IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エクソンモービル リサーチ アンド エンジニアリング カンパニーの特許一覧

特許7039595流動接触分解装置におけるオキシジェネート転化のための方法
<>
  • 特許-流動接触分解装置におけるオキシジェネート転化のための方法 図1
  • 特許-流動接触分解装置におけるオキシジェネート転化のための方法 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-11
(45)【発行日】2022-03-22
(54)【発明の名称】流動接触分解装置におけるオキシジェネート転化のための方法
(51)【国際特許分類】
   C10G 11/18 20060101AFI20220314BHJP
   C10G 3/00 20060101ALI20220314BHJP
   C07C 1/20 20060101ALI20220314BHJP
   B01J 29/80 20060101ALI20220314BHJP
【FI】
C10G11/18
C10G3/00 B
C07C1/20
B01J29/80 M
【請求項の数】 9
(21)【出願番号】P 2019531824
(86)(22)【出願日】2017-11-09
(65)【公表番号】
(43)【公表日】2020-05-14
(86)【国際出願番号】 US2017060815
(87)【国際公開番号】W WO2018111456
(87)【国際公開日】2018-06-21
【審査請求日】2020-10-05
(31)【優先権主張番号】62/433,826
(32)【優先日】2016-12-14
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390023630
【氏名又は名称】エクソンモービル リサーチ アンド エンジニアリング カンパニー
【氏名又は名称原語表記】EXXON RESEARCH AND ENGINEERING COMPANY
(74)【代理人】
【識別番号】100145403
【弁理士】
【氏名又は名称】山尾 憲人
(74)【代理人】
【識別番号】100156085
【弁理士】
【氏名又は名称】新免 勝利
(74)【代理人】
【識別番号】100138885
【弁理士】
【氏名又は名称】福政 充睦
(72)【発明者】
【氏名】スティーブン・ジェイ・マッカーシー
(72)【発明者】
【氏名】ラストム・エム・ビリモリア
(72)【発明者】
【氏名】ブランドン・ジェイ・オニール
(72)【発明者】
【氏名】アシシュ・ビー・マデシュワル
(72)【発明者】
【氏名】アムリット・ジャラン
【審査官】上坊寺 宏枝
(56)【参考文献】
【文献】米国特許出願公開第2014/0275675(US,A1)
【文献】中国特許出願公開第104582842(CN,A)
【文献】特表平03-505588(JP,A)
【文献】国際公開第2016/061906(WO,A1)
【文献】特表2010-500464(JP,A)
【文献】特表2010-500445(JP,A)
【文献】米国特許出願公開第2015/0136647(US,A1)
【文献】国際公開第2015/081489(WO,A1)
【文献】特開昭63-069534(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C10G 1/00-99/00
C07C 1/20、4/02
B01J 21/00-38/34
(57)【特許請求の範囲】
【請求項1】
二重ライザー流動接触分解プロセスであって、
オレフィン、軽質ガスオイル、ガソリンまたはそれらの組み合わせに富む第1流出液を形成するために、第1ライザー条件で第1触媒を含む第1ライザーにおいて、炭化水素供給物を分解すること、
オレフィンに富む第2流出液を形成するために、第2ライザー条件で第2触媒を含む第2ライザーにおいて、炭化水素オキシジェネート供給物を分解すること、
共通の反応器において、第1流出液および第2流出液から、第1触媒および第2触媒を回収すること、
前記炭化水素オキシジェネート供給物の発熱分解からの熱を使用する再生器において、前記回収された第1触媒および第2触媒を再生させること、および
前記再生された第1触媒および第2触媒を、第1ライザーおよび第2ライザーに再循環させること
を含み
前記再生器において、第1触媒の層および第2触媒の層を形成するように、第1触媒の密度と、第2触媒の密度とが異なり、
前記再生された第1触媒および第2触媒を、第1ライザーおよび第2ライザーに再循環させることが、再生された第1触媒を第1触媒の層から第1ライザーに再循環させるために、第1ライザー・スタンドパイプを配置すること、および
再生された第2触媒を第2触媒の層から第2ライザーに再循環させるために、第2ライザー・スタンドパイプを配置すること
をさらに含む、プロセス。
【請求項2】
前記炭化水素オキシジェネート供給物が、メタノールを含む、請求項1に記載のプロセス。
【請求項3】
第2ライザー条件が、5~130の触媒活性(α)を含む、請求項1または2に記載のプロセス。
【請求項4】
前記触媒活性(α)が、10である、請求項3に記載のプロセス。
【請求項5】
第2ライザー条件が、1~150h-1の重量空間速度(WHSV)を含む、請求項1~4のいずれか1項に記載のプロセス。
【請求項6】
前記重量空間速度(WHSV)が、10~100h-1である、請求項5に記載のプロセス。
【請求項7】
前記重量空間速度(WHSV)が、20~85h-1である、請求項5または6のいずれか1項に記載のプロセス。
【請求項8】
第2ライザー条件が、538~760℃の温度と、20~85h-1の重量空間速度(WHSV)とを含む、請求項1~7のいずれか1項に記載のプロセス
【請求項9】
第1触媒が、USY触媒であり、
第2触媒が、ZSM-5、ZSM-11、ZSM-48またはそれらの組み合わせである、請求項1~のいずれか1項に記載のプロセス
【発明の詳細な説明】
【技術分野】
【0001】
(分野)
本発明は、流動接触分解ユニット(又は流動触媒分解ユニット又はフルード・キャタリティック・クラッキング・ユニット(fluid catalytic cracking unit))においてオキシジェネート(又はオキシゲネート(oxygenate))を転化(又はコンバート又はコンバージョン又はコンバーティング(converting))するための方法および装置に関する。
【背景技術】
【0002】
(背景)
地球の証明された天然ガス埋蔵量の40%~60%は、市場に経済的に配送されるには余りにも小さいか、それとも余りにも遠く離れている。そのような埋蔵量は、「ストランデッド」と言われる。メタノールなどの、オキシジェネートへの天然ガス転化は、成熟した、かつ、広く用いられる技術である。オキシジェネートは次に、エチレンおよびプロピレンなどの、オレフィンに転化することができる。メタノールをガソリンまたは軽質オレフィンに転化するための商業プラントは、New ZealandおよびChinaで運転されている。しかしながら、メタノール転化プロセスは現在、大きい資本投資、および天然ガス貯蔵量の巨大ガス田との関連を必要とする。
【0003】
メタノール-オレフィン(又はメタノールオレフィン化(methanol to olefins))(MTO)転化を取り巻く経済的課題のために、ストランデッドガスは従来、採算性がある候補ではなかった。しかしながら、精油所設備の既存の部分を使用してMTOを行うことができることは有利であろう。多くの精油所に存在する流動接触分解(FCC)ユニットは、MTOのために必要とされるものに似た条件下で動作する。FCCユニットは典型的には、減圧ガスオイルおよび重質ガソリンをオレフィン、軽質ガスオイル、およびガソリンにアップグレードするために使用される。Panらは、メタノールをFCCユニットへ供給して4つの異なる場所-ガスオイルを供給する前のライザーの底部、ガスオイルおよびメタノールを共供給する場所、メタノールをライザーの最上部で供給する場所、ならびにメタノールをストリッパーおよび分離帯に供給する場所でオレフィンを生成することを考えた。非特許文献1を参照されたい。
【0004】
このアプローチに関する問題は、オレフィン生成が最大化されないことである。単一ライザーを使用することによって、オレフィン生成は、従来のFCC反応プロセスにとって最適である反応条件によって制限される。ガスオイル用のライザーに加えてFCCユニット内に専用MTOライザーを使用することが、本明細書で提案される。二重ライザー構成は、MTOライザーにおけるオキシジェネート供給物からのオレフィン生成を最適化させるであろう。
【先行技術文献】
【非特許文献】
【0005】
【文献】Shuyu Pan et al.,Feeding Methanol in an FCC Unit,26 PETRO.SCI.& TECH.170(2008)
【発明の概要】
【課題を解決するための手段】
【0006】
(要旨)
本明細書中で提供されるものは、従来のFCCユニットにおいて、オキシジェネート供給物(メタノール供給物など)から、軽質オレフィン(又はライト・オレフィン)を製造するための二重ライザー流動接触分解プロセス(又は二重ライザー流動触媒分解プロセス又はデュアル・ライザー・フルード・キャタリティック・クラッキング・プロセス)である。特定の態様において、当該プロセスは、以下のこと(又は工程又はステップ)を含む:
オレフィン、軽質ガスオイル、ガソリンまたはそれらの組み合わせに富む第1流出液を形成するために、第1ライザー条件(下)で第1触媒を含む第1ライザーにおいて、炭化水素供給物を分解すること(又は工程又はステップ)、
オレフィンに富む第2流出液を形成するために、第2ライザー条件(下)で第2触媒を含む第2ライザーにおいて、炭化水素オキシジェネート供給物を分解すること(又は工程又はステップ)、
共通の反応器(又は一般の反応器)において、第1流出液および第2流出液から、第1触媒および第2触媒を回収すること(又は工程又はステップ)、
炭化水素オキシジェネート供給物の発熱分解からの熱を使用する再生器において、回収された第1触媒および第2触媒を再生させること(又は工程又はステップ)、および
再生された第1触媒および第2触媒を、第1ライザーおよび第2ライザーに再循環させること(又は工程又はステップ)。
【0007】
一態様において、第2ライザー条件は、約5~130(例えば、約10)の触媒活性アルファ(α)を含む。
別の態様において、第2ライザー条件は、約1~150h-1(例えば、約10~100h-1または約20~85h-1)の重量空間速度(WHSV)を含む。
さらに、別の態様において、第2ライザー条件は、約538~760℃の温度を含む。また、第2ライザー条件は、上記の触媒活性と、WHSVと、温度との組み合わせを含んでよい。
【0008】
特定の態様において、第1触媒および第2触媒は、同じまたは異なるものであってよい。第1触媒と、第2触媒とが異なる場合、第1触媒は、USY触媒であってよく、第2触媒は、ZSM-5、ZSM-11、ZSM-48またはそれらの組み合わせである。
別の態様では、再生器において、第1触媒の層および第2触媒の層を形成するように、第1触媒の密度と、第2触媒の密度とが異なり、
ここで、再生された第1触媒および第2触媒を、第1ライザーおよび第2ライザーに再循環させること(又は工程又はステップ)は、以下のこと(又は工程又はステップ)をさらに含む:
再生された第1触媒を第1触媒の層から第1ライザーに再循環させるために、第1ライザー・スタンドパイプを配置(又は位置決め)すること(又は工程又はステップ)、および
再生された第2触媒を第2触媒の層から第2ライザーに再循環させるために、第2ライザー・スタンドパイプを配置(又は位置決め)すること(又は工程又はステップ)。
さらに別の態様では、第1触媒および第2触媒が異なる場合、共通の反応器(又は一般の反応器)内のバッフル(又は邪魔板)によって、第1触媒および第2触媒は、互いに分離して保たれている。
【図面の簡単な説明】
【0009】
図1】本発明の実施形態に係る二重ライザーFCCプロセスおよび装置を図式的に例示する。
図2】FCCユニット内の異なる導入点に基づくメタノールオレフィン化転化率のモデル予測を描写する。
【発明を実施するための形態】
【0010】
(詳細な説明)
本明細書で用いるところでは、「反応器」、「反応容器」などへの言及は、別個の反応器ならびに単一反応器装置内の反応帯を両方とも含むと理解されるものとする。言い換えればおよび一般に知れ渡っているように、単一反応器は、多数の反応帯を有してもよい。この記載が第1および第2反応器に言及する場合、当業者は、そのような言及が第1および第2反応帯を有する単一反応器を含むことを容易に認めるであろう。同様に、第1反応器流出液および第2反応器流出液は、それぞれ、単一反応器の第1反応帯および第2反応帯からの流出液を含むことを認められるであろう。
【0011】
本明細書で用いるところでは、語句「の少なくとも一部」は、語句が言及するプロセス流れまたは組成物の0重量%超~100重量%を意味する。語句「の少なくとも一部」は、約1重量%以下、約2重量%以下、約5重量%以下、約10重量%以下、約20重量%以下、約25重量%以下、約30重量%以下、約40重量%以下、約50重量%以下、約60重量%以下、約70重量%以下、約75重量%以下、約80重量%以下、約90重量%以下、約95重量%以下、約98重量%以下、約99重量%以下、または100重量%以下の量を言う。さらにまたはあるいは、語句「の少なくとも一部」は、約1重量%以上、約2重量%以上、約5重量%以上、約10重量%以上、約20重量%以上、約25重量%以上、約30重量%以上、約40重量%以上、約50重量%以上、約60重量%以上、約70重量%以上、約75重量%以上、約80重量%以上、約90重量%以上、約95重量%以上、約98重量%以上、約99重量%以上の量を言う。明確に開示される範囲は、上に列挙された値のいずれかの全ての組み合わせ;例えば、約10重量%~約100重量%、約10重量%~約98重量%、約2重量%~約10重量%、約40重量%~約60重量%などを含む。
【0012】
本明細書で用いるところでは、用語「オキシジェネート」、「オキシジェネート組成物」などは、1~約50個の炭素原子、1~約20個の炭素原子、1~約10個の炭素原子、または1~4個の炭素原子を有する酸素含有化合物および酸素含有化合物の混合物を言う。模範的オキシジェネートは、アルコール、エーテル、カルボニル化合物、例えば、アルデヒド、ケトンおよびカルボン酸、ならびにそれらの混合物を含む。特定のオキシジェネートは、メタノール、エタノール、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、ジ-イソプロピルエーテル、ジメチルカーボネート、ジメチルケトン、ホルムアルデヒド、および酢酸。
【0013】
任意の態様において、オキシジェネートは、1つ以上のアルコール、好ましくは1~約20個の炭素原子、1~約10個の炭素原子、または1~4個の炭素原子を有するアルコールを含む。第1混合物として有用なアルコールは、線状もしくは分岐の、置換もしくは非置換の脂肪族アルコールおよびそれらの不飽和相当品であってもよい。そのようなアルコールの非限定的な例としては、メタノール、エタノール、プロパノール(例えば、n-プロパノール、イソプロパノール)、ブタノール(例えば、n-ブタノール、sec-ブタノール、tert-ブチルアルコール)、ペンタノール、ヘキサノールなど、およびそれらの混合物が挙げられる。本明細書に記載される任意の態様において、第1混合物は、メタノール、および/またはエタノールの1つ以上、特にメタノールであってもよい。任意の態様において、第1混合物は、メタノールおよびジメチルエーテルであってもよい。
【0014】
オキシジェネートは、特にオキシジェネートがアルコール(例えば、メタノール)を含む場合、任意選択的に脱水、例えば、γ-アルミナ上の、例えば、接触脱水にかけられてもよい。さらに任意選択的に、任意のメタノールおよび/または接触脱水後の第1混合物中に残る水の少なくとも一部が、第1混合物から分離されてもよい。必要ならば、そのような接触脱水は、反応器流出液の含水量を、それが、その後の反応器または反応帯、例えば、下に考察されるような第2および/または第3反応器に入る前に低下させるために用いられてもよい。
【0015】
開示される主題の様々な態様および実施形態について、上の定義を考慮してこれから言及される。システムについての言及は、本明細書に開示される方法と併せて行われ、その方法から理解されるであろう。
【0016】
図1は、二重外部ライザーFCCユニットの簡略化概観である。このユニットは、通常のやり方で触媒のフローを制御するための、それぞれ、スライド弁6および7が取り付けられた再生触媒立て管4および5によって第1ライザー2および第2ライザー3が反応器の下部に接続された状態の反応器1を含む。図1において、第1ライザー2は、混合帯14において熱い再生第1触媒12と接触するために供給物入口10を通して任意のリサイクルと一緒に、重質ガスオイル供給物、軽質ガスオイル供給物、軽質オレフィン供給物などの、炭化水素供給物8を受け入れるように設計されている。分解生成物と触媒とのミックスは、第1ライザー2の最上部から移動ダクト16を通過して一次反応器サイクロン17に入り、このサイクロンにおいて使用済み触媒の大部分が分解炭化水素蒸気から分離され、この蒸気は次にダクト18経由で二次反応器サイクロン19に入る。例示の目的のために、図1は、1つの一次反応器サイクロンおよび1つの二次反応器サイクロンを示しているにすぎないが、外部ライザー反応器は一般に、多数の第1段階および第2段階サイクロンを反応器中に有するであろう。最後に、分解炭化水素蒸気は、ダクト20を通って反応器サイクロンを出て、メインカラムフラッシュ帯に移動する。
【0017】
第2ライザー3は、混合帯15において熱い再生第2触媒13と接触するために供給物入口11を通して、メタノールなどの、オキシジェネート供給物9を受け入れるように設計されている。分解生成物、主にオレフィンと、触媒とのミックスは、移動ダクト21を通ってライザー3の最上部を通過して、重質油供給物に関して上に記載されたような反応器サイクロンスキーム(示されていない)に入る。
【0018】
分離された触媒は、サイクロン17および19のディップレッグ(又はディプレグ(dipleg))を下行して直接に反応器容器のストリッパー区画中の触媒床22へ入り、そこで、触媒は、プレートスパージャー23からのストリッピングガスの流れと出会う。スパージャー23を出るストリッピングガスは、典型的にはスチームを含むであろう。ストリッピングガスは、その通過によって流動状態に維持されている、触媒床を通って上昇するときに、その組成は、汚染物質が触媒からストリップされるので、変化して各種量の煙道ガス成分(すなわち、CO、CO、HO、およびO)を含むであろう。組成は、炭素酸化物と水との割合が床の高さとともに増加する状態で、床における高さとともに変化するであろう。ストリッピングガスが立て管25から再生器26へ下行するよりもむしろ、触媒を通って上行することを確実にするために、スチームまたは窒素が、置換ガスとして下方のスパージャー24を通して入れられる。
【0019】
ストリップされた第1触媒12および第2触媒13は次に、立て管25を通って再生器26に運ばれる。触媒上のいかなる残存コークをも焼き払うための燃焼反応が開始される。燃焼生成物は、再生器26中を上行し、ダクト27から出る。触媒の下向きの流れが、再生器26でのより下方部(又はロワ・ダウン(lower down))で起こる燃焼反応からの熱によって加熱される。さらにおよび/またはあるいは、メタノールオレフィン化の転化が発熱であるので、ある種の態様において、その反応からの熱の少なくとも一部は、使用済み触媒の再生に役立つために使用することができる。熱は、エアダクトまたはヒートパイプなどの任意の便利な手段によって第2ライザー3から再生器26に伝えることができる。
【0020】
ストリップされた炭化水素蒸気を含むストリッパーガスは、ストリッピング床から上行し、反応器容器を入口28経由で出て一次ストリッパーサイクロン29に入る。サイクロン29において分離されたガスは次に、移動ダクト30を通過して二次ストリッパーサイクロン31に入り、最後に煙道ガスシステムに通じるダクト32経由で反応器容器から外に出る。ストリッパーオフガスは、あるいはまたは加えて、一次反応器サイクロンの出口ダクト中のベント33経由で反応器から除去されてもよい。ストリッパー蒸気に同伴する触媒は、ストリッパーサイクロン29および31において分離され、次にこれらのサイクロンのディップレッグを通って下行して真下の使用済み触媒床22に戻される。ストリッパーオーバーヘッド蒸気およびライザー流出液は、同じセットのサイクロンを利用することができ、たった1つの流れが、反応セクション生成物として出てメインカラムに入る。
【0021】
例示の目的のために、限定なしに、第1触媒は、従来のFCC操作に好適な任意の触媒であり得る。そのような触媒は、合成フォージャサイトなどの大きい細孔径フレームワーク構造20(12員環)をベースとする触媒、とりわけ、ゼオライトUSYの形態でのなどの、ゼオライトYを含むことができる。ゼオライトベータもまた、ゼオライト成分として使用され得る。触媒に使用されてもよい酸性官能性の他の材料は、MCM-36およびMCM-49として特定される材料を含む。さらに他の材料は、シリコアルミノホスフェート(SAPO)、Ga、Sn、もしくはZnなどの、他のヘテロ原子をフレームワーク構造中に有するアルミノシリケート、または他のヘテロ原子をフレームワーク構造中に有するシリコアルミノホスフェートなどの、好適なフレームワーク構造を有する他のタイプのモレキュラーシーブを含むことができる。モルデナイトまたは他の固体酸触媒もまた触媒として使用することができる。
【0022】
第2触媒は、典型的にはゼオライト触媒を含むであろう。好適なゼオライトは、1次元10員環細孔チャンネルまたは3次元10員環細孔チャンネルなどの、10員環または12員環細孔チャンネル網状構造を含むことができる。3次元10員環細孔チャンネル網状構造を有する好適なゼオライトの例としては、ZSM-5またはZSM-11などの、MFIまたはMELフレームワークを有するゼオライトが挙げられる。ZSM-5は、米国特許第3,702,886号明細書および再発行米国特許第Re29,948号明細書に詳細に記載されている。ZSM-11は、米国特許第3,709,979号明細書に詳細に記載されている。好ましくは、ゼオライトはZSM-5である。1次元10員環細孔チャンネル網状構造を有する好適なゼオライトの例としては、MRE(ZSM-48)、MTW、TON、MTT、および/またはMFSフレームワークを有するゼオライトが挙げられる。いくつかの態様において、MFIフレームワークを持ったゼオライトなどの、3次元細孔チャンネルを持ったゼオライトが、メタノールの転化のために好ましいものであり得る。
【0023】
第1および第2触媒は、同じもしくは異なるものであり得る。いくつかのケースでは、従来のFCC操作のための第1触媒を第1ライザー2において、およびMTO転化のための異なる第2触媒を第2ライザー3において選択することが最適であり得る。そのようなケースでは、第1触媒12が、立て管4を通って第1ライザー2に導かれ、第2触媒13が、立て管5を通って第2ライザー3に導かれるように、再生器26において2つの触媒を互いに分離することが必要である。図1に示される、1つの選択肢は、異なる密度を有する第1および第2触媒を選択することである。この実施形態において、第2触媒13は、第1触媒12よりも密度が小さい。2つの触媒は、密度差に基づき互いに必然的に分離し、そして触媒の2つの層(底部層にある第1触媒12および最上部層にある第2触媒13)を形成することが許される。示される実施形態において、立て管5は、それが再生触媒のみを第2触媒13の最上部層から取り出すように配置される。同様に、立て管4は、それが再生触媒のみを第1触媒12の底部層から取り出すように配置される。
【0024】
上に記載された構成が、本発明がそのために利用され得る外部ライザーFCC反応器設計のたった1つの構成であることがまた指摘されるべきである。ここで、2つの外部ライザーが示されているが、第2ライザーはまた流動床で置き換えられてもよい。あるいは、第2ライザーまたは流動床の代わりに、オキシジェネートは、一次サイクロン17および/または二次サイクロン19のディップレッグへ直接注入されてもよい。このポイントでのFCC触媒は、従来のFCC分解にとっては理論的に使用済みであろうが、MTOは、同等の触媒活性を必要としない。メタノールをサイクロンディップレッグへ単に注入することによって、メタノールオレフィン化転化を行うのに十分な活性は、使用済みFCC触媒に残っている。
【0025】
示されていないさらに別の代わりの実施形態において、反応器容器はまた、使用済みおよびその後再生される第1および第2触媒を、FCCおよびMTOプロセスの全体にわたって互いに分離して保つ邪魔板を含んでもよい。ここで、立て管4および5は、第1および第2触媒が邪魔板によって分離されるだろうから、ユニットにおいて等しい高度にあってもよい。
【0026】
メタノールオレフィン化反応条件
上に指摘されたように、今開示される主題の実施形態は、オキシジェネート、例えば、メタノール、ジメチルエーテル、またはそれらの混合物を含む供給物が、メタノール転化触媒をその中に有するFCCユニットの外部ライザーに導入される段階を含む。ライザーは、触媒がオキシジェネートの少なくとも一部を、時々軽質C+オレフィン組成物と言われる、2個以上の炭素原子を有する1つ以上のオレフィンを含む中間組成物に転化するのに好適な条件を提供するために制御される。このプロセスは、MTO(メタノールオレフィン化)反応として知られている。
【0027】
メタノール転化中の反応の温度は、およそ約250℃以上、例えば、約275℃以上、約300℃以上、約330℃以上、約350℃以上、約375℃以上、約400℃以上、約425℃以上、約450℃(まで)、約500℃以上、約525℃以上、約550℃以上、または約575℃以上までであってもよい。さらにまたはあるいは、メタノール転化中の反応の温度は、約760℃以下、例えば、約575℃以下、約550℃以下、約525℃以下、約500℃以下、約450℃以下、約425℃以下、約400℃以下、約375℃以下、約350℃以下、約330℃以下、約300℃以下、または約275℃以下であってもよい。明確に開示されるメタノール転化中の反応の温度は、上に列挙された値のいずれかの全ての組み合わせ;例えば、約250℃~約760℃、約275℃~約575℃、約330℃~約550℃、約350℃~約525℃、約375℃~約500℃、約400℃~約475℃、約425℃~約450℃、約400℃~約500℃、約425℃~約500℃、約450℃~約500℃、約475℃~約500℃などを含む。好ましい実施形態において、MTOライザー中の温度は、約537℃~約700℃、例えば約650℃または約595℃である。
【0028】
メタノール転化中の供給原料の重量空間速度(WHSV)は、約0.1hr-1以上、例えば、約1.0hr-1以上、約10hr-1以上、約50hr-1以上、約100hr-1以上、約200hr-1以上、約300hr-1以上、または約400hr-1以上であってもよい。さらにまたはあるいは、WHSVは、約500hr以下、例えば、約400hr-1以下、約300hr-1以下、約200hr-1以下、約100hr-1以下、約50hr-1以下、約10hr-1以下、または約1.0hr-1以下であってもよい。明確に開示されるWHSVの範囲は、上に列挙された値のいずれかの全ての組み合わせ;例えば、約0.1hr-1~約500hr-1、約0.5hr-1~約100hr-1、約1.0hr-1~約10hr-1、約2.0hr-1~約5.0hr-1などを含む。好ましい実施形態において、MTOライザーにおけるWHSVは、約1~150h-1、例えば約10~100h-1または約20~85h-1である。
【0029】
任意の実施形態において、WHSV、温度および圧力の上記の範囲の組み合わせが、メタノール転化のために用いられ得る。例えばいくつかの実施形態において、メタノール転化中の反応容器の温度は、約500℃~約760℃、例えば、約525℃~約650℃、約550℃~約600℃、約575℃~約600℃であっても、または約585℃にあってもよく;WHSVは、約1hr-1~約100hr-1、例えば、約5hr-1~約85hr-1、約15hr-1~約60hr-1、約1.0hr-1~約4.0hr-1、または約2.0hr-1~約3.0hr-1であってもよく;および/または圧力は、約50psig~約200psig、例えば、約75psig~約150psigもしくは約75psig~約100psigであってもよい。これらの値の全ての組み合わせおよび配列が、明確に開示される。例えば、特定の実施形態において、温度は、約475℃~約500℃であってもよく、WHSVは、約1.0hr-1~約4.0hr-1であってもよく、圧力は、75psig~約100psigであってもよい。
【0030】
メタノール転化触媒は、アルミノシリケートゼオライトおよびシリコアルミノホスフェートゼオタイプ材料から選択されてもよい。典型的には、本明細書で有用なそのような材料は、150m/g以上、例えば、155m/g、160m/g、165m/g、200m/g以上、250m/g以上、300m/g以上、350m/g以上、400m/g以上、450m/g以上、500m/g以上、550m/g以上、600m/g以上、650m/g以上、700m/g以上、750m/g以上、800m/g以上、850m/g以上、900m/g以上、950m/g以上、または1000m/g以上の微小孔性表面積を有する。さらにまたはあるいは、表面積は、1200m/g以下、例えば、1000m/g以下、950m/g以下、900m/g以下、850m/g以下、800m/g以下、750m/g以下、700m/g以下、650m/g以下、600m/g以下、550m/g以下、500m/g以下、450m/g以下、400m/g以下、350m/g以下、250m/g以下、200m/g以下、165m/g以下、160m/g以下、または155m/g以下であってもよい。明確に開示される表面積の範囲は、上に列挙された値のいずれかの全ての組み合わせ;例えば、150m/g~1200m/g、160m/g~約1000m/g、165m/g~950m/g、200m/g~900m/g、250m/g~850m/g、300m/g~800m/g、275m/g~750m/g、300m/g~700m/g、350m/g~650m/g、400m/g~600m/g、450m/g~550m/gなどを含む。
【0031】
メタノール転化触媒は、ケイ素対アルミニウムの任意の比を有してもよい。特定の触媒は、約10以上、例えば、約20以上、約30以上、約40以上、約42以上、約45以上、約48以上、約50以上、約60以上、約70以上、約80以上、約90以上、約100以上、約120以上、約140以上、約180以上、または約200以上のケイ素対アルミニウムのモル比を有する。さらにまたはあるいは、メタノール転化触媒は、約200以下、例えば、約180以下、約140以下、約120以下、約100以下、約90以下、約80以下、約70以下、約60以下、約50以下、約48以下、約45以下、約42以下、約40以下、約30以下、または約20以下のケイ素対アルミニウムのモル比を有してもよい。明確に開示されるモル比の範囲は、上に列挙された値のいずれかの全ての組み合わせ:例えば、約10~約200、約20~約180、約30~約140、約40~約120、約40~約100、約45~約90、約30~約50、約42~約48などを含む。ケイ素:アルミニウム比は、所望の活性および/またはメタノール転化からの分子の所望の分布を提供するために選択されてもまたは調節されてもよい。
【0032】
さらにまたはあるいは、メタノール転化触媒として有用な特定のアルミノシリケートゼオライトは、約5以上、例えば、約10以上、約20以上、約40以上、約60以上、約80以上、約100以上、約160以上、または約180以上のヘキサン分解活性(「アルファ活性」とも、または「アルファ値」とも言われる)を有する。さらにまたはあるいは、メタノール転化触媒のヘキサン分解活性は、約200以下、例えば、約180以下、約160以下、約140以下、約120以下、約100以下、約80以下、約60以下、約40以下であってもよい。明確に開示されるアルファ値の範囲は、上に列挙された値のいずれかの全ての組み合わせ;例えば、約50~約200、約10~約180、約20~約160、約40~約140、約60~約120などを含む。アルファ試験によるヘキサン分解活性は、米国特許第3,354,078号明細書に;Journal of Catalysis vol.4,p.527(1965)、vol.6,p.278(1966)、およびvol.61,p.395(1980)に記載されており、それぞれが、当該記載に関しては参照により本明細書に援用される。本明細書で用いられる試験の実験条件は、約538℃の一定温度と、Journal of Catalysis vol.61,p.395に詳細に記載されるような可変の流量とを含む。より高いアルファ値は典型的には、より活性な分解触媒に対応する。好ましい実施形態において、アルファ活性、αは、5~130、例えば10、25、75、または130である。
【0033】
メタノール転化触媒として有用なアルミノシリケートゼオライトは、BEA、CHA、EUO、FER、IMF、LAU、MEL、MFI、MRE、MFS、MTT、MWW、NES、TON、SFG、STF、STI、TUN、PUN、ならびにそれらの組み合わせおよび群生からなる群から選択されるInternational Zeolite Associate(IZA) Structure Commissionフレームワークタイプで特徴付けられ得る。
【0034】
好適なメタノール転化触媒の特定の例としては、ZSM-5、ZSM-11、ZSM-12、ZSM-22、ZSM-23、ZSM-35、およびZSM-48ならびにそれらの組み合わせを挙げることができる。特に有用な触媒は、特に留出物への改善された転化が望ましい場合に、MRE-タイプIZAフレームワークを有するゼオライト、例えば、ZSM-48触媒を含むことができる。他の特に有用な触媒は、当技術分野で公知であるように触媒がスチーム処理されているという条件で、特に留出物のために、MFI-タイプIZAフレームワークを有するゼオライト、例えば、H-ZSM-5触媒を含んでもよい。いくつかの実施形態において、触媒は、ZSM-12を含んでもよいし、またはZSM-12であってもよい。触媒活性は、例えば、完全に交換されていない触媒の使用によって、修正されてもよい。活性はまた、触媒のケイ素:アルミニウム比の影響を受けることが知られている。例えば、より高いシリカ:アルミニウム比を有するように調製された触媒は、より低い活性を有する傾向があり得る。当業者は、メタノール転化において所望の低い芳香族生成物を与えるように活性を修正できることを認めるであろう。
【0035】
ゼオライトZSM-5およびそれの従来の調製は、米国特許第3,702,886号明細書に記載されている。ゼオライトZSM-11およびそれの従来の調製は、米国特許第3,709,979号明細書に記載されている。ゼオライトZSM-12およびそれの従来の調製は、米国特許第3,832,449号明細書に記載されている。ゼオライトZSM-23およびそれの従来の調製は、米国特許第4,076,842号明細書に記載されている。ゼオライトZSM-35およびそれの従来の調製は、米国特許第4,016,245号明細書に記載されている。ZSM-48およびそれの従来の調製は、米国特許第4,375,573号明細書によって教示されている。これらの米国特許の全体開示は、参照により本明細書に援用される。
【0036】
本明細書で有用であり得る模範的なシリコアルミノホスフェートは、SAPO-5、SAPO-8、SAPO-11、SAPO-16、SAPO-17、SAPO-18、SAPO-20、SAPO-31、SAPO-34、SAPO-35、SAPO-36、SAPO-37、SAPO-40、SAPO-41、SAPO-42、SAPO-44、SAPO-47、およびSAPO-56の1つまたはそれらの組み合わせを含むことができる。
【0037】
図2は、第2専用ライザーをFCCユニットに使用する潜在的メタノールオレフィン化転化率予測のモデルベース予測を提供する。オレフィン収率予測値は、100超の個別の化学種を個々に追跡調査する詳細な動態モデルに基づいて生み出された。このモデルは元々、それについて関連反応がここではサブセットである、メタノールガソリン化触媒およびプロセス開発を支援するために大量のおよび詳細なデータセットを使って開発され、調整された。ここで簡単にするために、このモデルは、等温条件を利用し、固定床としてシミュレートされた触媒および供給物の栓流を仮定した。大きい「先行技術」ボックスは、上に考察されたPanらの参考文献に開示されていると仮定された転化率を描写する。これは、この参考文献に開示された温度範囲およびオレフィン生成に基づいている。図2中の小破線ボックスは、メタノールが既存のFCCユニットのストリッパー区画に加えられた場合のMTO転化率を予測している。図2中の大破線ボックスは、メタノールが重質油供給物とともに単一ライザーFCCユニットのリフト帯に導入された場合のMTO転化率を予測している。示されるように、既存のFCCユニットにおける専用MTOライザーの追加は、ユーザーが、パラメータ(示されるアルファ-活性、温度、およびWHSV)を最適化してMTO転化率を最大化することを可能にする。下表1は、従来のFCC条件での単一ライザーの使用と、MTO転化率を最大化することができるようにFCCユニットでの専用MTOライザーの使用との間の予測オレフィン収率の比較を示す。
【0038】
【表1】
【0039】
示されるように、専用MTOライザー条件を調整する能力は、異なる温度、活性、および空間速度でのより高いメタノールオレフィン化収率を可能にさせる。
【0040】
追加のまたは代わりの実施形態
実施形態1
二重ライザー流動接触分解プロセス(又は二重ライザー流動触媒分解プロセス又はデュアル・ライザー・フルード・キャタリティック・クラッキング・プロセス(dual riser fluid catalytic cracking process))であって、
オレフィン、軽質ガスオイル(又はライト・ガスオイル(light gasoil))、ガソリンまたはそれらの組み合わせに富む第1流出液(又は第1流出物(first effluent))を形成するために、第1ライザー条件(又は第1ライザー・コンディション(first riser condition))(下)で第1触媒を含む第1ライザー(first riser)において、炭化水素供給物(又は炭化水素フィード(hydrocarbon feed))を分解すること(又はクラッキング(cracking))(又は工程又はステップ);
オレフィンに富む第2流出液(又は第2流出物(second effluent))を形成するために、第2ライザー条件(又は第2ライザー・コンディション(second riser condition))(下)で第2触媒を含む第2ライザー(second riser)において、炭化水素オキシジェネート供給物(又は炭化水素オキシジェネート・フィード(hydrocarbon oxygenate feed))を分解すること(又はクラッキング(cracking))(又は工程又はステップ);
共通の反応器(又は一般の反応器(common reactor))において、第1流出液および第2流出液から、第1触媒および第2触媒を回収すること(又はリカバリング(recovering))(又は工程又はステップ);
炭化水素オキシジェネート供給物の発熱分解からの熱を使用する再生器(又はリジェネレータ(regenerator))において、回収された第1触媒および第2触媒を再生させること(又はリジェネレーティング(regenerating))(又は工程又はステップ);および
再生された第1触媒および第2触媒を、第1ライザーおよび第2ライザーに再循環させること(又はリサーキュレーティング(recirculating))(又は工程又はステップ)
を含む、プロセス。
【0041】
実施形態2
炭化水素オキシジェネート供給物が、メタノールを含む、実施形態1に記載のプロセス。
【0042】
実施形態3
第2ライザー条件が、約5~130の触媒活性アルファ(α)(catalyst activity, α)を含む、実施形態1~2のいずれか1つに記載のプロセス。
【0043】
実施形態4
触媒活性(α)が、約10である、実施形態1~3のいずれか1つに記載のプロセス。
【0044】
実施形態5
第2ライザー条件が、約1~150h-1の重量空間速度(weight hourly space velocity)(WHSV)を含む、実施形態1~4のいずれか1つに記載のプロセス。
【0045】
実施形態6
重量空間速度(WHSV)が、約10~100h-1である、実施形態1~5のいずれか1つに記載のプロセス。
【0046】
実施形態7
重量空間速度(WHSV)が、約20~85h-1である、実施形態1~6のいずれか1つに記載のプロセス。
【0047】
実施形態8
第2ライザー条件が、538~760℃の温度と、約20~85h-1の重量空間速度(WHSV)とを含む、実施形態1~7のいずれか1つに記載のプロセス。
【0048】
実施形態9
第1触媒と、第2触媒とが異なる、実施形態1~8のいずれか1つに記載のプロセス。
【0049】
実施形態10
第1触媒が、USY触媒であり、
第2触媒が、ZSM-5、ZSM-11、ZSM-48またはそれらの組み合わせである、
実施形態1~9のいずれか1つに記載のプロセス。
【0050】
実施形態11
再生器において、第1触媒の層および第2触媒の層を形成するように、第1触媒の密度と、第2触媒の密度とが異なり;
上記の再生された第1触媒および第2触媒を、第1ライザーおよび第2ライザーに再循環させること(又は工程又はステップ)が、再生された第1触媒を第1触媒の層から第1ライザーに再循環させるために、第1ライザー・スタンドパイプ(又は第1ライザー立て管(first riser standpipe))を配置すること(又は位置決め又はポジショニング(positioning))(又は工程又はステップ);および
再生された第2触媒を第2触媒の層から第2ライザーに再循環させるために、第2ライザー・スタンドパイプ(又は第2ライザー立て管(second riser standpipe))を配置すること(又は位置決め又はポジショニング(positioning))(又は工程又はステップ)
をさらに含む、実施形態1~10のいずれか1つに記載のプロセス。
【0051】
実施形態12
共通の反応器内のバッフル(又は邪魔板(baffle))によって、第1触媒と、第2触媒とが互いに分離して保たれている、実施形態1~10のいずれか1つに記載のプロセス。
【0052】
本明細書に記載される全公文書は、それらが本テキストと矛盾しない程度までいかなる優先権書類および/または試験手順をも含めて、そのような慣行が許される場合、あらゆる管轄権のために本明細書に参照により援用されるが、ただし、当初出願された特許出願または出願文書に指定されなかったいかなる優先権書類も、本明細書に参照により援用されない。前述の概要および具体的な態様から明らかであるように、本発明の形態が例示され、記載されてきたが、様々な変更を、本発明の主旨および範囲から逸脱することなく行うことができる。したがって、本発明がそれによって限定されることは意図されない。さらに、用語「含む(comprising)」は、用語「含む(including)」と同じ意味と考えられる。さらに、組成物、要素または要素の群が、移行句「含む」に先行されるときはいつでも、組成物、要素(単数)、または要素(複数)の列挙に先行する移行句「から本質的になる」、「からなる」、「からなる群から選択される」、または「である」付きの同じ組成物または要素の群が考えられ、逆もまた同様である。本発明の態様は、明確に列挙されないまたは記載されないいかなる要素、工程、組成物、成分または他のクレーム要素をも実質的に含まないまたは本質的に含まないものを含む。
本明細書の開示内容は、以下の態様を含み得る。
(態様1)
二重ライザー流動接触分解プロセスであって、
オレフィン、軽質ガスオイル、ガソリンまたはそれらの組み合わせに富む第1流出液を形成するために、第1ライザー条件で第1触媒を含む第1ライザーにおいて、炭化水素供給物を分解すること、
オレフィンに富む第2流出液を形成するために、第2ライザー条件で第2触媒を含む第2ライザーにおいて、炭化水素オキシジェネート供給物を分解すること、
共通の反応器において、第1流出液および第2流出液から、第1触媒および第2触媒を回収すること、
前記炭化水素オキシジェネート供給物の発熱分解からの熱を使用する再生器において、前記回収された第1触媒および第2触媒を再生させること、および
前記再生された第1触媒および第2触媒を、第1ライザーおよび第2ライザーに再循環させること
を含む、プロセス。
(態様2)
前記炭化水素オキシジェネート供給物が、メタノールを含む、態様1に記載のプロセス。
(態様3)
第2ライザー条件が、約5~130の触媒活性(α)を含む、態様1または2に記載のプロセス。
(態様4)
前記触媒活性(α)が、約10である、態様1~3のいずれか1項に記載のプロセス。
(態様5)
第2ライザー条件が、約1~150h -1 の重量空間速度(WHSV)を含む、態様1~4のいずれか1項に記載のプロセス。
(態様6)
前記重量空間速度(WHSV)が、約10~100h -1 である、態様1~5のいずれか1項に記載のプロセス。
(態様7)
前記重量空間速度(WHSV)が、約20~85h -1 である、態様1~6のいずれか1項に記載のプロセス。
(態様8)
第2ライザー条件が、538~760℃の温度と、約20~85h -1 の重量空間速度(WHSV)とを含む、態様1~7のいずれか1項に記載のプロセス。
(態様9)
第1触媒と、第2触媒とが異なる、態様1~8のいずれか1項に記載のプロセス。
(態様10)
第1触媒が、USY触媒であり、
第2触媒が、ZSM-5、ZSM-11、ZSM-48またはそれらの組み合わせである、
態様1~9のいずれか1項に記載のプロセス。
(態様11)
前記再生器において、第1触媒の層および第2触媒の層を形成するように、第1触媒の密度と、第2触媒の密度とが異なり、
前記再生された第1触媒および第2触媒を、第1ライザーおよび第2ライザーに再循環させることが、再生された第1触媒を第1触媒の層から第1ライザーに再循環させるために、第1ライザー・スタンドパイプを配置すること、および
再生された第2触媒を第2触媒の層から第2ライザーに再循環させるために、第2ライザー・スタンドパイプを配置すること
をさらに含む、態様1~10のいずれか1項に記載のプロセス。
(態様12)
前記共通の反応器内のバッフルによって、第1触媒と、第2触媒とが互いに分離して保たれている、態様1~10のいずれか1項に記載のプロセス。
図1
図2