方向運動を容易とするために構造的支持層間に潤滑層970がある。潤滑層は、熱伝導性オイル及び/又は任意の他の適切なオイル若しくは液体潤滑剤及び/又はグラファイトなどの固体潤滑剤を含むことができる。場合によっては、潤滑層は、熱伝導若しくは断熱材料の粒子を含有するオイルを含む。潤滑層は、低い熱伝導率を有することができ、約1μmから100μmの厚さとすることができる。場合によっては、支持構造部960、965は、横方向に低い熱伝導率を有する及び/又は列間において垂直方向に熱伝達を可能とするように垂直方向に熱伝導性であってもよい。
【0036】
構造的支持部960、965のうちの少なくとも一方及び潤滑層970を通る1つ以上のビア及び/又はシャント940は、さらに、垂直方向熱伝達を可能とすることができる。ビアを形成するためにレーザ及び/又は機械的穿孔が使用可能である。場合によっては、ビアは、機械的穿孔、レーザ穿孔、エッチング、及び/又はスルーガラスプロセスを使用して形成される。ビアは、コンデンサ層間の垂直方向熱伝導率を容易とするために鍍金されることができる及び/又は熱伝導性材料によって充填されることができる。例えば、ビアは、金属によって充填されることができる。いくつかの実施形態において、支持構造部960、965は、PCB及び鍍金された又は電気的ビアが充填された熱ビアとすることができる。
図9Bは、絶縁領域内の単一ビアを示しているが、各絶縁領域内の構造的支持部を通る複数のビアが存在してもよいことが理解されるべきである。1つ以上のビアは、例えば、約50から400W/mKよりも大きい熱伝導率を有することができる。
【0037】
上述したように、ECコンデンサの列は、互いに対して横方向に移動するように構成されることができる。この場合、コンデンサシステムは、少なくとも2つの位置を有する。
図10A及び
図10Bは、ECコンデンサシステムの2つの位置を示している。
図10Aにおいて、高電界が第1の列のECコンデンサ1012に印加される。高電界は、第1の列のECコンデンサ1012に第2の列のECコンデンサ1022と比較して比較的高温を有させる。矢印1080は、比較的暖かい第1の列のECコンデンサ1012から比較的冷たい第2の列のECコンデンサ1022へと移動する熱を表している。
【0038】
第1の列のECコンデンサ1012及び第2の列のECコンデンサ1022のうちの少なくとも一方は、
図10Bに示されるように、コンデンサシステムについての第2の可能な位置に到達するように互いに対して横方向に移動される。ECコンデンサ列1012、1022のうちの一方又は双方の運動は、コンデンサ列1012、1022のうちの一方又は双方に結合されたモータ又はボイスコイルなどの他のアクチュエータによって達成されることができる。例えば、
図10Aは、反対の列に対して第1のECコンデンサ列1012及び第2のECコンデンサ列1022のうちの一方又は双方を移動するように構成されたアクチュエータ1057を示している。様々な実装によれば、電界は、第2の列のECコンデンサ1022に比較的高い電界が印加されるとともに第1の組のECコンデンサ1012に低い及び/又はヌル電界が印加されるように、移動するとき及び/又はコンデンサ列が第2の位置に移動した後に反転される。反転した電界は、第1の列のECコンデンサ1012の温度を下降させ且つ第2の組のECコンデンサ1022の温度を上昇させる。
【0039】
第2の位置にあるとき、熱は、矢印1085によって示されるように、第2の組のECコンデンサ1022から第1の組のECコンデンサ1012へと伝達される。熱源1090はまた、第1の列のECコンデンサ1012における対応するコンデンサ1013へと熱1085を伝達する。第2の組のECコンデンサ1022のコンデンサ1014は、ヒートシンク1095へと熱を伝達する。熱源及びヒートシンクは、異なるコンデンサ列又は同じコンデンサ列に結合されることができる。例えば、
図10Bは、ヒートシンク1090が第1の列のECコンデンサ1012の対応するコンデンサ1013に熱結合され且つヒートシンクが第2の列のECコンデンサ1022の対応するコンデンサ1014に熱結合されることを示している。
【0040】
場合によっては、ヒートシンク及び熱源は、同じコンデンサ列に結合されている。例えば、
図10C及び
図10Bは、第1のコンデンサ列1015において第2のコンデンサ列1025とは異なる数のコンデンサが存在する例を示している。この場合、コンデンサが第1の位置にあるとき、熱は、第1の列1015から第2の列1025へと伝達される1082。ヒートシンク1096は、第1の列1015における対応するコンデンサ1016に熱結合される。
図10Cに示される第1の位置において、熱源1091は、対応するコンデンサを有しておらず、それゆえに、システムに熱を直接伝達しない。
図10Dに示される第2の位置において、熱は、第2のコンデンサ列1025から第1のコンデンサ列1015へと伝達される1084。熱源1092は、第1のコンデンサ列1015における対応するコンデンサ1018へと熱を伝達する。
図10Dに示される第2の位置において、ヒートシンク1097は、対応するコンデンサを有しておらず、それゆえに、システムから熱を直接吸収しない。様々な実装によれば、熱源とコンデンサとの間及びコンデンサとヒートシンクとの間における熱伝達は、直接接続を介して発生することができる及び/又は伝熱流体及び/又は他の界面を介して発生することができる。
【0041】
様々な実施形態によれば、所定時間が経過した後、コンデンサシステムは、アクチュエータ1057を使用して
図10A及び/又は
図10Cに示されるような第1の位置に戻る。所定時間は、1つの組のコンデンサから他の組のコンデンサへの熱伝達の時定数に基づくことができる及び/又は他の検討事項を含むことができる。
図10Bは、第2の位置にあるときに整列された絶縁領域を示しているが、絶縁領域が完全に整列しないように、絶縁領域は、第2の位置にあるときにオフセットされてもよいことが理解されるべきである。第1の位置と第2の位置との間における移動は、第1及び第2の電界の上昇及び下降に対応して断続的に又は連続的に発生することができる。
【0042】
図10A及び
図10Bは、2つのECコンデンサ層1012、1022のみを有する例を示したが、場合によっては、第1及び第2の列のコンデンサを有するコンデンサ組の複数層が積層されてもよい。
図11A及び
図11Bは、複数の第1のECコンデンサ列1112及び複数の第2のECコンデンサ列1022を有する実施形態を示している。第1のコンデンサ層1012及び第2のコンデンサ層1022は、第1のECコンデンサ列1112及び第2のEC列1122の交互の対構成で積層される。様々な実装によれば、アクチュエータは、
図11Bに示されるように互いに対して同様の誘電熱量層を略同期して移動するように構成されている。場合によっては、アクチュエータは、第1及び第2の電界の上昇及び下降に対応して断続的に又は連続的に交互対構成における同様の誘電熱量コンデンサ層を移動するように構成されている。いくつかの実施形態において、アクチュエータは、線形又は回転運動に応じて交互対構成における同様のECコンデンサ層を移動するように構成されている。
図11Cは、ECコンデンサ1140の間に配設された絶縁領域1150を有する第1のECコンデンサ列1115及び第2の列のECコンデンサ列1117の3次元アレイを含むコンデンサ装置303を示している。
図11Cは、コンデンサの2つの3次元列を示しているが、
図11A及び
図11Bに示されるように3つ以上の列が存在することができることが理解されるべきである。第1の列のECコンデンサ1015及び第2の列のECコンデンサ1017のうちの少なくとも一方は、
図10A及び
図10Bに記載された横方向移動と同様に矢印1130及び矢印1135のうちの少なくとも一方に応じて第2の可能な位置に到達するように互いに対して横方向に移動される。様々な実装によれば、絶縁領域は、運動に対して垂直な方向においてコンデンサの列間に存在しない。これは、コンデンサの列が1次元で(y軸に沿って)連続的であり且つ他次元で(x軸に沿って)絶縁領域を有する
図11Cに示されている。
【0043】
本願明細書に記載された様々な実装によれば、各コンデンサは、多層コンデンサとすることができる。場合によっては、本願明細書に記載されたコンデンサシステムは、コンデンサの群及び/又はコンデンサモジュールに結合された多層コンデンサを含むことができる。本願明細書に記載されたコンデンサモジュールは、例えば、7個の標準パッケージ化コンデンサを使用して約11.2mm×2.6mm×3.3mmの寸法を有することができる。標準的な個々のコンデンサの寸法は、1.6mm×2.6mm×3.2mmとすることができる。様々な実装によれば、EC冷却又は熱ポンプシステムの容積、電力、及び幾何学的要件を満たすことができるECコンデンサを形成するために、例えば、0402、0603、又は1206表面実装パッケージコンデンサなどの標準パッケージ化コンデンサを使用可能である。
【0044】
図12は、本願明細書に記載された様々な実施形態にかかるECコンデンサを使用して冷却するためのプロセスを示している。第2の層のECコンデンサは、第1の層のECコンデンサに対して第1の方向に移動される1210。様々な実施形態によれば、第1の層のECコンデンサのコンデンサは、第1の絶縁領域によって分離され、第2の層のECコンデンサのコンデンサは、第2の絶縁領域によって分離される。第2の層のECコンデンサにおける電界を下降させると第1の層のECコンデンサにおける電界が上昇し1220、熱を第1の層のECコンデンサから第2の層のECコンデンサへと伝達させる。第2の層のECコンデンサは、第1の層のECコンデンサに対して第1の方向と反対方向に移動される1230。第1の層のECコンデンサにおける電界を下降させると第2の層のECコンデンサにおける電界が上昇し1240、熱を第2の層のECコンデンサから第1の層のECコンデンサへと伝達させる。本願明細書に記載された様々な実施形態によれば、支持層(例えば、構造的支持層)は、第1の層のECコンデンサと第2の層のECコンデンサとの間に配設されている。場合によっては、熱は、支持層を通って配設された少なくとも1つのビアを使用して第1及び第2のコンデンサ層間において垂直方向に伝達される。
【0045】
他に示されていない限り、明細書及び特許請求の範囲において使用される特徴サイズ、量、及び物理的特性を表す全ての数字は、用語「約」によって全ての場合において修飾されるものとして理解されるべきである。したがって、特に断らない限り、上述した明細書及び添付の特許請求の範囲に記載された数値パラメータは、本願明細書に開示された教示を利用する当業者によって得られるように所望の特性に応じて変化することができる近似値である。端点による数値範囲の使用は、その範囲内の全ての数(例えば、1から5は、1、1.5、2、2.75、3、3.80、4、及び5を含む)及びその範囲内の任意の範囲を含む。