IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 王子ホールディングス株式会社の特許一覧

特許7040576繊維状セルロース、繊維状セルロース分散液及び繊維状セルロースの製造方法
<>
  • 特許-繊維状セルロース、繊維状セルロース分散液及び繊維状セルロースの製造方法 図1
  • 特許-繊維状セルロース、繊維状セルロース分散液及び繊維状セルロースの製造方法 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-14
(45)【発行日】2022-03-23
(54)【発明の名称】繊維状セルロース、繊維状セルロース分散液及び繊維状セルロースの製造方法
(51)【国際特許分類】
   C08B 5/00 20060101AFI20220315BHJP
   D21H 11/20 20060101ALI20220315BHJP
【FI】
C08B5/00
D21H11/20
【請求項の数】 7
(21)【出願番号】P 2020158138
(22)【出願日】2020-09-23
(62)【分割の表示】P 2018195311の分割
【原出願日】2018-10-16
(65)【公開番号】P2021001352
(43)【公開日】2021-01-07
【審査請求日】2021-10-08
【早期審査対象出願】
(73)【特許権者】
【識別番号】000122298
【氏名又は名称】王子ホールディングス株式会社
(74)【代理人】
【識別番号】110002620
【氏名又は名称】特許業務法人大谷特許事務所
(72)【発明者】
【氏名】田中 瑛大
(72)【発明者】
【氏名】伏見 速雄
【審査官】西澤 龍彦
(56)【参考文献】
【文献】国際公開第2017/141800(WO,A1)
【文献】国際公開第2017/175468(WO,A1)
【文献】国際公開第2019/043782(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08B
C08L
C08K
C09D
D21H
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
繊維幅が1000nm以下の繊維状セルロースであって、
前記繊維状セルロースはイオン性置換基を有し、前記イオン性置換基がリン酸基またはリン酸基由来の置換基であり、
前記リン酸基またはリン酸基由来の置換基が、下記式(1)で表され、
【化1】

(式(1)中、a、b及びnは自然数である(ただし、a=b×mである);α ,α ,・・・,α 及びα’のうちa個がO であり、残りはR,ORのいずれかである;Rは、各々、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である;β b+ は有機物又は無機物からなる1価以上の陽イオンである。)
前記イオン性置換基量が0.10mmol/g以上1.50mmol/g以下であり、
前記繊維状セルロースの重合度が300以上500以下であり、
前記繊維状セルロースを0.4質量%となるように水に分散させて分散液とした場合、前記分散液の23℃における粘度が200mPa・s以上3000mPa・s以下であり、
前記繊維状セルロースを水に分散させて、23℃における粘度が2500mPa・sの分散液とし、前記分散液を以下の撹拌条件で撹拌した場合、以下の式で算出される粘度変化率が±0%以内となる繊維状セルロース;
粘度変化率(%)=(撹拌後の粘度-撹拌前の粘度)/撹拌前の粘度×100
(撹拌条件)
23℃における粘度が2500mPa・sの分散液を、直径10cmの円筒状容器の5cmの高さまで入れ、長さ5cm、中心部の幅2cm、端部の幅1cmの楕円形の撹拌子を用いて、液面中心部が2cm凹む状態を維持して、23℃で24時間撹拌する。
【請求項2】
前記粘度変化率が-30%以上0%以下である請求項1に記載の繊維状セルロース。
【請求項3】
前記繊維状セルロースの重合度が340以上500以下である請求項1または2に記載の繊維状セルロース。
【請求項4】
前記イオン性置換基量が0.40mmol/g以上1.50mmol/g以下である、請求項1~3のいずれか1項に記載の繊維状セルロース。
【請求項5】
前記イオン性置換基量が0.40mmol/g以上1.00mmol/g以下である、請求項1~3のいずれか1項に記載の繊維状セルロース。
【請求項6】
塗料用である請求項1~のいずれか1項に記載の繊維状セルロース。
【請求項7】
請求項1~のいずれか1項に記載の繊維状セルロースを水に分散させてなる繊維状セルロース分散液。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、繊維状セルロース、繊維状セルロース分散液及び繊維状セルロースの製造方法に関する。
【背景技術】
【0002】
従来、セルロース繊維は、衣料や吸収性物品、紙製品等に幅広く利用されている。セルロース繊維としては、繊維径が10μm以上50μm以下の繊維状セルロースに加えて、繊維径が1μm以下の微細繊維状セルロースも知られている。微細繊維状セルロースは、新たな素材として注目されており、その用途は多岐にわたる。
【0003】
微細繊維状セルロースは、例えば、塗料の添加剤として用いられる場合がある。この場合、微細繊維状セルロースは、塗料において粘性調整剤として機能し得る。例えば、特許文献1には、水、粘性調整剤(A)及び鱗片状光輝性顔料(B)を含有する光輝性顔料分散体が開示されている。また、特許文献2には、水、鱗片状アルミニウム顔料及びセルロース系粘性調整剤を含有する光輝性顔料分散体が開示されている。特許文献1及び2では、粘性調整剤としてセルロースナノファイバーを用いることが検討されている。
【先行技術文献】
【特許文献】
【0004】
【文献】国際公開第2018/012014号公報
【文献】国際公開第2017/175468号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
従来、セルロースナノファイバーは塗料において顔料等の分散性を高める目的で使用されている。しかし、このような塗料について、塗工前にシェアをかけることによる粘度変化(チキソトロピー性)に起因した塗工適性の低下については着目されておらず、塗工適性については、改善の余地があった。
【0006】
そこで本発明者らは、このような従来技術の課題を解決するために、塗料に添加した際に、優れた塗工適性を発揮し得る微細繊維状セルロースを提供することを目的として検討を進めた。
【課題を解決するための手段】
【0007】
上記の課題を解決するために鋭意検討を行った結果、本発明者らは、微細繊維状セルロースを水に分散させて分散液とし、所定条件で撹拌した場合に、撹拌前後の粘度変化率(%)を所定の範囲内とし得る微細繊維状セルロースを得て、該微細繊維状セルロースを塗料に添加することにより、塗料の塗工適性を高め得ることを見出した。
具体的に、本発明は、以下の構成を有する。
【0008】
[1] 繊維幅が1000nm以下の繊維状セルロースであって、
繊維状セルロースを水に分散させて、23℃における粘度が2500mPa・sの分散液とし、分散液を以下の撹拌条件で撹拌した場合、以下の式で算出される粘度変化率が±50%以内となる繊維状セルロース;
粘度変化率(%)=(撹拌後の粘度-撹拌前の粘度)/撹拌前の粘度×100
(撹拌条件)
23℃における粘度が2500mPa・sの分散液を、直径10cmの円筒状容器の5cmの高さまで入れ、長さ5cm、中心部の幅2cm、端部の幅1cmの楕円形の撹拌子を用いて、液面中心部が2cm凹む状態を維持して、23℃で24時間撹拌する。
[2] 繊維状セルロースの重合度が300以上500以下である[1]に記載の繊維状セルロース。
[3] 繊維状セルロースはイオン性置換基を有する[1]又は[2]に記載の繊維状セルロース。
[4] 繊維状セルロースにおけるイオン性置換基量が0.10mmol/g以上1.50mmol/g以下である[3]に記載の繊維状セルロース。
[5] イオン性置換基は、リン酸基またはリン酸基由来の置換基である[3]又は[4]に記載の繊維状セルロース。
[6] 繊維状セルロースを0.4質量%となるように水に分散させて分散液とした場合、分散液の23℃における粘度が200mPa・s以上3000mPa・s以下となる[1]~[5]のいずれかに記載の繊維状セルロース。
[7] 塗料用である[1]~[6]のいずれかに記載の繊維状セルロース。
[8] [1]~[7]のいずれかに記載の繊維状セルロースを水に分散させてなる繊維状セルロース分散液。
[9] セルロース繊維に解繊処理を施して繊維幅が1000nm以下の繊維状セルロースを得る工程と、
繊維状セルロースに低チキソ化処理を施す工程とを含む繊維状セルロースの製造方法。
[10] 低チキソ化処理を施す工程は、繊維状セルロースの重合度を300以上500以下にする工程である[9]に記載の繊維状セルロースの製造方法。
[11] 前記低チキソ化処理を施す工程は、オゾン処理工程である[9]又は[10]に記載の繊維状セルロースの製造方法。
[12] 繊維状セルロースを得る工程の前に、セルロース繊維にイオン性置換基を導入する工程をさらに含む[9]~[11]のいずれかに記載の繊維状セルロースの製造方法。
【発明の効果】
【0009】
本発明によれば、塗料に添加した際に、優れた塗工適性を発揮し得る微細繊維状セルロースを得ることができる。
【図面の簡単な説明】
【0010】
図1図1は、リン酸基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。
図2図2は、カルボキシ基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。
【発明を実施するための形態】
【0011】
以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
【0012】
(微細繊維状セルロース)
本発明は、繊維幅が1000nm以下の繊維状セルロースに関する。なお、本明細書においては、繊維幅が1000nm以下の繊維状セルロースを、微細繊維状セルロースともいう。ここで、本発明の繊維状セルロースを水に分散させて、23℃における粘度が2500mPa・sの分散液とし、該分散液を以下の撹拌条件で撹拌した場合、以下の式で算出される粘度変化率が±50%以内となる。
粘度変化率(%)=(撹拌後の粘度-撹拌前の粘度)/撹拌前の粘度×100
(撹拌条件)
23℃における粘度が2500mPa・sの分散液を、直径10cmの円筒状容器の5cmの高さまで入れ、長さ5cm、中心部の幅2cm、端部の幅1cmの楕円形の撹拌子を用いて、液面中心部が2cm凹む状態を維持して、23℃で24時間撹拌する。
【0013】
本発明においては、微細繊維状セルロースを分散液とし、上記条件で撹拌を行った場合の粘度変化率を±50%以内とすることにより、塗料に添加した際に、優れた塗工適性を発揮し得る微細繊維状セルロースが得られる。本発明の微細繊維状セルロースを分散した分散液は、低チキソトロピー性を有しているため、優れた塗工適性を発揮することができる。例えば、本発明の微細繊維状セルロースを含む塗料を保管したり、輸送した場合であっても塗料の粘度変化が抑制されているため、塗工時の液ダレが抑制され、かつ顔料等の添加剤の沈降を抑制することができる。また、本発明の微細繊維状セルロースを含む塗料を長時間撹拌するなどして、塗料に比較的強いシェアをかけた場合であっても、塗料の粘度が低下することで生じる液ダレや、顔料等の添加剤の沈降を効果的に抑制することができる。
【0014】
本発明の微細繊維状セルロースは、塗料用として用いられることが好ましく、上述したように塗料の塗工適性を高めることができる。また、本発明の微細繊維状セルロースを塗料の添加剤として用いた場合、塗工後の意匠性や強度を向上させることもできる。このため、塗料を塗工することで形成される塗工層は、優れた意匠性や耐傷性を発揮することができる。
【0015】
上記式で算出される分散液の粘度変化率は、±50%以内であればよく、±40%以内であることが好ましく、±30%以内であることがより好ましく、±25%以内であることがさらに好ましく、±20%以内であることが特に好ましい。なお、上記式で算出される分散液の粘度変化率は、0%であってもよい。通常、分散液にシェアをかけることで分散液の粘度は低下する場合が多いため、上記式で算出される粘度変化率はマイナスの値となることが多い。すなわち、分散液の粘度変化率は、-50%以上0%以下であることが好ましく、-40%以上0%以下であることがより好ましく、-30%以上0%以下であることがさらに好ましく、-25%以上0%以下であることが一層好ましく、-20%以上0%以下であることが特に好ましい。なお、上記式で算出される分散液の粘度変化率は、例えば、微細繊維状セルロースに対する処理の種類や条件、微細繊維状セルロースの重合度とイオン性置換基量などをそれぞれ適切な範囲にコントロールすることで達成される。
【0016】
本明細書において、分散液の粘度変化率の算出に用いられる撹拌前後の粘度は、B型粘度計を用いて、23℃で、回転速度6rpmとし、測定開始から1分後の粘度値である。B型粘度計としては、例えば、BLOOKFIELD社製、アナログ粘度計T-LVTを用いることができる。撹拌前の粘度は、粘度が約2500mPa・sとなるように調整した分散液の粘度であるため、分散液の粘度の実測値は2500mPa・sとなることが好ましいが、±15%程度の誤差が生じていてもよい。すなわち、粘度変化率の算出式において、撹拌前の粘度とは、粘度が約2500mPa・sとなるように調整した分散液の実測粘度であり、B型粘度計を用いて、23℃で、回転速度6rpmとし、測定開始から1分後の実測粘度値である。但し、撹拌前の粘度を測定する際には、直径10cmの円筒状容器に微細繊維状セルロース分散液を5cmの高さまで入れ、ディスパーザーにて1500rpmで5分間撹拌し、撹拌終了時から1分後に測定を行う。また、撹拌前の分散液の粘度を約2500mPa・sに調整する際には、用いる微細繊維状セルロースの添加量を適宜調整する。例えば、分散液の全質量に対する微細繊維状セルロースの含有量を0.3~3.0質量%に調整することで、撹拌前の分散液の粘度を約2500mPa・sに調整することができる。
【0017】
粘度変化率の算出式において、撹拌後の粘度を測定する際には、まず、撹拌前の粘度測定に供された分散液を撹拌子によってさらに撹拌する。この際は、撹拌前分散液を直径10cmの円筒状容器に微細繊維状セルロース分散液を5cmの高さまで入れ、長さ5cm、中心部の幅2cm、端部の幅1cmの楕円形の撹拌子を用いて、液面中心部が2cm凹む状態を維持して24時間撹拌する。なお、撹拌時の液温は23℃を保つようにする。そして、撹拌終了時から1分後に、B型粘度計を用いて粘度を測定し、23℃で、回転速度6rpmとし、測定開始から1分後の粘度値を撹拌後の粘度とする。
【0018】
本発明の微細繊維状セルロースを0.4質量%となるように水に分散させて分散液とした場合、分散液の23℃における粘度は、200mPa・s以上であることが好ましく、300mPa・s以上であることがより好ましく、350mPa・s以上であることがさらに好ましく、400mPa・s以上であることが特に好ましい。また、分散液の23℃における粘度は、3000mPa・s以下であることが好ましく、2500mPa・s以下であることがより好ましい。微細繊維状セルロース濃度が0.4質量%の分散液の粘度は、B型粘度計(BLOOKFIELD社製、アナログ粘度計T-LVT)を用いて測定することができる。測定条件は23℃とし、回転速度3rpmとし、測定開始から3分後の粘度を測定する。
【0019】
本発明の繊維状セルロースは、繊維幅が1000nm以下である微細繊維状セルロースである。繊維状セルロースの繊維幅は100nm以下であることがより好ましく、8nm以下であることがさらに好ましい。
【0020】
繊維状セルロースの繊維幅は、たとえば電子顕微鏡観察などにより測定することが可能である。繊維状セルロースの平均繊維幅は、たとえば1000nm以下である。繊維状セルロースの平均繊維幅は、たとえば2nm以上1000nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、2nm以上50nm以下であることがさらに好ましく、2nm以上10nm以下であることがとくに好ましい。繊維状セルロースの平均繊維幅を2nm以上とすることにより、セルロース分子として水に溶解することを抑制し、繊維状セルロースによる強度や剛性、寸法安定性の向上という効果をより発現しやすくすることができる。なお、繊維状セルロースは、たとえば単繊維状のセルロースである。
【0021】
繊維状セルロースの平均繊維幅は、たとえば電子顕微鏡を用いて以下のようにして測定される。まず、濃度0.05質量%以上0.1質量%以下の繊維状セルロースの水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。次いで、観察対象となる繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
【0022】
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
【0023】
上記条件を満足する観察画像に対し、直線X、直線Yと交差する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交差する繊維の幅を読み取る。これにより、少なくとも20本×2×3=120本の繊維幅を読み取る。そして、読み取った繊維幅の平均値を、繊維状セルロースの平均繊維幅とする。
【0024】
繊維状セルロースの繊維長は、とくに限定されないが、たとえば0.1μm以上1000μm以下であることが好ましく、0.1μm以上800μm以下であることがより好ましく、0.1μm以上600μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、繊維状セルロースの結晶領域の破壊を抑制できる。また、繊維状セルロースのスラリー粘度を適切な範囲とすることも可能となる。なお、繊維状セルロースの繊維長は、たとえばTEM、SEM、AFMによる画像解析より求めることができる。
【0025】
繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、繊維状セルロースがI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。微細繊維状セルロースに占めるI型結晶構造の割合は、たとえば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。これにより、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。
【0026】
繊維状セルロースの軸比(繊維長/繊維幅)は、とくに限定されないが、たとえば20以上10000以下であることが好ましく、50以上1000以下であることがより好ましい。軸比を上記下限値以上とすることにより、微細繊維状セルロースを含有するシートを形成しやすい。また、溶媒分散体を作製した際に十分な増粘性が得られやすい。軸比を上記上限値以下とすることにより、たとえば繊維状セルロースを水分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。
【0027】
本実施形態における繊維状セルロースは、たとえば結晶領域と非結晶領域をともに有している。とくに、結晶領域と非結晶領域をともに有し、かつ軸比が高い微細繊維状セルロースは、後述する微細繊維状セルロースの製造方法により実現されるものである。
【0028】
本実施形態における繊維状セルロースは、たとえばイオン性置換基および非イオン性置換基のうちの少なくとも一種を有する。分散媒中における繊維の分散性を向上させ、解繊処理における解繊効率を高める観点からは、繊維状セルロースがイオン性置換基を有することがより好ましい。イオン性置換基としては、たとえばアニオン性基およびカチオン性基のいずれか一方または双方を含むことができる。また、非イオン性置換基としては、たとえばアルキル基およびアシル基などを含むことができる。本実施形態においては、イオン性置換基としてアニオン性基を有することがとくに好ましい。
【0029】
イオン性置換基としてのアニオン性基としては、たとえばリン酸基またはリン酸基に由来する置換基(単にリン酸基ということもある)、カルボキシ基またはカルボキシ基に由来する置換基(単にカルボキシ基ということもある)、およびスルホン基またはスルホン基に由来する置換基(単にスルホン基ということもある)から選択される少なくとも1種であることが好ましく、リン酸基およびカルボキシ基から選択される少なくとも1種であることがより好ましく、リン酸基であることがとくに好ましい。リン酸基を有する微細繊維状セルロースは、塗料に添加した際に、より優れた塗工適性を発揮することができる。
【0030】
リン酸基またはリン酸基に由来する置換基は、たとえば下記式(1)で表される置換基であり、リンオキソ酸基またはリンオキソ酸に由来する置換基として一般化される。
リン酸基は、たとえばリン酸からヒドロキシ基を取り除いたものにあたる、2価の官能基である。具体的には-POで表される基である。リン酸基に由来する置換基には、リン酸基の塩、リン酸エステル基などの置換基が含まれる。なお、リン酸基に由来する置換基は、リン酸基が縮合した基(たとえばピロリン酸基)として繊維状セルロースに含まれていてもよい。また、リン酸基は、たとえば、亜リン酸基(ホスホン酸基)であってもよく、リン酸基に由来する置換基は、亜リン酸基の塩、亜リン酸エステル基などであってもよい。
【0031】
【化1】
【0032】
式(1)中、a、b及びnは自然数である(ただし、a=b×mである)。α,α,・・・,α及びα’のうちa個がOであり、残りはR,ORのいずれかである。なお、各αn及びα’の全てがOであっても構わない。Rは、各々、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である。
【0033】
飽和-直鎖状炭化水素基としては、メチル基、エチル基、n-プロピル基、又はn-ブチル基等が挙げられるが、とくに限定されない。飽和-分岐鎖状炭化水素基としては、i-プロピル基、又はt-ブチル基等が挙げられるが、とくに限定されない。飽和-環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、とくに限定されない。不飽和-直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、とくに限定されない。不飽和-分岐鎖状炭化水素基としては、i-プロペニル基、又は3-ブテニル基等が挙げられるが、特に限定されない。不飽和-環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、とくに限定されない。芳香族基としては、フェニル基、又はナフチル基等が挙げられるが、とくに限定されない。
【0034】
また、Rにおける誘導基としては、上記各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、ヒドロキシ基、またはアミノ基などの官能基のうち、少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、とくに限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、リン酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、微細セルロース繊維の収率を高めることもできる。
【0035】
βb+は有機物または無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、脂肪族アンモニウム、または芳香族アンモニウムが挙げられ、無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属の陽イオン、または水素イオン等が挙げられるが、とくに限定されない。これらは1種または2種類以上を組み合わせて適用することもできる。有機物または無機物からなる1価以上の陽イオンとしては、βを含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、またはカリウムのイオンが好ましいが、とくに限定されない。
【0036】
繊維状セルロースに対するイオン性置換基の導入量は、たとえば繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.40mmol/g以上であることがさらに好ましく、0.60mmol/g以上であることがとくに好ましい。また、繊維状セルロースに対するイオン性置換基の導入量は、たとえば繊維状セルロース1g(質量)あたり3.65mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましく、2.50mmol/g以下であることがさらに好ましく、2.00mmol/g以下であることが一層好ましく、1.50mmol/g以下であることがより一層好ましく、1.00mmol/g以下であることがとくに好ましい。ここで、単位mmol/gにおける分母は、イオン性置換基の対イオンが水素イオン(H)であるときの繊維状セルロースの質量を示す。イオン性置換基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。また、イオン性置換基の導入量を上記範囲内とすることにより、微細繊維状セルロースを塗料に添加した際の塗料のチキソトロピー性を低下させることができ、これにより塗工適性をより効果的に高めることができる。
【0037】
繊維状セルロースに対するイオン性置換基の導入量は、たとえば伝導度滴定法により測定することができる。伝導度滴定法による測定では、得られた繊維状セルロースを含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながら伝導度の変化を求めることにより、導入量を測定する。
【0038】
図1は、リン酸基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。繊維状セルロースに対するリン酸基の導入量は、たとえば次のように測定される。まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。次いで、水酸化ナトリウム水溶液を加えながら電気伝導度の変化を観察し、図1に示すような滴定曲線を得る。図1に示すように、最初は急激に電気伝導度が低下する(以下、「第1領域」という)。その後、わずかに伝導度が上昇を始める(以下、「第2領域」という)。さらにその後、伝導度の増分が増加する(以下、「第3領域」という)。なお、第2領域と第3領域の境界点は、伝導度の2回微分値、すなわち伝導度の増分(傾き)の変化量が最大となる点で定義される。このように、滴定曲線には、3つの領域が現れる。このうち、第1領域で必要としたアルカリ量が、滴定に使用したスラリー中の強酸性基量と等しく、第2領域で必要としたアルカリ量が滴定に使用したスラリー中の弱酸性基量と等しくなる。リン酸基が縮合を起こす場合、見かけ上弱酸性基が失われ、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、強酸性基量は、縮合の有無に関わらずリン原子の量と一致する。このため、単にリン酸基導入量(またはリン酸基量)または置換基導入量(または置換基量)と言った場合は、強酸性基量のことを表す。したがって、上記で得られた滴定曲線の第1領域で必要としたアルカリ量(mmol)を滴定対象スラリー中の固形分(g)で除して得られる値が、リン酸基導入量(mmol/g)となる。
【0039】
図2は、カルボキシ基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。繊維状セルロースに対するカルボキシ基の導入量は、たとえば次のように測定される。まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。次いで、水酸化ナトリウム水溶液を加えながら電気伝導度の変化を観察し、図2に示すような滴定曲線を得る。滴定曲線は、図2に示すように、電気伝導度が減少した後、伝導度の増分(傾き)がほぼ一定となるまでの第1領域と、その後に伝導度の増分(傾き)が増加する第2領域に区分される。なお、第1領域、第2領域の境界点は、伝導度の2回微分値、すなわち伝導度の増分(傾き)の変化量が最大となる点で定義される。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の微細繊維状セルロース含有スラリー中の固形分(g)で除して得られる値が、カルボキシ基の導入量(mmol/g)となる。
【0040】
なお、上述のカルボキシ基導入量(mmol/g)は、分母が酸型の繊維状セルロースの質量であることから、酸型の繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(酸型)と呼ぶ)を示している。一方で、カルボキシ基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(C型))を求めることができる。すなわち、下記計算式によって算出する。
カルボキシ基量(C型)=カルボキシ基量(酸型)/{1+(W-1)×(カルボキシ基量(酸型))/1000}
W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
【0041】
なお、滴定法による置換基量の測定においては、水酸化ナトリウム水溶液の滴定間隔が短すぎる場合、本来より低い置換基量となることがあるため、適切な滴定間隔、例えば、0.1N水酸化ナトリウム水溶液を30秒に50μLずつ滴定するなどが望ましい。
【0042】
微細繊維状セルロースの重合度は、300以上であることが好ましく、320以上であることがより好ましく、340以上であることがさらに好ましい。また、微細繊維状セルロースの重合度は、500以下であることが好ましく、490以下であることがより好ましく、460以下であることがさらに好ましい。微細繊維状セルロースの重合度を上記範囲内とすることにより、微細繊維状セルロースを塗料に添加した際の塗料のチキソトロピー性を低下(低チキソ化)させることができ、これにより塗工適性をより効果的に高めることができる。
【0043】
微細繊維状セルロースの重合度は、Tappi T230に従い測定されたパルプ粘度から計算した値である。具体的には、測定対象の微細繊維状セルロースを、銅エチレンジアミン水溶液に分散させて測定した粘度(η1とする)、及び分散媒体のみで測定したブランク粘度(η0とする)を測定したのち、比粘度(ηsp)、固有粘度([η])を下記式に従って測定する。
ηsp=(η1/η0)-1
[η]=ηsp/(c(1+0.28×ηsp))
ここで、式中のcは、粘度測定時の微細繊維状セルロースの濃度を示す。
さらに、下記式から重合度(DP)を算出する。
DP=1.75×[η]
この重合度は粘度法によって測定された平均重合度であることから、「粘度平均重合度」と称されることもある。
【0044】
本発明においては、特に、微細繊維状セルロースの重合度を300以上500以下とし、かつ微細繊維状セルロースにおけるイオン性置換基量を0.4mmol/g以上1.0mmol/g以下とすることにより、微細繊維状セルロースを塗料に添加した際の塗料のチキソトロピー性をより一層低下させることができ、これにより塗料の塗工適性をより効果的に高めることができる。微細繊維状セルロースの重合度とイオン性置換基量を適切な範囲とすることが、微細繊維状セルロースを分散させた分散液が低チキソトロピー性を示すことに寄与し、これにより塗料の塗工適性が高まるものと考えられる。
【0045】
(微細繊維状セルロースの製造方法)
<繊維原料>
微細繊維状セルロースは、セルロースを含む繊維原料から製造される。セルロースを含む繊維原料としては、とくに限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプ、および脱墨パルプが挙げられる。木材パルプとしては、とくに限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)および酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)およびケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)およびサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、とくに限定されないが、たとえばコットンリンターおよびコットンリント等の綿系パルプ、麻、麦わらおよびバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、とくに限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプおよび脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく解繊処理時の微細繊維状セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。なお、軸比の大きい長繊維の微細繊維状セルロースを用いると粘度が高くなる傾向がある。
【0046】
セルロースを含む繊維原料としては、たとえばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することもできる。また、セルロースを含む繊維原料に代えて、キチン、キトサンなどの直鎖型の含窒素多糖高分子が形成する繊維を用いることもできる。
【0047】
<リン酸基導入工程>
微細繊維状セルロースがリン酸基を有する場合、微細繊維状セルロースの製造工程は、リン酸基導入工程を含む。リン酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リン酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、リン酸基導入繊維が得られることとなる。
【0048】
本実施形態に係るリン酸基導入工程では、セルロースを含む繊維原料と化合物Aの反応を、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行ってもよい。一方で、化合物Bが存在しない状態において、セルロースを含む繊維原料と化合物Aの反応を行ってもよい。
【0049】
化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態、湿潤状態またはスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態または湿潤状態の繊維原料を用いることが好ましく、特に乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、とくに限定されないが、たとえば綿状や薄いシート状であることが好ましい。化合物Aおよび化合物Bは、それぞれ粉末状または溶媒に溶解させた溶液状または融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、特に水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、とくに限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾や濾過によって余剰の化合物Aと化合物Bを除去してもよい。
【0050】
本実施態様で使用する化合物Aとしては、リン原子を有し、セルロースとエステル結合を形成可能な化合物が挙げられ、具体的には、リン酸もしくはその塩、亜リン酸もしくはその塩、脱水縮合リン酸もしくはその塩、無水リン酸(五酸化二リン)などが挙げられるが、特に限定されない。リン酸としては、種々の純度のものを使用することができ、たとえば100%リン酸(正リン酸)や85%リン酸を使用することができる。亜リン酸としては、たとえば99%亜リン酸(ホスホン酸)が挙げられる。脱水縮合リン酸は、リン酸が脱水反応により2分子以上縮合したものであり、例えばピロリン酸、ポリリン酸等を挙げることができる。リン酸塩、亜リン酸塩、脱水縮合リン酸塩としては、リン酸、亜リン酸または脱水縮合リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。これらのうち、リン酸基の導入の効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、またはリン酸のアンモニウム塩が好ましく、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、またはリン酸二水素アンモニウムがより好ましい。
【0051】
繊維原料に対する化合物Aの添加量は、特に限定されないが、たとえば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、微細繊維状セルロースの収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。
【0052】
本実施態様で使用する化合物Bは、上述のとおり尿素及びその誘導体から選択される少なくとも1種である。化合物Bとしては、たとえば尿素、ビウレット、1-フェニル尿素、1-ベンジル尿素、1-メチル尿素、および1-エチル尿素などが挙げられる。
反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。
【0053】
繊維原料(絶乾質量)に対する化合物Bの添加量は、とくに限定されないが、たとえば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。
【0054】
セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、たとえばアミド類またはアミン類を反応系に含んでもよい。アミド類としては、たとえばホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、たとえばメチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。
【0055】
リン酸基導入工程においては、繊維原料に化合物A等を添加又は混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リン酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置を用いることができる。
【0056】
本実施形態に係る加熱処理においては、たとえば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練又は撹拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリン酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。
【0057】
また、加熱処理に用いる加熱装置は、たとえばスラリーが保持する水分、及び化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分、を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、例えば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い微細繊維状セルロースを得ることが可能となる。
【0058】
加熱処理の時間は、たとえば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、リン酸基の導入量を好ましい範囲内とすることができる。
【0059】
リン酸基導入工程は、少なくとも1回行えば良いが、2回以上繰り返して行うこともできる。2回以上のリン酸基導入工程を行うことにより、繊維原料に対して多くのリン酸基を導入することができる。本実施形態においては、好ましい態様の一例として、リン酸基導入工程を2回行う場合が挙げられる。
【0060】
繊維状セルロースに対するリン酸基の導入量は、たとえば微細繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.40mmol/g以上であることがさらに好ましく、0.60mmol/g以上であることがとくに好ましい。また、繊維状セルロースに対するリン酸基の導入量は、たとえば微細繊維状セルロース1g(質量)あたり3.65mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましく、2.50mmol/g以下であることがさらに好ましく、2.00mmol/g以下であることが一層好ましく、1.50mmol/g以下であることがより一層好ましく、1.00mmol/g以下であることがとくに好ましい。リン酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易にし、微細繊維状セルロースの安定性を高めることができる。また、イオン性置換基の導入量を上記範囲内とすることにより、微細繊維状セルロースを塗料に添加した際の塗料のチキソトロピー性を低下させることができ、これにより塗工適性をより効果的に高めることができる。
【0061】
<カルボキシ基導入工程>
微細繊維状セルロースがカルボキシ基を有する場合、微細繊維状セルロースの製造工程は、カルボキシ基導入工程を含む。カルボキシ基導入工程は、セルロースを含む繊維原料に対し、オゾン酸化やフェントン法による酸化、TEMPO酸化処理などの酸化処理やカルボン酸由来の基を有する化合物もしくはその誘導体、またはカルボン酸由来の基を有する化合物の酸無水物もしくはその誘導体によって処理することにより行われる。
【0062】
カルボン酸由来の基を有する化合物としては、特に限定されないが、たとえばマレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸等のトリカルボン酸化合物が挙げられる。また、カルボン酸由来の基を有する化合物の誘導体としては、特に限定されないが、たとえばカルボキシ基を有する化合物の酸無水物のイミド化物、カルボキシ基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシ基を有する化合物の酸無水物のイミド化物としては、特に限定されないが、たとえばマレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。
【0063】
カルボン酸由来の基を有する化合物の酸無水物としては、とくに限定されないが、たとえば無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。また、カルボン酸由来の基を有する化合物の酸無水物の誘導体としては、特に限定されないが、たとえばジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等のカルボキシ基を有する化合物の酸無水物の少なくとも一部の水素原子が、アルキル基、フェニル基等の置換基により置換されたものが挙げられる。
【0064】
カルボキシ基導入工程において、TEMPO酸化処理を行う場合には、たとえばその処理をpHが6以上8以下の条件で行うことが好ましい。このような処理は、中性TEMPO酸化処理ともいう。中性TEMPO酸化処理は、例えばリン酸ナトリウム緩衝液(pH=6.8)に、繊維原料としてパルプと、触媒としてTEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)等のニトロキシラジカル、犠牲試薬として次亜塩素酸ナトリウムを添加することで行うことができる。さらに亜塩素酸ナトリウムを共存させることによって、酸化の過程で発生するアルデヒドを、効率的にカルボキシ基まで酸化することができる。
【0065】
また、TEMPO酸化処理は、その処理をpHが10以上11以下の条件で行ってもよい。このような処理は、アルカリTEMPO酸化処理ともいう。アルカリTEMPO酸化処理は、たとえば繊維原料としてのパルプに対し、触媒としてTEMPO等のニトロキシラジカルと、共触媒として臭化ナトリウムと、酸化剤として次亜塩素酸ナトリウムを添加することにより行うことができる。
【0066】
繊維状セルロースに対するカルボキシ基の導入量は、置換基の種類によっても変わるが、たとえばTEMPO酸化によりカルボキシ基を導入する場合、微細繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.40mmol/g以上であることがさらに好ましく、0.60mmol/g以上であることがとくに好ましい。また、繊維状セルロースに対するカルボキシ基の導入量は、2.50mmol/g以下であることが好ましく、2.00mmol/g以下であることがより好ましく、1.50mmol/g以下であることがさらに好ましく、1.00mmol/g以下であることがとくに好ましい。その他、置換基がカルボキシメチル基である場合、微細繊維状セルロース1g(質量)あたり5.8mmol/g以下であってもよい。カルボキシ基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。また、カルボキシ基の導入量を上記範囲内とすることにより、微細繊維状セルロースを塗料に添加した際の塗料のチキソトロピー性を低下させることができ、これにより塗工適性をより効果的に高めることができる。
【0067】
<洗浄工程>
本実施形態における微細繊維状セルロースの製造方法においては、必要に応じてイオン性置換基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶媒によりイオン性置換基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、とくに限定されない。
【0068】
<アルカリ処理工程>
微細繊維状セルロースを製造する場合、イオン性置換基導入工程と、後述する解繊処理工程との間に、繊維原料に対してアルカリ処理を行ってもよい。アルカリ処理の方法としては、特に限定されないが、例えばアルカリ溶液中に、イオン性置換基導入繊維を浸漬する方法が挙げられる。
【0069】
アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、たとえば水酸化ナトリウムまたは水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水または有機溶媒のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、またはアルコールに例示される極性有機溶媒などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、たとえば水酸化ナトリウム水溶液、または水酸化カリウム水溶液が好ましい。
【0070】
アルカリ処理工程におけるアルカリ溶液の温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。アルカリ処理工程におけるイオン性置換基導入繊維のアルカリ溶液への浸漬時間は、特に限定されないが、たとえば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。アルカリ処理におけるアルカリ溶液の使用量は、特に限定されないが、たとえばイオン性置換基導入繊維の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
【0071】
アルカリ処理工程におけるアルカリ溶液の使用量を減らすために、イオン性置換基導入工程の後であってアルカリ処理工程の前に、イオン性置換基導入繊維を水や有機溶媒により洗浄してもよい。アルカリ処理工程の後であって解繊処理工程の前には、取り扱い性を向上させる観点から、アルカリ処理を行ったイオン性置換基導入繊維を水や有機溶媒により洗浄することが好ましい。
【0072】
<酸処理工程>
微細繊維状セルロースを製造する場合、イオン性置換基を導入する工程と、後述する解繊処理工程の間に、繊維原料に対して酸処理を行ってもよい。例えば、イオン性置換基導入工程、酸処理、アルカリ処理及び解繊処理をこの順で行ってもよい。
【0073】
酸処理の方法としては、特に限定されないが、たとえば酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、特に限定されないが、たとえば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、特に限定されないが、たとえば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。酸性液に含まれる酸としては、たとえば無機酸、スルホン酸、カルボン酸等を用いることができる。無機酸としては、たとえば硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、たとえばメタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、たとえばギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。これらの中でも、塩酸または硫酸を用いることがとくに好ましい。
【0074】
酸処理における酸溶液の温度は、特に限定されないが、たとえば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、特に限定されないが、たとえば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、特に限定されないが、たとえば繊維原料の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
【0075】
<解繊処理>
イオン性置換基導入繊維を解繊処理工程で解繊処理することにより、微細繊維状セルロースが得られる。解繊処理工程においては、たとえば解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いるのがより好ましい。
【0076】
解繊処理工程においては、たとえばイオン性置換基導入繊維を、分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、および極性有機溶媒などの有機溶媒から選択される1種または2種以上を使用することができる。極性有機溶媒としては、とくに限定されないが、たとえばアルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン性極性溶媒等が好ましい。アルコール類としては、たとえばメタノール、エタノール、イソプロパノール、n-ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、たとえばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、たとえばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、たとえば酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリジノン(NMP)等が挙げられる。
【0077】
解繊処理時の微細繊維状セルロースの固形分濃度は適宜設定できる。また、イオン性置換基導入繊維を分散媒に分散させて得たスラリー中には、例えば水素結合性のある尿素などのイオン性置換基導入繊維以外の固形分が含まれていてもよい。
【0078】
<低チキソ化処理>
本発明の微細繊維状セルロースの製造方法は、上述したような工程に加えて、さらに低チキソ化処理を施す工程を含むことが好ましい。具体的には、上述したように、適宜処理を施したセルロース繊維に解繊処理を施して繊維幅が1000nm以下の繊維状セルロースを得る工程と、繊維状セルロースに低チキソ化処理を施す工程とを含むことが好ましい。すなわち、本発明の微細繊維状セルロースの製造方法は、例えば、セルロース繊維に解繊処理を施した後に、低チキソ化処理を施す工程を含むことが好ましい。なお、解繊処理工程の前には、上述したように、セルロース繊維にイオン性置換基を導入する工程をさらに含むことが好ましく、イオン性置換基を導入する工程の他に、洗浄工程やアルカリ処理工程をさらに含むことも好ましい。
【0079】
本明細書において、低チキソ化処理を施す工程は、微細繊維状セルロースを含む分散液のチキソトロピー性を低下させるための処理を施す工程である。具体的には、低チキソ化処理を施す工程は、繊維幅が1000nm以下の繊維状セルロースの重合度を300以上500以下にする工程であることが好ましい。なお、低チキソ化処理を施す工程で得られる微細繊維状セルロースの重合度は、320以上であることがより好ましく、340以上であることがさらに好ましい。また、低チキソ化処理を施す工程で得られる微細繊維状セルロースの重合度は、490以下であることがより好ましく、460以下であることがさらに好ましい。
【0080】
低チキソ化処理を施す工程としては、例えば、オゾン処理工程、酵素処理工程、次亜塩素酸処理工程、亜臨界水処理工程等を挙げることができる。低チキソ化処理を施す工程は、オゾン処理工程、酵素処理工程、次亜塩素酸処理工程及び亜臨界水処理工程から選択される少なくとも1種であることが好ましく、オゾン処理工程であることが特に好ましい。
【0081】
オゾン処理工程では、微細繊維状セルロース分散液(スラリー)にオゾンを添加する。オゾンを添加する際には、例えば、オゾン/酸素混合気体として添加することが好ましい。この際、微細繊維状セルロース分散液(スラリー)中に含まれる微細繊維状セルロース1gに対するオゾン添加率は、1.0×10-4g以上とすることが好ましく、1.0×10-3g以上とすることがより好ましく、1.0×10-2g以上とすることがさらに好ましい。なお、微細繊維状セルロース1gに対するオゾン添加率は、1.0×10g以下とすることが好ましい。微細繊維状セルロース分散液(スラリー)にオゾンを添加した後には、10℃以上50℃以下の条件下で10秒以上10分以下撹拌を行い、その後、1分以上100分以下静置することが好ましい。
【0082】
酵素処理工程では、微細繊維状セルロース分散液(スラリー)に酵素を添加する。この際に用いる酵素は、セルラーゼ系酵素であることが好ましい。セルラーゼ系酵素は、セルロースの加水分解反応機能を有する触媒ドメインの高次構造に基づく糖質加水分解酵素ファミリーに分類される。セルラーゼ系酵素はセルロース分解特性によってエンド型グルカナーゼ(endo-glucanase)とセロビオヒドロラーゼ(cellobiohydrolase)に大別される。エンド型グルカナーゼはセルロースの非晶部分や可溶性セロオリゴ糖、又はカルボキシメチルセルロースのようなセルロース誘導体に対する加水分解性が高く、それらの分子鎖を内側からランダムに切断し、重合度を低下させる。これに対して、セロビオヒドロラーゼはセルロースの結晶部分を分解し、セロビオースを与える。また、セロビオヒドロラーゼはセルロース分子の末端から加水分解し、エキソ型或いはプロセッシブ酵素とも呼ばれる。酵素処理工程において使用する酵素は特に限定されるものではないが、エンド型グルカナーゼを使用することが好ましい。
【0083】
酵素処理工程では、酵素の添加率は微細繊維状セルロース1gに対して1.0×10-7g以上であることが好ましく、1.0×10-6g以上であることがより好ましく、1.0×10-5g以上であることがさらに好ましい。また、酵素の添加率は微細繊維状セルロース1gに対して1.0×10-2g以下であることが好ましい。微細繊維状セルロース分散液(スラリー)に酵素を添加した後には、30℃以上70℃以下の条件下で1分以上10時間以下撹拌を行い、その後、90℃以上の条件下に置くなどして酵素を失活させることが好ましい。
【0084】
次亜塩素酸処理工程では、微細繊維状セルロース分散液(スラリー)に次亜塩素酸ナトリウムを添加する。次亜塩素酸ナトリウムの添加率は微細繊維状セルロース1gに対して1.0×10-4g以上であることが好ましく、1.0×10-3g以上であることがより好ましく、1.0×10-2g以上であることがさらに好ましく、1.0×10-1g以上であることが特に好ましい。また、次亜塩素酸ナトリウム添加率は微細繊維状セルロース1gに対して1.0×10g以下であることが好ましい。微細繊維状セルロース分散液(スラリー)に次亜塩素酸ナトリウムを添加した後には、10℃以上50℃以下の条件下で1分以上10時間以下撹拌を行うことが好ましい。
【0085】
亜臨界水処理工程では、微細繊維状セルロース分散液(スラリー)に高温高圧処理を施し、亜臨界状態とする。微細繊維状セルロースは亜臨界状態において加水分解される。具体的には、微細繊維状セルロース分散液(スラリー)を反応容器に入れた後、150℃以上500℃以下、好ましくは150℃以上350℃以下となるまで昇温し、反応容器内の圧力を10MPa以上80MPa以下、好ましくは10MPa以上20MPa以下に加圧する。この際の加熱加圧時間は0.1秒以上100秒以下であることが好ましく、3秒以上50秒以下であることがより好ましい。
【0086】
(繊維状セルロース分散液)
本発明は、上述した微細繊維状セルロースを水に分散させてなる繊維状セルロース分散液(微細繊維状セルロース含有スラリーもしくはスラリーともいう)に関するものでもある。繊維状セルロース分散液は、例えば、塗料に添加するために用いられる塗料用分散液であってもよい。
【0087】
繊維状セルロース分散液中における微細繊維状セルロースの含有量は、繊維状セルロース分散液の全質量に対して、0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、0.5質量%以上であることがさらに好ましい。また、微細繊維状セルロースの含有量は、繊維状セルロース分散液の全質量に対して、8.0質量%以下であることが好ましく、7.0質量%以下であることがより好ましく、6.0質量%以下であることがさらに好ましい。
【0088】
繊維状セルロース分散液を、微細繊維状セルロース濃度が0.4質量%の繊維状セルロース分散液とした場合、該分散液の23℃における粘度は、200mPa・s以上であることが好ましく、300mPa・s以上であることがより好ましく、350mPa・s以上であることがさらに好ましく、400mPa・s以上であることが特に好ましい。また、分散液の23℃における粘度は、3000mPa・s以下であることが好ましく、2500mPa・s以下であることがより好ましい。微細繊維状セルロース濃度が0.4質量%の分散液の粘度は、B型粘度計(BLOOKFIELD社製、アナログ粘度計T-LVT)を用いて測定することができる。測定条件は23℃とし、回転速度3rpmとし、測定開始から3分後の粘度を測定する。
【0089】
繊維状セルロース分散液を、微細繊維状セルロース濃度が0.2質量%の繊維状セルロース分散液とした場合、該分散液のヘーズは、20%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることがさらに好ましい。分散液のヘーズが上記範囲であることは、繊維状セルロース分散液の透明度が高く、微細繊維状セルロースの微細化が良好であることを意味する。このような繊維状セルロース分散液を塗料に添加した場合、塗料は優れた塗工適性を発揮することができる。ここで、繊維状セルロース分散液(微細繊維状セルロース濃度0.2質量%)のヘーズは、光路長1cmの液体用ガラスセル(藤原製作所製、MG-40、逆光路)に繊維状セルロース分散液を入れ、JIS K 7136に準拠し、ヘーズメーター(村上色彩技術研究所社製、HM-150)を用いて測定される値である。なお、ゼロ点測定は、同ガラスセルに入れたイオン交換水で行う。
【0090】
繊維状セルロース分散液は、水と、微細繊維状セルロースに加えて他の添加剤を含有していてもよい。他の添加剤としては、例えば、消泡剤、潤滑剤、紫外線吸収剤、染料、顔料、安定剤、界面活性剤、防腐剤(例えば、フェノキシエタノール)等を挙げることができる。また、繊維状セルロース分散液は、任意成分としては、親水性高分子や有機イオン等を含有していてもよい。
【0091】
親水性高分子は、親水性の含酸素有機化合物(但し、上記セルロース繊維は除く)であることが好ましく、含酸素有機化合物としては、例えば、ポリエチレングリコール、ポリエチレンオキサイド、カゼイン、デキストリン、澱粉、変性澱粉、ポリビニルアルコール、変性ポリビニルアルコール(アセトアセチル化ポリビニルアルコール等)、ポリエチレンオキサイド、ポリビニルピロリドン、ポリビニルメチルエーテル、ポリアクリル酸塩類、アクリル酸アルキルエステル共重合体、ウレタン系共重合体、セルロース誘導体(ヒドロキシエチルセルロース、カルボキシエチルセルロース、カルボキシメチルセルロース等)等の親水性高分子;グリセリン、ソルビトール、エチレングリコール等の親水性低分子が挙げられる。
【0092】
有機イオンとしては、テトラアルキルアンモニウムイオンやテトラアルキルホスホニウムイオンを挙げることができる。テトラアルキルアンモニウムイオンとしては、例えば、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラプロピルアンモニウムイオン、テトラブチルアンモニウムイオン、テトラペンチルアンモニウムイオン、テトラヘキシルアンモニウムイオン、テトラヘプチルアンモニウムイオン、トリブチルメチルアンモニウムイオン、ラウリルトリメチルアンモニウムイオン、セチルトリメチルアンモニウムイオン、ステアリルトリメチルアンモニウムイオン、オクチルジメチルエチルアンモニウムイオン、ラウリルジメチルエチルアンモニウムイオン、ジデシルジメチルアンモニウムイオン、ラウリルジメチルベンジルアンモニウムイオン、トリブチルベンジルアンモニウムイオンが挙げられる。テトラアルキルホスホニウムイオンとしては、例えばテトラメチルホスホニウムイオン、テトラエチルホスホニウムイオン、テトラプロピルホスホニウムイオン、テトラブチルホスホニウムイオン、およびラウリルトリメチルホスホニウムイオンが挙げられる。また、テトラプロピルオニウムイオン、テトラブチルオニウムイオンとして、それぞれテトラn-プロピルオニウムイオン、テトラn-ブチルオニウムイオンなども挙げることができる。
【0093】
(用途)
本発明の微細繊維状セルロースは、増粘剤として各種用途に用いられることが好ましい。例えば、本発明の微細繊維状セルロースは、食品、化粧品、セメント、塗料(自動車、船舶、航空機等の乗り物塗装用、建材用、日用品用など)、インク、医薬品などへの添加物として用いることができる。また、本発明の微細繊維状セルロースは、樹脂系材料やゴム系材料に添加したりすることで、日用品への応用も可能である。中でも、本発明の微細繊維状セルロースは、塗料用微細繊維状セルロースであることが特に好ましい。
【実施例
【0094】
以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
【0095】
<製造例1>
〔リン酸化微細繊維状セルロース分散液の製造〕
原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/mシート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
【0096】
この原料パルプに対してリン酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを140℃の熱風乾燥機で200秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプを得た。
【0097】
次いで、得られたリン酸化パルプに対して洗浄処理を行った。洗浄処理は、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
【0098】
次いで、洗浄後のリン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水して、中和処理が施されたリン酸化パルプを得た。次いで、中和処理後のリン酸化パルプに対して、上記洗浄処理を行った。
【0099】
これにより得られたリン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基に基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。
【0100】
また、得られたリン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
【0101】
得られたリン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。
【0102】
X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、後述する測定方法で測定されるリン酸基量(強酸性基量)は、0.80mmol/gだった。
【0103】
<製造例2>
リン酸化時の薬液含浸パルプの乾燥温度を165℃とした以外は製造例1と同様にして、微細繊維状セルロース分散液を得た。なお、後述する測定方法で測定されるリン酸基量(強酸性基量)は、1.45mmol/gだった。
【0104】
<製造例3>
中和処理前の洗浄後のリン酸化パルプに対して、さらに上記リン酸化処理、上記洗浄処理をこの順に1回ずつ行った以外は製造例2と同様にして、微細繊維状セルロース分散液を得た。なお、後述する測定方法で測定されるリン酸基量(強酸性基量)は、2.00mmol/gだった。
【0105】
<製造例4>
〔TEMPO酸化微細繊維状セルロース分散液の製造〕
原料パルプとして、王子製紙製の針葉樹クラフトパルプ(未乾燥)を使用した。この原料パルプに対してアルカリTEMPO酸化処理を次のようにして行った。まず、乾燥質量100質量部相当の上記原料パルプと、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)1.6質量部と、臭化ナトリウム10質量部を、水10000質量部に分散させた。次いで、13質量%の次亜塩素酸ナトリウム水溶液を、1.0gのパルプに対して1.3mmolになるように加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10以上10.5以下に保ち、pHに変化が見られなくなった時点で反応終了と見なした。
【0106】
次いで、得られたTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、TEMPO酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
【0107】
この脱水シートに対して、残存するアルデヒド基の追酸化処理を次のようにして行った。乾燥質量100質量部相当の上記脱水シートを、0.1mol/L酢酸緩衝液(pH4.8)10000質量部に分散させた。次いで80%亜塩素酸ナトリウム113質量部を加え、直ちに密閉した後、マグネチックスターラーを用いて500rpmで撹拌しながら室温で48時間反応させ、パルプスラリーを得た。
【0108】
次いで、得られた追酸化済みTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、追酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
【0109】
また、得られたTEMPO酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
【0110】
得られたTEMPO酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。
【0111】
X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、後述する測定方法で測定されるカルボキシ基量は、0.70mmol/gだった。
【0112】
<製造例5>
酸化反応時の次亜塩素酸ナトリウム溶液の量を1.0gのパルプに対して3.8mmolとした以外は製造例4と同様にして、微細繊維状セルロース分散液を得た。なお、後述する測定方法で測定されるカルボキシ基量は、1.30mmol/gだった。
【0113】
<製造例6>
酸化反応時の次亜塩素酸ナトリウム溶液の量を1.0gのパルプに対して10mmolとした以外は製造例4と同様にして、微細繊維状セルロース分散液を得た。なお、後述する測定方法で測定されるカルボキシ基量は、1.80mmol/gだった。
【0114】
<実施例1>
(オゾン処理による低チキソ化)
製造例1で得られた微細繊維状セルロース分散液1000g(固形分濃度2質量%、固形分20g)に対して、オゾン濃度200g/mのオゾン/酸素混合気体を1L加え、密閉容器内において25℃で2分間撹拌したのち、30分間静置した。この時のオゾン添加率は微細繊維状セルロース1gに対して1.0×10-2gであった。次いで、容器を開放して5時間撹拌し、分散液中に残存するオゾンを揮散させた。このようにして、微細繊維状セルロースの低チキソ化を行い、得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0115】
<実施例2>
製造例2で得られた微細繊維状セルロース分散液を用いたこと以外は実施例1と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0116】
<実施例3>
製造例3で得られた微細繊維状セルロース分散液を用いたこと以外は実施例1と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0117】
<実施例4>
オゾン濃度40g/mのオゾン/酸素混合気体を用いたこと以外は実施例1と同様にして、低チキソ化微細繊維状セルロース分散液を得た。この時のオゾン添加率は微細繊維状セルロース1gに対して2.0×10-3gであった。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0118】
<実施例5>
製造例2で得られた微細繊維状セルロース分散液を用いたこと以外は実施例4と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0119】
<実施例6>
製造例3で得られた微細繊維状セルロース分散液を用いたこと以外は実施例4と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0120】
<実施例7>
(酵素処理による低チキソ化)
製造例1で得られた微細繊維状セルロース分散液1000g(固形分濃度2質量%、固形分20g)に対して、酵素含有液(AB Enzymes社製、ECOPULP R、酵素含有量は約5質量%)を1000倍希釈したものを20g添加し、温度50℃で1時間撹拌した。この時の酵素添加率は微細繊維状セルロース1gに対して約5.0×10-5gであった。次いで、温度100℃で1時間撹拌し、酵素を失活させた。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0121】
<実施例8>
製造例2で得られた微細繊維状セルロース分散液を用いたこと以外は実施例7と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0122】
<実施例9>
製造例3で得られた微細繊維状セルロース分散液を用いたこと以外は実施例7と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0123】
<実施例10>
微細繊維状セルロース分散液1000g(固形分濃度2質量%、固形分20g)に対して、酵素含有液(AB Enzymes社製、ECOPULP R、酵素含有量は約5質量%)を1000倍希釈して4g添加したこと以外は実施例7と同様にして、低チキソ化微細繊維状セルロース分散液を得た。この時の酵素添加率は微細繊維状セルロース1gに対して約1.0×10-5gであった。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0124】
<実施例11>
製造例2で得られた微細繊維状セルロース分散液を用いたこと以外は実施例10と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0125】
<実施例12>
製造例3で得られた微細繊維状セルロース分散液を用いたこと以外は実施例10と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0126】
<実施例13>
(次亜塩素酸ナトリウム処理による低チキソ化)
製造例1で得られた微細繊維状セルロース分散液1000g(固形分濃度2質量%、固形分20g)に対して、次亜塩素酸ナトリウム溶液(有効塩素濃度12質量%)を170g添加し、室温で1時間撹拌した。この時の次亜塩素酸ナトリウム添加率は微細繊維状セルロース1gに対して1.02gであった。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0127】
<実施例14>
製造例2で得られた微細繊維状セルロース分散液を用いたこと以外は実施例13と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0128】
<実施例15>
製造例3で得られた微細繊維状セルロース分散液を用いたこと以外は実施例13と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0129】
<実施例16>
微細繊維状セルロース分散液1000g(固形分濃度2質量%、固形分20g)に対して、次亜塩素酸ナトリウム溶液(有効塩素濃度12質量%)を1.70g添加したこと以外は実施例13と同様にして、低チキソ化微細繊維状セルロース分散液を得た。この時の次亜塩素酸ナトリウム添加率は微細繊維状セルロース1質量部に対して1.02×10-2質量部である。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0130】
<実施例17>
製造例2で得られた微細繊維状セルロース分散液を用いたこと以外は実施例16と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0131】
<実施例18>
製造例3で得られた微細繊維状セルロース分散液を用いたこと以外は実施例16と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0132】
<実施例19>
(亜臨界水処理による低チキソ化)
製造例1で得られた微細繊維状セルロース分散液を反応器内に入れ、200℃に昇温し、10秒間加熱した。このときの反応器内の圧力は20MPaであった。加熱終了後、反応器を水冷した後、反応器内の低チキソ化微細繊維状セルロース分散液を回収した。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0133】
<実施例20>
製造例2で得られた微細繊維状セルロース分散液を用いたこと以外は実施例19と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0134】
<実施例21>
製造例3で得られた微細繊維状セルロース分散液を用いたこと以外は実施例19と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0135】
<実施例22>
加熱時間を1秒間としたこと以外は実施例19と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0136】
<実施例23>
製造例2で得られた微細繊維状セルロース分散液を用いたこと以外は実施例22と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0137】
<実施例24>
製造例3で得られた微細繊維状セルロース分散液を用いたこと以外は実施例22と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0138】
<実施例25>
製造例4で得られた微細繊維状セルロース分散液を用いたこと以外は実施例1と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0139】
<実施例26>
製造例5で得られた微細繊維状セルロース分散液を用いたこと以外は実施例1と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0140】
<実施例27>
製造例6で得られた微細繊維状セルロース分散液を用いたこと以外は実施例1と同様にして、低チキソ化微細繊維状セルロース分散液を得た。得られた低チキソ化微細繊維状セルロース分散液について、粘度、重合度及び粘度変化率を後述した方法により測定した。
【0141】
<比較例1>
製造例1において得られたリン酸化パルプ100g(固形分濃度20質量%、固形分20g)に対して、オゾン濃度200g/mのオゾン/酸素混合気体を1L加え、密閉容器内において25℃で2分間撹拌したのち、30分間静置した。この時のオゾン添加率は微細繊維状セルロース1gに対して1.0×10-2gであった。その後、リン酸化パルプを洗浄し、残存するオゾンを除去した。次いで、得られたパルプを用いて固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。得られた微細繊維状セルロース分散液をそのまま用いて粘度、重合度及び粘度変化率を後述した方法により測定した。
【0142】
<比較例2>
製造例2において得られたリン酸化パルプを用いたこと以外は比較例1と同様にして、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。得られた微細繊維状セルロース分散液をそのまま用いて粘度、重合度及び粘度変化率を後述した方法により測定した。
【0143】
<比較例3>
製造例3において得られたリン酸化パルプを用いたこと以外は比較例1と同様にして、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。得られた微細繊維状セルロース分散液をそのまま用いて粘度、重合度及び粘度変化率を後述した方法により測定した。
【0144】
<比較例4>
製造例1で得られた微細繊維状セルロース分散液をそのまま用いて粘度、重合度及び粘度変化率を後述した方法により測定した。
【0145】
<比較例5>
製造例2で得られた微細繊維状セルロース分散液をそのまま用いて粘度、重合度及び粘度変化率を後述した方法により測定した。
【0146】
<比較例6>
製造例3で得られた微細繊維状セルロース分散液をそのまま用いて粘度、重合度及び粘度変化率を後述した方法により測定した。
【0147】
<比較例7>
製造例4で得られた微細繊維状セルロース分散液をそのまま用いて粘度、重合度及び粘度変化率を後述した方法により測定した。
【0148】
<比較例8>
製造例5で得られた微細繊維状セルロース分散液をそのまま用いて粘度、重合度及び粘度変化率を後述した方法により測定した。
【0149】
<比較例9>
製造例6で得られた微細繊維状セルロース分散液をそのまま用いて粘度、重合度及び粘度変化率を後述した方法により測定した。
【0150】
<測定>
〔リン酸基量の測定〕
微細繊維状セルロースのリン酸基量は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を、30秒に1回、50μLずつ加えながら、スラリーが示す電気伝導度の値の変化を計測することにより行った。リン酸基量(mmol/g)は、計測結果のうち図1に示す第1領域に相当する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して算出した。
【0151】
〔カルボキシ基量の測定〕
微細繊維状セルロースのカルボキシ基量は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を30秒に1回、50μLずつ加えながら、スラリーが示す電気伝導度の値の変化を計測することにより行った。カルボキシ基量(mmol/g)は、計測結果のうち図2に示す第1領域に相当する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して算出した。
【0152】
〔微細繊維状セルロース分散液の粘度の測定〕
微細繊維状セルロース分散液の粘度は、次のように測定した。まず、微細繊維状セルロース分散液を固形分濃度が0.4質量%となるようにイオン交換水により希釈した後に、ディスパーザーにて1500rpmで5分間撹拌した。次いで、これにより得られた分散液の粘度をB型粘度計(BLOOKFIELD社製、アナログ粘度計T-LVT)を用いて測定した。測定条件は、回転速度3rpmとし、測定開始から3分後の粘度値を当該分散液の粘度とした。また、測定対象の分散液は測定前に23℃、相対湿度50%の環境下に24時間静置した。測定時の分散液の液温は23℃であった。
【0153】
〔微細繊維状セルロースの比粘度および重合度の測定〕
微細繊維状セルロースの比粘度および重合度は、Tappi T230に従い測定した。測定対象のセルロース繊維を分散媒に分散させて測定した粘度(η1とする)、および分散媒体のみで測定したブランク粘度(η0とする)を測定したのち、比粘度(ηsp)、固有粘度([η])を下記式に従って測定した。
ηsp=(η1/η0)-1
[η]=ηsp/(c(1+0.28×ηsp))
ここで、式中のcは、粘度測定時の微細繊維状セルロースの濃度を示す。
さらに、下記式から微細繊維状セルロースの重合度(DP)を算出した。
DP=1.75×[η]
この重合度は粘度法によって測定された平均重合度であることから、「粘度平均重合度」と称されることもある。
【0154】
〔微細繊維状セルロース分散液の粘度変化率の測定〕
微細繊維状セルロース分散液の粘度変化率は、次のように測定した。
(撹拌前粘度の測定)
まず、後述する方法で測定した場合の粘度が約2500mPa・sとなるように、微細繊維状セルロース分散液をイオン交換水で希釈し、直径10cmの円筒状容器に微細繊維状セルロース分散液を5cmの高さまで入れ、ディスパーザーにて1500rpmで5分間撹拌した。撹拌終了時から1分後に、得られた微細繊維状セルロース分散液の粘度をB型粘度計(BLOOKFIELD社製、アナログ粘度計T-LVT)を用いて測定した。測定条件は、回転速度6rpmとし、測定開始から1分後の粘度値を当該分散液の粘度とした。また、測定時の分散液の液温は23℃であった。
(撹拌子による撹拌)
次いで、得られた粘度約2500mPa・sの微細繊維状セルロース分散液を直径10cmの円筒状容器に微細繊維状セルロース分散液を5cmの高さまで入れ、長さ5cm、中心部の幅2cm、端部の幅1cmの楕円形の撹拌子を用いて、液面中心部が2cm凹む状態を維持して24時間撹拌した。撹拌中の分散液の液温は23℃であった。
(撹拌後粘度の測定)
撹拌子による撹拌終了時から1分後に、微細繊維状セルロース分散液の粘度をB型粘度計(BLOOKFIELD社製、アナログ粘度計T-LVT)を用いて直ちに測定した。測定条件は、回転速度6rpmとし、測定開始から1分後の粘度値を当該分散液の粘度とした。また、測定時の分散液の液温は23℃であった。
(粘度変化率の計算)
以下の式で撹拌子による撹拌前後の粘度変化率を算出した。
粘度変化率(%)=(撹拌後粘度-撹拌前粘度)/撹拌前粘度×100
【0155】
<評価>
〔塗料の塗工適性の評価〕
本発明により得られた微細繊維状セルロース分散液を用いた塗料の塗工適性を、次のように評価した。
(微細繊維状セルロース含有塗料の調製)
上記と同様の方法で得られた粘度約2500mPa・sの微細繊維状セルロース分散液100質量部に対して、光輝材(アルミニウムペースト WXM7640、東洋アルミ社製、アルミニウム濃度58~61質量%)1質量部を加え、ディスパーザーにて1500rpmで5分間撹拌し、微細繊維状セルロース含有塗料を得た。
(塗料の循環及びスプレー塗工)
次いで、得られた微細繊維状セルロース含有塗料をポンプ式循環装置により配管内を24時間循環させた。循環終了後、直ちに微細セルロース含有塗料をスプレーガンで壁面に塗工し、液ダレの有無を確認した。また、塗工の際に微細セルロース含有塗料中の光輝材の沈降の有無を目視で確認した。塗料の液ダレ及び光輝材の沈降の結果から、微細繊維状セルロース含有塗料の塗工適性を4段階で評価した。
A:塗料循環後の塗工時に液ダレおよび光輝材の沈降がみられず、塗工適性が非常によい。
B:塗料循環後の塗工時に液ダレもしくは光輝材の沈降のいずれかがみられるが軽微であり、塗工適性がよい。
C:塗料循環後の塗工時に液ダレおよび光輝材の沈降がみられ、塗工適性がやや悪いが、実用上は問題ない。
D:塗料循環後の塗工時に液ダレおよび光輝材の沈降が多くみられ、塗工適性が悪く、実用上問題がある。






















【0156】
【表1】
【0157】
【表2】
【0158】
【表3】
【0159】

実施例で得られた微細繊維状セルロースを用いた塗料では優れた塗工適性が発揮されていた。
図1
図2