IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アークレイ株式会社の特許一覧

<>
  • 特許-光学測定装置 図1
  • 特許-光学測定装置 図2
  • 特許-光学測定装置 図3
  • 特許-光学測定装置 図4
  • 特許-光学測定装置 図5
  • 特許-光学測定装置 図6
  • 特許-光学測定装置 図7
  • 特許-光学測定装置 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-07
(45)【発行日】2022-03-15
(54)【発明の名称】光学測定装置
(51)【国際特許分類】
   G01N 21/01 20060101AFI20220308BHJP
   G01N 21/27 20060101ALI20220308BHJP
【FI】
G01N21/01 Z
G01N21/27 F
【請求項の数】 15
(21)【出願番号】P 2018193292
(22)【出願日】2018-10-12
(65)【公開番号】P2020060509
(43)【公開日】2020-04-16
【審査請求日】2021-04-07
(73)【特許権者】
【識別番号】000141897
【氏名又は名称】アークレイ株式会社
(74)【代理人】
【識別番号】100079049
【弁理士】
【氏名又は名称】中島 淳
(74)【代理人】
【識別番号】100084995
【弁理士】
【氏名又は名称】加藤 和詳
(74)【代理人】
【識別番号】100099025
【弁理士】
【氏名又は名称】福田 浩志
(72)【発明者】
【氏名】上田 僚太
(72)【発明者】
【氏名】佐々木 理緒
(72)【発明者】
【氏名】村重 好紀
(72)【発明者】
【氏名】和田 佑亮
【審査官】伊藤 裕美
(56)【参考文献】
【文献】特開2008-128811(JP,A)
【文献】特開2017-097343(JP,A)
【文献】特開2018-128323(JP,A)
【文献】米国特許出願公開第2007/0070330(US,A1)
【文献】特開2009-216678(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/00-21/958
G01J 1/00- 1/60
(57)【特許請求の範囲】
【請求項1】
発光量が少なくとも1つは異なる複数の光源と、
前記複数の光源から発せられる光によって測定対象を測定する測定部と、
前記複数の光源から発せられた光が入射されるとともに内部の反射面によって拡散反射された光が前記測定部へ出射される反射筐体と、を備えた光学測定装置であって、
前記反射筐体は、
前記複数の光源のそれぞれと連絡し、前記複数の光源ごとに異なる位置に設けられるとともに前記複数の光源のそれぞれから内部へ光が入射される複数の入射口と、
前記複数の入射口から入射された光を拡散反射し、前記拡散反射した際に光の一部を吸収する反射面と、
前記測定部と連絡し、前記反射面にて前記拡散反射された光を内部から前記測定部へ出射する出射口と、を備え、
前記複数の光源のそれぞれから発せられた光が前記出射口を経て前記測定部へ到達する際の光量である出射光量を一定の範囲の値とするために、前記複数の光源のそれぞれについて、光源の発光量が前記測定部に到達するまでに減少する割合を表す平均減少率と、前記複数の光源のそれぞれの発光量とに基づき、前記複数の入射口のそれぞれは前記出射口の位置に対してそれぞれ異なる位置に配置され、
前記測定部は、前記測定対象に前記出射光量で光が照射されることにより、前記測定対象の光学的な測定を行う、光学測定装置。
【請求項2】
前記各光源に対応する前記出射光量が前記一定の範囲よりも狭い範囲に収まるように、前記各光源の前記発光量が調整可能な光量調整部を備える、請求項1記載の光学測定装置。
【請求項3】
前記複数の光源はそれぞれ波長の異なる光を発する、請求項1又は2に記載の光学測定装置。
【請求項4】
前記複数の光源のうち少なくとも2つは、それぞれ異なる測定対象に対する感度特性のある波長の光を発する、請求項3に記載の光学測定装置。
【請求項5】
前記複数の入射口のそれぞれと前記出射口が、前記発光量の大きい光源からの光ほど前記平均減少率が大きくなるような位置に設けられている、請求項1から請求項4までのいずれか1項に記載の光学測定装置。
【請求項6】
前記複数の入射口のそれぞれと前記出射口が、前記発光量の大きい光源からの光ほど前記測定部までに前記反射面による前記拡散反射が多くなるような位置に設けられている、請求項5に記載の光学測定装置。
【請求項7】
前記測定部が受光する受光量を調整するゲイン調整部を備え、
前記一定の範囲は、前記ゲイン調整部により前記受光量の各々を略一定の値に調整可能な光量の範囲である、請求項1から請求項6までのいずれか1項に記載の光学測定装置。
【請求項8】
前記測定部と前記出射口との間に介在する部分であって、前記反射面よりも光量の減少率が大きい表面を有する測定接続部を有する、請求項1から請求項7までのいずれか1項に記載の光学測定装置。
【請求項9】
前記複数の光源のそれぞれと前記複数の入射口のそれぞれとの間に介在する部分であって、前記反射面よりも光量の減少率が大きい表面を有する、請求項1から請求項8までのいずれか1項に記載の光学測定装置。
【請求項10】
前記反射筐体は、前記複数の入射口及び前記出射口が設けられている有孔面と、前記有孔面に相対する対向面と、前記有孔面と前記対向面とを連絡する連絡面と、を備えた箱形を呈する、請求項1から請求項9までのいずれか1項に記載の光学測定装置。
【請求項11】
前記対向面において、前記反射筐体における前記複数の光源のうち最も小さい発光量の光源の光軸が最初に当接する部位は、前記出射口へ向かって傾斜している、請求項10に記載の光学測定装置。
【請求項12】
前記対向面において、前記反射筐体における前記複数の光源のうち最も大きい発光量の光源の光軸が最初に当接する部位は該光軸に対して垂直である、請求項10又は請求項11に記載の光学測定装置。
【請求項13】
前記最も大きい発光量の光源に対応する入射口とその光軸が前記対向面において最初に当接する部位との距離は、該光源とは別の光源に対応する入射口とその光軸が前記対向面において最初に当接する部位との距離よりも短い請求項12に記載の光学測定装置。
【請求項14】
前記対向面のうち前記出射口と相対する部分は、前記有孔面と平行である、請求項10から請求項13までのいずれか1項に記載の光学測定装置。
【請求項15】
前記反射筐体の前記反射面における光の反射は、鏡面反射よりも拡散反射が優位である色彩、形状若しくは材質又はこれらのうちのいずれか2つ若しくは全てで形成されている、請求項1から請求項14までのいずれか1項に記載の光学測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本願発明は、光源からの光を測定部へ間接的に到達させるための手段を備えた光学測定装置に関するものである。
【背景技術】
【0002】
従来の光学測定装置において、複数種類の試験紙、又は、測定項目に対応した複数種類の光源を使用する場合、光源ごとに設けられた複数の光ファイバにより、各光源からの光を一箇所に集め、測定部に照射する方法を採用していることがある。
【0003】
なお、下記特許文献1では、光を反射させて試料に照射する技術が開示されている。
【0004】
また、下記特許文献2では、積分球を用いて基準光量とサンプル光量を測定する技術が開示されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開平03-194447号公報
【文献】特公昭61-028292号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
光ファイバを用いて複数の光源からの光を測定部に照射する場合、光ファイバの材質により最小曲げアールが規定されるため、その空間を確保するために装置の小型化には限界があった。また、光ファイバは価格が高く、光源の種類を多くするほどに使用する光ファイバに起因する製造コストは増加していく。そのため、光ファイバを用いた光学伝達系は小型で安価な装置には適していない。
【0007】
一方、光ファイバを用いずに、より安価な構成である反射ユニットを用いて光源からの光を測定部に照射する場合、光量の異なるそれぞれの光源からの光を適切な光量で測定部に伝達することが難しいという課題があった。つまり、安価な光源の場合、使用する光源によって、光量がまちまちであることがある。もし、そのような光源の各々からの光について、反射ユニット(反射筐体及び、反射筐体と光源や測定部とを接続する接続部などを含んだ光源からの光を測定部へ間接的に到達させるための筐体)内での光の平均減少率(光が測定部へ到達するまでに減少する割合)が同じであるとするなら、光量の少ない光源では、測定対象を検出するための満足な光量が得られず、測定対象を測定できないことがある。一方、光量の多い光源の場合、測定部(たとえば、受光センサ)が測定可能な光量上限を越えて光飽和が発生することがある。以上のように、光源の光量、測定部の感度、及び平均減少率の関係によっては、光量が大き過ぎたり小さ過ぎたりすることがあり、このことが小型で安価な光学測定装置を設計するうえで困難をもたらしていた。
【0008】
そこで本発明の実施態様は、光量のまちまちな複数の光源からの光を測定部に伝達する反射ユニットを用いた光学測定装置において、低コスト、省スペースで、それぞれの光源からの光を適切な光量で測定部に伝達することを課題とする。
【課題を解決するための手段】
【0009】
本開示の第1の態様では、発光量が少なくとも1つは異なる複数の光源と、
前記複数の光源から発せられる光によって測定対象を測定する測定部と、
前記複数の光源から発せられた光が入射されるとともに内部の反射面によって拡散反射された光が前記測定部へ出射される反射筐体と、を備えた光学測定装置であって、
前記反射筐体は、
前記複数の光源のそれぞれと連絡し、前記複数の光源ごとに異なる位置に設けられるとともに前記複数の光源のそれぞれから内部へ光が入射される複数の入射口と、
前記複数の入射口から入射された光を拡散反射し、前記拡散反射した際に光の一部を吸収する反射面と、
前記測定部と連絡し、前記反射面にて前記拡散反射された光を内部から前記測定部へ出射する出射口と、を備え、
前記複数の光源のそれぞれから発せられた光が前記出射口を経て前記測定部へ到達する際の光量である出射光量を一定の範囲の値とするために、前記複数の光源のそれぞれについて、光源の発光量が前記測定部に到達するまでに減少する割合を表す平均減少率と、前記複数の光源のそれぞれの発光量とに基づき、前記複数の入射口のそれぞれは前記出射口の位置に対してそれぞれ異なる位置に配置され、
前記測定部は、前記測定対象に前記出射光量で光が照射されることにより、前記測定対象の光学的な測定を行う。
【0010】
本開示の第2の態様では、第1の態様において、前記各光源に対応する前記出射光量が前記一定の範囲よりも狭い範囲に収まるように、前記各光源の前記発光量が調整可能な光量調整部を備える。
【0011】
本開示の第3の態様では、第1又は第2の態様において、前記複数の光源はそれぞれ波長の異なる光を発する。
【0012】
本開示の第4の態様では、第3の態様において、前記複数の光源のうち少なくとも2つは、それぞれ異なる測定対象に対する感度特性のある波長の光を発する。
【0013】
本開示の第5の態様では、第1から第4までのいずれかの態様において、前記複数の入射口のそれぞれと前記出射口が、前記発光量の大きい光源からの光ほど前記平均減少率が大きくなるような位置に設けられている。
【0014】
本開示の第6の態様では、第5の態様において、前記複数の入射口のそれぞれと前記出射口が、前記発光量の大きい光源からの光ほど前記測定部までに前記反射面による前記拡散反射が多くなるような位置に設けられている。
【0015】
本開示の第7の態様では、第1から第6までのいずれかの態様において、前記測定部が受光する光の光量を調整するゲイン調整部を備え、前記一定の範囲は、前記ゲイン調整部により前記出射光量の各々を略一定の値に調整可能な光量の範囲である。
【0016】
本開示の第8の態様では、第1から第7までのいずれかの態様において、前記測定部と前記出射口との間に介在する部分であって、前記反射面よりも光量の減少率が大きい表面を有する測定接続部を有する。
【0017】
本開示の第9の態様では、第1から第8までのいずれかの態様において、前記複数の光源のそれぞれと前記複数の入射口のそれぞれとの間に介在する部分であって、前記反射面よりも光量の減少率が大きい表面を有する。
【0018】
本開示の第10の態様では、第1から第9までのいずれかの態様において、前記反射筐体は、前記複数の入射口及び前記出射口が設けられている有孔面と、前記有孔面に相対する対向面と、前記有孔面と前記対向面とを連絡する連絡面と、を備えた箱形を呈する。
【0019】
本開示の第11の態様では、第10の態様において、前記対向面において、前記反射筐体における前記複数の光源のうち最も小さい発光量の光源の光軸が最初に当接する部位は、前記出射口へ向かって傾斜している。
【0020】
本開示の第12の態様では、第10又は第11の態様において、前記対向面において、前記反射筐体における前記複数の光源のうち最も大きい発光量の光源の光軸が最初に当接する部位は該光軸に対して垂直である。
【0021】
本開示の第13の態様では、第12の態様において、前記最も大きい発光量の光源に対応する入射口とその光軸が前記対向面において最初に当接する部位との距離は、該光源とは別の光源に対応する入射口とその光軸が前記対向面において最初に当接する部位との距離よりも短い。
【0022】
本開示の第14の態様では、第10から第13までの態様において、前記対向面のうち前記出射口と相対する部分は、前記有孔面と平行である。
【0023】
本開示の第15の態様では、第1から第14までの態様において、前記反射筐体の前記反射面における光の反射は、鏡面反射よりも拡散反射が優位である色彩、形状若しくは材質又はこれらのうちのいずれか2つ若しくは全てで形成されている。
【発明の効果】
【0024】
本発明の実施態様では、光学測定において、光源からの光を反射筐体内で反射させて測定対象に照射することで、測定対象まで光を導く光ファイバのような部材が不要となり、製造コストの低廉化及び装置の小型化を図ることができる。
【0025】
また、光ファイバを用いる場合には光源ごとに光ファイバが必要となるため、光源の種類を多くするほどに使用する光ファイバに起因する製造コストは増加していく。しかし、本実施態様では複数の光源に対応可能なただ1つの反射筐体が光学伝達系であるため、光源の種類の増加に伴う光学伝達系のコスト増加を抑制できる。
【0026】
つまり、光量のまちまちな複数の光源からの光を測定部に伝達する反射ユニットを用いた光学測定装置において、製造コストの低廉化及び装置の小型化を図りつつ、それぞれの光源からの光を適切な光量で測定部に伝達することができる。
【図面の簡単な説明】
【0027】
図1】光学測定装置の要部を側面部分断面図にて示す。
図2】光学測定装置の要部を底面斜視図にて示す。
図3】光学測定装置の要部において反射筐体の一部を取り外した状態を底面斜視図にて示す。
図4】光源及び測定部の配置を模式的に示す。
図5】反射筐体の内部における光の伝達を模式的に示す。
図6】入射口と対向面との距離を模式的に示す。
図7】光学測定装置の機能ブロック図である。
図8】制御部のハードウェア構成をブロック図で示す。
【発明を実施するための形態】
【0028】
<第1の態様>
本開示の第1の態様に係る光学測定装置は、発光量が少なくとも1つは異なる複数の光源と、
前記複数の光源から発せられる光によって測定対象を測定する測定部と、
前記複数の光源から発せられた光が入射されるとともに内部の反射面によって拡散反射された光が前記測定部へ出射される反射筐体と、を備えた光学測定装置であって、
前記反射筐体は、
前記複数の光源のそれぞれと連絡し、前記複数の光源ごとに異なる位置に設けられるとともに前記複数の光源のそれぞれから内部へ光が入射される複数の入射口と、
前記複数の入射口から入射された光を拡散反射し、前記拡散反射した際に光の一部を吸収する反射面と、
前記測定部と連絡し、前記反射面にて前記拡散反射された光を内部から前記測定部へ出射する出射口と、を備え、
前記複数の光源のそれぞれから発せられた光が前記出射口を経て前記測定部へ到達する際の光量である出射光量を一定の範囲の値とするために、前記複数の光源のそれぞれについて、光源の発光量が前記測定部に到達するまでに減少する割合を表す平均減少率と、前記複数の光源のそれぞれの発光量とに基づき、前記複数の入射口のそれぞれは前記出射口の位置に対してそれぞれ異なる位置に配置され、
前記測定部は、前記測定対象に前記出射光量で光が照射されることにより、前記測定対象の光学的な測定を行う。
【0029】
本態様の光学測定装置では、複数の光源が設けられている。光源の種類は特に限定されないが、たとえば、LEDなどを利用することができる。なお、これら複数の光源は、光量が同じものを含んでいてもよいが、少なくとも1つの光源の光量が他の光源とは異なっている。また、それぞれの光源は異なるタイミングで発光を行うが、光量が小さい光源を用いる場合など、光量を大きくする目的で同時に複数の光源を発光させることもできる。
【0030】
本態様の測定対象とは、現実に光が照射されて測定が行われるものをいい、検体(たとえば血液などの液体)を浸漬又は収容可能な試験用具がこれに含まれる。
【0031】
測定部は、複数の光源から発せられた光を受光する。測定部が受光する光は光源から発せられたものであるが、光源からの光は反射筐体、反射筐体と光源を接続する光源接続部及び反射筐体と測定部を接続する測定接続部などの表面で拡散反射を繰り返すことにより、最終的に測定部へと到達する。この拡散反射の際には、光を反射した物質に光の一部が吸収される。測定部に到達するまでには、反射面での拡散反射の際に光の吸収が行われるため、また、光源から発せられた光のうち、光の経路によっては測定部に到達せずに反射ユニットの中で繰返し拡散反射とその際に生じる吸収を繰り返すことで、測定部に到達する前に減少しきってしまう光も一定量存在するため、光量が減少した光が測定対象へ照射されることとなる。最終的に、この光量が減少した光によって測定対象を照射した光のうち、透過又は反射した光が測定部に到達する。よって、当然、測定部は光源から発せられた光の全てを受光するわけではない。
【0032】
本態様における拡散反射とは、入射光が様々な角度で反射する反射のことをいい、乱反射と称されることもある。また、反射の際には拡散反射と同時に光の一部が鏡面反射を行っていてもよい。なお、一般的に反射率の高い物質ほど鏡面反射が拡散反射より優位になる。逆に、拡散反射を積極的に行う物質は、鏡面反射よりも拡散反射が優位である。
【0033】
光の吸収とは、光が物質に照射される際に、物質が光のエネルギーの一部を吸収することをいい、光が物質に照射された際に物質を構成する原子や分子が基底状態から励起状態へと励起される結果として光の吸収が生じる。光の吸収が生じた結果、吸収された光の光量が低下する。一般的に、光の吸収が大きい物質ほど、黒色に近い色彩を呈する。
【0034】
測定部は、受光した光量を電気信号のような何らかの定量的な信号に変換することができるものであれば特に限定されない。たとえば、フォトダイオードをこの測定部として利用することができる。また、測定部は、波長ごとに感度が異なる場合があり、本態様においては測定部の感度を踏まえた上で、入射口及び出射口の位置を設定することができる。
【0035】
反射筐体は、複数の光源から光が入射され、内部での反射を経て測定部へ光を出射させる部材である。この反射筐体には、光源の光が内部へ入射される孔である入射口が、複数の光源ごとに対応した異なる位置に設けられている。また、測定部へ光を出射させる孔である出射口も設けられている。さらに、反射筐体の内面は、入射口から入射された光を前記出射口まで拡散反射させて到達させる反射面となっている。
【0036】
本態様では、光源ごとに異なる光源と接続した入射口が設けられているが、それぞれの入射口から反射筐体の内部に入射された光は、反射面での拡散反射を経て、出射口へ到達した部分が測定部と接続した出射口より測定部へ出射される。この間に、光源の光量である発光量は、反射面での拡散反射の際の光の吸収や、最終的に測定部に到達する前に減少しきってしまう光の存在などによって減少し、出射口から出射されて測定部へ到達する光量はその減少した結果の光量である出射光量となる。このように、発光量が出射光量にまで減少する割合を平均減少率と称する。この平均減少率を決定する要因としては、光が測定部へ到達するまでに行われる反射筐体内部の反射面での拡散反射の際の光の吸収、拡散反射の回数、反射筐体及び反射筐体と測定部との間に介在する接続部の色彩、形状及び材質、光源から発せられる光の放射性、入射口及び出射口の孔径、入射口から出射口に至るまでの距離、入射口及び出射口の対向面の光源の光軸に対する角度、並びに入射口及び出射口と対向面との距離、などがあり、本態様における平均減少率は少なくとも、それぞれの光が前記測定部に到達するまでの前記反射面における前記拡散反射時の光の吸収と前記拡散反射の回数により決定される。
【0037】
本開示では、発光量に対する出射光量の割合が小さいほど、平均減少率が大きい、とする。この平均減少率は、たとえば、発光量を100%としたときに、出射光量となるまでに失われた光量のパーセンテージとして表すこととしてもよい。また、発光量を出射光量で除した商として表してもよく、さらにこの商を対数表示で表してもよい。あるいは、出射光量を発光量で除した商を対数表示した値(この値は負の数となる)から負号(「-」)を除いた数として表してもよい。いずれの表し方によっても、数値が大きいほど平均減少率が大きいということになる。
【0038】
ここで、同一の光源から測定部までの平均減少率は、波長が同じであれば、光源の光量が異なっていても同じであると考えられる。平均減少率は、光源から測定部までの光路の拡散反射回数が多くなるほど大きくなると考えられる。
【0039】
本態様では、それぞれの光が測定部に到達するまでの前記反射面における前記拡散反射時の光の吸収と前記拡散反射の回数により決定される前記複数の光源それぞれの平均減少率と前記複数の光源の光の発光量に基づいて、各光源に対応する出射光量が一定の範囲に収まるように、入射口の位置が設定されている。ここで、「一定の範囲」については測定機器によって相違があり一概に決定されるものではないが、使用する測定部30におけるゲイン調整、及び、光源の電流値を光量調整部により設定することによる光源の光量調整のいずれか又は両方により、それぞれの光の光量値を略一定の値に調整が可能な範囲とするのが望ましい。この範囲は、たとえば、最大の出射光量が最小の出射光量の10倍以下とすることができる。これによって、異なる発光量の光源を使用しても、測定部は、光量不足や、逆に光飽和を生ずることなく、測定に適した一定の範囲の光量を受光できる。なお、発光量及び出射光量は、光量の指標となる値で表される光量値であり、その測定方法や表示方法については特に限定されないが、たとえば、光スペクトラムアナライザによる測定値や光学シミュレーションによって算出される値であってもよい。
【0040】
<第2の態様>
本開示の第2の態様は、第1の態様の構成に加え、前記各光源に対応する前記出射光量が前記一定の範囲よりも狭い範囲に収まるように、前記各光源の前記発光量が調整可能な光量調整部を備える。
【0041】
本態様の光学測定装置では、たとえば、各光源の発光量を調整する前に予備的に出射光量を確認し、この出射光量に基づき、光量調整部によって各光源の発光量を調整することで、各光源の光からの出射光量のばらつきをさらに抑制することができる。
【0042】
各光源の発光量の調整としては、たとえば複数の光源にLEDを使用した場合、LEDごとに異なる電流値を光量調整部により設定することにより、各光源の発光量を調整することができるが、発光量を調整することができるものであれば特に限定されない。ここで、「狭い範囲」については測定機器によって相違があり一概に決定されるものではないが、たとえば、最大の出射光量が最小の出射光量の3倍以下とすることができる。
【0043】
<第3の態様>
本開示の第3の態様は、第1又は第2の態様の構成に加え、前記複数の光源はそれぞれ波長の異なる光を発する。
【0044】
このような異なる波長の光源によって、たとえば、ある光源からある測定対象に対する感度特性(たとえば、吸収特性)を有する波長(主波長と称する。)の光を得て、他の光源からバックグラウンド値を得るための波長(副波長と称する。)の光を得ることとしてもよい。
【0045】
このような異なる波長の複数の光源の発光量が異なる場合、第1の態様の構成によって、これらの複数の光源に対応する入射口の位置を設定し、出射光量を一定の範囲に収めることができる。
【0046】
<第4の態様>
本開示の第4の態様は、第3の態様の構成に加え、前記複数の光源のうち少なくとも2つは、それぞれ異なる測定対象に対する感度特性のある波長の光を発する。
【0047】
本態様の光学測定装置では、その少なくとも2つの光源によって、少なくとも2種類の測定対象を測定することが可能となる。このような少なくとも2つの光源の発光量が異なる場合、第1の態様の構成によって、これらの複数の光源に対応する入射口の位置を設定し、出射光量を一定の範囲に収めることができる。
【0048】
<第5の態様>
本開示の第5の態様は、第1から第4までの態様のいずれかの構成に加え、前記複数の入射口のそれぞれと前記出射口が、前記発光量の大きい光源からの光ほど前記平均減少率が大きくなるような位置に設けられている。
【0049】
たとえば、前記したように、平均減少率は、光源から測定部までの拡散反射回数が多いほど大きくなるが、光源から測定部に至るまでの光路長が長いほど拡散反射回数が多くなるものと考えられる。したがって、発光量の大きい光源に接続する入射口を測定部からより遠ざける一方で、発光量の小さい光源に接続する入射口をより近くにすることで、出射光量を一定の範囲に収めることができる。
【0050】
<第6の態様>
本開示の第6の態様は、第5の態様の構成に加え、前記複数の入射口のそれぞれと前記出射口が、前記発光量の大きい光源からの光ほど前記測定部までに前記反射面による前記拡散反射が多くなるような位置に設けられている。
【0051】
たとえば、前記したように、光源から測定部までの光路の拡散反射が多くなるほど平均減少率は大きくなる。したがって、発光量の大きい光源の拡散反射の回数をより多くする一方で、発光量の小さい光源ではより少なくすることで、出射光量を一定の範囲に収めることができる。
【0052】
<第7の態様>
本開示の第7の態様は、第1から第6までの態様のいずれかの構成に加え、前記測定部が受光する受光量を調整するゲイン調整部を備え、前記一定の範囲は、前記ゲイン調整部により前記出射光量の各々を略一定の値に調整可能な光量の範囲である。
【0053】
ここでこの光量の範囲は、測定部の受光特性によっても異なるが、多くの場合、最大の受光量が最小の受光量の所定の倍数以内、具体的には概ね3倍以内、であることが望ましい。このような範囲内であれば、ゲイン調整部によって、測定部のゲインを略一定の値に調整し、光源の光量の違いに測定結果が影響されることを避けることができる。ここで、複数の値についてそれらが略一定である、ということは、これらの値は厳密には一定ではないが、それらの値の違いが、測定結果には実質的な影響は及ぼさないような程度であることをいう。
【0054】
なお、ゲイン調整部によるゲインの調整方法については特に限定はされない。たとえば、光源ごとに異なるゲイン調整を行うこととしてもよい。
【0055】
<第8の態様>
本開示の第8の態様は、第1から第7までの態様のいずれかの構成に加え、前記測定部と前記出射口との間に介在する部分であって、前記反射面よりも光量の減少率が大きい表面を有する測定接続部を有する。
【0056】
たとえば、光源としてLEDを使用する場合、温度により光量が変動するという特質があるため、温調ブロックのような温度調節部を光源の周囲に設ける必要がある。したがって、出射口から測定部までの間には、ある厚みを有している部分が存在し、測定部と反射筐体とはこの部分をを介して連絡されていることになる。この部分を測定接続部と称する。
【0057】
この測定接続部の距離(厚み)や特にその色彩は、光の減少率を高める要因となる。測定接続部の反射率は、反射筐体における反射率に比べ、著しく低いため、測定接続部での拡散反射の際の光の吸収、拡散反射の回数が平均減少率を決定する主な要因となりうる。測定接続部や反射筐体の色、材質又は形状によるが、たとえば、反射筐体の反射率は95%であるのに対し、測定接続部の反射率は5%である。本態様では、平均減少率は、出射口から測定部に至るまでの測定接続部の表面における拡散反射時の光の吸収と拡散反射の回数も加味されて決定される。このように、測定接続部の表面における光量の減少を加味した複数の光源のそれぞれの平均減少率と複数の光源のそれぞれの発光量とに基づいて、各光源に対応する出射光量が一定の範囲に収まるように、各入射口が位置しているのは前述のとおりである。
【0058】
なお、上記したような温度調節部を有しない場合であっても、光源、反射筐体及び測定部等の位置関係や、それぞれの形状によって、測定接続部を備える必要がある。
【0059】
<第9の態様>
本開示の第9の態様は、第1から第8までの態様のいずれかの構成に加え、前記複数の光源のそれぞれと前記複数の入射口のそれぞれとの間に介在する部分であって、前記反射面よりも光量の減少率が大きい表面を有する。
【0060】
前述の測定接続部と同様に、複数の光源のそれぞれから反射筐体までの間には、ある厚みを有している部分が存在し、複数の光源のそれぞれと反射筐体とはこの部分を介してそれぞれ連絡されていることになる。この部分を光源接続部と称する。
【0061】
この光源接続部の距離(厚み)や特にその色彩は、光の減少率を高める要因となる。光源接続部の反射率は、反射筐体における反射率に比べ、著しく低いため、光源接続部での拡散反射の際の光の吸収、拡散反射の回数が平均減少率を決定する主な要因となり得る。光源接続部や反射筐体の色、材質又は形状によるが、たとえば、反射筐体の反射率は95%であるのに対し、光源接続部の反射率は5%である。本態様では、平均減少率は、複数の光源のそれぞれから反射筐体に至るまでの光源接続部の表面における拡散反射時の光の吸収と拡散反射の回数も加味されて決定される。このように、光源接続部の表面における光量の減少を加味した複数の光源のそれぞれの平均減少率と複数の光源のそれぞれの発光量とに基づいて、各光源に対応する出射光量が一定の範囲に収まるように、各入射口が位置しているのは前述のとおりである。
【0062】
なお、さらに測定部と出射口との間に測定接続部を有する場合は、さらに、測定接続部の表面における光量の減少も加味されて、平均減少率が決定される。
【0063】
<第10の態様>
本開示の第10の態様は、第1から第9までの態様のいずれかの構成に加え、前記反射筐体は、前記複数の入射口及び前記出射口が設けられている有孔面と、前記有孔面に相対する対向面と、前記有孔面と前記対向面とを連絡する連絡面と、を備えた箱形を呈する。
【0064】
本態様でいう箱形とは、直方体形状に限らず、前後上下左右を平面又は曲面で画された内部空間を有する形状をいう。なお、この平面又は曲面は、内部空間と外部とを連絡する孔又はスリットのような開口部を適宜備えていてもよい。本態様の反射筐体は、そのような平面又は曲面として、有孔面、対向面及び連絡面を備え、特に有孔面にはそのような開口部として複数の入射口及び出射口が設けられている。そして、これら有孔面、対向面及び連絡面のそれぞれ内面が、前記した反射面となる。
【0065】
ここで、複数の入射口及び出射口は、同一の面である有孔面に設けられている。有孔面は、光学測定装置の構成上、平面であることが望ましいが、その場合、入射口に向かう光源の光軸と、出射口から測定部への光軸とは平行かつ逆向きになる。すなわち、光源からの光は、反射筐体の内部へ入射口から直角に入射し、内部での拡散反射を経て、出射口から直角に出射され、測定部へ至る。このような曲折した光路が、光ファイバのような構成を要さずに、単純な箱形の構造の反射筐体によって実現される。
【0066】
<第11の態様>
本開示の第11の態様は、第10の態様の構成に加え、前記対向面において、前記反射筐体における前記複数の光源のうち最も小さい発光量の光源の光軸が最初に当接する部位は、前記出射口へ向かって傾斜している。
【0067】
すなわち、最も小さい発光量の光源の光軸が、入射口から入射して最初に当接する対向面が、出射口へ向かって傾斜している。換言すると、該対向面が出射口の方を向いている。よって、反射した光の光軸が出射口へ向かい、反射筐体内での反射が余り多い回数にならずに出射口へと至る。このため、結果として測定部に至るまでの拡散反射回数が少なくなり、平均減少率が比較的小さくなる。よって、最も小さい発光量の光源、たとえば、他の光源と比べて極端に光量の少ない光源を、本態様に規定するように配置することができる。
【0068】
<第12の態様>
本開示の第12の態様は、第10又は第11の態様の構成に加え、前記対向面において、前記反射筐体における前記複数の光源のうち最も大きい発光量の光源の光軸が最初に当接する部位は該光軸に対して垂直である。
【0069】
すなわち、最も大きい発光量の光源の光軸が、入射口から入射して最初に当接する対向面が、該光軸に対して垂直になっている。よって、反射した光の光軸は元の光軸と完全な反対方向になるため、光軸に沿った反射光は直接出射口へは向かわず、反射筐体内での拡散反射を経て出射口へと至る。このため、光軸に沿った反射のみで出射口へ向かう場合と比較して、結果として測定部に至るまでの拡散反射回数が多くなり、平均減少率が大きくなる。よって、最も大きい発光量の光源、たとえば、他の光源と比べて極端に光量の多い光源を、本態様に規定するように配置することができる。
【0070】
<第13の態様>
本開示の第13の態様は、第12の態様の構成に加え、前記最も大きい発光量の光源に対応する入射口とその光軸が前記対向面において最初に当接する部位との距離は、該光源とは別の光源に対応する入射口とその光軸が前記対向面において最初に当接する部位との距離よりも短い。
【0071】
本態様では、最も大きい発光量の光源に対応する入射口とその光軸が前記対向面において最初に当接する部位との距離が他の光源での該距離に比べ短いため、結果として最も大きい発光量の光源からの光が測定部に到達するまでに必要な拡散反射回数が、他の光源の拡散反射回数よりも多くなるため、平均減少率が大きくなる。よって、最も大きい発光量の光源、たとえば、他の光源と比べて極端に光量の多い光源を、本態様に規定するように配置することができる。
【0072】
<第14の態様>
本開示の第14の態様は、第10から第13までの態様のいずれかの構成に加え、前記対向面のうち前記出射口と相対する部分は、前記有孔面と平行である。
【0073】
本態様では、反射筐体の対向面のうち、出射口と相対する部分を、有孔面と平行とすることで、出射口へはなるべく垂直に光が到達するようにして、出射口から測定部までに至る部分の内壁(たとえば、第8の態様における測定接続部)での拡散反射の際の吸収による減少をできるだけ避けることとしている。
【0074】
<第15の態様>
本開示の第15の態様は、第1から第14までの態様のいずれかの構成に加え、前記反射筐体の前記反射面における光の反射は、鏡面反射よりも拡散反射が優位である色彩、形状若しくは材質又はこれらのうちのいずれか2つ若しくは全てで形成されている。
【0075】
光の反射が、鏡面反射よりも拡散反射が優位である色彩としては、たとえば、白色が最も適している。光の反射が、鏡面反射よりも拡散反射が優位である形状としては、たとえば、表面が適度に荒らされている面が最も適している。光の反射が、鏡面反射よりも拡散反射が優位である材質としては、たとえば、紫外線劣化に強い、ABS樹脂又は高反射ポリプロピレン樹脂のような合成樹脂が適している。
【0076】
<光学測定装置の要部>
本開示における実施形態の光学測定装置10の要部を、図1の側面部分断面図にて示す。光学測定装置10には、下方へ光を照射する光源20と、下方からの光を受光する測定部30とを有する。光源20は所定波長の光を照射するLEDで構成される。測定部30はフォトダイオードで構成される。本実施形態では、後述するように光源20は5種類設けられ、測定部30は2種類設けられるが、本図は、後述の図3に示すI-I断面で示されているため、当該断面上に位置する光源20及び測定部30のそれぞれ1つのみが図示されている。
【0077】
光源20の下方には、光源20と反射筐体40を接続し光源20から照射された光を通すための孔部である光源接続部52、及び測定部30と反射筐体40を接続し測定部30へ光を通すための孔部である測定接続部51が穿設されている温度調節部50が設けられている。この温度調節部50は、ヒーター及びサーモスタットを備えたアルミニウム製の黒色発熱体であって、通電により発熱する。この温度調節部50により、光源20はあらかじめ定められた測定に適した温度に調節される。また、この温度の調節は光源の光量変動を防ぐことが目的であり、ある所定の温度に調節できればよく、たとえば、測定に用いる試薬に適した温度に調節することができる。なお、光源20、測定部30、光源接続部52、測定接続部51及び反射筐体40により構成される内空間は密閉された空間となっている
【0078】
たとえば、光源20としてLEDを使用する場合、温度により光量が変動するという特質があるため、光源20の温度を一定に保つため、温調ブロックのような温度調節部50を光源20の周囲に設ける必要がある。さらに、このような温度調節部50は、たとえば抵抗のような熱源を内包しているため、ある程度の厚みが生じ、温度調節部50を光源20と反射筐体40との間に設けた場合、温度調節部には光源や測定部と反射筐体を接続するための接続部が必要である。
【0079】
本実施形態においては、光源接続部52及び測定接続部51での反射率は5%程度であり、反射筐体40での反射率95%に比べ著しく低いため、光源接続部52及び測定接続部51においての拡散反射時の光の吸収と拡散反射の回数が平均減少率を決定する主な要因となる。
【0080】
温度調節部50の下方には、上方が開放した略直方体状の箱部40Aと、その開放した上方を閉塞する平板状の蓋部40Bとから成る反射筐体40が設置されている。蓋部40Bの上面は温度調節部50の下面に面同士で接している。蓋部40Bの下面は有孔面41となっており、5個の入射口42(図面では1個のみ表示されている。)及び2個の出射口43(図面では1個のみ表示されている。)が形成されている。入射口42は温度調節部50に前記した光源接続部52を介して光源20に通じている。出射口43は前記した測定接続部51を介して、測定部30に通じている。なお、測定接続部51と測定部30との間には、測定対象80としての試験用具が位置している。
【0081】
試験用具としては、たとえば試験紙などの検体を染み込ませることが可能な保持体などが用いられる。また、光透過性の材質で形成され、検体としての液体を収容可能な空間を有するユニット又はデバイスを、測定対象80としての試験用具とすることとしてもよい。
【0082】
反射筐体40の箱部40Aは、底面に相当し、有孔面41と相対する対向面44と、この対向面44の周囲を取り囲む側面であり、有孔面41と対向面44とを連絡する連絡面45とで構成される。反射筐体は、紫外線劣化しにくく、反射率が高く積極的に拡散反射が行われる白色のABS樹脂や高反射ポリプロピレン樹脂で形成されており、後述する対向面44の形状とも相まって、有孔面41、対向面44及び連絡面45はいずれも光源20の光を反射する反射面46となっている。
【0083】
反射筐体40は、図2の底面斜視図に示すように、箱部40Aの側方へ縁設される4個の取付部40Cによって、温度調節部50の底面にネジ止めにて取り付けられる。この取付部40Cのネジ止めを解除して箱部40Aを取り外すと、図3の底面斜視図に示すように、蓋部40Bの底面に相当する、反射面46としての有孔面41が視認される。有孔面41には、5個の入射口42と、2個の出射口43と形成されている。これら5個の入射口42は、正五角形の頂点に相当する位置に配置されており、出射口43から最も遠くに配置されているのが第1入射口42A、それよりも出射口43のやや近くに配置されているのが第2入射口42B及び第3入射口42C、そして出射口43の最も近くに配置されているのが第4入射口42D及び第5入射口42Eである。2個の出射口43のうち、図面左手側が測定用出射口43Aで、図面右手側が基準用出射口43Bである。
【0084】
光源20及び測定部30と、入射口42及び出射口43との位置関係を模式的に示すのが図4である。反射面46としての有孔面41には、上述したように5個の入射口42及び2個の出射口43が形成されている。
【0085】
第1入射口42Aの位置には、波長810nmの光を照射する第1光源20Aが位置している。この第1光源20Aの波長は、種々の項目の測定における副波長として利用可能である。第2入射口42Bの位置には、波長405nmの光を照射する第2光源20Bが設置されている。第3入射口42Cの位置には、波長660nmの光を照射する第3光源20Cが設置されている。この第3光源20Cの波長は、クレアチニン及び尿酸の測定における主波長として利用可能である。第4入射口42Dの位置には、波長610nmの光を照射する第4光源20Dが設置されている。第5入射口42Eの位置には、波長556nmの光を照射する第5光源20Eが設置されている。この第5光源20Eの波長は、カルシウムの測定における主波長として利用可能である。これらの光源20のうち、第1光源20Aの発光量が最も大きく、第2光源20B及び第3光源20Cの発光量がそれに次いで大きく、第4光源20D及び第5光源20Eの発光量が最も小さい。なお、上記した各波長はあくまで例示であって、その他の波長の光を発する光源20がいずれの入射口42に設置されていてもよい。
【0086】
測定用出射口43Aから測定接続部51を経た位置には、測定対象80(図1参照)に照射された光を受光する測定部30であり、フォトダイオードである測定用センサ31が設置されている。基準用出射口43Bから測定接続部51を経た位置には、出射された光をそのまま受光する測定部30であり、フォトダイオードである基準用センサ32が設置されている。
【0087】
<反射筐体の内部における光の伝達>
反射筐体40の内部における光の伝達を、図5及び図6の模式図を参照しつつ説明する。反射筐体40の反射面46としての対向面44は、出射口43から最も遠く有孔面41と平行な遠位平行面44Aと、出射口43に最も近く有孔面41と平行な近位平行面44Cと、遠位平行面44Aと近位平行面44Cを連絡する斜面である傾斜面44Bとで構成されている。遠位平行面44Aは、第1入射口42Aと相対している。傾斜面44Bは、第2入射口42B及び第3入射口42Cと相対している。近位平行面44Cは、出射口43と相対している。
【0088】
前述のとおり、発光量の最も大きい第1光源20Aは、測定部30から最も遠い第1入射口42Aに対応した位置に設置されている。第1光源20Aに次いで発光量の大きい第2光源20B(及び第3光源20C、以下「第2光源20B」で代表する。)は、測定部30により近い第2入射口42B(及び第3入射口42C、以下「第2入射口42B」で代表する。)に対応した位置に設置されている。発光量の最も小さい第4光源20D(及び第5光源20E、以下「第4光源20D」で代表する。)は、測定部30から最も近い第4入射口42D(及び第5入射口42E、以下「第4入射口42D」で代表する。)に対応した位置に設置されている。
【0089】
そして、図6に示すように、第1入射口42Aから遠位平行面44Aまでの距離D1、第2入射口42Bから傾斜面44Bまでの距離D2、第4入射口42Dから傾斜面44Bまでの距離D3、並びに出射口43から近位平行面44Cまでの距離D4の間には、下記の関係がある。
【0090】
D1<D2<D3<D4
【0091】
以上より、最も大きい発光量の光源20である第1光源20Aの光軸α1は、対向面44において最初に当接する部位である遠位平行面44Aに対して垂直である。また、この第1光源20Aに対応する第1入射口42Aと遠位平行面44Aとの距離D1は、他の入射口42と傾斜面44Bとの距離であるD2及びD3よりも短い。
【0092】
また、次に大きい発光量の第2光源20Bの光軸α2が、対向面44において最初に当接する部位である傾斜面44Bは、出射口43へ向かって傾斜している。
【0093】
そして、最も小さい発光量の光源20である第4光源20Dの光軸α3が、対向面44において最初に当接する部位である傾斜面44Bも、出射口43へ向かって傾斜している。
【0094】
以上より、最も大きい発光量の光源20である第1光源20Aから光軸α1をもって照射された光は、遠位平行面44Aで垂直に反射する反射光γ1となる。ここで、第1入射口42Aから遠位平行面44Aまでの距離D1は上記したように他の入射口42と傾斜面との距離D2及びD3よりも短いため、第1光源20Aから照射された光(第1光源20Aからの散乱光β1も含む)は最も多い拡散反射回数(光源接続部52、反射面46としての有孔面41、連絡面45及び測定接続部51での拡散反射も含む。)を経て、測定光δとして測定部30へ至る。よって、第1光源20Aからの光は結果として拡散反射回数が最も多く、それにより平均減少率は最も大きくなる。なお、第1光源20Aからの光の平均減少率が最も大きくなるのであれば、第1光源20Aの光軸α1が、対向面44において最初に当接する部位が光軸α1に対して必ずしも垂直である必要はなく、たとえば、第2光源20Bの光軸α2が、対向面44において最初に当接する部位である傾斜面44Bに比べて、緩やかな傾斜面であってもよい。
【0095】
また、次に大きい発光量の光源20である第2光源20Bから光軸α2をもって照射された光は、傾斜面44Bで出射口43の方向へ反射する反射光γ2となる。ここで、第2入射口42Bから傾斜面44Bまでの距離D2は前記した距離D1とD3の中間であり、第2光源20Bから照射された光(第2光源20Bからの散乱光β2も含む)は第1光源20Aの次に多い拡散反射回数(光源接続部52、反射面46としての有孔面41、連絡面45及び測定接続部51での拡散反射も含む。)を経て、測定光δとして測定部30へ至る。よって、第2光源20Bからの光は結果として第1光源20Aの次に拡散反射回数が多く、それにより平均減少率も第1光源20Aの次に大きくなる。
【0096】
そして、最も小さい発光量の光源20である第4光源20Dから光軸α3をもって照射された光は、傾斜面44Bで出射口43の方向へ反射する反射光γ3となる。ここで、第4入射口42Dから傾斜面44Bまでの距離D3は前記した距離D1及びD2よりも長いため、第4光源20Dから照射された光(第4光源20Dからの散乱光β3も含む)は最も少ない拡散反射回数(光源接続部52、反射面46としての有孔面41、連絡面45及び測定接続部51での拡散反射も含む。)を経て、測定光δとして測定部30へ至る。よって、第4光源20Dからの光は結果として拡散反射回数が最も多く、それにより平均減少率は最も小さくなる。
【0097】
<機能ブロック>
この光学測定装置10の機能ブロック図を図7に示す。制御部60は、この光学測定装置10の各部を制御するものである。制御部60は、後述するハードウェア構成によって、測定部30が受光する光のゲインを調整するゲイン調整部70、光源20の発光量を調整する光量調整部71、及び、温度調節部50における温度を調節する温度制御部72として機能する。
【0098】
ゲイン調整部70は、使用する光源20ごとに、実際に受光した光量にあらかじめ定められた係数を乗じて補正を行うこととしてもよい。光源ごとに波長が異なる場合には、ゲイン調整部70は、結果として波長ごとに補正を行うことになる。光量調整部71は、使用する光源20ごとに、あらかじめ定められたアンペア数の電力を供給することで発光量を調整する。温度制御部72は、図示しないサーモスタットを介して、光源20をあらかじめ定められた一定の温度に調節する。
【0099】
光源20は、光量調整部71から供給された電力により、反射筐体40の内部へ所定の光量で所定波長の光を照射する。測定部30は、反射筐体40から出射されて測定対象80に照射された光を受光する。
【0100】
<制御部のハードウェア構成>
制御部60は、図8のハードウェア構成に示すように、CPU(Central Processing Unit)61、ROM(Read Only Memory)62、RAM(Random Access Memory)63及びストレージ64を有する。各構成は、バス69を介して相互に通信可能に接続されている。
【0101】
CPU61は、中央演算処理ユニットであり、各種プログラムを実行したり、各部を制御したりする。すなわち、CPU61は、ROM62又はストレージ64からプログラムを読み出し、RAM63を作業領域としてプログラムを実行する。CPU61は、ROM62又はストレージ64に記録されているプログラムに従って、上記各構成の制御及び各種の演算処理を行う。
【0102】
ROM62は、各種プログラム及び各種データを格納する。RAM63は、作業領域として一時的にプログラム又はデータを記憶する。ストレージ64は、HDD(Hard Disk Drive)、SSD(Solid State Drive)又はフラッシュメモリにより構成され、オペレーティングシステムを含む各種プログラム、及び各種データを格納する。本態様では、ROM62又はストレージ64には、測定に関するプログラムや各種データが格納されている。また、ストレージ64には、測定データを保存しておくこともできる。
【0103】
制御部60は、上記ハードウェア構成のうちCPU31が、前記したプログラムを実行することによって、光学測定装置10において図7に示すようなゲイン調整部70、光量調整部71及び温度制御部72として機能する。
【0104】
<実施形態小括>
上述のとおり、本実施形態の光学測定装置10では、光源20からの光を測定部30に伝達するための反射筐体40、光源接続部52及び測定接続部51で光源20から測定部30までを覆っている。反射筐体40においては、発光量の多い光源20を測定部30から遠ざけ、発光量の少ない光源20は測定部30の近くに設置している。さらに、反射筐体40の内面の反射面46、光源接続部52及び測定接続部51の内面で光を拡散反射させている。
【0105】
すなわち、反射筐体40の内部に複数の光源20からのそれぞれの光を、光源接続部52を介して入射させ、さらに測定部30に測定接続部51を介して出射させる。これにより、光源20から測定部30に至るまでに、反射筐体40、光源接続部52及び測定接続部51内部での拡散反射の際の吸収により光量が減少し、一定の範囲の値の光量となったそれぞれの光を測定部30に照射することで光学的な測定を行う。よって、光ファイバのような伝送手段の代わりに箱形の反射筐体40を用いるためより安価であり、また箱型であるため光ファイバのように取り回しのための広いスペースも不要である。
【0106】
さらに、本実施形態では光源20の配置位置を、光源20の発光量が小さいほど、光源20からの光が測定部30へ到達するまでの拡散反射の際の吸収により減少する平均減少率が小さくなるような位置に配置している。つまり、光源20の発光量の大きさと光源20からの光が測定部30へ到達するまでの拡散反射の際の吸収により減少する平均減少率の大小関係が同一となる。
【0107】
これにより、それぞれの光源20と測定部30との平均減少率が適切に調節されることで、適切な発光量、つまりまちまちな発光量であった光源からの光が、測定部30では適正な発光量に調節されて伝達される。
【0108】
また、さらに発光量を低下させる必要のある光源20(たとえば極端に発光量の大きい第1光源20A)については光源20から測定部30までの平均減少率を大きくするために、反射筐体40に、たとえば前記のような光軸と垂直で対向面44までの距離の短い遠位平行面44Aを設けることができる。
【0109】
逆に、発光量を余り低下させたくない光源20(たとえば極端に発光量の小さい第4光源20D又は第5光源20E)については、光源20から測定部30までの平均減少率を小さくするために、反射筐体40に、たとえば前記のような測定部30へ傾斜した傾斜面44Bを設けることができる。
【0110】
なお、測定対象80にとって必要な発光量が適切であればよいため、発光量の大小と平均減少率の大小とが必ずしも比例していなくてもよく、測定対象80にとって適切な発光量となる平均減少率となる位置に各光源20を配置することとしてもよい。
【実施例
【0111】
以下の説明においては、実施例と比較例とで共通する構成については参照の便のため共通の符号を付しているが、同じ符号のものが全く同じ構成であるとは限らない。特に、第1光源20A~第5光源20Eについては、同じ位置にあるものを同じ名称としているが(図4参照)、実施例と比較例とで、各々の光源20が同じものを使用しているとは限らない。
【0112】
<比較例>
各光源20に対する平均減少率を調整する前の比較例に係る反射筐体40を用いた場合の結果を以下に示す。なお、本比較例における光学測定装置10は、光源接続部52及び測定接続部51を有する。
【0113】
本比較例における第1光源20A~第5光源20Eについて、波長(nm)、発光量(nW)、対応する入射口42の径(単位:mm)、光源20と測定部30との直線距離(mm)、入射口42を通る光軸(α1~α3)に対する対向面44の傾斜角(°)、入射口42と対向面44との距離(mm)、及び光源20と対向面44の距離(mm)は下記表1のとおりであった。
【0114】
【表1】
【0115】
なお、出射口43の径は3mm、出射口43から出射する測定光δ(図5参照)の光軸に対する対向面44の傾斜角は90°、出射口43と対向面44との距離は10mm、測定部30と対向面44との距離は19mmであった。ちなみに、「光源20と対向面44との距離」と、「入射口42と対向面44との距離」との差が、光源接続部52の距離となり、各光源についてのこの値は上記表1に示すとおり、11mmであった。また、「測定部30と対向面44との距離」と、「出射口43と対向面44との距離」との差が、測定接続部51の距離となり、その値は9mm(=19mm-10mm)であった。
【0116】
ここで、各光源20における発光量及び測定部30における出射光量については、次のとおりに測定又は算出した。発光量は、AQ-6315A OPTICAL SPECTRUM ANALYZER(横河計測)により測定した。出射光量は、照明Simulator CAD ver.1.00.000(ベストメディア)により得られた各光源20から測定部30までの減少率を、各発光量に乗ずることにより算出した。なお、照明Simulator CAD ver.1.00.000において、光源は点光源としてシミュレーションを行い、光源による光の吸収はないものとして計算を行った。また、反射筐体40の反射率は95%(減少率は5%)、光源接続部52及び測定接続部51の反射率はいずれも5%(減少率は95%)として計算を行った。その結果は、下記表2のとおりであった。
【0117】
【表2】
【0118】
上記表2に示すとおり、最大の発光量(第1光源20A、6.0nW)は、最小の発光量(第2光源20B~5光源20E、0.54nW)の11.11倍であった。
【0119】
これらの光源20について、測定部30における出射光量(pW)は上記表2に掲げるとおりであった。また、各出射光量を最小の出射光量で除した値を、上記表2の「相対比率」の列に掲げた。すなわち、測定部30における最大の出射光量は、第1光源の0.1450pWであり、最小の出射光量である第2光源20Bの0.0049pWの29.59倍であった。この出射光量の相対比率は、29倍を超え、電流値の調整による光源20の光量調整やゲイン調整により一定の範囲に収めることが可能な範囲(おおむね10倍以内)を優に超えるものであった。また、このときの、第1光源20A~第5光源20Eの出射光量はいずれも、測定対象80を測定するために必要な光量を満たすものではなかった。
【0120】
ちなみに、発光量を出射光量で除した値の常用対数で表した平均減少率は、上記表2に示すとおり、第2光源20Bが5.04と最大で、第3光源20C及び第4光源20Dがそれぞれ5.03及び4.82とそれに次ぎ、第1光源20A及び第5光源20Eがいずれも4.62と最小であった。この結果から、比較例では光源20と測定部30との直線距離と平均減少率との間には特段の関連は見出せなかった。
【0121】
<実施例1>
比較例の結果に基づき、各光源の出射光量が一定の範囲に収まるように鋭意検討を重ね、第1光源20A~第5光源20Eについて、波長(nm)、発光量(nW)、対応する入射口42の径(単位:mm)、光源20と測定部30との直線距離(mm)、入射口42を通る光軸(α1~α3)に対する対向面44の傾斜角(°)、入射口42と対向面44との距離(mm)、及び光源20と対向面44の距離(mm)を下記表3のとおりに調整した。
【0122】
【表3】
【0123】
なお、出射口43の径は3mm、出射口43から出射する測定光δ(図5参照)の光軸に対する対向面44の傾斜角は90°、出射口43と対向面44との距離は10mm、測定部30と対向面44との距離は20.7mmであった。ちなみに、「光源20と対向面44との距離」と、「入射口42と対向面44との距離」との差が、光源接続部52の距離となり、各光源についてのこの値は上記表3に示すとおり、1.8mmであった。また、「測定部30と対向面44との距離」と、「出射口43と対向面44との距離」との差が、測定接続部51の距離となり、その値は10.7mm(=20.7mm-10mm)であった。
【0124】
このときの、各光源20についての出射光量を、前記した比較例と同様に算出した。その結果は下記表4のとおりであった。
【0125】
【表4】
【0126】
上記表4に示すとおり、最大の発光量(第2光源20B、88.7nW)は、最小の発光量(第5光源20E、5.0nW)の17.74倍であった。
【0127】
これらの光源20について、測定部30における出射光量(pW)は上記表4に掲げるとおりであった。また、各出射光量を最小の出射光量で除した値を、上記表4の「相対比率」の列に掲げた。すなわち、測定部30における最大の出射光量は、第2光源20Bの6.760pWであり、最小の出射光量である第3光源20Cの0.699pWの9.67倍であった。以上より、出射光量の相対比率は、9.67倍と10倍以内に収まり電流値の調整による光源20の光量調整により、おおむね一定の範囲に収めることが可能な範囲の相対比率となった。また、このときの、第1光源20A~第5光源20Eの出射光量は、測定対象80を測定するために必要な光量を満たすものであった。
【0128】
ちなみに、前記比較例と同様に求められる平均減少率は、上記表4に示すように、最も測定部30から遠い第1光源20Aが4.57と最大で、以下、第2光源20Bの4.12、第3光源20Cの4.00、第4光源20Dの3.85と続き、第5光源20Eの3.61が最小であった。この平均減少率の順位は、光源20と測定部30との直線距離の順位(表3参照)と一致していた。
【0129】
<実施例2>
上記表4に掲げる出射光量に基づき、電流値の調整により光源20の光量調整を行った。具体的には、上記表4中の「相対比率」の項に掲げた値で各々の発光量を除したものを、下記表5に掲げる調整後の発光量とした。なお、発光量以外のパラメータは実施例1の表3に記載したものと同じであり掲載を省略する。
【0130】
【表5】
【0131】
まず、上記表5に示すとおり、調整後の発光量は、最も測定部30から遠い第1光源20Aが25.7nWと最大で、次に遠い第2光源20Bが9.2nW、その次に遠い第3光源20Cが7.0nW、その次に遠い第4光源20Dが5.0nWと順に小さくなり、最も近い第5光源20Eが2.8nWと最小であった。そして、最大の発光量(第1光源20A、25.7nW)は、最小の発光量(第5光源20E、2.8nW)の9.17倍であった。
【0132】
これらの光源20について、測定部30における出射光量(pW)は上記表5に掲げるとおりであった。また、各出射光量を最小の出射光量で除した値を、上記表5の「相対比率」の列に掲げた。すなわち、測定部30における最大の出射光量は、第2光源20Bの0.705pWであり、最小の出射光量である第1光源20Aの0.672pWの1.05倍に過ぎず、全ての光源20についての出射光量は概ね一定であったといえる。この微小な出射光量の差は、通常のゲイン調整によって調整される。
【0133】
なお、表4と同様に表した平均減少率は、最も測定部30から遠い第1光源20Aが4.58と最大で、次に遠い第2光源20Bが4.12、その次に遠い第3光源20Cが4.00、その次に遠い第4光源20Dが3.85と順に小さくなり、最も近い第5光源20Eが3.61と最小であった。この平均減少率の順位は、光源20と測定部30との直線距離の順位(表3参照)と一致し、また、発光量の順位とも一致している。
【産業上の利用可能性】
【0134】
本発明は、複数種類の光源からの光を各々1箇所の測定部へ到達させて複数項目について測定対象を測定する光学測定装置に利用可能である。
【符号の説明】
【0135】
10 光学測定装置
20 光源
20A 第1光源
20B 第2光源
20C 第3光源
20D 第4光源
20E 第5光源
30 測定部
31 測定用センサ
32 基準用センサ
40 反射筐体
40A 箱部
40B 蓋部
40C 取付部
41 有孔面
42 入射口
42A 第1入射口
42B 第2入射口
42C 第3入射口
42D 第4入射口
42E 第5入射口
43 出射口
43A 測定用出射口
43B 基準用出射口
44 対向面
44A 遠位平行面
44B 傾斜面
44C 近位平行面
45 連絡面
46 反射面
50 温度調節部
51 測定接続部
52 光源接続部
60 制御部
61 CPU
62 ROM
63 RAM
64 ストレージ
69 バス
70 ゲイン調整部
71 光量調整部
72 温度制御部
80 測定対象
α1~α3 光軸
β1~β3 散乱光
γ1~γ3 反射光
δ 測定光
図1
図2
図3
図4
図5
図6
図7
図8