IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人 新潟大学の特許一覧

特許7039012異常運転行動検出装置、異常運転行動検出方法、及びプログラム
<>
  • 特許-異常運転行動検出装置、異常運転行動検出方法、及びプログラム 図1
  • 特許-異常運転行動検出装置、異常運転行動検出方法、及びプログラム 図2
  • 特許-異常運転行動検出装置、異常運転行動検出方法、及びプログラム 図3
  • 特許-異常運転行動検出装置、異常運転行動検出方法、及びプログラム 図4
  • 特許-異常運転行動検出装置、異常運転行動検出方法、及びプログラム 図5
  • 特許-異常運転行動検出装置、異常運転行動検出方法、及びプログラム 図6
  • 特許-異常運転行動検出装置、異常運転行動検出方法、及びプログラム 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-11
(45)【発行日】2022-03-22
(54)【発明の名称】異常運転行動検出装置、異常運転行動検出方法、及びプログラム
(51)【国際特許分類】
   G08G 1/16 20060101AFI20220314BHJP
   B60W 40/09 20120101ALI20220314BHJP
   B60W 40/105 20120101ALI20220314BHJP
【FI】
G08G1/16 C
B60W40/09
B60W40/105
【請求項の数】 6
(21)【出願番号】P 2018040255
(22)【出願日】2018-03-06
(65)【公開番号】P2019153257
(43)【公開日】2019-09-12
【審査請求日】2021-01-07
(73)【特許権者】
【識別番号】304027279
【氏名又は名称】国立大学法人 新潟大学
(74)【代理人】
【識別番号】100095407
【弁理士】
【氏名又は名称】木村 満
(74)【代理人】
【識別番号】100175019
【弁理士】
【氏名又は名称】白井 健朗
(74)【代理人】
【識別番号】100195648
【弁理士】
【氏名又は名称】小林 悠太
(74)【代理人】
【識別番号】100104329
【弁理士】
【氏名又は名称】原田 卓治
(74)【代理人】
【識別番号】100132883
【弁理士】
【氏名又は名称】森川 泰司
(72)【発明者】
【氏名】今村 孝
(72)【発明者】
【氏名】戸部 那菜瀬
【審査官】上野 博史
(56)【参考文献】
【文献】特開2009-001096(JP,A)
【文献】特開2009-048406(JP,A)
【文献】特開2007-176396(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G08G 1/16
B60W 40/09
B60W 40/105
(57)【特許請求の範囲】
【請求項1】
車両を運転する運転者による加減速操作に関する異常行動を検出する異常運転行動検出装置であって、
前記車両の車速を取得する取得手段と、
前記取得手段が取得した車速と、所定時点の車速を推定するための予め定めた自己回帰モデルとを示す情報を記憶する記憶手段と、
前記自己回帰モデルと、前記所定時点よりも前の互いに異なる時点における複数の車速とに基づいて前記所定時点の車速を推定する推定手段と、
前記取得手段が取得した車速と、前記推定手段が推定した前記所定時点の車速との差分が、予め定めた閾値を超えた場合に前記異常行動を検出する検出手段と、を備え、
前記自己回帰モデルの次数は予め定められ、
前記推定手段は、前記自己回帰モデルに、前記所定時点よりも前の互いに異なる時点における前記次数分の車速を代入して前記所定時点の車速を推定する、
ことを特徴とする異常運転行動検出装置。
【請求項2】
前記検出手段は、前記取得手段が前記所定時点よりも前の時点で取得した車速と、前記推定手段が推定した前記所定時点の車速との差分が、前記閾値を超えた場合に前記異常行動を検出する、
ことを特徴とする請求項1に記載の異常運転行動検出装置。
【請求項3】
前記自己回帰モデルは、前記車両に予め定めた経路を前記異常行動が生じていない状態で複数回走行させた際の車速の時系列に基づいて予め定められる、
ことを特徴とする請求項1又は2に記載の異常運転行動検出装置。
【請求項4】
前記車両はシミュレータによる仮想上の車両であり、前記シミュレータに備えられる、
ことを特徴とする請求項1乃至のいずれか1項に記載の異常運転行動検出装置。
【請求項5】
車両を運転する運転者による加減速操作に関する異常行動を検出する異常運転行動検出方法であって、
前記車両の車速を取得する取得ステップと、
所定時点の車速を推定するための予め定めた自己回帰モデルと、前記所定時点よりも前の互いに異なる時点における複数の車速とに基づいて前記所定時点の車速を推定する推定ステップと、
前記取得ステップで取得した車速と、前記推定ステップで推定した前記所定時点の車速との差分が、予め定めた閾値を超えた場合に前記異常行動を検出する検出ステップと、を備え、
前記自己回帰モデルの次数は予め定められ、
前記推定ステップでは、前記自己回帰モデルに、前記所定時点よりも前の互いに異なる時点における前記次数分の車速を代入して前記所定時点の車速を推定する、
ことを特徴とする異常運転行動検出方法。
【請求項6】
車両を運転する運転者による加減速操作に関する異常行動を検出するためのプログラムであって、
コンピュータを、
前記車両の車速を取得する取得手段、
所定時点の車速を推定するための予め定めた自己回帰モデルと、前記所定時点よりも前の互いに異なる時点における複数の車速とに基づいて前記所定時点の車速を推定する推定手段、
前記取得手段が取得した車速と、前記推定手段が推定した前記所定時点の車速との差分が、予め定めた閾値を超えた場合に前記異常行動を検出する検出手段、
として機能させ、
前記自己回帰モデルの次数は予め定められ、
前記推定手段は、前記自己回帰モデルに、前記所定時点よりも前の互いに異なる時点における前記次数分の車速を代入して前記所定時点の車速を推定する、
プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両を運転する運転者による加減速操作に関する異常行動を検出する異常運転行動検出装置、異常運転行動検出方法、及びプログラムに関する。
【背景技術】
【0002】
車両の運転における安全対策として、加速度センサや磁気センサにより異常を検知して、監視カメラにより車両周辺を撮像するドライブレコーダ(特許文献1、2)や、車速センサ、ヨーレートセンサ、ブレーキ圧センサ等の各種センサにより異常を検知して、安全運転支援を行う技術(特許文献3)が知られている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2007-88541号公報
【文献】特開2007-66194号公報
【文献】特開2009-29343号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1~3に開示された技術では、異常検出のための多数のセンサを車両に搭載する必要があるため、異常検出システムが複雑である。
【0005】
本発明は、上記実情に鑑みてなされたものであり、簡易な構成で、運転者による加減速操作に関する異常行動を検出することができる異常運転行動検出装置、異常運転行動検出方法、及びプログラムを提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するため、本発明の第1の観点に係る異常運転行動検出装置は、
車両を運転する運転者による加減速操作に関する異常行動を検出する異常運転行動検出装置であって、
前記車両の車速を取得する取得手段と、
前記取得手段が取得した車速と、所定時点の車速を推定するための予め定めた自己回帰モデルとを示す情報を記憶する記憶手段と、
前記自己回帰モデルと、前記所定時点よりも前の互いに異なる時点における複数の車速とに基づいて前記所定時点の車速を推定する推定手段と、
前記取得手段が取得した車速と、前記推定手段が推定した前記所定時点の車速との差分が、予め定めた閾値を超えた場合に前記異常行動を検出する検出手段と、を備え、
前記自己回帰モデルの次数は予め定められ、
前記推定手段は、前記自己回帰モデルに、前記所定時点よりも前の互いに異なる時点における前記次数分の車速を代入して前記所定時点の車速を推定する。
【0007】
前記検出手段は、前記取得手段が前記所定時点よりも前の時点で取得した車速と、前記推定手段が推定した前記所定時点の車速との差分が、前記閾値を超えた場合に前記異常行動を検出する、ようにしてもよい。
【0009】
前記自己回帰モデルは、前記車両に予め定めた経路を前記異常行動が生じていない状態で複数回走行させた際の車速の時系列に基づいて予め定められる、ようにしてもよい。
【0010】
前記車両はシミュレータによる仮想上の車両であり、前記異常運転行動検出装置は、前記シミュレータに備えられていてもよい。
【0011】
上記目的を達成するため、本発明の第2の観点に係る異常運転行動検出方法は、
車両を運転する運転者による加減速操作に関する異常行動を検出する異常運転行動検出方法であって、
前記車両の車速を取得する取得ステップと、
所定時点の車速を推定するための予め定めた自己回帰モデルと、前記所定時点よりも前の互いに異なる時点における複数の車速とに基づいて前記所定時点の車速を推定する推定ステップと、
前記取得ステップで取得した車速と、前記推定ステップで推定した前記所定時点の車速との差分が、予め定めた閾値を超えた場合に前記異常行動を検出する検出ステップと、を備え、
前記自己回帰モデルの次数は予め定められ、
前記推定ステップでは、前記自己回帰モデルに、前記所定時点よりも前の互いに異なる時点における前記次数分の車速を代入して前記所定時点の車速を推定する。
【0012】
上記目的を達成するため、本発明の第3の観点に係るプログラムは、
車両を運転する運転者による加減速操作に関する異常行動を検出するためのプログラムであって、
コンピュータを、
前記車両の車速を取得する取得手段、
所定時点の車速を推定するための予め定めた自己回帰モデルと、前記所定時点よりも前の互いに異なる時点における複数の車速とに基づいて前記所定時点の車速を推定する推定手段、
前記取得手段が取得した車速と、前記推定手段が推定した前記所定時点の車速との差分が、予め定めた閾値を超えた場合に前記異常行動を検出する検出手段、
として機能させ、
前記自己回帰モデルの次数は予め定められ、
前記推定手段は、前記自己回帰モデルに、前記所定時点よりも前の互いに異なる時点における前記次数分の車速を代入して前記所定時点の車速を推定する。
【発明の効果】
【0013】
本発明によれば、簡易な構成で、運転者による加減速操作に関する異常行動を検出することができる。
【図面の簡単な説明】
【0014】
図1】本発明の一実施形態に係る異常運転行動検出装置の構成を示すブロック図である。
図2】本発明の一実施形態に係る自己回帰モデルの構造を示す図である。
図3】運転行動計測に使用したコースの一例を示す図である。
図4図3に示すコースにおける車速実測値の一例を示すグラフの図である。
図5】本発明の一実施形態に係る自己回帰モデルの推定精度を説明するためのグラフの図である。
図6】車速の実測値と推定値の差分を示すグラフの図である。
図7】本発明の一実施形態に係る異常行動検出処理を示すフローチャートである。
【発明を実施するための形態】
【0015】
本発明の一実施形態について図面を参照して説明する。
【0016】
本実施形態に係る異常運転行動検出装置1は、図1に示すように、例えば自動四輪車である車両2に搭載される、又は、仮想上の車両2の運転を可能とするシミュレータに備えられる。
【0017】
異常運転行動検出装置1は、車両2が実車両であるか仮想上の車両であるかに関わらず適用可能な構成であるため、以下では、断りがない場合は、車両2が実車両であるか仮想上の車両であるかの区別をせずに各種の構成を説明する。
【0018】
異常運転行動検出装置1は、車両2を運転する運転者による加減速操作に関する異常行動を検出するものであり、制御部10と、報知部20と、を備える。
【0019】
制御部10は、マイクロコンピュータから構成され、異常運転行動検出装置1の各部の動作を制御する。制御部10は、動作プログラムや固定データを記憶するROM(Read Only Memory)や各種演算結果などを一時的に保存するRAM(Random Access Memory)等から構成される記憶部11と、CPU(Central Processing Unit)と、報知部20を駆動する駆動回路と、入出力インターフェース等を備える。記憶部11のROMには、後述するように、異常行動検出処理を実行するためのプログラムPを含む各種の動作プログラムのデータや、自己回帰モデルMを示すデータなどが予め記憶されている。以下、自己回帰モデルを「AR(AutoRegressive)モデル」とも言う。
【0020】
制御部10は、車速取得手段12、車速推定手段13、及び異常行動検出手段14としての機能を備える。
【0021】
車速取得手段12は、車両2が実車両の場合は、例えばCAN(Controller Area Network)を介して、車速センサ3からの車速信号Sを取得し、取得した車速信号Sに基づき車速を算出する。車両2に搭載される車速センサ3は、例えば、車輪と同期して回転する被検出部(例えば、ギアの凹凸や金属突起)を検出するホール素子からなり、車速に応じた周波数の車速信号Sを制御部10に供給する。制御部10は、車速取得手段12としての機能で、取得した車速信号SをA/D(Analog to Digital)変換し、車速信号Sの周波数に応じた車速を所定の制御周期で算出(取得)し、記憶部11に記憶する。なお、車両2がシミュレータによる仮想上の車両の場合は、車速取得手段12は、例えば、シミュレータの使用者(被験者)によるアクセルペダルの操作量に応じた車速を取得すればよい。
【0022】
車速推定手段13は、車速取得手段12が取得した車速と、予め記憶部11に記憶されたARモデルMとに基づいて、所定時点の車速を推定する。
【0023】
ここで、本実施形態における、図2に示す構造の時系列ARモデルMについて説明する。ある時刻tにおける車速を示す時系列情報をV(t)とする。V(t)より前の(過去の)時系列情報については、1サンプル前の時系列情報をV(t)・z-1とし、係数aを乗じる。同様にして、nサンプル前の時系列情報をV(t)・z-nとし、係数aを乗じる。これら過去の時系列情報をV(t)に総和したものを、V(t)の次サンプル時刻の出力Var(t)として、ARモデルMは構成されている。ARモデルMは、次の式で表される。
Var(t)=V(t)+a・V(t)・z-1+・・・+a・V(t)・z-n
ARモデルMのモデル次数(nの最大値)は、赤池情報量基準(AIC:Akaike's Information Criterion)に基づき、次数を増加させたときのモデル出力値が飽和する値を予め定めて、適用する。
【0024】
ARモデルMのモデル次数nや係数a~aの決定は、図3に示すようなコース(StartからGoalまでの経路)を、複数の運転者に車両2を運転させることによって得られる車速の実測値に基づいて行う。
【0025】
一実施例として、本願発明者らは、図3に示すコースをドライビングシミュレータ上に構築し、複数の被験者に仮想上の車両2を運転させることによって運転行動を計測、つまり、車速を実測した。なお、図3に示す「×」の印は、人や車両の予期せぬ飛び出しを設定した「飛び出し刺激」の発生箇所を示しているが、ARモデルMの構築にあたっては、コースに飛び出し刺激を全く発生させない状態(つまり、異常運転行動が発生する蓋然性が低い通常状態)で被験者に車両2を運転させる。
【0026】
図4に、ある被験者による車速実測値の時系列情報のグラフを示す。当該グラフは、車速実測値としてのV(t)をサンプル時刻毎にプロットしたものであり、サンプル時刻は、0.01[s]である。このようにして得られる被験者の人数分の車速実測値の時系列情報から、前記のAICに基づき、ARモデルMのモデル次数や係数を予め定める。シミュレーションによる実施例では、十数人分の被験者の実測値に基づき、モデル次数nは、7次が適したものとなった(n=7)。
【0027】
車速推定手段13は、上記のように決定されたARモデルMに、車速取得手段12が現在(時刻tにおいて)取得した車速情報としてのV(t)と、記憶部11に記憶されている時刻tよりも前のnサンプル分の車速(V(t)・z-1、・・・、V(t)・z-n)とを代入し、時刻tの次のサンプル時刻における車速推定値Var(t)を算出する。つまり、次サンプル時刻における車速を推定する。
【0028】
ここで、図5に、図3に示すコースにおけるシミュレーションによる車速の実測値と、モデル次数nを7次(n=7)としたARモデルMに基づいて車速推定手段13が算出した車速の推定値との比較結果のグラフを示す。図5に示すグラフでは、車速の実測値と推定値とが区別不能な程、両者の挙動が一致している。これにより、ARモデルMが充分な推定精度を有することが分かる。なお、n=7に相当する7サンプル分は、0.07[s]間に相当する。なお、本説明では、図3に示すコースをドライビングシミュレータ上に構築し、複数の被験者に仮想上の車両2を運転させることによって車速を実測し、実測した車速に基づきARモデルMを決定する例を挙げたが、予め定められた実際のコース(経路)を、運転者による加減速操作に関する異常行動が生じていない状態で複数回走行させた際の車速の時系列に基づいてARモデルMを決定してもよいことは、勿論である。
【0029】
異常行動検出手段14は、車速取得手段12が時刻tにおいて取得した車速実測値V(t)と、前記のように車速推定手段13がARモデルMに基づいて推定した車速推定値Var(t)との差分が、予め記憶部11に記憶した所定の閾値を超えた場合に、運転者による加減速操作に関する異常行動を検出する。
【0030】
ここで、図3に示すコースをシミュレータ上に構築した場合における異常検出手法の具体例を説明する。図3に示すように、コース上の「×」を付した複数箇所において飛び出し刺激を発生させつつ、被験者が当該コースを運転した場合の車速を実測する。車速実測値は、車速取得手段12が所定のサンプル時刻毎に取得した車速であって、記憶部11に記憶される。なお、これら複数箇所の各々において飛び出し刺激が発生するか否かは、被験者毎にランダムに設定する。つまり、実際の車両2で所定の経路を運転する場合に、ランダムに発生する可能性がある、人や車両の飛び出しを考慮した状態で車速を実測する。したがって、当該異常検出手法は、車両2が実車両であるか仮想上の車両であるかに関わらず適用可能である。
【0031】
また、車速推定手段13は、車速取得手段12が所定のサンプル時刻毎に取得し、記憶部11に記憶した車速と、予め定めたARモデルMとに基づき、車速の実測値V(t)を取得した時刻tの次のサンプル時刻における車速推定値Var(t)を算出する。
【0032】
前述の通り、ARモデルMは、コース上に飛び出し刺激を全く発生させずに構築したものであるため、ARモデルMに基づいて算出される車速推定値Var(t)の時系列は、異常運転行動が発生する蓋然性が低い通常状態と仮定することができる。なお、車速推定値Var(t)を算出するための実測値V(t)に含まれる急加速や急減速の瞬間的な運転行動は、全体の運転行動に対してごく僅かであるため、ARモデルMに基づいて算出される車速推定値Var(t)の時系列は、通常状態と見なすことができる。
【0033】
一方、実測値V(t)に少しでも急加速や急減速を行った結果が含まれると、実測値V(t)と車速推定値Var(t)の差分を求めた場合、瞬間的な運転行動を行ったタイミングの近傍において、当該差分が極大化する。異常行動検出手段14は、この極大値の発生を、予め定めた閾値により検出することで、通常状態から逸脱した異常行動を検出する。
【0034】
図6に、車速の実測値V(t)と推定値Var(t)の差分の時系列のグラフを示す。同図中のT1は、差分を絶対値で考えた場合の極大値を検出するための閾値の一例であり、T2は、異常行動を検出するための異常閾値の一例である。T1とT2とを絶対値で考えた場合は、T2>T1となる。同図において、差分が異常閾値T2を超えた箇所は、飛び出し刺激を与えた箇所や、コース上の信号変化などによって加減速が生じた箇所となっており、運転者による異常行動が検出されていることが分かる。なお、同図に示した極大値を検出するための閾値T1と、異常閾値T2とは、あくまで一例であり、実験により適切な値を任意に定めることができる。
【0035】
報知部20は、異常行動検出手段14が異常行動を検出した際に、加減速操作が異常である旨を車両2の運転者に画像、音声等により報知する。報知部20としては、LCD(Liquid Crystal Display)、OLED(Organic Light Emitting Diodes)等からなる画像表示装置や、スピーカ等を採用することができ、例えば「アクセル操作、危険!」といった加減速操作が異常である旨を示す画像を表示したり、同内容を示す音声や警告音を出力したりすることで、報知を行う。
【0036】
異常運転行動検出装置1の構成の説明は以上である。続いて、図7を参照して、制御部10が記憶部11に記憶されたプログラムPに従って制御部10が実行する異常行動検出処理を説明する。
【0037】
異常行動検出処理を開始すると、制御部10の車速取得手段12は、現在の時刻tにおける車速の実測値V(t)を取得し、記憶部11に記憶する(ステップS1)。異常行動検出処理を繰り返し実行することで、所定のサンプル時刻毎における実測値V(t)が記憶部11に記憶される。
【0038】
続いて、制御部10の車速推定手段13は、時刻tで取得した実測値V(t)と、過去の所定数(次数n)の実測値であるV(t)・z-1、・・・、V(t)・z-nとを、ARモデルMに代入し、時刻tの次のサンプル時刻における車速推定値Var(t)を算出し、記憶部11に記憶する(ステップS2)。例えば、次数が7(n=7)の場合は、時刻tの1サンプル前から7サンプル前までの実測値V(t)をARモデルMに代入する。なお、記憶部11に次数n分の過去の実測値V(t)が未だ記憶されていない場合は、例えば、ステップS1を繰り返し実行するか、ステップS1から後述のステップS5へ処理をスキップするようにすればよい。
【0039】
続いて、制御部10の異常行動検出手段14は、ステップS1で取得した実測値V(t)と、ステップS2で算出した車速推定値Var(t)の差分(絶対値)を算出する(ステップS3)。
【0040】
続いて、異常行動検出手段14は、ステップS3で算出した差分が極大値を示すか否かを、予め記憶部11に記憶した閾値T1に基づいて判別する(ステップS4)。具体的には、算出した差分が閾値T1以下である場合には、異常行動検出手段14は、差分が極大値を示していないと判別し(ステップS4;No)、運転行動に異常がないことを検出する(ステップS5)。
【0041】
一方で、算出した差分が閾値T1より大きい場合は、異常行動検出手段14は、差分が極大値を示していると判別し(ステップS4;Yes)、ステップS6に処理を進める。
【0042】
ステップS6で、異常行動検出手段14は、ステップS3で算出した極大値を示す差分が、予め記憶部11に記憶した異常閾値T2(T2>T1)より大きいか否かを判別する。差分が異常閾値T2以下である場合は(ステップS6;No)、運転行動に異常がないことを検出する(ステップS5)。一方で、差分が異常閾値T2より大きい場合は(ステップS6;Yes)、運転行動の異常を検出し(ステップS7)、当該異常の存在を報知部20により運転者に報知する。制御部10は、以上の異常行動検出処理を終了指示があるまで繰り返し実行する。
【0043】
本発明は以上の実施形態及び図面によって限定されるものではない。本発明の要旨を変更しない範囲で、適宜、変更(構成要素の削除も含む)を加えることが可能である。以下に種々の変形の一例を説明する。
【0044】
異常行動検出処理のステップS5で運転行動に異常がないことを検出した場合に、異常がない旨(つまり、通常運転である旨)を報知部20により報知するようにしてもよい。また、ステップS6で極大値が異常閾値T2よりも大きい場合に(ステップS6;No)、運転行動に異常がない(ステップS5)とはせずに、異常の前段階としての警告状態を検出するようにしてもよい。そして、報知部20によって当該警告が生じた旨を、例えば「注意して運転しましょう」といった内容を示す画像を表示したり、同内容を示す音声や警告音を出力したりしてもよい。
【0045】
また、以上の異常行動検出処理では、極大値を検出するための閾値T1を設けた例を説明したが、ステップS4の処理を削除し、ステップS3に続いてステップS6の判別処理を実行するようにしてもよい。つまり、閾値T1を用いず、異常閾値T2のみを用いて運転行動が異常であるか否かを判別するようにしてもよい。
【0046】
また、以上の異常行動検出処理では、時刻tで取得した実測値V(t)と、時刻tの次のサンプル時刻における車速の推定値Var(t)との差分に基づいて異常を検出する例を示したが、これに限られない。前述のように自己回帰モデルMに基づいて算出される推定値の時系列は、通常状態と見做せ、急激な変化が少なく、また、サンプリング周期は、例えば0.01[s]といったごく短い間隔であるため、時刻tで取得した実測値V(t)と、時刻tにおける車速の推定値Var(t)(つまり、時刻tよりも前のサンプル時刻において取得した複数の実測値に基づき算出した推定値)との差分に基づいて異常を検出してもよい。また、時刻tで取得した実測値V(t)と、時刻tよりも数サンプル前の時刻における車速の推定値Var(t)(つまり、当該数サンプル前の時刻よりも、さらに前のサンプル時刻において取得した複数の実測値に基づき算出した推定値)との差分に基づいて異常を検出してもよい。ただし、異常検出の時点を可能な限りリアルタイムに近付けるためには、時刻tで取得した実測値V(t)と、時刻tの次のサンプル時刻における車速の推定値Var(t)との差分に基づいて異常を検出することが好ましい。
【0047】
また、自己回帰モデルMの次数は、シミュレーションによる実施例では、7次が適したものとなったが、5~7次程度であれば好ましく、その他の次数であっても目的に応じて任意である。また、自己回帰モデルMは、上記の式で示した例に限られず、公知の時系列解析法を適宜採用することができ、どのように構築するかは任意である。例えば、過去の車速実測値に乗じられる係数(a~a)以外の係数や、ホワイトノイズを考慮するなどしてもよい。
【0048】
また、異常運転行動検出装置1が搭載される車両2や、備えられるシミュレータによる仮想上の車両2は任意であり、自動四輪車に限られず、自動二輪車であってもよい。また、異常運転行動検出装置1は、車速センサ3の出力に基づいて、簡易なシステム構成で異常を検出することができるが、車両2に他の各種センサ(カメラや加速度センサなど)も設け、これらのセンサも併用した異常検出システムを構成してもよい。
【0049】
以上に説明した各処理を実行する動作プログラム(プログラムP)は、記憶部11に予め記憶されているものとしたが、着脱自在の記録媒体により配布・提供されてもよい。また、プログラムPは、異常運転行動検出装置1と接続された他の機器からダウンロードされるものであってもよい。また、異常運転行動検出装置1は、他の機器と電気通信ネットワークなどを介して各種データの交換を行うことによりプログラムPに従う各処理を実行してもよい。
【0050】
(1)以上に説明した異常運転行動検出装置1は、車両2を運転する運転者による加減速操作に関する異常行動を検出し、車速取得手段12(取得手段)と、記憶部11(記憶手段)と、車速推定手段13(推定手段)と、異常行動検出手段14(検出手段)と、を備える。
車速取得手段12は、車両2の車速を取得する。記憶部11は、車速取得手段12が取得した車速と、所定時点の車速(Var(t))を推定するための予め定めた自己回帰モデルMとを示す情報を記憶する。車速推定手段13は、自己回帰モデルMと、所定時点よりも前の互いに異なる時点における複数の車速(V(t)、V(t)・z-1、・・・、V(t)・z-n)とに基づいて所定時点の車速を推定する。異常行動検出手段14は、車速取得手段12が取得した車速(V(t))と、車速推定手段13が推定した所定時点の車速(Var(t))との差分が、予め定めた閾値T2を超えた場合に異常行動を検出する。
【0051】
このように、車速センサ3等の出力に応じて取得可能な車速に基づいて、異常行動を検出することができるため、異常検出システムの構成を簡易にすることができる。また、異常運転行動検出装置1は、実車両かシミュレータによる仮想上の車両かに関わらず適用可能である。したがって、異常運転行動検出装置1は、実際の道路上を運転走行する(実走行する)際に生じる虞のある危険を未然に防ぐための異常報知のみならず、実走行あるいはシミュレータによる適性検査のために用いることも適している。例えば、運転教習所による適性検査や、第二種自動車運転免許(営業運転免許)を要する運送・運輸業界における定期的な適性検査(例えば、タクシー、トラックドライバーの適性検査)に用いることができる。
【0052】
(2)具体的には、異常行動検出手段14は、車速取得手段12が所定時点よりも前の時点で取得した車速(V(t))と、車速推定手段13が推定した所定時点の車速(Var(t))との差分が、予め定めた閾値T2を超えた場合に異常行動を検出する。なお、異常検出のリアルタイム性を実現するに当たっては、時刻tで取得した車速の実測値V(t)と、時刻tの次のサンプル時刻における車速推定値Var(t)との差分が閾値T2を超えた場合に異常行動を検出する構成とすることが、より好ましい。
【0053】
(3)また、自己回帰モデルMの次数は予め定められ、車速推定手段13は、自己回帰モデルMに、所定時点よりも前の互いに異なる時点における次数分の車速(V(t)・z-1、・・・、V(t)・z-n)を代入して所定時点の車速(Var(t))を推定する。
(4)また、自己回帰モデルMは、車両2に予め定めた経路を異常行動が生じていない状態で複数回走行させた際の車速の時系列に基づいて予め定められる。
(5)また、異常運転行動検出装置1は、実車両としての車両2に搭載されるものだけに限られない。車両2はシミュレータによる仮想上の車両であり、シミュレータに備えられていてもよい。
【0054】
(6)以上に説明した異常運転行動検出装置1を利用した異常運転行動検出方法は、車両2の車速を取得する取得ステップと、所定時点の車速(Var(t))を推定するための予め定めた自己回帰モデルMと、所定時点よりも前の互いに異なる時点における複数の車速(V(t)、V(t)・z-1、・・・、V(t)・z-n)とに基づいて所定時点の車速を推定する推定ステップと、取得ステップで取得した車速と、推定ステップで推定した所定時点の車速との差分が、予め定めた閾値T2を超えた場合に異常行動を検出する検出ステップと、を備える。
【0055】
(7)また、以上に説明したプログラムPは、コンピュータ(制御部10)を、車両2の車速を取得する車速取得手段12、所定時点の車速(Var(t))を推定するための予め定めた自己回帰モデルと、前記所定時点よりも前の互いに異なる時点における複数の車速(V(t)、V(t)・z-1、・・・、V(t)・z-n)とに基づいて前記所定時点の車速を推定する車速推定手段13、車速取得手段12が取得した車速と、車速推定手段13が推定した所定時点の車速との差分が、予め定めた閾値T2を超えた場合に異常行動を検出する異常行動検出手段14、として機能させる。
【0056】
以上の説明では、本発明の理解を容易にするために、公知の技術的事項の説明を適宜省略した。
【符号の説明】
【0057】
1…異常運転行動検出装置
10…制御部
11…記憶部
P…プログラム、M…自己回帰モデル
12…車速取得手段
13…車速推定手段
14…異常行動検出手段
20…報知部
2…車両、3…車速センサ
図1
図2
図3
図4
図5
図6
図7