(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-09
(45)【発行日】2022-03-17
(54)【発明の名称】セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
(51)【国際特許分類】
C01F 17/206 20200101AFI20220310BHJP
B24B 37/00 20120101ALI20220310BHJP
H01L 21/304 20060101ALI20220310BHJP
C09K 3/14 20060101ALI20220310BHJP
C09G 1/02 20060101ALI20220310BHJP
【FI】
C01F17/206
B24B37/00 H
H01L21/304 622D
C09K3/14 550D
C09K3/14 550Z
C09G1/02
(21)【出願番号】P 2018184348
(22)【出願日】2018-09-28
【審査請求日】2021-02-26
(73)【特許権者】
【識別番号】000190024
【氏名又は名称】日揮触媒化成株式会社
(74)【代理人】
【識別番号】100137589
【氏名又は名称】右田 俊介
(74)【代理人】
【識別番号】100160864
【氏名又は名称】高橋 政治
(72)【発明者】
【氏名】中山 和洋
(72)【発明者】
【氏名】碓田 真也
【審査官】手島 理
(56)【参考文献】
【文献】特開2017-206411(JP,A)
【文献】特開2004-079968(JP,A)
【文献】特開2003-206475(JP,A)
【文献】特開2018-123046(JP,A)
【文献】特開2014-012311(JP,A)
【文献】特開2002-265931(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C01F 17/00-17/38
B24B 37/00
H01L 21/304
C09K 3/14
C09G 1/02
(57)【特許請求の範囲】
【請求項1】
下記[1]から[5]の特徴を備え、短径/長径比が0.2~1.0の範囲にあり、平均粒子径が50~1000nmであるセリア系複合微粒子を含む、セリア系複合微粒子分散液。
[1]前記セリア系複合微粒子は、母粒子と、前記母粒子の表面上のセリウム含有被覆層と、前記セリウム含有被覆層の内部に分散している子粒子とを有し、前記母粒子は結晶性無機酸化物を主成分とし、前記子粒子は結晶性セリアを主成分とすること。
[2]前記子粒子の粒子径分布における変動係数(CV値)が14~60%であること。
[3]前記セリア系複合微粒子は、セリア以外の成分とセリアとの質量比が100:11~316の範囲であること。
[4]前記セリア系複合微粒子は、X線回折に供すると、セリアの結晶相および前記結晶性無機酸化物の結晶相が検出されること。
[5]前記セリア系複合微粒子は、X線回折に供して測定される、前記結晶性セリアの平均結晶子径が10~25nmであること。
【請求項2】
前記結晶性無機酸化物が、アルミナ、チタニアおよびジルコニアからなる群から選ばれる少なくとも1つであることを特徴とする、請求項1に記載のセリア系複合微粒子分散液。
【請求項3】
前記セリウム含有被覆層が前記母粒子と同じ元素およびセリウムを含むことを特徴とする、請求項1または2に記載のセリア系複合微粒子分散液。
【請求項4】
前記セリウム含有被覆層がシリカを含むことを特徴とする、請求項1~3のいずれかに記載のセリア系複合微粒子分散液。
【請求項5】
前記母粒子の圧縮破壊強度が1.0~3.0MPaであることを特徴とする、請求項1~4のいずれかに記載のセリア系複合微粒子分散液。
【請求項6】
請求項1~5のいずれかに記載のセリア系複合微粒子分散液を含む研磨用砥粒分散液。
【請求項7】
シリカ膜が形成された半導体基板の平坦化用であることを特徴とする請求項6に記載の研磨用砥粒分散液。
【請求項8】
下記の工程1~工程3を含むことを特徴とするセリア系複合微粒子分散液の製造方法。
工程1:短径/長径比が0.1以上、1.0未満である結晶性無機酸化物微粒子が溶媒に分散している結晶性無機酸化物微粒子分散液を撹拌し、温度を0~20℃、pHを7.0~9.0、酸化還元電位を50~500mVに維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、700~1,200℃で焼成し、得られた焼成体に溶媒を加えて、pH8.6~10.8の範囲にて、湿式で解砕処理をして焼成体解砕分散液を得る工程。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去することによりセリア系複合微粒子分散液を得る工程。
【請求項9】
前記工程1が、前記結晶性無機酸化物微粒子分散液を撹拌し、温度を0~20℃、pHを7.0~9.0、酸化還元電位を50~500mVに維持しながら、ここへセリウムの金属塩とケイ素を含む成分とを連続的又は断続的に添加し、前記前駆体粒子分散液を得る工程である、請求項8に記載のセリア系複合微粒子分散液の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体デバイス製造等に使用される研磨剤として好適なセリア系複合微粒子分散液に関し、特に基板上に形成された被研磨膜を、化学機械的研磨(ケミカルメカニカルポリッシング:CMP)で平坦化するためのセリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液に関する。
【背景技術】
【0002】
半導体基板、配線基板などの半導体デバイスなどは、高密度化・微細化することで高性能化を実現している。この半導体の製造工程においては、いわゆるケミカルメカニカルポリッシング(CMP)が適用されており、具体的にはシャロートレンチ素子分離、層間絶縁膜の平坦化、コンタクトプラグやCuダマシン配線の形成などに必須の技術となっている。
【0003】
一般にCMP用研磨剤は、砥粒とケミカル成分とからなり、ケミカル成分は対象被膜を酸化や腐食などさせることにより研磨を促進させる役割を担う。一方で砥粒は機械的作用により研磨する役割を持ち、コロイダルシリカやヒュームドシリカ、セリア粒子が砥粒として使われる。特にセリア粒子は酸化ケイ素膜に対して特異的に高い研磨速度を示すことから、シャロートレンチ素子分離工程での研磨に適用されている。
シャロートレンチ素子分離工程では、酸化ケイ素膜の研磨だけではなく、窒化ケイ素膜の研磨も行われる。素子分離を容易にするためには、酸化ケイ素膜の研磨速度が高く、窒化ケイ素膜の研磨速度が低い事が望ましく、この研磨速度比(選択比)も重要である。
【0004】
従来、このような部材の研磨方法として、比較的粗い1次研磨処理を行った後、精密な2次研磨処理を行うことにより、平滑な表面あるいはスクラッチなどの傷が少ない極めて高精度の表面を得る方法が行われている。
このような仕上げ研磨としての2次研磨に用いる研磨剤に関して、従来、例えば次のような方法等が提案されている。
【0005】
例えば、特許文献1には、硝酸第一セリウムの水溶液と塩基とを、pHが5~10となる量比で攪拌混合し、続いて70~100℃に急速加熱し、その温度で熟成することを特徴とする酸化セリウム単結晶からなる酸化セリウム超微粒子(平均粒子径10~80nm)の製造方法が記載されており、更にこの製造方法によれば、粒子径の均一性が高く、かつ粒子形状の均一性も高い酸化セリウム超微粒子を提供できると記載されている。
【0006】
また、非特許文献1は、特許文献1に記載の酸化セリウム超微粒子の製造方法と類似した製造工程を含むセリアコートシリカの製造方法を開示している。このセリアコートシリカの製造方法は、特許文献1に記載の製造方法に含まれるような焼成―分散の工程を有さないものである。
【0007】
さらに、特許文献2には、非晶質シリカを主成分とする母粒子の表面上に結晶性セリアを主成分とする子粒子を有し、さらにその子粒子の表面にシリカ被膜を有している、下記[1]から[3]の特徴を備える平均粒子径50~350nmのシリカ系複合微粒子を含む、シリカ系複合微粒子分散液が記載されている。[1]前記シリカ系複合微粒子は、セリア以外の成分とセリアとの質量比が100:11~316であること。[2]前記シリカ系複合微粒子は、X線回折に供すると、セリアの結晶相および結晶性無機酸化物の結晶相が検出されること。[3]前記シリカ系複合微粒子は、X線回折に供して測定される、前記結晶性セリアの(111)面の結晶子径が10~25nmであること。そして、このようなシリカ系複合微粒子によれば、シリカ膜、Siウェハや難加工材であっても高速で研磨することができ、同時に高面精度(低スクラッチ、被研磨基板の表面粗さ(Ra)が低いこと等)を達成でき、さらに不純物を含まないため、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができるシリカ系複合微粒子分散液を提供することができると記載されている。
【先行技術文献】
【特許文献】
【0008】
【文献】特許第2,746,861号公報
【文献】国際公開第2016/159167号パンフレット
【非特許文献】
【0009】
【文献】Seung-Ho Lee, Zhenyu Lu, S.V.Babu and Egon Matijevic、"Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria"、Journal of Materials Research、Volume 17、Issue 10、2002、pp2744-2749
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかしながら、特許文献1に記載の酸化セリウム超微粒子について、本発明者が実際に製造して検討したところ、研磨速度が低く、さらに、研磨基材の表面に欠陥(面精度の悪化、スクラッチ増加、研磨基材表面への研磨材の残留)を生じやすいことが判明した。
これは、焼成工程を含むセリア粒子の製造方法(焼成によりセリア粒子の結晶化度が高まる)に比べて、特許文献1に記載の酸化セリウム超微粒子の製法は、焼成工程を含まず、液相(硝酸第一セリウムを含む水溶液)から酸化セリウム粒子を結晶化させるだけなので、生成する酸化セリウム粒子の結晶化度が相対的に低く、また、焼成処理を経ないため酸化セリウムが母粒子と固着せず、酸化セリウムが研磨基材の表面に残留することが主要因であると、本発明者は推定している。
【0011】
また、非特許文献1に記載のセリアコートシリカは焼成していないため、現実の研磨速度は低いと考えられ、また、シリカ粒子と固着一体化していないため、容易に脱落し、研磨速度の低下や、研摩の安定性を欠き、研磨基材の表面への粒子の残留も懸念される。
【0012】
また、特許文献2に記載のシリカ系複合微粒子分散液は、研磨用途において、優れた研磨性能(研磨速度、高面精度など)を発揮可能なものであるが、半導体装置の更なる高密度化・高集積化に伴い、半導体基板に対し、より優れた研磨性能を示す砥粒分散液が求められている。
【0013】
本発明は上記のような課題を解決することを目的とする。すなわち、本発明は、シリカ膜、Siウェハや難加工材であっても高速で研磨することができ、同時に高面精度(低スクラッチ、基板上の砥粒残が少ない、基板Ra値の良化等)を達成でき、さらに不純物を含まない場合、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができるセリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液を提供することを目的とする。
【課題を解決するための手段】
【0014】
本発明者は上記課題を解決するため鋭意検討し、本発明を完成させた。
本発明は以下の(1)~(9)である。
(1)下記[1]から[5]の特徴を備え、短径/長径比が0.2~1.0の範囲にあり、平均粒子径が50~1000nmであるセリア系複合微粒子を含む、セリア系複合微粒子分散液。
[1]前記セリア系複合微粒子は、母粒子と、前記母粒子の表面上のセリウム含有被覆層と、前記セリウム含有被覆層の内部に分散している子粒子とを有し、前記母粒子は結晶性無機酸化物を主成分とし、前記子粒子は結晶性セリアを主成分とすること。
[2]前記子粒子の粒子径分布における変動係数(CV値)が14~60%であること。
[3]前記セリア系複合微粒子は、セリア以外の成分とセリアとの質量比が100:11~316の範囲であること。
[4]前記セリア系複合微粒子は、X線回折に供すると、セリアの結晶相および前記結晶性無機酸化物の結晶相が検出されること。
[5]前記セリア系複合微粒子は、X線回折に供して測定される、前記結晶性セリアの平均結晶子径が10~25nmであること。
(2)前記結晶性無機酸化物が、アルミナ、チタニアおよびジルコニアからなる群から選ばれる少なくとも1つであることを特徴とする、上記(1)に記載のセリア系複合微粒子分散液。
(3)前記セリウム含有被覆層が前記母粒子と同じ元素およびセリウムを含むことを特徴とする、上記(1)または(2)に記載のセリア系複合微粒子分散液。
(4)前記セリウム含有被覆層がシリカを含むことを特徴とする、上記(1)~(3)のいずれかに記載のセリア系複合微粒子分散液。
(5)前記母粒子の圧縮破壊強度が1.0~3.0MPaであることを特徴とする、上記(1)~(4)のいずれかに記載のセリア系複合微粒子分散液。
(6)上記(1)~(5)のいずれかに記載のセリア系複合微粒子分散液を含む研磨用砥粒分散液。
(7)シリカ膜が形成された半導体基板の平坦化用であることを特徴とする上記(6)に記載の研磨用砥粒分散液。
(8)下記の工程1~工程3を含むことを特徴とするセリア系複合微粒子分散液の製造方法。
工程1:短径/長径比が0.1以上、1.0未満である結晶性無機酸化物微粒子が溶媒に分散している結晶性無機酸化物微粒子分散液を撹拌し、温度を0~20℃、pHを7.0~9.0、酸化還元電位を50~500mVに維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、700~1,200℃で焼成し、得られた焼成体に溶媒を加えて、pH8.6~10.8の範囲にて、湿式で解砕処理をして焼成体解砕分散液を得る工程。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去することによりセリア系複合微粒子分散液を得る工程。
(9)前記工程1が、前記結晶性無機酸化物微粒子分散液を撹拌し、温度を0~20℃、pHを7.0~9.0、酸化還元電位を50~500mVに維持しながら、ここへセリウムの金属塩とケイ素を含む成分とを連続的又は断続的に添加し、前記前駆体粒子分散液を得る工程である、上記(8)に記載のセリア系複合微粒子分散液の製造方法。
【発明の効果】
【0015】
本発明のセリア系複合微粒子分散液を、例えば、研磨用砥粒分散液として研磨用途に使用した場合、対象がシリカ膜、Siウェハなどを含む難加工材であっても、高速で研磨することができ、同時に高面精度(低スクラッチ、被研磨基板の表面粗さ(Ra)が低いこと等)を達成することができる。本発明のセリア系複合微粒子分散液の製造方法は、このような優れた性能を示すセリア系複合微粒子分散液を効率的に製造する方法を提供するものである。
本発明のセリア系複合微粒子分散液の製造方法においては、セリア系複合微粒子に含まれる不純物を著しく低減させ、高純度化させることも可能である。本発明のセリア系複合微粒子分散液の製造方法の好適態様によって得られる、高純度化されたセリア系複合微粒子分散液は、不純物を含まないかあるいは殆ど含まないため、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができる。
また、本発明のセリア系複合微粒子分散液は、研磨用砥粒分散液として使用した場合、半導体デバイス表面の平坦化に有効であり、特にはシリカ絶縁膜が形成された基板の研磨に好適である。
【図面の簡単な説明】
【0016】
【発明を実施するための形態】
【0017】
本発明について説明する。
本発明は、下記[1]から[5]の特徴を備え、短径/長径比が0.2~1.0の範囲にあり、平均粒子径が50~1000nmであるセリア系複合微粒子を含む、セリア系複合微粒子分散液である。
[1]前記セリア系複合微粒子は、母粒子と、前記母粒子の表面上のセリウム含有被覆層と、前記セリウム含有被覆層の内部に分散している子粒子とを有し、前記母粒子は結晶性無機酸化物を主成分とし、前記子粒子は結晶性セリアを主成分とすること。
[2]前記子粒子の粒子径分布における変動係数(CV値)が14~60%であること。
[3]前記セリア系複合微粒子は、セリア以外の成分とセリアとの質量比が100:11~316の範囲であること。
[4]前記セリア系複合微粒子は、X線回折に供すると、セリアの結晶相および前記結晶性無機酸化物の結晶相が検出されること。
[5]前記セリア系複合微粒子は、X線回折に供して測定される、前記結晶性セリアの平均結晶子径が10~25nmであること。
【0018】
上記[1]から[5]の特徴を備え、短径/長径比が0.2~1.0の範囲にある平均粒子径50~1000nmのセリア系複合微粒子を、以下では「本発明の複合微粒子」ともいう。
また、このようなセリア系複合微粒子分散液を、以下では「本発明の分散液」ともいう。
【0019】
また、本発明は、下記の工程1~工程3を含むことを特徴とするセリア系複合微粒子分散液の製造方法である。
工程1:短径/長径比が0.1以上、1.0未満である結晶性無機酸化物微粒子が溶媒に分散している結晶性無機酸化物微粒子分散液を撹拌し、温度を0~20℃、pHを7.0~9.0、酸化還元電位を50~500mVに維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、700~1,200℃で焼成し、得られた焼成体に溶媒を加えて、pH8.6~10.8の範囲にて、湿式で解砕処理をして焼成体解砕分散液を得る工程。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去することによりセリア系複合微粒子分散液を得る工程。
このような製造方法を、以下では「本発明の製造方法」ともいう。
【0020】
本発明の分散液は、本発明の製造方法によって製造することが好ましい。
【0021】
以下において、単に「本発明」と記した場合、本発明の分散液、本発明の複合微粒子および本発明の製造方法のいずれをも意味するものとする。
【0022】
<本発明の複合微粒子>
本発明の複合微粒子について説明する。
本発明の複合微粒子は
図1に例示する構造を備えている。
図1(a)および
図1(b)は共に本発明の複合微粒子の断面の模式図である。
図1(a)は、子粒子の一部が外部に露出しているタイプであり、
図1(b)は、全ての子粒子が外部に露出していない、埋没タイプである。
図1に示すように、本発明の複合微粒子20は、母粒子10と、母粒子10の表面上のセリウム含有被覆層12と、セリウム含有被覆層12の内部に分散している子粒子14とを有する。なお、
図1中の▲は、後述するSTEM-EDS分析を行う測定点X~Zの例示である。
【0023】
本発明の複合微粒子においてセリウム含有被覆層が形成される機構およびそのセリウム含有被覆層の内部に子粒子が分散して存在することになる機構について、本発明者は以下のように推定している。
後述するように、結晶性無機酸化物微粒子を構成する結晶性無機酸化物の代表例として、アルミナ、チタニア、ジルコニアが挙げられ、さらにシリカが含まれる場合が挙げられるが、以下では結晶性無機酸化物がアルミナである場合について説明する。
例えば、アルミニウムイソプロポキシドにアンモニアを添加し、加水分解・縮重合の操作を行い、さらに乾燥、焼成を行うことで得た結晶性無機酸化物微粒子を溶媒に分散させることで得た結晶性無機酸化物部粒子分散液に、セリウム塩の溶解液を添加しながら、並行してアルカリを添加すると、セリウム塩の溶解液が中和される。そうすると、結晶性無機酸化物微粒子の表面の水酸基と、セリウム塩の溶解液の中和による生成物(水酸化セリウム等)とが反応し、一例として、Ce(OH)・Al(OH)様の化合物を経由して、結晶性無機酸化物微粒子の表面にCeO2・Al2O3・Al(OH)およびCeO2超微粒子(粒径が2.5nm以上、10nm未満の範囲)を含む層(以下「CeO2超微粒子含有層」ともいい、CeO2超微粒子とセリウムアルミネートからなる層を意味する)が形成される。焼成工程においてセリウムアルミネートから分相したセリウム原子がCeO2超微粒子に沈着するため、結晶性無機酸化物微粒子の表面に形成されるCeO2超微粒子は粒子成長する。必要とする研磨速度を達成するためのセリア子粒子の結晶の大きさ(10~25nm)とするためには、調合で得た結晶子径が2.5nm未満である場合、より高温焼成が必要とされる。しかし、高温で処理されると分相で生じたアルミナが接着剤となって、当該発明の単結晶性セリア系複合微粒子を、後工程における解砕によって得ることができない。
なお、ここでは結晶性無機酸化物がアルミナである場合であるため、前記CeO2超微粒子含有層は、CeO2超微粒子とセリウムアルミネートからなる層であるが、結晶性無機酸化物としてアルミナではなくチタニアであれば、前記CeO2超微粒子含有層は、CeO2超微粒子とセリウムチタネートからなる層であり、結晶性無機酸化物としてアルミナではなくジルコニアであれば、前記CeO2超微粒子含有層は、CeO2超微粒子とセリウムジルコネートからなる層である。
【0024】
調合工程(工程1)で平均粒子径2.5nm以上のCeO2超微粒子を得るためには、セリウム塩と、アルミナとの反応を抑制するため、セリウム塩を添加する際の結晶性無機酸化物微粒子分散液の温度は20℃以下であることが好ましい。この際、一部のCeO2超微粒子は調合中の酸化還元電位を所定範囲に保つことにより、加熱・熟成がなくとも既に結晶化している。一方、20℃超の温度で調合した後、液相において加熱処理・熟成しても、CeO2超微粒子は2.5nm以上に成長せず、また結晶化も生じ難い傾向にある。
【0025】
前記CeO2超微粒子含有層は、結晶性無機酸化物微粒子の表面水酸基と、セリウム塩の溶解液の中和による生成物(水酸化セリウム等)との反応により結晶性無機酸化物微粒子の表面が溶出し、これに(吹き込んだエアー等に由来する)酸素等が影響して、固化して形成されたものと推定される。
そして、その後、乾燥し、700~1200℃程度で焼成すると、前記CeO2超微粒子含有層の内部に存在している、粒径が2.5nm以上、10nm未満のCeO2超微粒子が、セリウムアルミネートに含まれているセリウム原子を取り込んで粒径を成長させ、最終的には平均結晶子径が10~25nm程度にまで成長した結晶性セリア粒子(セリア子粒子)となる。またセリウムアルミネートは、熱分解や熱拡散等によりセリウム含有被覆層となる。そのため、結晶性セリア粒子はセリウム含有被覆層内で分散した状態で存在することとなる。また、このような機構によって形成された結晶性セリア粒子(子粒子)は粒子どうしの合着が生じ難い。なお、セリウムシリケート層に含まれるセリウムの一部は結晶性セリア粒子になりきれず残存するため、セリウム含有被覆層が形成される。
【0026】
なお、調合温度が20℃超でかつ酸化還元電位を所定範囲に保った場合は、水酸化セリウム等と結晶性無機酸化物微粒子との反応性が増し、結晶性無機酸化物微粒子の溶出量が著しく増し、調合後の結晶性無機酸化物微粒子は、例えば粒子径は1/2程度、体積は80~90%減少する。そして溶解したアルミナはCeO2超微粒子含有層に含まれ、前述の例の場合、CeO2超微粒子含有層の組成はアルミナ濃度が約4割、セリア濃度が約6割となり、CeO2超微粒子含有層のアルミナの割合が増える。そして焼成によりセリア子粒子を10~25nmに結晶成長させた際に、セリウムアルミネート層から分相したセリウム原子がセリア子粒子に沈着・成長し、セリウム原子の分相(拡散)により結果的に生成したアルミナがセリア粒子を被覆することになり、母粒子アルミナに固着して、セリア子粒子がアルミナ被膜で覆われた形態となる。この時に、焼成温度が高いとセリアで被覆された母粒子を被覆したアルミナが接着剤となって、粒子の合着を促進するため、後工程の解砕で単分散状態に解砕することができない。焼成温度が低いと解砕は容易になるが、セリア粒子が成長しないので研磨速度が得られない。
【0027】
さらに、調合温度が20℃超でかつ酸化還元電位を所定範囲に保った場合、調合後のセリア子粒子の結晶子径は2.5nm以下と小さくなり、焼成により所定サイズにセリア子粒子を結晶成長させるためには、セリウムアルミネートからより多くのセリウム原子の拡散が必要となり、結果的にセリウムアルミネート中のアルミナ濃度が高まり、子粒子を覆うアルミナ被膜が増大する傾向が強まる。
【0028】
結晶性無機酸化物微粒子分散液とセリウムの金属塩の反応時の調合温度が0~20℃でかつ酸化還元電位を所定範囲に保った場合は、水酸化セリウム等と結晶性無機酸化物微粒子との反応性が抑制され、結晶性無機酸化物微粒子があまり溶解せず、調合後の結晶性無機酸化物微粒子は、例えば粒子径は1~5%程度、体積は3~15%程度の減少に抑えられる。そのため前述の例の場合、CeO2超微粒子含有層の組成はアルミナ濃度が約1割、セリア濃度が約9割になり、CeO2超微粒子含有層のセリアの割合が増加し、焼成後にセリウム含有被覆層が形成される。また調合後のセリアの結晶サイズは2.5nm以上、10nm未満(一例として6~8nm)程度となるため、焼成により所定サイズにセリア子粒子を結晶成長させるためのセリウム原子の拡散量が少なくてよく、結果的にセリウムアルミネート中に多くセリウムが残存し、低温焼成で結晶成長がおきて、平均粒子径10~25nmのセリア粒子が得られる。従って、0~20℃で調合した場合は、母粒子表面上にセリウム含有被覆層が形成され、この層内にセリア子粒子が分散した形態となる。
【0029】
また調合段階で、セリア粒子が平均粒子径10nm以上となるとセリア粒子どうしの合着がおきて、母粒子表面に均一なセリア粒子が単分散配列しないので、優れた研磨特性が得られない傾向がある。
【0030】
図1の模式図では理解が容易になるように、母粒子10、セリウム含有被覆層12および子粒子14を明確に区別して記したが、本発明の複合微粒子は上記のような機構によって形成されると推測されるため、実際のところは、これらは一体となって存在しており、STEM/SEM像におけるコントラストあるいはEDS分析以外では、母粒子10、セリウム含有被覆層12および子粒子14を明確に区別することは難しい。
ただし、本発明の複合微粒子の断面についてSTEM-EDS分析を行い、Ceの元素濃度を測定すると、
図1に示した構造であることを確認することができる。
【0031】
すなわち、走査透過型電子顕微鏡(STEM)によって特定した箇所に電子ビームを選択的に照射するEDS分析を行い、
図1に示す本発明の複合微粒子の断面の測定点XにおけるCeの元素濃度を測定すると3%未満となる。また、測定点ZにおけるCeの元素濃度を測定すると50%超となる。そして、測定点YにおけるCeの元素濃度を測定すると3~50%となる。
したがって、STEM-EDS分析を行って得られる元素マップにおいて、本発明の複合微粒子における母粒子10とセリウム含有被覆層12とは、Ceモル濃度が3%となるラインによって区別することができる。また、STEM-EDS分析を行って得られる元素マップにおいて、本発明の複合微粒子におけるセリウム含有被覆層12と子粒子14とはCeモル濃度が50%となるラインによって、区別することができる。
【0032】
本明細書においてSTEM-EDS分析は、80万倍で観察して行うものとする。
【0033】
本発明の複合微粒子は
図1に示したような態様であるので、その断面についてSTEM-EDS分析を行い、元素マッピングを行うと、その最外殻から中心の母粒子(結晶性無機酸化物を主成分とする)に至る途中に、少なくとも一つ以上のセリア濃度が相対的に高い層(セリア微粒子からなる)を有していることが多い。
【0034】
<母粒子>
本発明の複合微粒子における母粒子について説明する。
前述の通り、本発明の複合微粒子についてSTEM-EDS分析を行い、
図1に示した本発明の複合微粒子の断面におけるCe元素濃度(モル濃度)を測定した場合に3%未満となる部分である。
【0035】
母粒子を構成する物質は結晶性無機酸化物であれば特に限定されず、複数種類の元素を含むものであってもよい。
母粒子を構成する結晶性無機酸化物は、アルミナ、チタニアおよびジルコニアからなる群から選ばれる少なくとも1つであることが好ましい。
【0036】
後述のとおり本発明の複合微粒子の平均粒子径は50~1000nmの範囲にあるので、本発明の複合微粒子における母粒子の平均粒子径は必然的に1000nmより小さい値となる。本発明の複合微粒子における母粒子の平均粒子径が30~700nmの範囲である本発明の複合微粒子が好適に使用される。
平均粒子径が30~700nmの範囲にある母粒子を原料として用いて得られる本発明の分散液を研磨剤として用いた場合、研磨に伴うスクラッチの発生が少なくなる。母粒子の平均粒子径が30nm未満の場合、その様な母粒子を用いて得られた分散液を研磨剤として用いると、研磨レートが実用的な水準に達さない傾向がある。また、母粒子の平均粒子径が700nmを超える場合も同じく研磨レートが実用的な水準に達さない傾向があり、研磨対象の基板の面精度低下を招く傾向もある。なお、母粒子は、単分散性を示すものがより好ましい。
【0037】
本発明の複合微粒子における母粒子の平均粒子径は、次のように測定するものとする。
初めにSTEM-EDS分析によって80万倍で観察し、Ceモル濃度が3%となるラインを特定することで母粒子を特定する。次に、その母粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とする。また、長軸上にて長軸を2等分する点を定め、それに直交する直線(短軸)が母粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とする。そして、長径(DL)と短径(DS)との幾何平均値を求め、これをその母粒子の粒子径とする。
このようにして50個の母粒子について粒子径を測定し、これを単純平均して得た値を平均粒子径とする。
【0038】
本発明の複合微粒子における母粒子の形状は格別に限定されるものではないが、具体的には、本発明の複合微粒子における母粒子の短径/長径比の範囲が0.2以上、1.0以下であることが好ましい。
本発明の複合微粒子における母粒子の短径/長径比は、次のように測定するものとする。
初めにSTEM-EDS分析によって80万倍で観察し、Ceモル濃度が3%となるラインを特定することで母粒子を特定する。次に、その母粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とする。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が母粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とする。そして、長径(DL)と短径(DS)との比(DS/DL)を求め、これをその母粒子の短径/長径比とする。短径/長径比の範囲は、0.25以上、1.0以下であることが好ましい。
【0039】
母粒子は結晶性無機酸化物を主成分とするものであり、通常は結晶性無機酸化物微粒子である。結晶性無機酸化物微粒子は非球状又は球状で粒子径が揃ったものを調製し易く、また、多様な粒子径のものを調製することができるので好ましく用いることができる。
【0040】
母粒子が結晶性無機酸化物を主成分とすることは、例えば、次の方法で確認することができる。本発明の複合微粒子を含む分散液を乾燥させた後、乳鉢を用いて粉砕し、例えば、従来公知のX線回折装置(例えば、理学電気株式会社製、RINT1400)によってX線回折パターンを得ると、例えば、α―アルミナの結晶相、アナターゼ型チタニアの結晶相、立方晶のジルコニアの結晶相などのような結晶相を示すことから、母粒子が結晶性無機酸化物を主成分とすることを確認することができる。また、このような場合に、母粒子が結晶性無機酸化物を主成分とするものとする。
また、本発明の分散液を乾燥させ、樹脂包埋した後にPtによるスパッタコーティングを施し、従来公知の収束イオンビーム(FIB)装置を用い断面試料を作成する。例えば作成した断面試料を従来公知のTEM装置を用い、高速フーリエ変換(FFT)解析を用いてFFTパターンを得ると、母粒子の結晶構造に応じた回折パターンが現れることでも母粒子が結晶性無機酸化物を主成分とすることを確認できる。また、このような場合に、母粒子が結晶性無機酸化物を主成分とするものとする。
【0041】
母粒子は結晶性無機酸化物を主成分とし、その他のもの、例えば非晶質物質(非晶質シリカ等)や酸化物以外の化合物を含んでもよい。
例えば、前記母粒子において、Na、Ag、Ca、Cr、Cu、Fe、K、Mg、Ni及びZnの各元素(以下、「特定不純物群1」と称する場合がある)の含有率が、それぞれ5000ppm以下であることが望ましく、1000ppm以下であることが望ましく、100ppm以下であることが好ましい。さらに50ppm以下であることが好ましく、25ppm以下であることがより好ましく、5ppm以下であることがさらに好ましく、1ppm以下であることがよりいっそう好ましい。また、前記母粒子におけるU、Th、Cl、NO3、SO4及びFの各元素(以下、「特定不純物群2」と称する場合がある)の含有率は、それぞれ5ppm以下であることが好ましい。
【0042】
ここで、母粒子および後述する本発明の複合微粒子ならびに後述する結晶性無機酸化物微粒子における特定不純物群1または特定不純物群2の含有率はdry量に対する含有率を意味するものとする。
dry量に対する含有率とは、対象物(母粒子、本発明の複合微粒子または後述する結晶性無機酸化物微粒子)に含まれる固形分の質量に対する測定対象物(特定不純物群1または特定不純物群2)の重量の比(百分率)の値を意味するものとする。なお、母粒子の不純分は、汚染等による混入が無ければ、結晶性無機酸化物微粒子の不純分と概ね一致する。
【0043】
一般に水硝子を原料として調製した結晶性無機酸化物微粒子は、原料水硝子に由来する前記特定不純物群1と前記特定不純物群2を合計で数千ppm程度含有する。
このような結晶性無機酸化物微粒子が溶媒に分散してなる分散液の場合、イオン交換処理を行って前記特定不純物群1と前記特定不純物群2の含有率を下げることは可能であるが、その場合でも前記特定不純物群1と前記特定不純物群2が合計で数ppmから数百ppm残留する。そのため水硝子を原料とした結晶性無機酸化物微粒子を用いる場合は、酸処理等で不純物を低減させることも行われている。
これに対し、アルコキシシランを原料として合成した結晶性無機酸化物微粒子が溶媒に分散してなる分散液の場合、通常、前記特定不純物群1における各元素の含有率は、それぞれ100ppm以下であることが好ましく、20ppm以下であることがより好ましく、前記特定不純物群2における各元素と各陰イオンの含有率は、それぞれ20ppm以下であることが好ましく、5ppm以下であることがより好ましい。
【0044】
なお、本発明において、母粒子におけるNa、Ag、Ca、Cr、Cu、Fe、K、Mg、Ni、Zn、U、Th、Cl、NO3、SO4及びFの各々の含有率は、それぞれ次の方法を用いて測定して求めた値とする。
・Na及びK:原子吸光分光分析
・Ag、Ca、Cr、Cu、Fe、Mg、Ni、Zn、U及びTh:ICP-MS(誘導結合プラズマ発光分光質量分析)
・Cl:電位差滴定法
・NO3、SO4及びF:イオンクロマトグラフ
【0045】
母粒子は、その圧縮破壊強度が1.0~3.0MPaであることが好ましい。理由は圧縮破壊強度がこの範囲にあることで研磨時の複合微粒子の崩壊を防ぐことができ、更には複合微粒子の変形による応力緩和を抑制し、基板への圧力伝達を効果的に行うことができ、高い研磨速度が得られる。
ここで母粒子の圧縮破壊強度は次の方法で測定する。
本発明の分散液をサンドミルにて解砕し、遠心分離装置で分級分離することによりセリア子粒子を母粒子から脱落させた母粒子を得て、得られた母粒子について島津製作所製微小圧縮試験機(MCT-W500)を用い、圧縮破壊強度を測定した。
【0046】
<子粒子>
本発明の複合微粒子において結晶性セリアを主成分とする子粒子(以下、「セリア子粒子」ともいう)は、前記母粒子上に配されたセリウム含有被覆層に分散している。
また、本発明の複合微粒子における母粒子は短径/長径比が0.2~0.7の範囲であり、その表面に凹凸を備えることが好ましい。すなわち、凹部と凸部を備えることが好ましい。そして、本発明の複合微粒子において子粒子は、次の(a)、(b)または(c)の形態が主として存在する。
(a)母粒子の凸部に子粒子が、セリウム含有被覆層の一部を介して、結合した形態。
(b)母粒子の凸部と凹部との両方に子粒子が、セリウム含有被覆層の一部を介して、結合した形態。
(c)母粒子の凹部に子粒子が、セリウム含有被覆層の一部を介して結合した形態
これら(a)、(b)または(c)の形態が同時に存在していることが望ましい。なぜならば、本発明の分散液を研磨用砥粒分散液として使用した場合、母粒子が段差を有しているため、研磨時は最初に(a)の形態の子粒子が、研磨対象の基板と接触して研磨が行われる。仮に(a)の形態の子粒子が研磨圧力により外れや磨滅、破壊が生じても次に(b)、そして(c)の形態のセリア子粒子が研磨対象の基板と接触し、接触面積を高く保つことができるため、効率よく研磨速度が安定した研磨が行われるからである。
後述する本発明の製造方法によると、これら(a)、(b)または(c)の形態の子粒子が同時に存在している本発明の複合微粒子を含む本発明の分散液を得やすい。
【0047】
また、セリウム含有被覆層内においてセリア子粒子は積層されていても良く、その形状は真球状、楕円形状、矩形形状など特に限定されず、さらに粒子径分布も均一であってもシャープであっても良く、突起あるいは平滑でない形状が形成された母粒子に起因したセリア子粒子の段差が生じていてもよい。
前記セリア子粒子は、前記セリウム含有被覆層中に埋没するものもあれば、セリウム含有被覆層から部分的に露出するものもある。
【0048】
前述の通り、本発明の複合微粒子についてSTEM-EDS分析を行い、
図1に示した本発明の複合微粒子の断面におけるCe元素濃度を測定した場合に、子粒子はCeモル濃度が50%超となる部分である。
【0049】
本発明における結晶性セリアを主成分とする子粒子は、前記母粒子上に配されたセリウム含有被覆層に分散しており、当該子粒子の粒子径分布における変動係数(CV値)が14~60%である。すなわち、子粒子の粒度分布の幅が大きい。このような粒度分布幅が大きなセリア子粒子を備えている本発明の分散液を研磨用砥粒分散液として使用すると、研磨の初期においては粒径の大きい子粒子が研磨対象の基板と接触して研磨が行われる。そして、その子粒子が研磨圧力により外れたり、磨滅や破壊が生じたりしても、次に、粒子径の小さい子粒子が研磨対象の基板と接触するので、接触面積を高く保つことができる。そのため、効率よく研磨速度が安定した研磨が行われる。
【0050】
本発明において、セリウム含有被覆層に分散している子粒子の粒子径分布における変動係数(CV値)は14~60%であるが、17~50%であることが好ましく、20~40%であることがより好ましい。
【0051】
本発明において、子粒子の粒子径分布は、次のように測定するものとする。
初めに本発明の複合微粒子をSTEM-EDS分析によって80万倍で観察し、Ceモル濃度が50%となるラインを特定することで子粒子を特定する。次に、その子粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とする。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が子粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とする。そして、長径(DL)と短径(DS)との幾何平均値を求め、これをその子粒子の粒子径とする。
このようにして100個以上の子粒子について粒子径を測定し、粒子径分布を得ることができる。
【0052】
本発明において、子粒子の粒子径分布における変動係数(CV値)は、上記のようにして得た粒子径分布を母集団として標準偏差と個数平均値を得た後、標準偏差を個数平均値で除し、100を乗じること(すなわち、標準偏差/個数平均値×100)により、算出する。
【0053】
子粒子の平均粒子径は、10~25nmが好ましく、14~23nmであることがより好ましい。
子粒子の平均粒子径が25nmを超える場合、工程2において、そのようなセリア子粒子を有した前駆体粒子は、焼成後に焼結や凝結が生じ解砕も困難となる傾向がある。このようなセリア系複合微粒子分散液は、研磨用途に使用しても研磨対象でのスクラッチ発生を招き、好ましくない。子粒子の平均粒子径が10nm未満の場合、同じく研磨用途に使用すると、実用的に充分な研磨速度を得難い傾向がある。
【0054】
本発明において、子粒子の平均粒子径は、上記のようにして得た粒子径分布における個数平均径を意味するものとする。
【0055】
子粒子は積層されていてもよい。すなわち、セリウム含有被覆層の内部における、母粒子の中心からの放射状の線上において複数存在していてもよい。
また、子粒子はセリウム含有被覆層中に埋没していてよいし、セリウム含有被覆層の外部へ部分的に露出していてもよいが、子粒子がセリウム含有被覆層に埋没した場合は、セリウム含有被覆層表面になるため、保存安定性及び研磨安定性が向上し、さらに研磨後の基板上に砥粒残りが少なくなることから、子粒子はセリウム含有被覆層に埋没している方が望ましい。
【0056】
子粒子の形状は特に限定されない。例えば真球状、楕円形状、矩形状であってもよい。本発明の分散液を研磨用途に使用する場合であって、高研磨速度を得ようとする場合、子粒子は非球形が好ましく、矩形状がより好ましい。
【0057】
母粒子の表面に配されたセリウム含有被覆層内に分散された子粒子は、単分散状態であってもよく、子粒子が積層された状態(すなわち、セリウム含有被覆層の厚さ方向に複数の子粒子が積み重なって存在する状態)であってもよく、複数の子粒子が連結した状態であっても構わない。
【0058】
本発明において、子粒子は結晶性セリアを主成分とする。
前記子粒子が結晶性セリアを主成分とすることは、例えば、本発明の分散液を乾燥させた後、得られた固形物を乳鉢を用いて粉砕する等して本発明の複合微粒子を得た後、これを例えば従来公知のX線回折装置(例えば、理学電気株式会社製、RINT1400)を用いてX線分析し、得られたX線回折パターンにおいて、セリアの結晶相および結晶性無機酸化物の結晶相が検出されることから確認できる。このような場合に、前記子粒子が結晶性セリアを主成分とするものとする。なお、セリアの結晶相としては、特に限定されないが、例えばCerianite等が挙げられる。
【0059】
子粒子は結晶性セリア(結晶性Ce酸化物)を主成分とし、その他のもの、例えばセリウム以外の元素を含んでもよい。また、研磨の助触媒として含水セリウム化合物を含んでもよい。
ただし、上記のように、本発明の複合微粒子をX線回折に供するとセリアの結晶相および結晶性無機酸化物の結晶相が検出される。すなわち、セリア以外の結晶相を含んでいたとしても、その含有率は少ない、あるいはセリア結晶中に固溶しているため、X線回折による検出範囲外となる。
【0060】
セリア子粒子の平均結晶子径は、本発明の複合微粒子をX線回折に供して得られるチャートに現れる最大ピークの半値全幅を用いて算出される。そして、例えば(111)面の平均結晶子径は10~25nm(半値全幅は0.86~0.34°)であり、14~23nm(半値全幅は0.62~0.37°)であることが好ましく、15~22nm(半値全幅は0.58~0.38)であることがより好ましい。なお、多くの場合は(111)面のピークの強度が最大になるが、他の結晶面、例えば(100)面のピークの強度が最大であってもよい。その場合も同様に算出でき、その場合の平均結晶子径の大きさは、上記の(111)面の平均結晶子径と同じであってよい。
【0061】
子粒子の平均結晶子径の測定方法を、(111)面(2θ=28度近傍)の場合を例として以下に示す。
初めに、本発明の複合微粒子を、乳鉢を用いて粉砕し、例えば従来公知のX線回折装置(例えば、理学電気(株)製、RINT1400)によってX線回折パターンを得る。そして、得られたX線回折パターンにおける2θ=28度近傍の(111)面のピークの半値全幅を測定し、下記のScherrerの式により、平均結晶子径を求めることができる。
D=Kλ/βcosθ
D:平均結晶子径(オングストローム)
K:Scherrer定数(本発明ではK=0.94とする)
λ:X線波長(1.5419オングストローム、Cuランプ)
β:半値全幅(rad)
θ:反射角
【0062】
本発明の複合微粒子は、前記子粒子の主成分である結晶性セリアに前記結晶性無機酸化物に含まれる原子(アルミニウム、チタン、ジルコニウム等)が固溶していることが好ましい。一般に固溶とは、2種類以上の元素(金属の場合も非金属の場合もある)が互いに溶け合い、全体が均一の固相となっているものを意味し、固溶して得られる固溶体は、置換型固溶体と侵入型固溶体とに分類される。置換型固溶体は、原子半径が近い原子において容易に起こり得ることが知られており、例えばZrはCerianiteの結晶構造を維持した状態で固溶することが知られており、AlはCeAlO3組成のペロブスカイト構造が知られている。また、侵入型固溶体であっても構わない。
従来、砥粒としてセリア粒子を用いてシリカ膜付基板やガラス基材を研磨すると、他の無機酸化物粒子を用いた場合に比べて、特異的に高い研磨速度を示すことが知られている。セリア粒子がシリカ膜付基板に対して、特に高い研磨速度を示す理由の一つとして、セリア粒子中に含まれる三価のセリウムが被研磨基板上のシリカ被膜に対して、高い化学反応性を持つことが指摘されている。酸化セリウム中のセリウムは三価と四価の価数となりうるが、半導体用の研磨材として用いられる純度の高い酸化セリウム粒子は、炭酸セリウムなどの高純度なセリウム塩を約700℃の高温で焼成するプロセスを経ている。そのため、焼成型セリア粒子中のセリウムの価数は四価を主としており、例え三価のセリウムを含んでいたとしてもその含有量は十分でない。
本発明の複合微粒子の好適態様は、その外表面側に存在する子粒子(セリア微粒子)において、Al等の原子がCeO2結晶に侵入型の固溶をしていると見られる。Al等の原子の固溶により、CeO2結晶の結晶歪みが生じることで、高温で焼成しても酸素欠陥が多くなりSiO2に対して化学的に活性な三価のセリウムが多く生じ、CeO2の化学反応性を助長する結果、上記の高い研磨速度を示すものと推察される。また三価のセリウム含有量を増加させるために、LaやZrなどをドープさせても構わない。
【0063】
本発明のセリア系複合微粒子は、母粒子が結晶性無機酸化物を主成分とすることで以下の特徴を備える。
1)セリア系複合微粒子の概形も母粒子の晶癖を反映して、例えば、立方体、柱状、板状又は針状等の形状をとることができる。このような形状を備えることにより、砥粒として使用した場合、研磨対象の半導体基板等が砥粒の頂点に相当する部位と接触した場合は接触面積が小さくなり、その結果応力集中が生じ、より深い切削研磨が進行し、高い研磨速度を得ることができる。また、砥粒の面又は辺に相当する部位で接触した場合は接触面積が増加し、その結果より大きな摩擦が生じ、より高い研磨速度を得ることができる。
2)母粒子が高い物理的安定性、化学的安定性を持つことにより母粒子成分、及び母粒子に含まれる不純分の溶出等による研磨基板の汚染が防ぐことができる。
3)高い剛性をもつことにより、研磨時の砥粒変形による応力緩和が生じにくくなり、基板への応力集中が進み、より高い研磨速度を得ることができる。また、粒子崩壊を生じにくいためにより高い研磨速度を得ることができる。
【0064】
<セリウム含有被覆層>
本発明の複合微粒子は、前記母粒子の表面上にセリウム含有被覆層を有する。そして、セリウム含有被覆層の内部に子粒子が分散している。
【0065】
このような構造をとることにより、製造時の解砕処理や研磨時の圧力による子粒子の脱落が生じ難く、また、たとえ一部の子粒子が欠落したとしても、多くの子粒子は脱落せずにセリウム含有被覆層中に存在するので、研磨機能を低下させることがない。
【0066】
また、前記セリウム含有被覆層がシリカを含むことが好ましい。
例えば、母粒子が結晶性アルミナを主成分とする場合に、セリウム含有被覆層はCeおよびSiを含むことが好ましい。
また、例えば、母粒子が結晶性チタニアを主成分とする場合に、セリウム含有被覆層はCeおよびSiを含むことが好ましい。
さらに、例えば、母粒子が結晶性ジルコニアを主成分とする場合に、セリウム含有被覆層はCeおよびSiを含むことが好ましい。
【0067】
セリウム含有被覆層は母粒子と同じ元素を含むことが好ましい。
例えば、母粒子が結晶性アルミナを主成分とする場合に、セリウム含有被覆層はAlおよびCeを含むことが好ましい。
また、例えば、母粒子が結晶性チタニアを主成分とする場合に、セリウム含有被覆層はTiおよびCeを含むことが好ましい。
さらに、例えば、母粒子が結晶性ジルコニアを主成分とする場合に、セリウム含有被覆層はZrおよびCeを含むことが好ましい。
【0068】
また、前記セリウム含有被覆層が、さらにシリカを含むことが好ましい。
例えば、母粒子が結晶性アルミナを主成分とする場合に、セリウム含有被覆層はCe,AlおよびSiを含むことが好ましい。
また、例えば、母粒子が結晶性チタニアを主成分とする場合に、セリウム含有被覆層はCe,TiおよびSiを含むことが好ましい。
さらに、例えば、母粒子が結晶性ジルコニアを主成分とする場合に、セリウム含有被覆層はCe,ZrおよびSiを含むことが好ましい。
【0069】
前述の通り、本発明の複合微粒子についてSTEM-EDS分析を行い、
図1に示した本発明の複合微粒子の断面におけるCeの元素濃度を測定した場合に、セリウム含有被覆層はCeモル濃度が3~50%となる部分である。
【0070】
本発明の複合微粒子について透過型電子顕微鏡を用いて観察して得られる像(TEM像)では、母粒子の表面に子粒子の像が濃く現れるが、その子粒子の周囲および外側、すなわち、本発明の複合微粒子の表面側にも、相対的に薄い像として、セリウム含有被覆層の一部が現れる。この部分についてSTEM-EDS分析を行い、当該部分の結晶性無機酸化物に含まれるAl、Ti,Zr等のモル濃度及びCeモル濃度を求めると、Al等のモル濃度が非常に高いことを確認することができる。
【0071】
セリウム含有被覆層の平均の厚さは、格別に制限されるものではないが、例えば、10~40nmであることが好ましく、12~30nmであることがより好ましい。
なお、セリウム含有被覆層の平均の厚さは、本発明の複合微粒子の母粒子の中心から最外殻まで、任意の12箇所に直線を引き、前述のようにSTEM-EDS分析を行って得た元素マップから特定されるCeモル濃度が3%となるラインと、本発明の複合微粒子の最外殻との距離(母粒子の中心を通る線上の距離)を測定し、それらを単純平均して求めるものとする。なお、母粒子の中心は、前述の長軸と短軸との交点を意味するものとする。
【0072】
本発明の複合微粒子におけるセリウム含有被覆層は、焼成過程でセリウム含有被覆層に分散し成長した子粒子(結晶性セリアを主成分とするセリア微粒子)と母粒子との結合力を助長すると考えられる。よって、例えば、本発明の分散液を得る工程で、焼成して得られた焼成体解砕分散液について必要な場合は乾式にて予備解砕を行った後、湿式による解砕を行い、さらに遠心分離処理を行うことでセリア系複合微粒子分散液が得られるが、セリウム含有被覆層により、子粒子が母粒子から外れる事を防ぐ効果があるものと考えられる。この場合、局部的な子粒子の脱落は問題なく、また、子粒子の表面の全てがセリウム含有被覆層の一部で覆われていなくてもよい。子粒子が解砕工程で母粒子から外れない程度の強固さがあればよい。
このような構造により、本発明の分散液を研磨剤として用いた場合、研磨速度が高く、面精度やスクラッチの悪化が少ないと考えられる。
【0073】
また、本発明の複合微粒子では、子粒子の表面の少なくとも一部がセリウム含有被覆層によって被覆されているので、セリウム含有被覆層がSiを含む場合、本発明の複合微粒子の最表面(最外殻)にはシリカの―OH基が存在することになる。このため研磨剤として利用した場合に、本発明の複合微粒子のセリウム含有被覆層がSiを含むと、研磨基板表面の-OH基による電荷で反発しあい、その結果、研磨基板表面への付着が少なくなると考えられる。
【0074】
また、一般的にセリアは、シリカや研磨基板、研磨パッドとは電位が異なり、pHがアルカリ性から中性付近に向かうにつれてマイナスのゼータ電位が減少して行き、弱酸性領域では逆のプラスの電位を持つ。そのため研磨時の酸性pHでは電位の大きさの違いや極性の違いなどによって、セリアは研磨基材や研磨パッドに付着し、研磨基材や研磨パッドに残り易い。一方、本発明の複合微粒子のセリウム含有被覆層がSiを含むと、上記のように最外殻にシリカが存在しているため、その電位がシリカに起因した負電荷となるため、pHがアルカリ性から酸性までマイナスの電位を維持し、その結果、研磨基材や研磨パッドへの砥粒残りが起こりにくい。本発明の製造方法における工程2の解砕処理時にpH8.6~10.8を保ちながら解砕すると、工程1においてシリカを原料の一部として用いた場合、本発明の複合微粒子の表面のシリカ(セリウム含有被覆層のシリカ)の一部が溶解する。係る条件で製造した本発明の分散液を、研磨用途に適用する時にpH<7に調整すれば、溶解したシリカが本発明の複合微粒子(砥粒)に沈着するので、本発明の複合微粒子の表面は負の電位を持つことになる。電位が低い場合には、珪酸を添加し、適度にセリウム含有被覆層を補強しても構わない。
【0075】
子粒子の電位を調節するために、ポリアクリル酸等の高分子有機物による電位調節も可能であるが、セリウム含有被覆層がSiを含む本発明の複合微粒子の場合、表面にソフトに付着したシリカが電位を調節するので、有機物の使用が低減され、基盤における有機物起因のディフェクト(有機物の残留等)が生じにくい。またこのソフトに付着したシリカは、焼成工程を経ていないため、低密度で軟質な易溶解性のシリカ層である。この易溶解性のシリカ層は基板との凝着作用を有しており、研磨速度を向上させる効果が認められる。この易溶解性のシリカ層は、本発明の分散液をpH9に保ち、固液分離した溶液中のシリカ濃度を測定することで、確認することができる。
なお、セリウム含有被覆層がSiを含む本発明の複合微粒子を含む本発明の分散液において、シリカの存在する態様は多様であり、本発明の複合微粒子を構成しておらず、溶媒中に分散又は溶解したり、本発明の複合微粒子の表面上に付着した状態で存在している場合もある。
【0076】
<本発明の複合微粒子>
本発明の複合微粒子について説明する。
本発明の複合微粒子は、前述のように、[1]前記セリア系複合微粒子は、母粒子と、前記母粒子の表面上のセリウム含有被覆層と、前記セリウム含有被覆層の内部に分散している子粒子とを有し、前記母粒子は結晶性無機酸化物を主成分とし、前記子粒子は結晶性セリアを主成分とし、[2]前記子粒子の粒子径分布における変動係数(CV値)が14~60%であり、[4]前記セリア系複合微粒子は、X線回折に供すると、セリアの結晶相および結晶性無機酸化物の結晶相が検出され、[5]前記セリア系複合微粒子は、X線回折に供して測定される、前記結晶性セリアの平均結晶子径が10~25nmである。
そして、本発明の複合微粒子は、さらに、[3]前記セリア系複合微粒子は、セリア以外の成分とセリアとの質量比が100:11~316であるという特徴を備えている、短径/長径比が0.2以上、1.0以下の範囲にあり、平均粒子径50~1000nmのセリア系複合微粒子である。
【0077】
本発明の複合微粒子において、セリア以外の成分とセリア(CeO2)との質量比は100:11~316であり、100:30~230であることが好ましく、100:30~150であることがより好ましく、100:60~100:120であることがさらに好ましい。セリア以外の成分とセリアとの質量比は、概ね、母粒子と子粒子との質量比と同程度と考えられる。母粒子に対する子粒子の量が少なすぎると、母粒子または複合微粒子同士が結合し、粗大粒子が発生する場合がある。この場合に本発明の分散液を含む研磨剤(研磨スラリー)は、研磨基材の表面に欠陥(スクラッチの増加などの面精度の低下)を発生させる可能性がある。また、セリア以外の成分に対するセリアの量が多すぎても、コスト的に高価になるばかりでなく、資源リスクが増大する。さらに、粒子同士の融着が進む。その結果、基板表面の粗度が上昇(表面粗さRaの悪化)したり、スクラッチが増加する、更に遊離したセリアが基板に残留する、研磨装置の廃液配管等への付着といったトラブルを起こす原因ともなりやすい。
なお、上記のセリア以外の成分とセリア(CeO2)との質量比を算定する際にセリア以外の成分にシリカが含まれる場合、シリカは、本発明の複合微粒子に含まれる全てのシリカ(SiO2)を意味する。従って、母粒子を構成するシリカ成分、母粒子の表面に配されたセリウム含有被覆層に含まれるシリカ成分、および子粒子に含まれ得るシリカ成分の総量を意味する。
【0078】
本発明の複合微粒子におけるセリア以外の成分とセリア(CeO2)の含有率(質量%)は、まず本発明の分散液の固形分濃度を、1000℃灼熱減量を行って秤量により求める。
次に、所定量の本発明の複合微粒子に含まれるセリウム(Ce)の含有率(質量%)をICPプラズマ発光分析により求め、酸化物質量%(CeO2質量%等)に換算する。そして、本発明の複合微粒子を構成するCeO2以外の成分を算出することができる。
なお、本発明の製造方法においては、セリア以外の成分とセリアの質量比は、本発明の分散液を調製する際に投入した母粒子を構成し得る物質とセリア源物質との使用量から算定することもできる。これは、セリアや母粒子を構成し得る物質が溶解し除去されるプロセスとなっていない場合に適用でき、そのような場合はセリアや母粒子を構成し得る物質の使用量と分析値が良い一致を示す。
【0079】
本発明の複合微粒子は母粒子の表面にセリウム含有被覆層が形成され、強固に結合し、そのセリウム含有被覆層内に粒子状の結晶性セリア(子粒子)が分散したものであるので、凹凸の表面形状を有している。
【0080】
本発明の複合微粒子の短径/長径比は0.2~1.0である。
本発明の複合微粒子の短径/長径比は特定範囲であるため、本発明の分散液を研磨用途に使用する場合、被研磨基板に対する研磨レート向上を高めることができ、同時に、被研磨基板上の表面粗さを低くすることができる。
【0081】
ここで短径/長径比は、次のような画像解析法によって測定するものとする。
まず、透過型電子顕微鏡により、本発明の複合微粒子を倍率30万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とする。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とする。これより、短径/長径比(DS/DL)を求める。そして、写真投影図で観察される任意の50個の粒子において、それぞれの複合微粒子の短径/長径比(DS/DL)を求め、その平均値を複合微粒子の短径/長径比の値とした。
【0082】
本発明の複合微粒子の形状は、前記のとおり、その短径/長径比が0.2~1.0の範囲にあることが必要である。この短径/長径比の範囲にある限り、本発明の複合微粒子は、複数の粒子が結合してなる「粒子連結型」であってもよく、独立した粒子からなる「単粒子型」であっても構わない。これらのうち、基板との接触面積を高く保つことができ、かつ、高研磨速度の発揮が可能であることから、粒子連結型がより望ましい。なお、粒子連結型は、より具体的には、2以上の母粒子同士が各々一部において結合しているもので、粒子の連結個数は3以下が好ましい。粒子連結型の複合微粒子において、母粒子同士は少なくとも一方(好ましくは双方)がそれらの接点において溶着し、あるいはセリアが介在することで固化した履歴を備えることで、強固に結合しているものと考えられる。ここで、母粒子同士が結合した後に、その表面にセリウム含有被覆層が形成された場合の他、母粒子の表面にセリウム含有被覆層が形成された後、他のものに結合した場合であっても、粒子連結型とする。
連結型であると基板との接触面積を多くとることができるため、研磨エネルギーを効率良く基板へ伝えることができる。そのため、研磨速度が高い。
なお、前記粒子連結型粒子とは、粒子間に再分散できない程度の化学結合が生じて粒子が連結してなるもの(凝結粒子)を意味する。また、単粒子とは、複数粒子が連結したものではなく、粒子のモルホロジーに関係なく凝集していないものを意味する。
【0083】
本発明の複合微粒子は、例えば、研磨用途に適用する場合、粒子連結型であって、かつ、画像解析法で測定された短径/長径比が0.2~1.0であることが好ましく、同じく0.65以下がより好ましい。
ここで粒子連結型のものは、通常、画像解析法で測定された短径/長径比は0.2~1.0となる。
なお、本発明の複合微粒子の形状は、格別に制限されるものではなく、粒子連結型粒子であっても、単粒子型(非連結粒子)であってもよく、通常は両者の混合物である。
【0084】
なお、本発明の分散液を研磨用途に適用する場合、本発明の分散液に含まれる全ての本発明の複合微粒子に占める、短径/長径比が0.2~1.0の範囲の複合微粒子の個数割合が60%以上であることが好ましく、同じく70%以上であることがより好ましい。
【0085】
本発明の分散液中に含まれ得る0.51μm以上の粗大粒子数は、ドライ換算で100百万個/cc以下であることが好ましい。粗大粒子数は、100百万個/cc以下が好ましく、80百万個/cc以下がより好ましい。0.51μm以上の粗大粒子は研磨傷の原因となり、さらに研磨基板の表面粗さを悪化させる原因となり得る。通常研磨速度が高い場合、研磨速度が高い反面、研磨傷が多発し基板の表面粗さが悪化する傾向にある。しかし、本発明の複合微粒子が粒子連結型である場合、高い研磨速度が得られ、その一方で0.51μm以上の粗大粒子数が100百万個/cc以下であると研磨傷が少なく、表面粗さを低く抑えることができる。
【0086】
なお、本発明の分散液中に含まれ得る粗大粒子数の測定法は、以下の通りである。
試料を純水で0.1質量%に希釈調整した後、5mlを採取し、これを従来公知の粗大粒子数測定装置に注入する。そして、0.51μm以上の粗大粒子の個数を求める。この測定を3回行い、単純平均値を求め、その値を1000倍して、0.51μm以上の粗大粒子数の値とする。
【0087】
本発明の複合微粒子は、比表面積が4~100m2/gであることが好ましく、20~70m2/gであることがより好ましい。
【0088】
ここで、比表面積(BET比表面積)の測定方法について説明する。
まず、乾燥させた試料(0.2g)を測定セルに入れ、窒素ガス気流中、250℃で40分間脱ガス処理を行い、その上で試料を窒素30体積%とヘリウム70体積%の混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料の温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、試料の比表面積を測定する。
このようなBET比表面積測定法(窒素吸着法)は、例えば従来公知の表面積測定装置を用いて行うことができる。
本発明において比表面積は、特に断りがない限り、このような方法で測定して得た値を意味するものとする。
【0089】
本発明の複合微粒子の平均粒子径は50~1000nmであることが好ましく、100~300nmであることがより好ましい。本発明の複合微粒子の平均粒子径が50~1000nmの範囲にある場合、研磨材として適用した際に研磨速度が高くなり好ましい。
本発明の複合微粒子の平均粒子径は、画像解析法で測定された平均粒子径の個数平均値を意味する。
画像解析法による平均粒子径の測定方法を説明する。透過型電子顕微鏡により、本発明の複合微粒子を倍率30万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とする。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とする。そして、長径(DL)と短径(DS)との幾何平均値を求め、これを複合微粒子の平均粒子径とする。
このようにして50個以上の複合粒子について平均粒子径を測定し、それらの個数平均値を算出する。
【0090】
本発明の複合微粒子において、前記特定不純物群1の各元素の含有率は、それぞれ100ppm以下であることが好ましい。さらに50ppm以下であることが好ましく、25ppm以下であることがより好ましく、5ppm以下であることがさらに好ましく、1ppm以下であることがよりいっそう好ましい。
また、本発明の複合微粒子における前記特定不純物群2の各元素の含有率は、それぞれ5ppm以下であることが好ましい。本発明の複合微粒子における特定不純物群1及び前記特定不純物群2それぞれの元素の含有率を低減させる方法は、前述の通りである。
なお、本発明の複合微粒子における前記特定不純物群1および前記特定不純物群2の各々の元素の含有率は、前述の母粒子に含まれる前記特定不純物群1および前記特定不純物群2を測定する場合と同じ方法によって測定することができる。
【0091】
<本発明の分散液>
本発明の分散液について説明する。
本発明の分散液は、上記のような本発明の複合微粒子が分散溶媒に分散しているものである。
【0092】
本発明の分散液は分散溶媒として、水及び/又は有機溶媒を含む。この分散溶媒として、例えば純水、超純水、イオン交換水のような水を用いることが好ましい。さらに、本発明の分散液は、研磨性能を制御するための添加剤として、研磨促進剤、界面活性剤、pH調整剤及びpH緩衝剤からなる群より選ばれる1種以上を添加することで研磨スラリーとして好適に用いられる。
【0093】
また、本発明の分散液を備える分散溶媒として、例えばメタノール、エタノール、イソプロパノール、n-ブタノール、メチルイソカルビノールなどのアルコール類;アセトン、2-ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン、3,4-ジヒドロ-2H-ピランなどのエーテル類;2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;2-メトキシエチルアセテート、2-エトキシエチルアセテート、2-ブトキシエチルアセテートなどのグリコールエーテルアセテート類;酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ヘキサン、ヘプタン、イソオクタン、シクロヘキサンなどの脂肪族炭化水素類;塩化メチレン、1,2-ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;ジメチルスルホキシドなどのスルホキシド類;N-メチル-2-ピロリドン、N-オクチル-2-ピロリドンなどのピロリドン類などの有機溶媒を用いることができる。これらを水と混合して用いてもよい。
【0094】
本発明の分散液に含まれる固形分濃度は0.3~50質量%の範囲にあることが好ましい。
【0095】
本発明の分散液は、カチオンコロイド滴定を行った場合に、下記式(1)で表される流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が-250.0~-5.0となる流動電位曲線が得られるものであることが好ましい。
ΔPCD/V=(I-C)/V・・・式(1)
C:前記クニックにおける流動電位(mV)
I:前記流動電位曲線の開始点における流動電位(mV)
V:前記クニックにおける前記カチオンコロイド滴定液の添加量(ml)
【0096】
ここで、カチオンコロイド滴定は、固形分濃度を1質量%に調整した本発明の分散液80gにカチオンコロイド滴定液を添加することで行う。カチオンコロイド滴定液として、0.001Nポリ塩化ジアリルジメチルアンモニウム溶液を用いる。
【0097】
このカチオンコロイド滴定によって得られる流動電位曲線とは、カチオン滴定液の添加量(ml)をX軸、本発明の分散液の流動電位(mV)をY軸に取ったグラフである。
また、クニックとは、カチオンコロイド滴定によって得られる流動電位曲線において急激に流動電位が変化する点(変曲点)である。そして変曲点における流動電位をC(mV)とし、変曲点におけるカチオンコロイド滴定液の添加量をV(ml)とする。
流動電位曲線の開始点とは、滴定前の本発明の分散液における流動電位である。具体的にはカチオンコロイド滴定液の添加量が0である点を開始点とする。この開始点における流動電位をI(mV)とする。
【0098】
上記のΔPCD/Vの値が-250.0~-5.0であると、本発明の分散液を研磨剤として用いた場合、研磨剤の研磨速度がより向上する。このΔPCD/Vは、本発明の複合微粒子表面におけるセリウム含有被覆層による子粒子の被覆具合及び/又は複合微粒子の表面における子粒子の露出具合あるいは脱離しやすい母粒子成分の存在を反映していると考えられる。ΔPCD/Vの値が上記範囲内であると、湿式による解砕時において子粒子は脱離する事が少なく、研磨速度も高いと本発明者は推定している。逆にΔPCD/Vの値が-250.0よりもその絶対値が大きい場合は、複合微粒子表面がセリウム含有被覆層で全面覆われているため解砕工程にて子粒子脱落は起き難いが研磨時にセリウム含有被覆層が脱離しがたく研磨速度が低下する。一方、-5.0よりもその絶対値が小さい場合は脱落が起きやすいと考えられる。上記範囲内であると、研磨時において子粒子表面が適度に露出して子粒子の脱落が少なく、研磨速度がより向上すると本発明者は推定している。ΔPCD/Vは、-230.0~-5.0であることがより好ましく、-230.0~-10.0であることがさらに好ましい。
【0099】
本発明の分散液は、そのpH値を3~8の範囲とした場合に、カチオンコロイド滴定を始める前、すなわち、滴定量がゼロである場合の流動電位がマイナスの電位となるものであることが好ましい。これは、この流動電位がマイナスの電位を維持する場合、同じくマイナスの表面電位を示す研磨基材への砥粒(セリア系複合微粒子)の残留が生じ難いからである。
【0100】
<本発明の製造方法>
本発明の製造方法について説明する。
本発明の製造方法は以下に説明する工程1~工程3を備える。
【0101】
<工程1>
工程1では結晶性無機酸化物微粒子が溶媒に分散してなる結晶性無機酸化物微粒子分散液を用意する。
なお、本明細書では「工程1」を「調合工程」という場合もある。
【0102】
工程1で使用される結晶性無機酸化物微粒子の態様は特に限定されないが、前述の母粒子と同様の平均粒子径や形状等であれば、より好ましい。また、結晶性無機酸化物微粒子は、前述の母粒子と同様に、結晶性無機酸化物を主成分とするものである。ここで主成分の定義も母粒子の場合と同様である。すなわち、結晶性無機酸化物微粒子分散液を乾燥させた後、乳鉢を用いて粉砕し、例えば、従来公知のX線回折装置(例えば、理学電気株式会社製、RINT1400)によってX線回折パターンを得ると、結晶性無機酸化物のピークのみが現れる場合に、主成分であることを意味するものとする。
【0103】
工程1で原料として使用される結晶性無機酸化物微粒子分散液における結晶性無機酸化物微粒子の平均粒子径は、本発明の製造方法で得られるセリア系複合微粒子分散液におけるセリア系複合微粒子の平均粒子径より小さいものが使用される。好適には、15nm以上、350nm未満の範囲の結晶性無機酸化物微粒子が使用される。
この結晶性無機酸化物微粒子分散液における結晶性無機酸化物微粒子の平均粒子径は、透過型電子顕微鏡を用いて写真撮影して得た写真投影図を基にそれぞれ算出した値をもって平均粒子径とすることができる。具体的な測定方法は、前述の本発明の複合微粒子における平均粒子径の測定方法と同様である。
【0104】
工程1で原料として使用される結晶性無機酸化物微粒子分散液における結晶性無機酸化物微粒子の短径/長径比については、短径/長径比0.1以上、1.0未満であることが望ましい。また、より望ましい範囲として、短径/長径比0.2以上、0.7以下の範囲を挙げることができる。
この結晶性無機酸化物微粒子分散液における結晶性無機酸化物微粒子の短径/長径比は、透過型電子顕微鏡を用いて写真撮影して得た写真投影図を基にそれぞれ算出した値をもって短径/長径比とすることができる。具体的な測定方法は、前述の本発明の複合微粒子における短径/長径比の測定方法と同様である。
【0105】
本発明の製造方法により、半導体デバイスなどの研磨に適用する本発明の分散液を調製しようとする場合は、結晶性無機酸化物微粒子分散液として、金属アルコキシドの加水分解により製造した結晶性無機酸化物微粒子が溶媒に分散してなる結晶性無機酸化物微粒子分散液を用いることが好ましいが、それ以外の従来公知の結晶性無機酸化物微粒子分散液を原料として用いても構わない。
具体的には、例えば、原料である結晶性無機酸化物微粒子分散液中の結晶性無機酸化物微粒子として、次の(a)と(b)の条件を満たすものが好適に使用される。
(a)Na、Ag、Ca、Cr、Cu、Fe、K、Mg、Ni及びZnの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ5ppm以下。
【0106】
また、結晶性無機酸化物微粒子はセリウムとの反応性(セリア重量あたりの結晶性無機酸化物微粒子の溶解重量)が適度なものが好適に用いられる。結晶性無機酸化物微粒子は、本発明の製造方法における工程1の調合工程でセリウムの金属塩を添加することで、結晶性無機酸化物の一部が水酸化セリウム等によって溶解し、結晶性無機酸化物微粒子のサイズが小さくなり、溶解した結晶性無機酸化物微粒子の表面にセリウムの微結晶を含んだセリウム含有被覆層の前駆体が形成される。この際、結晶性無機酸化物微粒子がセリウムとの反応性が高い結晶性無機酸化物からなる場合、セリウム含有被覆層の前駆体が厚くなり、焼成によって生じるセリウム含有被覆層が厚膜化したり、その層の結晶性無機酸化物の割合が過剰に高くなり、解砕工程で解砕が困難になるからである。また、結晶性無機酸化物微粒子がセリウムとの反応性が極度に低い結晶性無機酸化物からなる場合はセリウム含有被覆層が十分に形成されず、セリア子粒子が脱落しやすくなる。セリウムとの反応性が適切な場合は、過剰な結晶性無機酸化物の溶解が抑制され、セリウム含有被覆層は適度な厚みとなり子粒子の脱落を防止し、その強度が複合微粒子間との強度よりも大きくなると考えられるので、易解砕となるため、望ましい。
【0107】
工程1では、結晶性無機酸化物微粒子が溶媒に分散してなる結晶性無機酸化物微粒子分散液を撹拌し、温度を0~20℃、pH範囲を7.0~9.0、酸化還元電位を50~500mVに維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、セリウムの金属塩を中和することで、前駆体粒子を含む前駆体粒子分散液を得る。
【0108】
ここでセリウムの金属塩に加え、ケイ素を含む成分も添加することが好ましい。
ケイ素を含む成分として、ケイ酸塩などのケイ素原子を含む化合物が典型例として挙げられる。その他、ケイ素を含む成分としてテトラエトキシシラン等のアルコキシシランが挙げられる。
前記結晶性無機酸化物微粒子分散液を撹拌し、温度を0~20℃、pHを7.0~9.0、酸化還元電位を50~500mVに維持しながら、ここへセリウムの金属塩とケイ素を含む成分とを連続的又は断続的に添加すると、セリウム含有被覆層の少なくとも一部がシリカからなる本発明の複合微粒子が得られる。
【0109】
結晶性無機酸化物微粒子が突起を有するものである場合、セリウムの金属塩(好ましくはさらにケイ素を含む成分)を添加する際の結晶性無機酸化物微粒子分散液の温度は3~20℃であることが好ましい。
【0110】
結晶性無機酸化物微粒子分散液における分散媒は水を含むことが好ましく、水系の結晶性無機酸化物微粒子分散液(水ゾル)を使用することが好ましい。
【0111】
結晶性無機酸化物微粒子分散液における固形分濃度は、酸化物換算基準で1~40質量%であることが好ましい。この固形分濃度が低すぎると、製造工程での無機酸化物の濃度が低くなり生産性が悪くなり得る。
【0112】
本発明の製造方法において、例えば、工程1における結晶性無機酸化物微粒子とセリウムの金属塩(好ましくはさらにケイ素を含む成分)との反応温度を40~50℃とした場合、セリアと無機酸化物の反応性が高まり、結晶性無機酸化物微粒子の溶解が進む。その結果、工程2の中間段階で乾燥して得られた前駆体粒子におけるCeO2超微粒子の粒子径は2.5nm未満となる。このことは係る高温域において無機酸化物がセリアと液相で反応すると、無機酸化物がセリアの粒子成長を阻害するため、乾燥後のセリアの平均粒子径が2.5nm未満と、小さくなることを示している。
なお、このような前駆体粒子であっても、焼成温度を1200℃以上とすることでセリア子粒子の平均結晶子径を10nm以上とすることは可能であるが、この場合は、セリウム含有被覆層は形成されずに無機酸化物の被膜が形成され、この無機酸化物の被膜がセリア子粒子を強固に被覆する傾向が強まるために、解砕が困難となる点で支障がある。そのため、反応温度を0~20℃に保ち、液相での無機酸化物とセリアの反応を適度に抑えることで、乾燥後の前駆体粒子におけるCeO2超微粒子の平均結晶子径を2.5nm以上にでき、解砕しやすい粒子となる。さらに乾燥後の平均結晶子径が大きいため、セリア子粒子の平均結晶子径を10nm以上とするための焼成温度を低くすることができ、焼成により形成されるセリウム含有被覆層の厚みが過剰に厚膜化せず、解砕が容易となる。
【0113】
また、陽イオン交換樹脂又は陰イオン交換樹脂、あるいは鉱酸、有機酸等で不純物を抽出し、限外ろ過膜などを用いて、必要に応じて、結晶性無機酸化物微粒子分散液の脱イオン処理を行うことができる。脱イオン処理により不純物イオンなどを除去した結晶性無機酸化物微粒子分散液は表面に無機酸化物を含む水酸化物を形成させやすいのでより好ましい。なお、脱イオン処理はこれらに限定されるものではない。
【0114】
工程1では、上記のような結晶性無機酸化物微粒子分散液を撹拌し、温度を0~20℃、pH範囲を7.0~9.0、酸化還元電位を50~500mVに維持しながら、ここへセリウムの金属塩(好ましくはさらにケイ素を含む成分)を連続的又は断続的に添加する。酸化還元電位が低いと、棒状等の結晶が生成するために、結晶性無機酸化物微粒子には沈着し難い。
さらに、酸化還元電位を所定の範囲に調整しない場合は、調合工程で生成したCeO2超微粒子は結晶化しにくい傾向にあり、結晶化していないCeO2超微粒子は調合後の加熱、熟成によっても結晶化が促進されない。そのため工程2の焼成において所定サイズに結晶化させるためには、高温での焼成が必要となり、解砕が困難になる。
【0115】
セリウムの金属塩の種類は限定されるものではないが、セリウムの塩化物、硝酸塩、硫酸塩、酢酸塩、炭酸塩、金属アルコキシドなどを用いることができる。具体的には、硝酸第一セリウム、炭酸セリウム、硫酸第一セリウム、塩化第一セリウムなどを挙げることができる。なかでも、硝酸第一セリウムや塩化第一セリウム、炭酸セリウムなどの三価のセリウム塩が好ましい。中和と同時に過飽和となった溶液から、結晶性セリウム酸化物や水酸化セリウム等が生成し、それらは速やかに結晶性無機酸化物微粒子に凝集沈着し、最終的にCeO2超微粒子が単分散で形成されるからである。さらに三価のセリウム塩は結晶性無機酸化物微粒子と適度に反応し、セリウム含有被覆層が形成されやすい。また研磨基板に形成されたシリカ膜と反応性の高い三価のセリウムがセリア結晶中に形成されやすいため、好ましい。しかしこれら金属塩に含まれる硫酸イオン、塩化物イオン、硝酸イオンなどは、腐食性を示す。そのため、所望により、調合後に後工程で洗浄し5ppm以下に除去する必要がある。一方、炭酸塩は炭酸ガスとして調合中に放出され、またアルコキシドは分解してアルコールとなるため、好ましく用いることができる。
【0116】
結晶性無機酸化物微粒子分散液に対するセリウムの金属塩の添加量は、得られるセリア系の複合微粒子におけるセリア以外の成分とセリアとの質量比が、前述の本発明の複合微粒子の場合と同様に、100:11~316の範囲となる量とする。
【0117】
結晶性無機酸化物微粒子分散液にセリウムの金属塩を添加した後、撹拌する際の温度は0~20℃であることが好ましく、3~20℃であることがより好ましく、3~18℃であることがさらに好ましい。この温度が低すぎるとセリアと無機酸化物との反応性が低下し、無機酸化物の溶解度が著しく低下するため、セリアの結晶化が制御されなくなる。その結果、粗大なセリアの結晶性酸化物が生成して、結晶性無機酸化物微粒子の表面におけるCeO2超微粒子の異常成長が起こり、焼成後に解砕されにくくなったり、セリウム化合物による無機酸化物の溶解量が減るため、セリウム含有被覆層に供給される無機酸化物が減少することになる。このため母粒子とセリア子粒子とのバインダーとなる無機酸化物が不足(母粒子に積層される無機酸化物が不足)し、セリア子粒子の無機酸化物の母粒子への固定化が起こり難くなる事が考えられる。逆に、この温度が高すぎると無機酸化物の溶解度が著しく増し、結晶性のセリア酸化物の生成が抑制される事が考えられるが、焼成時に高温を要し粒子間の結合が促進され、解砕できなくなる可能性があり、更に、反応器壁面にスケールなどが生じやすくなり好ましくない。また結晶性無機酸化物微粒子は、セリウム化合物(セリウム塩の中和物)に対して溶解されにくいものが好ましい。溶解されやすい結晶性無機酸化物微粒子の場合は、無機酸化物によってセリアの結晶成長が抑制され、調合段階でのCeO2超微粒子の粒子径が2.5nm未満となる。
調合段階でのCeO2超微粒子の粒子径が2.5nm未満であると、焼成後のセリア粒子径を10nm以上とするために、焼成温度を高くする必要があり、その場合、セリウム含有被覆層が母粒子を強固に被覆してしまい、解砕が困難となる可能性がある。溶解されやすい結晶性無機酸化物微粒子は、100℃以上で乾燥させた後に原料に供すると溶解性を抑制することができる。
【0118】
また、結晶性無機酸化物微粒子分散液をセリウムの金属塩を添加した後に撹拌する際の時間は0.5~24時間であることが好ましく、0.5~18時間であることがより好ましい。この時間が短すぎるとCeO2超微粒子が凝集して、結晶性無機酸化物微粒子の表面上で無機酸化物と反応し難くなり、解砕されにくい複合微粒子が形成される傾向がある点で好ましくない。逆に、この時間が長すぎてもCeO2超微粒子含有層の形成はそれ以上反応が進まず不経済となる。なお、前記セリウム金属塩の添加後に、所望により0~80℃にて熟成しても構わない。熟成により、セリウム化合物の反応を促進させると同時に、結晶性無機酸化物微粒子に付着せず遊離したCeO2超微粒子を結晶性無機酸化物微粒子上に付着させる効果があるからである。
【0119】
また、結晶性無機酸化物微粒子分散液にセリウムの金属塩を添加し、撹拌する際の結晶性無機酸化物微粒子分散液のpH範囲は7.0~9.0とするが、7.6~8.6とすることが好ましい。この際、アルカリ等を添加しpH調整を行うことが好ましい。このようなアルカリの例としては、公知のアルカリを使用することができる。具体的には、アンモニア水溶液、水酸化アルカリ、アルカリ土類金属、アミン類の水溶液などが挙げられるが、これらに限定されるものではない。
【0120】
また、結晶性無機酸化物微粒子分散液にセリウムの金属塩(好ましくはさらにケイ素を含む成分)を添加し、撹拌する際の微粒子分散液の酸化還元電位を50~500mVに調整する。酸化還元電位は100~300mVとすることが好ましい。三価のセリウム金属塩を原料として用いた場合、調合中に微粒子分散液の酸還元電位が低下するからである。また酸化還元電位をこの範囲に保つことで、生成したCeO2超微粒子の結晶化が促進される。酸化還元電位が50mV以下または負となった場合、セリウム化合物が結晶性無機酸化物微粒子の表面に沈着せずに板状・棒状などのセリア単独粒子あるいは複合セリア粒子が生成する場合がある。さらに、結晶性無機酸化物微粒子に対する水酸化セリウム等の反応性が低下し、CeO2超微粒子含有層が形成されず、仮に形成したとしてもCeO2超微粒子層中の無機酸化物の割合が極めて低くなる。そのため焼成後にセリア子粒子を内在するセリウム含有被覆層は形成されず、セリア子粒子は無機酸化物の母粒子の表面に露出して配置された状態となる傾向にある。
酸化還元電位を上記の範囲内に保つ方法として過酸化水素などの酸化剤を添加したり、エアー、酸素及びオゾンを吹き込む方法が挙げられる。これらの方法を行わない場合は、酸化還元電位は負であったり50mV以下になる傾向にある。
【0121】
このような工程1によって、本発明の複合微粒子の前駆体である粒子(前駆体粒子)を含む分散液(前駆体粒子分散液)が得られる。本工程において、前駆体粒子に含まれるCeO2超微粒子の平均結晶子径が2.5nm以上、10nm未満の粒子を得ることが可能である。無機酸化物とセリアの反応性が高すぎると前駆体粒子に含まれるCeO2超微粒子の平均結晶子径が2.5nm未満となる傾向があるため、工程2でセリア粒子を10nm以上とするために過剰に高温での焼成が必要となる。その結果、粒子間の固着が強固となり、解砕が困難となる可能性がある。
【0122】
上記のように工程1では、前記結晶性無機酸化物微粒子分散液を撹拌し、温度を0~20℃、pHを7.0~9.0、酸化還元電位を50~500mVに維持しながら、ここへ前記セリウムの金属塩(好ましくはさらにケイ素を含む成分)を連続的又は断続的に添加するが、その後、温度を20℃超98℃以下、pHを7.0~9.0、酸化還元電位を50~500mVに維持しながら、ここへ前記セリウムの金属塩(好ましくはさらにケイ素を含む成分)を連続的又は断続的に添加し、前記前駆体粒子分散液を得ることが好ましい。
すなわち、工程1では、温度0~20℃にて処理を行うが、その後に、温度20℃超98℃以下に変更して処理を行って前記前駆体粒子分散液を得ることが好ましい。
このような工程1を行うと、子粒子の粒子径分布における変動係数が好適値である本発明の複合微粒子を含む本発明の分散液を得やすいからである。
なお、温度を20℃超98℃以下として処理する場合のpHおよび酸化還元電位の好適値、調整方法等は、温度0~20℃にて処理する場合と同様とする。
【0123】
また、逆に、温度0~20℃にて処理を行う前に、温度20℃超98℃以下にて処理を行って前記前駆体粒子分散液を得ることが好ましい。すなわち、前記結晶性無機酸化物微粒子分散液を撹拌し、温度を20℃超98℃以下、pHを7.0~9.0、酸化還元電位を50~500mVに維持しながら、ここへ前記セリウムの金属塩(好ましくはさらにケイ素を含む成分)を連続的又は断続的に添加し、その後、温度を0~20℃、pHを7.0~9.0、酸化還元電位を50~500mVに維持しながら、ここへ前記セリウムの金属塩(好ましくはさらにケイ素を含む成分)を連続的又は断続的に添加し、前記前駆体粒子分散液を得ることが好ましい。
このような工程1を行うと、子粒子の粒子径分布における変動係数が好適値である本発明の複合微粒子を含む本発明の分散液を得やすいからである。
なお、温度を20℃超98℃以下として処理する場合のpHおよび酸化還元電位の好適値、調整方法等は、温度0~20℃にて処理する場合と同様とする。
このように調合中に温度を変化させて調合した場合であっても、温度が0~20℃にて調合が行われる工程が含まれていれば、複合微粒子は前述と同様の生成機構となる。
【0124】
0~20℃の範囲で反応させると、無機酸化物に対するセリウムの反応性が抑制されるため、サイズの大きなCeO2超微粒子が生成するが、その後調合温度を20℃超98℃以下に保ちセリウムの金属塩を添加すると、無機酸化物に対するセリウムの反応性が高くなり、無機酸化物の溶解が促進されるため、無機酸化物がセリアの結晶成長を阻害し、サイズの小さなCeO2超微粒子が生成する。このように調合工程(工程1)中の反応温度を0~20℃を必須として、反応温度を20℃超98℃以下に変えて、セリウムの金属塩を添加することにより、CeO2超微粒子およびセリア子粒子の粒子径分布を広くすることができる。なお、調合温度は0~20℃の範囲でセリウムの金属塩を添加させる工程があれば、20℃超98℃以下の温度での反応は、0~20℃での反応の前でも後でも構わず、3回以上温度を変えても構わない。
また、反応温度を2段階以上で行う場合の0~20℃で反応させる工程でのセリウム金属塩の添加量は、セリウム金属塩の全添加量に対して10~90質量%の範囲であることが好ましい。この範囲を超える場合は、サイズの大きい(または小さい)CeO2超微粒子およびセリア子粒子割合が少なくなるため、粒度分布があまり広くならないからである。
【0125】
工程1で得られた前駆体粒子分散液を、工程2に供する前に、純水やイオン交換水などを用いて、さらに希釈あるいは濃縮して、次の工程2に供してもよい。
【0126】
なお、前駆体粒子分散液における固形分濃度は1~27質量%であることが好ましい。
【0127】
また、所望により、前駆体粒子分散液を、陽イオン交換樹脂、陰イオン交換樹脂、限外ろ過膜、イオン交換膜、遠心分離などを用いて脱イオン処理してもよい。
【0128】
<工程2>
工程2では、前駆体粒子分散液を乾燥させた後、700~1,200℃で焼成する。
【0129】
乾燥する方法は特に限定されない。従来公知の乾燥機を用いて乾燥させることができる。具体的には、箱型乾燥機、バンド乾燥機、スプレードライアー等を使用することができる。
なお、好適には、さらに乾燥前の前駆体粒子分散液のpHを6.0~7.0とすることが推奨される。乾燥前の前駆体粒子分散液のpHを6.0~7.0とした場合、表面活性を抑制できるからである。
【0130】
乾燥後、焼成する温度は700~1200℃であるが、710~1100℃であることが好ましく、720~1090℃であることがより好ましく、730~1090℃であることがもっとも好ましい。このような温度範囲において焼成すると、セリアの結晶化が十分に進行し、また、セリア子粒子が分散しているセリウム含有被覆層が適度な膜厚となり、セリウム含有被覆層が母粒子へ強固に結合し、セリウム含有被覆層に分散した子粒子の脱落が生じにくくなる。さらにこのような温度範囲で焼成することで、水酸化セリウム等は残存し難くなる。この温度が高すぎるとセリアの結晶が異常成長したり、セリウム含有被覆層が厚くなりすぎたり、母粒子を構成する結晶性無機酸化物が結晶化したり、粒子同士の融着が進む可能性もある。
【0131】
焼成時にアルカリ金属、アルカリ土類金属、硫酸塩などをフラックス成分として添加してセリアの結晶成長を促進することもできるが、フラックス成分は、研磨基板への金属汚染や腐食の原因となり得る。そのため、焼成時のフラックス成分の含有量は、前駆体粒子(ドライ)あたり、100ppm以下であることが好ましく、50ppm以下であることがさらに好ましく、40ppm以下であることが最も好ましい。
またフラックス成分は、原料からの持込みを利用したり、調合時にセリウム金属塩の中和に使用するアルカリとして利用しても良いが、調合時にアルカリ金属またはアルカリ土類金属が共存した場合、結晶性無機酸化物微粒子の重合が促進され緻密化するため、水酸化セリウム等と結晶性無機酸化物微粒子との反応性が低下する。さらに結晶性無機酸化物微粒子の表面がアルカリ金属またはアルカリ土類金属で保護されるため、水酸化セリウム等との反応性が抑制され、セリウム含有被覆層が形成されない傾向にある。さらに調合中に無機酸化物の溶解が抑制されるため、セリア子粒子中に無機酸化物の原子が固溶し難くなる。
【0132】
また、このような温度範囲において焼成すると、子粒子の主成分である結晶性セリアに無機酸化物の原子が固溶する。したがって、子粒子に含まれるセリウム原子および無機酸化物の原子について、セリウム-無機酸化物の原子間距離をR1とし、セリウム-セリウム原子間距離をR2としたときに、R1<R2の関係を満たすものとなり得る。
【0133】
工程2では、焼成して得られた焼成体に溶媒を加えて、pH8.6~10.8の範囲にて、湿式で解砕処理をして、焼成体解砕分散液を得る。
ここで、焼成体に湿式で解砕処理を施す前に焼成体を乾式で解砕し、その後、湿式で解砕処理を施してもよい。
【0134】
乾式の解砕装置としては従来公知の装置を使用することができるが、例えば、アトライター、ボールミル、振動ミル、振動ボールミル等を挙げることができる。
湿式の解砕装置としても従来公知の装置を使用することができるが、例えば、バスケットミル等のバッチ式ビーズミル、横型・縦型・アニュラー型の連続式のビーズミル、サンドグラインダーミル、ボールミル等、ロータ・ステータ式ホモジナイザー、超音波分散式ホモジナイザー、分散液中の微粒子同士をぶつける衝撃粉砕機等の湿式媒体攪拌式ミル(湿式解砕機)が挙げられる。湿式媒体攪拌ミルに用いるビーズとしては、例えば、ガラス、アルミナ、ジルコニア、スチール、フリント石、有機樹脂等を原料としたビーズを挙げることができる。
焼成体を湿式で解砕するときに用いる溶媒としては、水及び/又は有機溶媒が使用される。例えば、純水、超純水、イオン交換水のような水を用いることが好ましい。また、焼成体解砕分散液の固形分濃度は、格別に制限されるものではないが、例えば、0.3~50質量%の範囲にあることが好ましい。
【0135】
なお、焼成体に湿式解砕を施す場合は、溶媒のpHを8.6~10.8に維持しながら湿式による解砕を行うことが好ましい。pHをこの範囲に維持すると、カチオンコロイド滴定を行った場合に、前記式(1)で表される、流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が-110.0~-15.0となる流動電位曲線が得られるセリア系複合微粒子分散液を、最終的により容易に得ることができる。
すなわち、前述の好ましい態様に該当する本発明の分散液が得られる程度に、解砕を行うことが好ましい。前述のように、好ましい態様に該当する本発明の分散液を研磨剤に用いた場合、研磨速度がより向上するからである。これについて本発明者は、本発明の複合微粒子表面におけるセリウム含有被覆層が適度に薄くなること、及び/又は複合微粒子表面の一部に子粒子が適度に露出することで、研磨速度がより向上し、且つセリア子粒子の脱落を制御できると推定している。さらに解砕中に、セリウム含有被覆層中の無機酸化物が溶解し再び沈着することで、軟質で易溶解な無機酸化物の層が最外層に形成され、この易溶解性の無機酸化物の層が基板との凝着作用で摩擦力を向上させ研磨速度が向上すると推定している。また、セリウム含有被覆層が薄いか剥げた状態であるため、子粒子が研磨時にある程度脱離しやすくなると推定している。ΔPCD/Vは、-100.0~-15.0であることがより好ましく、-100.0~-20.0であることがさらに好ましい。
なお、工程2のような湿式解砕工程を経ずに、焼成粉をほぐす程度であったり、乾式解砕・粉砕だけ、あるいは湿式解砕であっても所定のpH範囲外の場合は、ΔPCD/Vが-100.0~-15の範囲となりにくく、さらに軟質で易溶解性のセリウム含有被覆層が形成され難い。
【0136】
<工程3>
工程3では、工程2において得られた前記焼成体解砕分散液について、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去し、セリア系複合微粒子散液を得る。
具体的には、前記焼成体解砕分散液について、遠心分離処理による分級を行う。遠心分離処理における相対遠心加速度は300G以上とする。遠心分離処理後、沈降成分を除去し、セリア系複合微粒子分散液を得ることができる。相対遠心加速度の上限は格別に制限されるものではないが、実用上は10,000G以下で使用される。
【0137】
工程3では、上記の条件を満たす遠心分離処理を備えることが必要である。遠心加速度が上記の条件に満たない場合は、セリア系複合微粒子分散液中に粗大粒子が残存するため、セリア系複合微粒子分散液を用いた研磨材などの研磨用途に使用した際に、スクラッチが発生する原因となる。
【0138】
本発明では、上記の製造方法によって得られるセリア系複合微粒子分散液を、更に乾燥させて、セリア系複合微粒子を得ることができる。乾燥方法は特に限定されず、例えば、従来公知の乾燥機を用いて乾燥させることができる。
【0139】
このような本発明の製造方法によって、本発明の分散液を得ることができる。
【0140】
<研磨用砥粒分散液>
本発明の分散液を含む液体は、研磨用砥粒分散液(以下では「本発明の研磨用砥粒分散液」ともいう)として好ましく用いることができる。特にはSiO2絶縁膜が形成された半導体基板の平坦化用の研磨用砥粒分散液として好適に使用することができる。また研磨性能を制御するためにケミカル成分を添加し、研磨スラリーとしても好適に用いることができる。
【0141】
本発明の研磨用砥粒分散液は半導体基板などを研磨する際の研磨速度が高く、また研磨時に研磨面のキズ(スクラッチ)が少ない、基板への砥粒の残留が少ないなどの効果に優れている。
【0142】
本発明の研磨用砥粒分散液は分散溶媒として、水及び/又は有機溶媒を含む。この分散溶媒として、例えば純水、超純水、イオン交換水のような水を用いることが好ましい。さらに、本発明の研磨用砥粒分散液に、研磨性能を制御するための添加剤として、研磨促進剤、界面活性剤、複素環化合物、pH調整剤及びpH緩衝剤からなる群より選ばれる1種以上を添加することで研磨スラリーとして好適に用いられる。
【0143】
<研磨促進剤>
本発明の研磨用砥粒分散液に、被研磨材の種類によっても異なるが、必要に応じて従来公知の研磨促進剤を添加することで研磨スラリーとして、使用することができる。この様な例としては、過酸化水素、過酢酸、過酸化尿素など及びこれらの混合物を挙げることができる。このような過酸化水素等の研磨促進剤を含む研磨剤組成物を用いると、被研磨材が金属の場合には効果的に研磨速度を向上させることができる。
【0144】
研磨促進剤の別の例としては、硫酸、硝酸、リン酸、シュウ酸、フッ酸等の無機酸、酢酸等の有機酸、あるいはこれら酸のナトリウム塩、カリウム塩、アンモニウム塩、アミン塩及びこれらの混合物などを挙げることができる。これらの研磨促進剤を含む研磨用組成物の場合、複合成分からなる被研磨材を研磨する際に、被研磨材の特定の成分についての研磨速度を促進することにより、最終的に平坦な研磨面を得ることができる。
【0145】
本発明の研磨用砥粒分散液が研磨促進剤を含有する場合、その含有量としては、0.1~10質量%であることが好ましく、0.5~5質量%であることがより好ましい。
【0146】
<界面活性剤及び/又は親水性化合物>
本発明の研磨用砥粒分散液の分散性や安定性を向上させるためにカチオン系、アニオン系、ノニオン系、両性系の界面活性剤又は親水性化合物を添加することができる。界面活性剤と親水性化合物は、いずれも被研磨面への接触角を低下させる作用を有し、均一な研磨を促す作用を有する。界面活性剤及び/又は親水性化合物としては、例えば、以下の群から選ばれるものを使用することができる。
【0147】
陰イオン界面活性剤として、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩が挙げられ、カルボン酸塩として、石鹸、N-アシルアミノ酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルエーテルカルボン酸塩、アシル化ペプチド;スルホン酸塩として、アルキルスルホン酸塩、アルキルベンゼン及びアルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、スルホコハク酸塩、α-オレフィンスルホン酸塩、N-アシルスルホン酸塩;硫酸エステル塩として、硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテル硫酸塩、アルキルアミド硫酸塩;リン酸エステル塩として、アルキルリン酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテルリン酸塩を挙げることができる。
【0148】
陽イオン界面活性剤として、脂肪族アミン塩、脂肪族4級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩;両性界面活性剤として、カルボキシベタイン型、スルホベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン、レシチン、アルキルアミンオキサイドを挙げることができる。
【0149】
非イオン界面活性剤として、エーテル型、エーテルエステル型、エステル型、含窒素型が挙げられ、エーテル型として、ポリオキシエチレンアルキル及びアルキルフェニルエーテル、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルが挙げられ、エーテルエステル型として、グリセリンエステルのポリオキシエチレンエーテル、ソルビタンエステルのポリオキシエチレンエーテル、ソルビトールエステルのポリオキシエチレンエーテル、エステル型として、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ポリグリセリンエステル、ソルビタンエステル、プロピレングリコールエステル、ショ糖エステル、含窒素型として、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミド等が例示される。その他に、フッ素系界面活性剤などが挙げられる。
【0150】
界面活性剤としては陰イオン界面活性剤もしくは非イオン系界面活性剤が好ましく、また、塩としては、アンモニウム塩、カリウム塩、ナトリウム塩等が挙げられ、特にアンモニウム塩及びカリウム塩が好ましい。
【0151】
さらに、その他の界面活性剤、親水性化合物等としては、グリセリンエステル、ソルビタンエステル及びアラニンエチルエステル等のエステル;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコールアルキルエーテル、ポリエチレングリコールアルケニルエーテル、アルキルポリエチレングリコール、アルキルポリエチレングリコールアルキルエーテル、アルキルポリエチレングリコールアルケニルエーテル、アルケニルポリエチレングリコール、アルケニルポリエチレングリコールアルキルエーテル、アルケニルポリエチレングリコールアルケニルエーテル、ポリプロピレングリコールアルキルエーテル、ポリプロピレングリコールアルケニルエーテル、アルキルポリプロピレングリコール、アルキルポリプロピレングリコールアルキルエーテル、アルキルポリプロピレングリコールアルケニルエーテル、アルケニルポリプロピレングリコール等のエーテル;アルギン酸、ペクチン酸、カルボキシメチルセルロース、カードラン及びプルラン等の多糖類;グリシンアンモニウム塩及びグリシンナトリウム塩等のアミノ酸塩;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p-スチレンカルボン酸)、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ;メチルタウリン酸アンモニウム塩、メチルタウリン酸ナトリウム塩、硫酸メチルナトリウム塩、硫酸エチルアンモニウム塩、硫酸ブチルアンモニウム塩、ビニルスルホン酸ナトリウム塩、1-アリルスルホン酸ナトリウム塩、2-アリルスルホン酸ナトリウム塩、メトキシメチルスルホン酸ナトリウム塩、エトキシメチルスルホン酸アンモニウム塩、3-エトキシプロピルスルホン酸ナトリウム塩等のスルホン酸及びその塩;プロピオンアミド、アクリルアミド、メチル尿素、ニコチンアミド、コハク酸アミド及びスルファニルアミド等のアミド等を挙げることができる。
【0152】
なお、適用する被研磨基材がガラス基板等である場合は、何れの界面活性剤であっても好適に使用できるが、半導体集積回路用シリコン基板などの場合であって、アルカリ金属、アルカリ土類金属又はハロゲン化物等による汚染の影響を嫌う場合にあっては、酸もしくはそのアンモニウム塩系の界面活性剤を使用することが望ましい。
【0153】
本発明の研磨用砥粒分散液が界面活性剤及び/又は親水性化合物を含有する場合、その含有量は、総量として、研磨用砥粒分散液の1L中、0.001~10gとすることが好ましく、0.01~5gとすることがより好ましく0.1~3gとすることが特に好ましい。
【0154】
界面活性剤及び/又は親水性化合物の含有量は、充分な効果を得る上で、研磨用砥粒分散液の1L中、0.001g以上が好ましく、研磨速度低下防止の点から10g以下が好ましい。
【0155】
界面活性剤又は親水性化合物は1種のみでもよいし、2種以上を使用してもよく、異なる種類のものを併用することもできる。
【0156】
<複素環化合物>
本発明の研磨用砥粒分散液については、被研磨基材に金属が含まれる場合に、金属に不動態層又は溶解抑制層を形成させて、被研磨基材の侵食を抑制する目的で、複素環化合物を含有させても構わない。ここで、「複素環化合物」とはヘテロ原子を1個以上含んだ複素環を有する化合物である。ヘテロ原子とは、炭素原子、又は水素原子以外の原子を意味する。複素環とはヘテロ原子を少なくとも一つ持つ環状化合物を意味する。ヘテロ原子は複素環の環系の構成部分を形成する原子のみを意味し、環系に対して外部に位置していたり、少なくとも一つの非共役単結合により環系から分離していたり、環系のさらなる置換基の一部分であるような原子は意味しない。ヘテロ原子として好ましくは、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、及びホウ素原子などを挙げることができるがこれらに限定されるものではない。複素環化合物の例として、イミダゾール、ベンゾトリアゾール、ベンゾチアゾール、テトラゾールなどを用いることができる。より具体的には、1,2,3,4-テトラゾール、5-アミノ-1,2,3,4-テトラゾール、5-メチル-1,2,3,4-テトラゾール、1,2,3-トリアゾール、4-アミノ-1,2,3-トリアゾール、4,5-ジアミノ-1,2,3-トリアゾール、1,2,4-トリアゾール、3-アミノ1,2,4-トリアゾール、3,5-ジアミノ-1,2,4-トリアゾールなどを挙げることができるが、これらに限定されるものではない。
【0157】
本発明の研磨用砥粒分散液に複素環化合物を配合する場合の含有量については、0.001~1.0質量%であることが好ましく、0.001~0.7質量%であることがより好ましく、0.002~0.4質量%であることがさらに好ましい。
【0158】
<pH調整剤>
上記各添加剤の効果を高めるためなどに必要に応じて酸又は塩基およびそれらの塩類化合物を添加して研磨用組成物のpHを調節することができる。
【0159】
本発明の研磨用砥粒分散液をpH7以上に調整するときは、pH調整剤として、アルカリ性のものを使用する。望ましくは、水酸化ナトリウム、アンモニア水、炭酸アンモニウム、エチルアミン、メチルアミン、トリエチルアミン、テトラメチルアミンなどのアミンが使用される。
【0160】
本発明の研磨用砥粒分散液をpH7未満に調整するときは、pH調整剤として、酸性のものが使用される。例えば、酢酸、乳酸、クエン酸、リンゴ酸、酒石酸、グリセリン酸などのヒドロキシ酸類の様な、塩酸、硝酸などの鉱酸が使用される。
【0161】
<pH緩衝剤>
本発明の研磨用砥粒分散液のpH値を一定に保持するために、pH緩衝剤を使用しても構わない。pH緩衝剤としては、例えば、リン酸2水素アンモニウム、リン酸水素2アンモニウム、4ホウ酸アンモ四水和水などのリン酸塩及びホウ酸塩又は有機酸塩などを使用することができる。
【0162】
また、本発明の研磨用砥粒分散液の分散溶媒として、例えばメタノール、エタノール、イソプロパノール、n-ブタノール、メチルイソカルビノールなどのアルコール類;アセトン、2-ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン、3,4-ジヒドロ-2H-ピランなどのエーテル類;2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;2-メトキシエチルアセテート、2-エトキシエチルアセテート、2-ブトキシエチルアセテートなどのグリコールエーテルアセテート類;酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ヘキサン、ヘプタン、イソオクタン、シクロヘキサンなどの脂肪族炭化水素類;塩化メチレン、1,2-ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;ジメチルスルホキシドなどのスルホキシド類;N-メチル-2-ピロリドン、N-オクチル-2-ピロリドンなどのピロリドン類などの有機溶媒を用いることができる。これらを水と混合して用いてもよい。
【0163】
本発明の研磨用砥粒分散液に含まれる固形分濃度は0.3~50質量%の範囲にあることが好ましい。この固形分濃度が低すぎると必要とする研磨速度に達しない場合がある。逆に固形分濃度が高すぎても研磨速度はそれ以上向上する場合は少ない。
【実施例】
【0164】
以下、本発明について実施例に基づき説明する。本発明はこれらの実施例に限定されない。
【0165】
<実験1>
初めに、実施例及び比較例における各測定方法及び試験方法の詳細について説明する。各実施例及び比較例について、以下の各測定結果及び試験結果を第1表に記す。
【0166】
実施例及び比較例で原料として使用する結晶性無機酸化物微粒子分散液に含まれる結晶性無機酸化物微粒子の圧縮破壊強度を、次の方法で測定した。
複合微粒子分散液をサンドミルにて解砕し、遠心分離装置で分級分離することにより母粒子を得て、島津製作所製微小圧縮試験機(MCT-W500)を用い、圧縮破壊強度を測定した。
【0167】
<平均粒子径及び短径/長径比>
実施例及び比較例で得られたセリア系複合微粒子分散液について、これに含まれるセリア系複合微粒子の平均粒子径と短径/長径比は、前述の画像解析法によって測定を行った。
即ち、セリア系複合微粒子分散液におけるセリア系複合微粒子の平均粒子径及び短径/長径比は、前述の通り、透過型電子顕微鏡を用いて写真撮影して得た写真投影図を基にそれぞれ算出した値をもって、平均粒子径又は短径/長径比とした。
【0168】
[CeO2含有量とその他含有量の測定]
セリア系複合微粒子分散液に1000℃灼熱減量を行い、固形分の質量を求める。
次に、セリア系複合微粒子分散液からなる試料約1g(固形分20質量%に調整したもの)を白金皿に採取する。リン酸3ml、硝酸5ml、弗化水素酸10mlを加えて、サンドバス上で加熱する。乾固したら、少量の水と硝酸50mlを加えて溶解させて100mlのメスフラスコにおさめ、水を加えて100mlとする。
次に、100mlにおさめた溶液から分液10mlを20mlメスフラスコに採取する操作を5回繰り返し、分液10mlを5個得る。
そして、これを用いて、ICPプラズマ発光分析装置(例えばSII製、SPS5520)にて標準添加法で測定を行う。ここで、同様の方法でブランクも測定して、ブランク分を差し引いて調整し、Ceの測定値とする。
そして、前述の固形分の質量に基づいてCeO2の含有量とCeO2以外の含有量とを求め、これらの質量比を計算する。
【0169】
[変動係数(CV値)]
前述の方法で子粒子の粒子径分布を求め、その粒子径分布を母集団として標準偏差と個数平均値を得た後、標準偏差を個数平均値で除し、100を乗じること(すなわち、標準偏差/個数平均値×100)により、子粒子の粒子径分布における変動係数(CV値)を求めた。
【0170】
[X線回折法、平均結晶子径の測定]
実施例及び比較例で得られたセリア系複合微粒子分散液を従来公知の乾燥機を用いて乾燥し、得られた粉体を乳鉢にて10分粉砕し、X線回折装置(理学電気(株)製、RINT1400)によってX線回折パターンを得て、セリアおよび結晶性無機酸化物の結晶型を特定した。
また、前述の方法によって、得られたX線回折パターンにおける2θ=28度近傍の(111)面(2θ=28度近傍)のピークの半価全幅を測定し、Scherrerの式により、平均結晶子径を求めた。
【0171】
[研磨試験方法]
<SiO2膜の研磨>
実施例及び比較例の各々において得られたセリア系複合微粒子分散液を含む研磨用砥粒分散液を調整した。ここで固形分濃度は0.6質量%であり、硝酸を添加してpHは5.0とした。
次に、被研磨基板として、熱酸化法により作製したSiO2絶縁膜(厚み1μm)基板を準備した。
次に、この被研磨基板を研磨装置(ナノファクター株式会社製、NF300)にセットし、研磨パッド(ニッタハース社製「IC-1000/SUBA400同心円タイプ」)を使用し、基板荷重0.5MPa、テーブル回転速度90rpmで研磨用砥粒分散液を50ml/分の速度で1分間供給して研磨を行った。
そして、研磨前後の被研磨基材の重量変化を求めて研磨速度を計算した。
また、研磨基材の表面の平滑性(表面粗さRa)を原子間力顕微鏡(AFM、株式会社日立ハイテクサイエンス社製)を用いて測定した。平滑性と表面粗さは概ね比例関係にあるため、第1表には表面粗さを記載した。
なお研磨傷の観察は、光学顕微鏡を用いて絶縁膜表面を観察することで行った。
【0172】
<アルミハードディスクの研磨>
実施例及び比較例の各々において得られたセリア系複合微粒子分散液を含む研磨用砥粒分散液を調整した。ここで固形分濃度は9質量%であり、硝酸を添加してpHを2.0に調整した。
アルミハードディスク用基板を研磨装置(ナノファクター株式会社製、NF300)にセットし、研磨パッド(ニッタハース社製「ポリテックスφ12」)を使用し、基板負荷0.05MPa、テーブル回転速度30rpmで研磨スラリーを20ml/分の速度で5分間供給して研磨を行い、超微細欠陥・可視化マクロ装置(VISION PSYTEC社製、製品名:Maicro―Max)を使用し、Zoom15にて全面観察し、65.97cm2に相当する研磨処理された基板表面に存在するスクラッチ(線状痕)の個数を数えて合計し、次の基準に従って評価した。
線状痕の個数 評価
50個未満 「非常に少ない」
50個から80個未満 「少ない」
80個以上 「多い」
少なくとも80個以上で総数をカウントできないほど多い 「※」
【0173】
以下に実施例を記す。なお、単に「固形分濃度」とある場合は、化学種を問わず溶媒に分散した微粒子の濃度を意味する。
【0174】
<実施例1>α―Al2O3コア
[結晶性無機酸化物分散液の調製]
α-Al2O3(住友化学社製、アドバンストアルミナ AA-03)180gにイオン交換水5815.1gを加え、超音波処理を2時間行った。次に、3%アンモニア4.9gを加えて混合し、Al2O3固形分濃度3質量%の分散液6000g(以下、A-1液ともいう)を得た。
【0175】
次に、硝酸セリウム(III)6水和物(関東化学社製、4N高純度試薬)にイオン交換水を加え、CeO2換算で3.0質量%の硝酸セリウム水溶液(以下、B-1液ともいう)を得た。
【0176】
次に、A-1液(6000g)を10℃に保ち、撹拌しながら、ここへB-1液(7,186g、CeO2 dry215.6g)を18時間かけて添加した。この間、液温を10℃に維持しておき、また、必要に応じて3%アンモニア水を添加して、pH7.9から8.7を維持するようにした。そして、添加終了後に、液温10℃で4時間熟成を行った。なお、B-1液の添加中および熟成中は調合液にエアーを吹き込みながら調合を行い、酸化還元電位を100~300mVに保った。
その後、限外膜にてイオン交換水を補給しながら洗浄を行った。洗浄を終了して得られた前駆体粒子分散液は、固形分濃度が4.7質量%、pHが8.2(25℃にて)、電導度が19μs/cm(25℃にて)であった
【0177】
次に得られた前駆体粒子分散液を120℃の乾燥機中で16時間乾燥させた後、750℃のマッフル炉を用いて2時間焼成を行い、粉体(焼成体)を得た。
【0178】
焼成後に得られた粉体(焼成体)100gにイオン交換水300gを加え、さらに3%アンモニア水溶液を用いてpHを10.1に調整した後、φ0.25mmの石英ビーズ(大研化学工業株式会社製)にて湿式解砕(カンペ(株)製バッチ式卓上サンドミル)を30分行った。
そして、解砕後に44メッシュの金網を通してビーズを分離した。得られた焼成体解砕分散液の固形分濃度は7.1質量%で重量は1178gであった。なお、解砕中にはアンモニア水溶液を添加してpHを10.1に保った。
【0179】
さらに解砕した分散液を遠心分離装置(日立工機株式会社製、型番「CR21G」)にて、509Gで60秒処理し、軽液を回収し、セリア系複合微粒子分散液を得た。
【0180】
得られたセリア系複合微粒子分散液に含まれるセリア系複合微粒子の平均粒子径と短径/長径比を測定した。測定方法は前述の通りの透過型電子顕微鏡写真を基にした画像解析法である。
また、セリア系複合微粒子における母粒子の短径/長径比を前記のSTEM-EDS分析を用いて測定した。
また、前述の方法で子粒子の粒子径分布における変動係数(CV値)を求めた。
また、前述の方法でセリア系複合微粒子分散液に含まれるセリア以外の成分とセリアとの質量比を求めた。
また、前述の方法でセリア系複合微粒子のX線回折パターンを得て、セリアおよび結晶性無機酸化物の結晶型を特定した。さらに、セリア系複合微粒子の平均結晶子径を求めた。
結果を第1表に示す。
【0181】
次に、得られたセリア系複合微粒子分散液を用いて研磨試験を行った。
結果を第1表に示す。
【0182】
<実施例2>α―Al2O3コア
実施例1で用いたα-Al2O3100gにイオン交換水400gを加え、さらに7%硝酸水溶液を用いてpHを3.8に調整した後、φ0.25mmの石英ビーズ(大研化学工業株式会社製)にて超音波処理の代わりに湿式解砕(カンペ(株)製バッチ式卓上サンドミル)を120分行った。
そして、解砕後に44メッシュの金網を通してビーズを分離した。得られたα―Al2O3解砕分散液の固形分濃度は6.6質量%で重量は1401gであった。なお、解砕中には硝酸水溶液を添加してpHを4.4に保った。次に、このα―Al2O3解砕分散液1340gに陰イオン交換樹脂(三菱化学社製 SANUP B)13gを徐々に添加し、9分撹拌し、イオン交換水1200gを用いて樹脂を分離した。このときのpHは8.4であった。
次に、添加するA-1液を4000g、焼成温度を760℃とした以外は、実施例1と同様の操作を行い、同様の評価を行った。
結果を第1表に示す。
【0183】
<実施例3>α―Al2O3コア
添加するA-1液を1100g、焼成温度を950℃とした以外は、実施例1と同様の操作を行い、同様の評価を行った。
結果を第1表に示す。
【0184】
<実施例4>TiO2コア
実施例1で用いたα-Al2O3をアナタース型TiO2に変更し、更に前駆体粒子分散液を120℃の乾燥機中で16時間乾燥させた後の焼成温度を950℃としたこと以外は、実施例1と同様の操作を行い、同様の評価を行った。
結果を第1表に示す。
【0185】
<実施例5>ZrO2コア
実施例1で用いたα-Al2O3をZrO2に変更し、更に前駆体粒子分散液を120℃の乾燥機中で16時間乾燥させた後の焼成温度を900℃としたこと以外は、実施例1と同様の操作を行い、同様の評価を行った。
結果を第1表に示す。
【0186】
<比較例1>
《シリカ微粒子分散液(シリカ微粒子の平均粒子径60nm)》の調製
エタノール12,090gと正珪酸エチル6,363.9gとを混合し、混合液a1とした。
次に、超純水6,120gと29%アンモニア水444.9gとを混合し、混合液b1とした。
次に、超純水192.9gとエタノール444.9gとを混合して敷き水とした。
そして、敷き水を撹拌しながら75℃に調整し、ここへ、混合液a1及び混合液b1を、各々10時間で添加が終了するように、同時添加を行った。添加が終了したら、液温を75℃のまま3時間保持して熟成させた後、固形分濃度を調整し、SiO2固形分濃度19質量%、動的光散乱法(大塚電子社製PAR-III)により測定された平均粒子径60nmのシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を9,646.3g得た。
【0187】
《シリカ微粒子分散液(シリカ微粒子の平均粒子径:108nm)》の調製
メタノール2,733.3gと正珪酸エチル1,822.2gとを混合し、混合液a2とした。
次に、超純水1,860.7gと29%アンモニア水40.6gとを混合し、混合液b2とした。
次に、超純水59gとメタノール1,208.9gとを混合して敷き水として、前工程で得た平均粒子径60nmのシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液922.1gを加えた。
そして、シリカ微粒子分散液を含んだ敷き水を撹拌しながら65℃に調整し、ここへ、混合液a2及び混合液b2を、各々18時間で添加が終了するように、同時添加を行った。添加が終了したら、液温を65℃のまま3時間保持して熟成させた後、固形分濃度(SiO2固形分濃度)を19質量%に調整し、3,600gの高純度シリカ微粒子分散液を得た。
この高純度シリカ微粒子分散液に含まれるシリカ微粒子は、動的光散乱法(大塚電子社製PAR-III)により測定した平均粒子径が108nmであった。なお、同じくシリカ微粒子の短径/長径比を透過型電子顕微鏡写真に基づいて測定したところ、短径/長径比=1.0であった。また、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U、Th、Cl、NO3、SO4及びFの含有率をICP(誘導結合プラズマ発光分析)を用いて測定したところ、いずれも1ppm以下であった。
【0188】
次に、この高純度シリカ微粒子分散液(シリカ微粒子の平均粒子径:108nm)1,053gに陽イオン交換樹脂(三菱化学社製SK-1BH)114gを徐々に添加し、30分間攪拌し樹脂を分離した。この時のpHは5.1であった。
得られたシリカ微粒子分散液に超純水を加えて、SiO2固形分濃度3質量%のA-2液6,000gを得た。
【0189】
次に、硝酸セリウム(III)6水和物(関東化学社製、4N高純度試薬)にイオン交換水を加え、CeO2換算で2.5質量%のB-2液を得た。
【0190】
次に、A-2液(6,000g)を50℃まで昇温して、撹拌しながら、ここへB-2液(8,453g、SiO2の100質量部に対して、CeO2が117.4質量部に相当)を18時間かけて添加した。この間、液温を50℃に維持しておき、また、必要に応じて3%アンモニア水を添加して、pH7.85維持するようにした。なおB-2液の添加中及び熟成中は調合液にエアーを吹き込みながら調合を行い、酸化還元電位は正の値を保った。
そして、B-2液の添加が終了したら、液温を93℃へ上げて4時間熟成を行った。熟成終了後に室内に放置することで放冷し、室温まで冷却した後に、限外膜にてイオン交換水を補給しながら洗浄を行った。洗浄を終了して得られた前駆体粒子分散液は、固形分濃度が7質量%、pHが9.1(25℃にて)、電導度が67μs/cm(25℃にて)であった。
【0191】
次に得られた前駆体粒子分散液に5質量%酢酸水溶液を加えてpHを6.5に調整して、100℃の乾燥機中で16時間乾燥させた後、1090℃のマッフル炉を用いて2時間焼成を行い、粉体を得た。
【0192】
焼成後に得られた粉体310gと、イオン交換水430gとを、1Lの柄付きビーカーに入れ、そこへ3%アンモニア水溶液を加え、撹拌しながら超音波浴槽中で10分間超音波を照射し、pH10(温度は25℃)の懸濁液を得た。
次に、事前に設備洗浄と水運転を行った粉砕機(アシザワファインテック株式会社製、LMZ06)にφ0.25mmの石英ビーズ595gを投入し、さらに上記の懸濁液を粉砕機のチャージタンクに充填した(充填率85%)。なお、粉砕機の粉砕室及び配管中に残留したイオン交換水を考慮すると、粉砕時の濃度は25質量%である。そして、粉砕機におけるディスクの周速を12m/sec、パス回数を25回、及び1パス当たりの滞留時間を0.43分間とする条件で湿式解砕、粉砕を行った。また、解砕、粉砕時の懸濁液のpHを10に維持するように、パス毎に3%アンモニア水溶液を添加した。このようにして、固形分濃度22質量%のシリカ系複合微粒子分散液を得た。
次いで得られた微粒子分散液を遠心分離装置(日立工機株式会社製、型番「CR21G」)にて、相対遠心加速度675Gで1分間遠心分離処理し、沈降成分を除去し、シリカ系複合微粒子分散液を得た。
【0193】
このようにして得たシリカ系複合微粒子分散液について、実施例1と同様の評価を行った。
結果を第1表に示す。
【0194】
【産業上の利用可能性】
【0195】
本発明の分散液に含まれるセリア系複合微粒子は、低スクラッチで、かつ高研磨速度である。よって、本発明の分散液を含む研磨用砥粒分散液は、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができる。具体的には、シリカ膜が形成された半導体基板の平坦化用として好ましく用いることができる。