IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ジャパンディスプレイの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-10
(45)【発行日】2022-03-18
(54)【発明の名称】液晶表示装置およびその製造方法
(51)【国際特許分類】
   G02F 1/1337 20060101AFI20220311BHJP
   G02F 1/1333 20060101ALI20220311BHJP
   G02F 1/13 20060101ALI20220311BHJP
   G02F 1/1343 20060101ALI20220311BHJP
   G02F 1/1368 20060101ALI20220311BHJP
【FI】
G02F1/1337 525
G02F1/1333
G02F1/13 101
G02F1/1343
G02F1/1368
【請求項の数】 8
(21)【出願番号】P 2017239356
(22)【出願日】2017-12-14
(65)【公開番号】P2019105784
(43)【公開日】2019-06-27
【審査請求日】2020-12-09
(73)【特許権者】
【識別番号】502356528
【氏名又は名称】株式会社ジャパンディスプレイ
(74)【代理人】
【識別番号】110000350
【氏名又は名称】ポレール特許業務法人
(72)【発明者】
【氏名】井桁 幸一
(72)【発明者】
【氏名】園田 英博
(72)【発明者】
【氏名】廣田 武徳
【審査官】右田 昌士
(56)【参考文献】
【文献】特開2017-187530(JP,A)
【文献】国際公開第2013/024750(WO,A1)
【文献】特開2010-054675(JP,A)
【文献】米国特許出願公開第2007/0153215(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/1337
G02F 1/1333
G02F 1/13
G02F 1/1343
G02F 1/1368
(57)【特許請求の範囲】
【請求項1】
第1の基板と第2の基板の間に液晶が挟持され、第1の方向を第1の折り曲げ軸として折り曲げることが出来る液晶表示装置であって、
前記第1の基板と前記第2の基板は配向膜を有し、前記第1の基板と前記第2の基板において、前記第1の折り曲げ軸を含む第1の幅を有する第1の領域の前記液晶に対する配向能力は、前記第1の領域以外における前記液晶に対する配向能力よりも小さく、
前記第1の領域以外の部分においては、前記配向膜は偏光紫外線による配向処理を受けていることを特徴とする液晶表示装置。
【請求項2】
前記第1の領域には前記配向膜が存在しないことを特徴とする請求項1に記載の液晶表示装置。
【請求項3】
前記第1の領域には前記配向膜が存在し、前記第1の領域の前記配向膜は、偏光紫外線による配向処理を受けていないことを特徴とする請求項1に記載の液晶表示装置。
【請求項4】
前記第1の領域には前記配向膜が存在し、前記第1の領域の前記配向膜は、偏光紫外線による配向処理を受けており、
前記第1の領域の前記配向膜の配向能力は前記第1の領域以外の前記配向膜における配向能力よりも小さいことを特徴とする請求項1に記載の液晶表示装置。
【請求項5】
前記液晶表示装置はさらに第2の方向を第2の折り曲げ軸として折り曲げることが出来、前記第1の折り曲げ軸と前記第2の折り曲げ軸は交差し、
前記第2の折り曲げ軸を含む第2の幅を有する第2の領域における液晶分子に対する配向能力は、前記第1の領域及び前記第2の領域を除く領域における液晶分子に対する配向能力よりも小さく、
前記第1の領域および前記第2の領域以外の部分においては、前記配向膜は偏光紫外線による配向処理を受けていることを特徴とする請求項1に記載の液晶表示装置。
【請求項6】
前記第1の領域及び前記第2の領域には前記配向膜が存在しないことを特徴とする請求項5に記載の液晶表示装置。
【請求項7】
前記第1の領域及び前記第2の領域には前記配向膜が存在し、前記第1の領域および前記第2の領域の前記配向膜は、偏光紫外線による配向処理を受けていないことを特徴とする請求項5に記載の液晶表示装置。
【請求項8】
前記第1の領域及び前記第2の領域には前記配向膜が存在し、前記第1の領域および前記第2の領域の前記配向膜は、偏光紫外線による配向処理を受けており、
前記第1の領域および前記第2の領域の前記配向膜の配向能力は、前記第1の領域および前記第2の領域を除く領域の前記配向膜における配向能力よりも小さいことを特徴とする請求項5に記載の液晶表示装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は表示装置に係り、特に湾曲、折り曲げ等が可能な液晶表示装置に関する。
【背景技術】
【0002】
液晶表示装置では画素電極および薄膜トランジスタ(TFT)等を有する画素がマトリクス状に形成されたTFT基板と、TFT基板に対向して対向基板が配置され、TFT基板と対向基板の間に液晶が挟持されている。そして液晶分子による光の透過率を画素毎に制御することによって画像を形成している。
【0003】
このような液晶表示装置を湾曲、あるいは折り曲げ等が可能なフレキシブル表示装置とする需要が増大している。フレキシブルな液晶表示装置は、基板として薄いガラス基板をもちいるか、ポリイミド等の樹脂で形成する構成である。このようなフレキシブル表示領域に対し、湾曲あるいは折り曲げを繰り返した場合、表示品質の劣化が生ずる。
【0004】
特許文献1には、このようなフレキシブル表示装置における表示品質の劣化を防止するため、TFT基板上に、電極層や配向膜を形成した後、硬化性液晶組成物を塗布して硬化させ、その後、対向基板とTFT基板の間に液晶を挟持した構成の液晶表示装置が記載されている。なお、上記配向膜として、紫外線照射して形成される光配向膜を用いることが記載されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2015-203720号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
TFT基板には、配向膜、電極、配線、絶縁膜等の種々の膜が形成されている。したがって、液晶表示装置を湾曲あるいは折り曲げした場合、これらの膜にストレスが生ずる。配向膜は液晶分子を初期配向させるものであるが、この配向処理として、ラビング処理と、偏光紫外線を用いた光配向処理とがある。光配向処理は、ラビング処理によって発生する異物の影響がない、あるいは、静電気が発生しにくい等の利点を有している。
【0007】
光配向を受ける配向膜にはポリイミドが用いられているが、ポリイミドが配向処理を受けると、所定の方向において、ポリイミドが断裂するので、膜強度が低下する。このような配向膜を有する液晶表示装置に対して湾曲や折り曲げを行うと、湾曲あるいは折り曲げのストレスを受けた部分において、配向膜が破壊され、剥離してしまうという現象を生ずる。配向膜が破壊されるとその部分において、光漏れが生じ、表示品質が劣化する。
【0008】
本発明の課題は、光配向された配向膜を有する液晶表示装置において、湾曲や折り曲げのストレスが加わっても、配向膜が破壊されず、表示品質の劣化を防止することが出来る液晶表示装置を実現することである。
【課題を解決するための手段】
【0009】
本発明は上記課題を克服するものであり、主な具体的な手段は次のとおりである。
【0010】
(1)第1の基板に第1の光配向膜が形成され、第2の基板に第2の光配向膜が形成され、前記第1の基板と前記第2の基板の間に液晶が挟持され、第1の方向を湾曲軸または折り曲げ軸として湾曲または折り曲げることが可能な液晶表示装置であって、前記第1の光配向膜および前記第2の光配向膜の配向軸の方向は、前記第1の方向と90度±10度の範囲で一致することを特徴とする液晶表示装置。
【0011】
(2)第1の基板と第2の基板の間に液晶が挟持され、第1の方向を湾曲軸または折り曲げ軸として、第2の方向に湾曲または折り曲げることが可能な液晶表示装置の製造方法であって、前記第1の基板に第1の配向膜を形成し、前記第1の配向膜を前記第2の方向に配向軸を有するように、偏光紫外線を用いて光配向させ、前記第2の基板に第2の配向膜を形成し、前記第2の配向膜を前記第2の方向に配向軸を有するように、偏光紫外線を用いて光配向させることを特徴とする液晶表示装置の製造方法。
【0012】
(3)第1の基板と第2の基板の間に液晶が挟持され、第1の方向を第1の折り曲げ軸として折り曲げることが出来る液晶表示装置であって、前記第1の基板と前記第2の基板は配向膜を有し、前記第1の基板と前記第2の基板において、前記第1の折り曲げ軸を含む第1の幅を有する第1の領域の前記液晶に対する配向能力は、前記第1の領域以外における前記液晶に対する配向能力よりも小さく、前記第1の領域以外の部分においては、前記配向膜は偏光紫外線による配向処理を受けていることを特徴とする液晶表示装置。
【図面の簡単な説明】
【0013】
図1】本発明が適用される液晶表示装置の平面図である。
図2】表示領域の画素構成を示す平面図である。
図3】表示領域の断面図である。
図4】画素電極の他の例である。
図5】光配向を示す模式図である。
図6】光配向による配向膜強度への影響を示す模式図である。
図7】実施例1の構成を示す模式図である。
図8】フレキシブル液晶表示装置の使用態様の例を示す表である。
図9】配向膜の剥離対策に関連した仕様を示す表である。
図10】誘電率異方性が正の場合の液晶表示装置の湾曲方向と画素電極の関係を示す平面図である。
図11】誘電率異方性が負の場合の液晶表示装置の湾曲方向と画素電極の関係を示す平面図である。
図12】誘電率異方性が正の場合の液晶表示装置の折り曲げ方向と画素電極の関係を示す平面図である。
図13】誘電率異方性が負の場合の液晶表示装置の折り曲げ方向と画素電極の関係を示す平面図である。
図14】折り曲げ部分の配向膜に配向処理をしない場合の、配向膜の配向方向の例を示す平面図である。
図15】折り曲げ部分の配向膜に配向処理をしない場合の、配向膜の配向方向の他の例を示す平面図である。
図16】折り曲げ部分に配向膜を形成しない場合の、配向膜の配向方向の例を示す平面図である。
図17】折り曲げ部分に配向膜を形成しない場合の、配向膜の配向方向の他の例を示す平面図である。
図18】実施例5の第1の例を示す平面図である。
図19】実施例5の第2の例を示す平面図である。
図20】実施例5の第3の例を示す平面図である。
図21】実施例5の第4の例を示す平面図である。
図22】誘電率異方性が正の液晶の場合において、配向膜の配向軸を折り曲げ方向に対して45度とした場合の構成を示す平面図である。
図23】誘電率異方性が負の液晶の場合において、配向膜の配向軸を折り曲げ方向に対して45度とした場合の構成を示す平面図である。
【発明を実施するための形態】
【0014】
以下の実施例により本発明を詳細に説明する。
【実施例1】
【0015】
図1は本発明が適用される液晶表示パネル20の例を示す平面図である。図1は携帯電話あるいはタブレット等に使用される液晶表示パネル20の例である。図1において、TFTや画素電極等を含む画素がマトリクス状に配置したTFT基板100とブラックマトリクス等が形成された対向基板200がシール材50によって接着し、TFT基板100と対向基板200の間に液晶が挟持されている。
【0016】
TFT基板100と対向基板200がオーバーラップしている部分に表示領域30が形成されている。表示領域30においてTFT基板100には走査線11が横方向(x方向)に延在し、縦方向(y方向)に配列している。また、映像信号線12が縦方向に延在し、横方向に配列している。走査線11と映像信号線12で囲まれた領域に画素13が形成されている。
【0017】
図1において、TFT基板100は対向基板200よりも大きく形成され、TFT基板100と対向基板200がオーバーラップしていない部分に端子領域40が形成されている。端子領域40には、液晶表示パネル20に信号や電力を供給するためにフレキシブル配線基板500が接続している。図1の液晶表示パネル20は、TFT基板100や対向基板200がポリイミド等の樹脂、あるいは、非常に薄いガラス等で形成され、フレキシブルに湾曲可能な構成となっている。なお、本明細書では、液晶表示パネル20を用いた表示装置を液晶表示装置と称するが、液晶表示パネル20と液晶表示装置とは区別なく用いる場合もある。
【0018】
図2は、図1の表示領域30における画素配置を示す平面図である。図2において、走査線11が横方向(x方向)に延在し、縦方向(y方向)に配列している。また、映像信号線12が縦方向に延在し、横方向に配列している。走査線11と映像信号線12で囲まれた領域に画素電極112が形成されている。
【0019】
画素電極112の長軸方向は、y方向とは角度θだけ傾いている。映像信号線12は画素電極112の傾きθに合わせて、y方向と角度θだけ傾いている。角度θは例えば5度乃至15度である。図2における矢印ALは、液晶の誘電率異方性が正の場合の配向膜の配向方向である。配向膜の配向方向ALはy方向である。画素電極112と配向方向ALとを角度θだけ傾ける理由は、画素電極112に電圧が印加された時の液晶の回転方向を合わせ、ドメインの発生を防止するためである。
【0020】
液晶には誘電率異方性が正のものと負のものが存在する。図2は液晶の誘電率異方性が正の場合である。液晶表示装置の液晶の誘電率異方性が負の場合は、配向方向ALが図2の場合とは90度回転した方向になる。すなわち、図2のx方向となる。
【0021】
図2において、半導体層103はスルーホール140において映像信号線12と接続し、映像信号線12の下に沿って走査線11の下を通過し、その後、折れ曲がり、再び走査線11の下を通過する。半導体層103が走査線11の下を通過するときにTFTが形成される。つまり、図2では、TFTは直列に2個形成されている。この時、走査線11はTFTのゲート電極の役割を有する。
【0022】
半導体層103はスルーホール120において、コンタクト電極107と接続する。コンタクト電極107はスルーホール130において、画素電極112と接続している。図2において、スルーホール130の部分を除いて、コモン電極110が平面状に形成されている。コモン電極110の上には後で説明する容量絶縁膜111が存在し、その上に画素電極112が形成されている。
【0023】
画素電極112はスリット1121と櫛歯電極1122を有している。画素電極112は画素の大きさによって種々の形状を取りうる。例えば、画素が小さくなった場合、スリット1121が無くなり、画素電極112は櫛歯電極1122が1本、すなわち、ストライプ状の電極となる。一方、画素が大きくなると、スリット1121の数は2個以上となり、櫛歯電極1122も3本以上となる。本明細書では、画素電極112の櫛歯電極1122が1本の場合であっても櫛歯電極と呼ぶ。
【0024】
図3は、図2のA-A断面に対応する液晶表示パネルの断面図である。すなわち、図3では、TFTは1個のみ記載されている。図3におけるTFTは、いわゆるトップゲートタイプのTFTであり、使用される半導体103としては、LTPS(Low Temperature Poly-Si)が使用されている。一方、a-Si(amorphous Si)半導体を使用した場合は、いわゆるボトムゲート方式のTFTが多く用いられる。以後の説明では、トップゲート方式のTFTを用いた場合を例にして説明するが、ボトムゲート方式のTFTを用いた場合についても、本発明を適用することが出来る。
【0025】
図3において、TFT基板100および対向基板200はポリイミド等の樹脂、あるいは厚さ0.15mm以下の非常に薄いガラス板で形成されている。ガラス板は板厚が薄くなるとフレキシブルに湾曲させることが出来る。ポリイミド等の樹脂で基板100を形成する場合は、厚さ10μm乃至20μmというように、さらに薄くすることが出来る。
【0026】
図3において、TFT基板100の上にSiNからなる第1下地膜101およびSiOからなる第2下地膜102がCVD(Chemical Vapor Deposition)によって形成される。第1下地膜101および第2下地膜102の役割はTFT基板100からの不純物が半導体層103を汚染することを防止することである。
【0027】
第2下地膜102の上には半導体層103が形成される。この半導体層103は第2下地膜102に上にCVDによってa-Si膜を形成し、これをレーザアニールすることによってpoly-Si膜に変換したものである。このpoly-Si膜をフォトリソグラフィによってパターニングする。
【0028】
半導体膜103の上にはゲート絶縁膜104が形成される。このゲート絶縁膜104はTEOS(テトラエトキシシラン)を原料としたSiO膜である。この膜もCVDによって形成される。その上にゲート電極105が形成される。ゲート電極105は図2に示す走査線11が兼ねている。ゲート電極105は例えば、MoW膜によって形成される。ゲート電極105あるいは走査線10の抵抗を小さくする必要があるときはAl合金が使用される。
【0029】
ゲート電極105はフォトリソグラフィによってパターニングされるが、このパターニングの際に、イオンインプランテーションによって、リンあるいはボロン等の不純物をpoly-Si層にドープしてpoly-Si層にソースSあるいはドレインDを形成する。また、ゲート電極105のパターニングの際のフォトレジストを利用して、poly-Si層のチャネル層と、ソースSあるいはドレインDとの間にLDD(Lightly Doped Drain)層を形成する。
【0030】
その後、ゲート電極105を覆って層間絶縁膜106をSiOによって形成する。層間絶縁膜106はゲート配線105とコンタクト電極107を絶縁するためである。層間絶縁膜106およびゲート絶縁膜104には、半導体層103のソース部Sをコンタクト電極107と接続するためのスルーホール120が形成される。層間絶縁膜106とゲート絶縁膜104にスルーホール120を形成するためのフォトリソグラフィは同時に行われる。
【0031】
層間絶縁膜106の上にコンタクト電極107が形成される。コンタクト電極107は、スルーホール130を介して画素電極112と接続する。TFTのドレインDは、図2に示すように、映像信号線12とスルーホール140を介して接続している。
【0032】
コンタクト電極107および映像信号線12は、同層で、同時に形成される。コンタクト電極107および映像信号線(以後コンタクト電極107で代表させる)は、抵抗を小さくするために、例えば、AlSi合金が使用される。AlSi合金はヒロックを発生したり、Alが他の層に拡散したりするので、例えば、図示しないMoWによるバリア層、およびキャップ層によってAlSiをサンドイッチする構造がとられている。
【0033】
コンタクト電極107を覆って無機パッシベーション膜(絶縁膜)108を被覆し、TFT全体を保護する。無機パッシベーション膜108は第1下地膜101と同様にCVDによって形成される。無機パッシベーション膜108を覆って有機パッシベーション膜109が形成される。有機パッシベーション膜109は感光性のアクリル樹脂で形成される。有機パッシベーション膜109は、アクリル樹脂の他、シリコーン樹脂、エポキシ樹脂、ポリイミド樹脂等でも形成することが出来る。有機パッシベーション膜109は平坦化膜としての役割を持っているので、厚く形成される。有機パッシベーション膜109の膜厚は1~4μmであるが、多くの場合は2μm程度である。
【0034】
画素電極112とコンタクト電極107との導通を取るために、無機パッシベーション膜108および有機パッシベーション膜109にスルーホール130が形成される。有機パッシベーション膜109は感光性の樹脂を使用している。感光性の樹脂を塗付後、この樹脂を露光すると、光が当たった部分のみが特定の現像液に溶解する。すなわち、感光性樹脂を用いることによって、フォトレジストの形成を省略することが出来る。有機パッシベーション膜109にスルーホール130を形成したあと、230℃程度で有機パッシベーション膜を焼成することによって有機パッシベーション膜109が完成する。
【0035】
その後コモン電極110となるITO(Indium Tin Oxide)をスパッタリングによって形成し、スルーホール130およびその周辺からITOを除去するようにパターニングする。コモン電極110は各画素共通に平面状に形成することが出来る。その後、容量絶縁膜111となるSiNをCVDによって全面に形成する。その後、スルーホール130内において、コンタクト電極107と画素電極112の導通をとるためのスルーホールを容量絶縁膜111および無機パッシベーション膜108に形成する。なお、容量絶縁膜111は、コモン電極110と画素電極112との間に保持容量を形成するので、容量絶縁膜111と呼ばれる。
【0036】
その後、ITOをスパッタリングによって形成し、パターニングして画素電極112を形成する。画素電極112の平面形状は図2に記載されている。画素電極112の上に配向膜材料をフレキソ印刷あるいはインクジェット等によって塗布し、焼成して配向膜113を形成する。配向膜113の配向処理には偏光紫外線による光配向が用いられる。
【0037】
画素電極112とコモン電極110の間に電圧が印加されると図3に示すような電気力線が発生する。この電界によって液晶分子301を回転させ、液晶層300を通過する光の量を画素毎に制御することによって画像を形成する。
【0038】
図3において、液晶層300を挟んで対向基板200が配置されている。対向基板200の内側には、カラーフィルタ201が形成されている。カラーフィルタ201は画素毎に、赤、緑、青のカラーフィルタが形成されており、これによってカラー画像が形成される。カラーフィルタ201とカラーフィルタ201の間にはブラックマトリクス202が形成され、画像のコントラストを向上させている。なお、ブラックマトリクス202はTFTの遮光膜としての役割も有し、TFTに光電流が流れることを防止している。
【0039】
カラーフィルタ201およびブラックマトリクス202を覆ってオーバーコート膜203が形成されている。カラーフィルタ201およびブラックマトリクス202の表面は凹凸となっているために、オーバーコート膜203によって表面を平らにしている。また、オーバーコート膜203はカラーフィルタ201の顔料が液晶層300を汚染することを防止する役割も有する。オーバーコート膜203の上には、液晶分子301の初期配向を決めるための配向膜113が形成される。配向膜113の配向処理はTFT基板100側の配向膜113と同様、偏光紫外線による光配向法が用いられる。
【0040】
なお、以上の構成は例であり、例えば、品種によってTFT基板100における無機パッシベーション膜108が形成されていない場合もある。また、スルーホール130の形成プロセスも品種によって異なる場合がある。
【0041】
画素電極112の形状は、図2に限らず、例えば図4のような構造もあり得る。この場合は、スリット1121が横方向(x方向)とθ度、例えば5度乃至15度傾いており、櫛歯電極1122もスリット1121と同様、横方向(x方向)とθ度、例えば5度乃至15度傾いている。そして、誘電率異方性が正の液晶を使用した場合は、配向膜の配向方向ALはx方向である。すなわち、櫛歯電極1122が配向膜113の配向方向ALと、θ度の角をなしている点は図2と同じである。したがって、以後、本明細書では、画素電極112の方向は、櫛歯電極1122の方向として定義する。なお、図4の場合も、誘電率異方性が負の場合は、配向膜113の配向方向は90度回転したy方向となる。
【0042】
配向膜113はポリアミド酸あるいはポリアミド酸エステルをイミド化した膜が用いられる。図5は光配向を示す模式図である。光配向は、波長が250nm程度の偏光紫外線を、基板100に形成された配向膜113に照射することによって行われる。図5の中央の図は、基板100に形成された配向膜113が横方向(x方向)に配向軸を持つように、縦方向(y方向)に偏光軸UVPを有する紫外線を照射した状態を示す平面図である。以後、基板はTFT基板100で代表させるが、対向基板200の場合も同様である。また、TFT基板100を液晶表示パネル20と置き換えても良い。
配向膜は、図5で示すようなポリイミドがあらゆる方向にランダムに配列した構成となっている。図5の右側の図は、縦方向に主鎖を有するポリイミドPIに対して縦方向に偏光軸UVPを有する紫外線を照射した状態を示す模式図である。この場合、偏光紫外線によってシクロブタン環が開裂し、ポリイミドPIが分断される。
【0043】
一方、図5の上側の図は、横方向に主鎖を有するポリイミドPIに、縦方向に偏光軸UVPを有する紫外線を照射した状態を示す模式図である。この場合は、ポリイミドは分断されることはない。そうすると、配向膜113は、ポリイミドが分断されない方向である横方向(x方向)に配向軸ALを持つことになる。
【0044】
この状態の配向膜113が形成された基板をy軸に沿って湾曲すると、この方向ではポリイミドの分子は分断されているので、機械的に弱く、配向膜113の剥離等が生ずる。一方、この状態の配向膜113が形成された基板をx軸に沿って湾曲した場合は、ポリイミドPIは分断されていないので、機械的強度は低下していないため、配向膜113の剥離等は生じにくい。
【0045】
図6は、基板100に形成された配向膜113が縦方向(y方向)に配向軸ALを持つように、横方向(x方向)に偏光軸UVPを有する紫外線を照射した状態を示す平面図である。図6の中央の図は、y方向を湾曲軸として、基板の端部をx方向にロール状に湾曲させた状態を示している。このような偏光紫外線を照射した場合、横方向(x方向)に主鎖を有するポリイミドはシクロブタン環が開裂することによって分断される。
【0046】
図6の上側の図の構造式は、横方向(x方向)に主鎖を有するポリイミドを構成するシクロブタン環が偏光紫外線によって、開裂した状態を示している。また、波状の曲線PIはポリイミドの鎖が紫外線によって分断された状態を示している。この場合、横方向(x方向)に主鎖を有するポリイミドは、横方向(x方向)にも縦方向(y方向)にも強度が弱くなっている。
【0047】
一方、図6の右側の図は、縦方向に主鎖を有するポリイミドPIに対し、横方向に偏光軸UVPを有する紫外線を照射した状態を示す模式図である。この場合は、ポリイミドPIは分断されることはない。そうすると、配向膜113は、ポリイミドが分断されない方向である縦方向(y方向)に配向軸ALを持つことになる。
【0048】
一方、ポリイミドPIは、主鎖の方向と直角の方向には強度が弱い。図6の右側の波線PIはポリイミドの鎖を示すが、波線の延在方向には強度が大きいが、波線PIと直角方向には強度が弱い。したがって、図6では、ロール状あるいはS字型に湾曲する方向にはポリイミドの強度が弱く、配向膜113が基板から剥がれ易い構成となっている。
【0049】
図7は本発明の特徴を表す基板100の湾曲方向と配向膜113の配向軸ALの方向を示す模式図である。図7の中央の図は、y方向を湾曲軸として、基板100の端部をx方向にロール状に湾曲させた状態を示している。図7の中央の図面は、端部をロール状に湾曲させたに基板100において、基板100に形成された配向膜113を光配向する偏光紫外線の偏光軸UVPの方向と、配向膜113の配向軸ALの方向を示す平面図である。偏光紫外線の配向軸UVPは縦方向(y方向)であり、偏光紫外線によって配向処理をうけた配向膜113の配向軸ALは横方向(x方向)である。
【0050】
図7の上側の図は、横方向(x方向)に主鎖を有するポリイミドの構造式であるが、この方向に主鎖を有するポリイミドPIは偏光紫外線によって、シクロブタン環が開裂しない。したがって、配向膜113の配向軸ALはx方向となる。また、この方向に主鎖を有するポリイミドは強度が強いので、x方向に沿って湾曲してもポリイミドPIは剥離しにくい。
【0051】
図7の右側の図は、縦方向(y方向)に主鎖を有するポリイミドの構造式であるが、この方向に主鎖を有するポリイミドは偏光紫外線によって、シクロブタン環が開裂する。したがって、ポリイミドPIは縦方向には強度が弱い。
【0052】
図7の中央の図における波線PIは、横方向に主鎖を有するポリイミドPIは分断されていないことを示している。したがって、横方向(x方向)に沿ってロール状あるいはS字型に湾曲しても配向膜113はストレスに強いので、剥離することは無い。一方、縦方向に主鎖を有するポリイミドPIは断裂しているので、ストレスには弱くなっているが、この方向には、基板100は湾曲しないので、配向膜113の剥離は生じない。したがって、図7のような構成であれば、液晶表示装置を湾曲させても、配向膜113の剥離は生じにくい。
【0053】
ここで、配向膜113の配向軸ALの方向と液晶表示パネルの湾曲方向とが同じ方向であるということは、0度±10度以内で一致するということである。なお、この範囲は、より好ましくは、0度±1度以内の範囲である。実施例2以後で述べる、液晶表示パネル20が折り曲げられている場合についても同様である。また、別の表現をすれば、配向膜113の配向軸ALの方向と、液晶表示パネルの湾曲軸若しくは折り曲げ軸は、90度±10度以内で一致するともいえる。なお、この範囲は、より好ましくは90度±1度以内の範囲である。
【0054】
ところで、フレキシブル液晶表示装置の使用態様、フレキシブル液晶表示装置の仕様については、種々の態様が存在する。図8はフレキシブル液晶表示装置の使用態様を示す表である。使用態様には、フレキシブル液晶表示装置を湾曲させて使用する場合と、折りたたんで収容するような場合がある。湾曲して使用する場合としては、端部をロール状にして使用するような場合、S字型にする場合、円筒にして使用するような場合がある。いずれの態様においても、基板及び配向膜には、第1の方向には曲げストレスが生ずるが、第1の方向と直角方向には曲げストレスがかからない態様である。
【0055】
折りたたんで収容するような場合は、2つ折りと、4つ折り以上の場合がある。3つ折りの場合は、2つ折りで代表させることが出来る。4つ折り以上の場合は、4つ折りで代表させることが出来る。4つ折りの場合は、折り曲げ軸が2軸存在し、第1の軸と第2の軸が交差するということである。第1の軸と第2の軸が交差しない場合は、2つ折りに準じて考えればよい。
【0056】
図9図8のような使用態様に対応した、配向膜113に関連した仕様である。図9において、配向膜の配向方向行において、配向膜の配向方向がTFT基板内において、垂直方向あるいは水平方向のいずれか単一の場合、配向方向は単一ではあるが、配向方向が斜め方向である場合、TFT基板内に配向膜の領域が複数存在する場合がある。配向膜領域が複数存在する場合は、マスクを用いて光配向を行う。
【0057】
配向膜の配向方向に関連して、画素電極における櫛歯電極の長軸方向の向きが問題となる。すなわち、画素電極おける櫛歯電極の長軸方向の向きは、液晶の配向方向に関連して、液晶層にドメインを発生しないように選定する必要がある。画素電極の長軸方向が斜め方向の場合は、配向膜の配向方向が斜め方向である場合に対応する。
【0058】
また、配向膜の配向方向及び画素電極の長軸方向の向きは使用する液晶材料によって決める必要がある。液晶の誘電率異方性が正である場合、配向方向とθ度、例えば、5度至15度の方向に画素電極おける櫛歯電極の長軸方向を配置し、液晶の誘電率異方性が負である場合、配向方向と直角方向とθ度、例えば、5度乃至15度成す方向に画素電極おける櫛歯電極の長軸方向を配置する。
【0059】
図10は、誘電率異方性が正の液晶を用いた場合の、本発明による構成を記載したものである。図10において、基板100は、端部において、矢印RDで示すように、x方向にロールされるように、湾曲している。配向膜113の剥離を生じさせないように、配向膜113の配向方向ALはx方向となっている。
【0060】
図10の右側の図は、この場合の画素電極112の方向を示している。すなわち、画素電極112の櫛歯電極1122の方向は、配向膜113の配向軸ALの方向と角度θをなしている。これによって、液晶層におけるドメインの発生を防止するとともに、湾曲した場合の配向膜113の剥離を防止することが出来る。
【0061】
図11は、誘電率異方性が負の液晶を用いた場合の、本発明による構成を記載したものである。基板100の湾曲方向、配向膜113の配向軸AL等は図10同じである。すなわち、基板100を湾曲させる方向を、配向膜113の強度が強い方向とすることによって配向膜113の剥離を防止している。
【0062】
図11図10と異なる点は、画素電極112における櫛歯電極1122の延在方向が、配向膜113の配向軸ALと90度の方向に対してθだけ傾いている点である。これによって、誘電率異方性が負の場合において、ドメインの発生を防止している。つまり、図11の構成によれば、誘電率異方性が負の場合において、液晶表示装置を湾曲して使用しても、配向膜113の剥離を防止し、かつ、ドメインの発生を防止することが出来る。
【実施例2】
【0063】
本実施例は折りたたむことが可能な液晶表示装置について本発明を適用した場合の例である。図12は、折り曲げ線FLに沿って折りたたむことが出来る液晶表示装置の模式図である。図12は基板100の右側が折り曲げ線FLで折り曲げられて、x軸方向がX1からX2に変わったことを示している。以下に示す図も同様である。折り曲げるということは、非常に小さな曲率半径で液晶表示装置を曲げると同義である。つまり、折り曲げ線付近において、折り曲げ線と直角方向において、配向膜113に大きなストレスが生ずる。したがって、光配向をした後、x方向において、配向膜113の強度が劣化しないように、折り曲げ線FLと直角方向に配向膜113の配向軸ALがくるようにすればよい。
【0064】
つまり、図12の構成において、偏光紫外線の偏光軸UVP方向、配向膜113の配向軸AL方向は図10の場合と同様である。図12は誘電率異方性が正の場合の液晶を用いているので、画素電極112の櫛歯の延在方向は配向軸ALと角度θだけ傾いた方向になっている。
【0065】
図13は、折り曲げ線FLに沿って折りたたむことが出来る液晶表示装置において、誘電率異方性が負の液晶を使用した場合の模式図である。図13において、基板100の折り曲げ軸FL、折り曲げ方向、光配向に使用される偏光紫外線の偏光軸UVP方向、配向膜113の配向方向ALは図12と同じである。
【0066】
図13図12と異なる点は、画素電極112の櫛歯電極1121の方向が配向軸と90度をなす方向に対し、角度θだけ傾いている点である。この理由は、図11で説明したのと同様、液晶層におけるドメインの発生を防止することである。
【0067】
以上で説明したように、折りたたむことが出来る液晶表示装置においても、ドメインの発生を防止するとともに、配向膜113の剥がれを防止することが出来る。
【実施例3】
【0068】
実施例3は、液晶表示装置を2つ折りにする場合の他の構成を示すものである。図14は実施例3における1態様を示す模式図である。図14の左側の図は、図12等と同様、折り曲げ線FLに沿って折りたたむことが出来る液晶表示装置の模式図である。配向膜113の配向軸ALの方向と折り曲げ線FLの方向等も図12と同じである。
【0069】
図14図12と異なる点は、配向膜113に強いストレスがかかる、折り曲げ線FL付近は、光配向を行っていないことである。すなわち、配向膜113に光配向処理を行わなければその部分の配向膜113の強度は劣化が無い。したがって、配向膜113が剥離する危険はさらに小さくなる。図14において、配向膜113に光配向を行わない領域は折り曲げ線FLを含む、幅w1である。幅w1は例えば液晶表示パネルの厚さと同じである。
【0070】
つまり、折り曲げるということは、液晶表示パネルの厚さと同じ曲率半径で曲げると同義と考えることが出来る。したがって、ストレスが集中する幅w1の部分に光配向処理を行わなければよい。しかし、光配向処理を行わない部分は、バックライトからの光が漏れるので、対向基板200の対応する部分に遮光膜としてのブラックマトリクスを形成しておく必要がる。なお、図14における画素電極112の櫛歯電極1122の延在方向は、液晶が正の誘電率をもつ場合は図12と同様で、液晶が負の誘電率を持つ場合は図13と同様である。
【0071】
図14における他の態様は、図14の折り曲げ線FLを含む幅w1の領域には、他の領域よりも、弱い光配向を施しておくことである。光配向が弱ければ、液晶が十分配向されず、黒レベルが上昇する。すなわち、コントラストが低下する。しかし、液晶は粘性を持っているので、図14の右側の図において、幅w1の領域の両側の液晶が十分に配向されていれば、図14の幅w1の領域ではその両側の液晶の影響を受けて、他の領域と同様に配向される場合がありうる。したがって、対向基板200等にブラックマトリクスを形成しなくとも、コントラストの低下を抑えることが出来る場合もある。
【0072】
図14の第1の態様の特徴は、基板100全面に配向膜113を形成し、折り曲げ領域w1に対して紫外線による光配向処理を行わないことである。このためには、光配向処理をするときに、幅w1についてマスクを用い、紫外線を照射しないようにすればよい。一方、図14の第2の態様の特徴は、基板100全面に配向膜113を形成し、折り曲げ領域w1に対して、他の部分よりも弱い紫外線による光配向処理を行う必要がある。このような場合、使用する偏光紫外線に対して、半透過するようなマスクを使用することが出来る。このようなマスクは、いわゆるハーフトーン露光を行う場合に使用されている。
【0073】
図15は実施例3における他の態様を示す模式図である。図15の左側の図は、折り曲げ線FLに沿って折りたたむことが出来る液晶表示装置の模式図である。図15図14と異なる点は、配向膜113の配向方向が折り曲げ線と平行方向であり、この方向は図6等で説明したように、ポリイミドが断裂するために、配向膜113が弱くなっている方向である。すなわち、折り曲げ線FLに沿って基板100を折り曲げると配向膜が剥離しやすい。
【0074】
これを対策するために、図15では、右側の図に示すように、折り曲げ線FLを含み、例えば、幅w1の領域に光配向処理を施さない。光配向を施さなければこの部分は、配向膜113の機械的な強度が低下することはないので、配向膜113が剥離しにくい。配向膜113に配向処理を施さない部分では、バックライトからの光が漏れるので、この部分に対応して、対向基板200等に遮光膜であるブラックマトリクス等を形成する必要がある。
【0075】
折り曲げる場合は、ストレスが大きい領域は図15の右側の図の幅w1で示すように、液晶表示パネルの板厚程度と、範囲が限られるので、遮光する領域もわずかで済む。したがって、表示領域を大きく低下させるということは無い。製品の要求から、配向膜113の配向方向を図15のようにする必要がある場合があり、その場合には、本発明の構成を採用することによって、配向膜113の剥離を防止することが出来る。
【0076】
図15の場合も、図14と同様、基板100全面に配向膜113を形成し、折り曲げ線FLを含む領域w1に対して紫外線照射を行わないようなマスクを用いて光配向処理を行えばよい。
【実施例4】
【0077】
実施例4は、液晶表示装置を2つ折りにする場合のさらに他の構成を示すものである。図16は実施例3における1態様を示す模式図である。図16の左側の図は、図14等と同様、折り曲げ線FLに沿って折りたたむことが出来る液晶表示装置の模式図である。配向膜113の配向軸ALの方向と折り曲げ線FLの方向等も図14と同じである。
【0078】
図16の右側の図は本実施例の特徴を示す平面図である。図16の右側の図において、配向膜113は、折り曲げ線FLを含む幅w1の領域を除く、基板100全面に形成されている。すなわち、基板100において、幅w1の領域では、配向膜113ではなく、容量絶縁膜111が露出している。ストレスのかかる折り曲げ領域に配向膜113が存在していないので、液晶表示装置を折り曲げても、配向膜113が剥離することは無い。
【0079】
配向膜113は、フレキソ印刷、あるいは、インクジェット等で形成される場合が多い。フレキソ印刷の場合は、印刷版を図16のような形状にしておけばよい。また、インクジェットは、塗布範囲を図16のようにプログラムしておけばよい。一方、紫外線による光配向処理については、折り曲げ部分には、配向膜113が存在していないので、紫外線を照射しても、配向膜113が劣化することは無いので、マスクを用いずに基板全面に照射することも可能である。しかし、光配向する紫外線は波長が250nm程度のエネルギーの大きい紫外線なので、露出している容量絶縁膜111、あるいは、対向基板200側であれば、オーバーコート膜203が劣化する危険もある。これを防止するには、配向膜113が形成されていない幅w1の領域に対してマスクを行い、紫外線照射を避けるようにしてもよい。
【0080】
図17は実施例4における他の態様を示す模式図である。図17の左側の図は、折り曲げ線FLに沿って折りたたむことが出来る液晶表示装置の模式図である。図17図16と異なる点は、配向膜113の配向方向ALが折り曲げ線と平行方向であり、この方向は図6等で説明したように、ポリイミドが断裂するために、配向膜113が弱くなっている方向である。すなわち、折り曲げ線FLに沿って基板100を折り曲げると配向膜113が剥離しやすい。
【0081】
これに対して、図17では、右側の図に示すように、折り曲げ線FLを含み、例えば、幅w1の領域に配向膜113を形成しない。配向膜113が存在しなければ、配向膜113の劣化による配向膜剥がれもない。図17の右側に示すような配向膜113の形成方法は、図16において説明したのと同様である。図16の右側の図と図17の右側の図が異なる点は、配向膜113の配向方向のみである。製品の要求から、配向膜113の配向方向を図17のようにする必要がある場合があり、その場合には、本発明の構成を採用することによって、配向膜の剥離を防止することが出来る。
【実施例5】
【0082】
本実施例は、液晶表示装置を4つ折りにする場合であって、第1の折り曲げ線FL1と第2の折り曲げ線FL2が交差する場合の構成である。4つ折りにする場合であっても第1の折り曲げ線FL1と第2の折り曲げ線FL2が平行な場合は、実施例2乃至4の2つ折りと同じ構成でよい。
【0083】
図18は、実施例5における第1の態様を示す模式図である。図18の左側の図は、4つ折りの態様を示す斜視図である。図18の左側の図において、液晶表示装置が、第1の折り曲げ線FL1及び第2の折り曲げ線FL2によって、図の湾曲した矢印のように折り曲げられる。そして、第1の折り曲げ線FL1と第2の折り曲げ線FL2が交差している。
【0084】
図18は基板100の右側が折り曲げ線FL1で折り曲げられて、x軸方向がX1からX2に変わったことを示している。以下に示す図も同様である。また、図18は基板100の下側が折り曲げ線FL2で折り曲げられて、y軸方向がY1からY2に変わったことを示している。以下に示す図も同様である。
【0085】
図18において、折り曲げ線FL1、FL2で区画された4つの領域の配向膜は全て同じ方向であるx方向に光配向を受けている。この配向方向は、図7等で説明したように、折り曲げ線FL1に対しては、配向膜113の剥離は生じにくい。一方、この配向方向は、折り曲げ線FL2に対しては、配向膜113の剥離が生じやすい。
【0086】
図18の右側の図は、これを対策する配向膜113の配向処理を示す平面図である。図18の右側の図において、配向膜113は基板100全面に形成されている。光配向処理は、配向膜113の配向軸ALがx方向になるように配向処理を受けている。図18の特徴は、折り曲げ線FL2を含む領域w1に対して、光配向処理を行っていない。したがって、この領域の配向膜113の強度は劣化していないために、折り曲げられても配向膜113は剥離しにくい。
【0087】
このような図18の構成を実現する製造方法、効果等は実施例3において説明したのと同様である。したがって、図18の構成によれば、4つ折りにした場合であっても、配向膜113のはがれを抑制することが出来る。なお、配向膜113に対し、配向処理をしていない幅w1の領域には、ブラックマトリクス等による遮光膜を形成する点についても、実施例3で説明したのと同様である。
【0088】
図19は、実施例5における第2の態様を示す模式図である。図19の左側の図は、液晶表示装置の折り曲げの態様を示す斜視図であるが、図18の左側の図と同じである。すなわち、図19の左側の図の構成は、第2の折り曲げ線FL2付近において、配向膜113がはがれやすい。
【0089】
図19の右側の図は、本態様の特徴を示す平面図である。図19の右側の図において、第2の折り曲げ線FL2を含む幅w1の領域には、配向膜113が形成されていない。すなわち、この領域には配向膜113が存在していないので、配向膜113が剥離することは無い。この態様は、液晶表示装置を4つ折りする場合に、実施例4の構成を応用したものである。配向膜113の形成方法、配向処理等は実施例4で説明したのと同様である。また、配向膜113が形成されていない幅w1の領域には、ブラックマトリクス等による遮光膜を形成する点についても、実施例4で説明したのと同様である。
【0090】
図20は、実施例5における第3の態様を示す模式図である。図20の左側の図は、液晶表示装置の折り曲げの態様を示す斜視図であるが、図18の左側の図と同じである。図20の右側の図は、本態様の特徴を示す平面図である。すなわち、配向膜113は全面に形成されているが、折り曲げ線FL1およびFL2を含む幅w1の領域には、光配向処理を行わない。光配向処理を行わなければ配向膜強度の劣化は無いので、配向膜113の剥離も生じない。
【0091】
図20の構成は、実施例3で説明した構成を適用することによって形成することが可能である。また、配向膜113に対し、配向処理をしていない幅w1の領域には、ブラックマトリクス等による遮光膜を形成する点についても、実施例3で説明したのと同様である。
【0092】
なお、図20の場合、折り曲げストレスがかかる領域は、折り曲げ線FL1、FL2を含む幅w1の領域のみである。したがって、配向膜の配向方向ALは、図20に示すx方向である場合のみでなく、y方向である場合にも適用することが出来る。すなわち、製品仕様によって、配向膜の配向方向をy方向にする場合であっても図20の構成を応用することが出来る。
【0093】
図21は、実施例5における第4の態様を示す模式図である。図21の左側の図は、液晶表示装置の折り曲げの態様を示す斜視図であるが、図20の左側の図と同じである。図21の右側の図は、本態様の特徴を示す平面図である。すなわち、折り曲げ線FL1およびFL2を含む幅w1の領域には、配向膜113を形成しない。配向膜113が存在しなければ配向膜強度の劣化は無いので、配向膜113の剥離も生じない。
【0094】
図21の構成は、実施例4で説明した構成を適用することによって形成することが可能である。また、配向膜113が存在していない幅w1の領域には、ブラックマトリクス等による遮光膜を形成する点についても、実施例4で説明したのと同様である。
【0095】
なお、図21の場合も、折り曲げストレスがかかる領域は、折り曲げ線FL1、FL2を含む幅w1の領域のみである。したがって、配向膜113の配向方向は、図21に示すx方向である場合のみでなく、y方向である場合にも適用することが出来る。すなわち、製品仕様によって、配向膜の配向方向をy方向にする場合であっても図21の構成を応用することが出来る。
【実施例6】
【0096】
本実施例は、液晶表示装置を4つ折りにする場合であって、第1の折り曲げ線と第2の折り曲げ線が交差する場合の他の構成である。実施例6はこのような4つ折りの場合であっても、第1の折り曲げ線FL1、第2の折り曲げ線FL2に沿った領域についても、他の領域と同様に配向処理を行うことが出来る構成である。
【0097】
図22の左側の図は、液晶表示装置の折り曲げの態様を示す斜視図であるが、折り曲げ状態は、実施例3における図18等の左側の図と同じである。図22の左側の図が、実施例3の図18等の左側の図と異なっている点は、配向膜113の機械的が強い方向である、配向膜113の配向方向が、基板の辺に対して45度となっている点である。これによって、折り曲げ線FL1、FL2付近における配向膜113の強度が弱い部分を無くし、配向膜113を基板全面に均一に形成して、かつ、4つ折りを可能としている。
【0098】
図22の右上側の図は、本実施例における配向膜113の配向方向ALを示す平面図である。図22において、配向方向ALは、点線で示す折り曲げ線FL2に対してη傾いている。ηの中心値は45度である。ηの範囲は、好ましくは、45度±1度であるが、45度±10度までは許容可能である。
【0099】
図22の右下の図は、誘電率異方性が正の場合の液晶を使用したときの画素電極112の形状を示したものである。図22において、画素電極112の櫛歯電極1121の延在方向は配向膜113の配向方向ALに対してθだけずれでいる。θの値は、5度乃至15度である。これは、実施例1等で説明したように、液晶層におけるドメインの発生を防止するためである。
【0100】
図23は、誘電率異方性が負の液晶を使用した場合に、液晶表示装置を4つ折りにする場合の構成を示す図である。図23の左側の図は、図22の左側の図と同じである。また、図23の右上の図も図22の右上の図と同じである。すなわち、折り曲げ線FL1およびFL2に沿って液晶表示装置を折り曲げる場合の配向膜113の配向方向ALが折り曲げ線FL2に対してηの角度となっている。
【0101】
図23の右下の図は、誘電率異方性が負の液晶に対応する画素電極112の形状である。画素電極112の櫛歯電極1121の延在方向は、配向方向ALに対する90度の方向からθだけずれている。θの値は、5度乃至15度である。これは、実施例1等で説明したように、液晶層におけるドメインの発生を防止するためである。
【0102】
このように、実施例6の構成においては、液晶表示装置を4つ折りにする場合においても、折り曲げ線に沿った所定の幅、例えばw1に対して、配向膜113を光配向処理しない、あるいは、配向膜113を形成しないというような構成をとる必要がない。したがって、基板100に対し、配向膜113を均一に塗布し、かつ、均一に光配向処理することが出来る。これに対応した、ブラックマトリクス等による遮光膜の形成も不要となる。ただし、第1の折り曲げ線FL1及び第2の折り曲げ線Fl2に沿った配向膜の強さは、配向膜の強度が弱い方向と強い方向の中間的な値となる。
【0103】
以上の説明は、主として、TFT基板100側に形成された配向膜113について行ったが、対向基板200側に形成された配向膜113についても同様である。ただし、対向基板200側に形成した配向膜113の下地膜は、図3に示すように、オーバーコート膜203である。また、TFT基板100側の配向膜113と対向基板側の配向膜113の配向方向ALは一致している。
【0104】
以上の説明では、IPS方式の液晶表示装置はコモン電極110の上側に画素電極112が形成されているとして説明したが、本発明は、画素電極112の上にスリットを有するコモン電極110が形成されている場合のIPS方式の液晶表示装置についても適用することが出来る。この場合は、画素電極112の櫛歯電極1121が延在する方向が、コモン電極110のスリットが延在方向であるとして置き換えればよい。
【符号の説明】
【0105】
11…走査線、 12…映像信号線、 13…画素、 20…液晶表示パネル、 30…表示領域、 40…端子領域、 100…TFT基板、 101…第1下地膜、 102…第2下地膜、 103…半導体層、 104…ゲート絶縁膜、 105…ゲート電極、 106…層間絶縁膜、 107…コンタクト電極、 108…無機パッシベーション膜、 109…有機パッシベーション膜、 110…コモン電極、 111…容量絶縁膜、 112…画素電極、 113…配向膜、 120…第1スルーホール、 130…第2スルーホール、 140…第3スルーホール、 200…対向基板、 201…カラーフィルタ、 202…ブラックマトリクス、 203…オーバーコート膜、 300…液晶層、 301…液晶分子、 500…フレキシブル配線基板、 1121…スリット、 1122…櫛歯電極、 AL…配向方向、 D…ドレイン部、 S…ソース部、 FL…折り曲げ線、 LDD…Light Doped Drain、 PI…ポリイミド、 UVP…偏光紫外線の偏光軸、 RD…ロール方向
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23