(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-14
(45)【発行日】2022-03-23
(54)【発明の名称】超音波距離測定装置及び超音波距離測定方法
(51)【国際特許分類】
G01B 17/00 20060101AFI20220315BHJP
G01S 15/08 20060101ALI20220315BHJP
【FI】
G01B17/00 B
G01S15/08
(21)【出願番号】P 2018065162
(22)【出願日】2018-03-29
【審査請求日】2021-03-12
(73)【特許権者】
【識別番号】500171707
【氏名又は名称】株式会社ブイ・テクノロジー
(74)【代理人】
【識別番号】100170070
【氏名又は名称】坂田 ゆかり
(72)【発明者】
【氏名】米澤 良
【審査官】仲野 一秀
(56)【参考文献】
【文献】特開2014-232068(JP,A)
【文献】特開2009-222445(JP,A)
【文献】米国特許出願公開第2003/0112705(US,A1)
【文献】特開平6-82244(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01B 17/00-17/08
G01S 15/00-15/96
(57)【特許請求の範囲】
【請求項1】
超音波を対象物へ向けて送信し、かつ、前記対象物で反射された超音波を受信するセンサと、
前記センサで受信した超音波の受信波形と、テンプレートとの相関に基づいて、前記センサと前記対象物との距離を測定する信号処理部と、
を備え、
前記センサは、周期が一定であり、サイクル数が10~15サイクル程度の第1サイクル数である矩形波の後、周波数が0となる送信信号を用いて超音波を送信し、
前記信号処理部は、所定条件下における前記受信波形である基本波形を立ち上がりから前記第1サイクル数より少ない第2サイクル数分だけ抜き出した第1波形、又は前記第1波形の振幅を所定倍した第2波形を前記テンプレートとして保持するテンプレート保持部を有する
ことを特徴とする超音波距離測定装置。
【請求項2】
前記信号処理部は、前記受信波形と前記テンプレートとを差分し、当該差分の絶対値を加算して相関値を求め、前記相関値が一番小さいときに前記受信波形と前記テンプレートが一致したとして前記受信波形の立ち上がりの時刻を求め、当該時刻に基づいて前記センサと前記対象物との距離を測定する
ことを特徴とする請求項1に記載の超音波距離測定装置。
【請求項3】
前記信号処理部は、前記テンプレートの振幅を調整するテンプレート調整部を有する
ことを特徴とする請求項1又は2に記載の超音波距離測定装置。
【請求項4】
前記テンプレート調整部は、前記テンプレートのピーク値と、前記受信波形のピーク値とが一致するように前記テンプレートの振幅を調整する
ことを特徴とする請求項3に記載の超音波距離測定装置。
【請求項5】
前記センサは、前記第1波形の周波数の略20倍の周波数でサンプリングを行う
ことを特徴とする請求項1から4のいずれか一項に記載の超音波距離測定装置。
【請求項6】
前記センサから所定の距離だけ離れて設けられた波長測定用対象物を備え、
前記信号処理部は、前記センサから超音波が送信されてから、当該送信された超音波が前記波長測定用対象物で反射されて前記センサで受信されるまでの時間と、前記所定の距離とに基づいて前記センサから送信された超音波の波長を求め、当該求められた波長に基づいて、前記センサと前記対象物との距離を求める
ことを特徴とする請求項1から5のいずれか一項に記載の超音波距離測定装置。
【請求項7】
前記信号処理部は、前記受信波形において、前記受信波形と前記テンプレートとの相関が最も高い時点の近傍における、前記受信波形と中心線とが一致する点において前記受信波形と前記テンプレートが一致したとして前記センサと前記対象物との距離を測定する
ことを特徴とする請求項1から6のいずれか一項に記載の超音波距離測定装置。
【請求項8】
反射板を更に備え、
前記センサは、前記対象物に向けて斜めに超音波を送信し、
前記反射板は、前記センサから前記反射板との間の超音波の経路と前記反射板から前記センサとの間の超音波の経路とが一致するように、前記センサから送信されて前記対象物で反射された超音波を反射し、
前記信号処理部は、前記センサと前記反射板との距離と、前記センサから前記対象物へ送信される超音波の入射角とに基づいて前記センサと前記対象物との距離を求める
ことを特徴とする請求項1から7のいずれか一項に記載の超音波距離測定装置。
【請求項9】
筐体を更に備え、
前記センサは、枠体を有し、
前記枠体には、金属製の重りが設けられ、
前記枠体と前記筐体との間には、弾性部材が設けられ、前記弾性部材が前記枠体を挟持する
ことを特徴とする請求項1から8のいずれか一項に記載の超音波距離測定装置。
【請求項10】
周期が一定であり、サイクル数が10~15サイクル程度の第1サイクル数である矩形波の後、周波数が0となる送信信号を用いてセンサから超音波を送信し、
対象物で反射された超音波を前記センサで受信し、
前記センサで受信された超音波の受信波形と、予め保持されたテンプレートと、の相関に基づいて距離を求める超音波距離測定方法であって、
所定条件下において、前記送信信号を用いて前記センサから超音波を送信し、前記対象物で反射された超音波を前記センサで受信し、前記センサで受信された超音波の受信波形のうちの反射波形の立ち上がりから前記第1サイクル数より少ない第2サイクル数分だけ抜き出した第1波形、又は前記第1波形の振幅を所定倍した第2波形を前記テンプレートとする
ことを特徴とする超音波距離測定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波距離測定装置及び超音波距離測定方法に関する。
【背景技術】
【0002】
特許文献1には、超音波センサから対象物へ向け超音波を送信し、対象物によって反射された超音波を再び超音波センサで受信し、受信した信号から遅延時間または位相を計測し、遅延時間または位相の計測値に移動平均処理または加重移動平均処理を施し、その結果に基づいて超音波センサと対象物との距離を求める超音波距離計が開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載の発明のように、受信信号に移動平均処理または加重移動平均処理を施した結果に基づいて距離を求める場合には、一般的には、±0.1mm程度の精度で距離が測定可能であるといわれている。しかしながら、例えば、半導体基板の表面を撮像して検査を行う場合には、±0.1mm程度の精度では十分ではなく、更に高い精度で距離を測定することが求められる。
【0005】
本発明はこのような事情に鑑みてなされたもので、高い精度で距離を測定することができる超音波距離測定装置及び超音波距離測定方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するために、本発明に係る超音波距離測定装置は、例えば、超音波を対象物へ向けて送信し、かつ、前記対象物で反射された超音波を受信するセンサと、前記センサで受信した超音波の受信波形と、テンプレートとの相関に基づいて、前記センサと前記対象物との距離を測定する信号処理部と、を備え、前記センサは、周期が一定であり、サイクル数が10~15サイクル程度の第1サイクル数である矩形波の後、周波数が0となる送信信号を用いて超音波を送信し、前記信号処理部は、所定条件下における前記受信波形である基本波形を立ち上がりから前記第1サイクル数より少ない第2サイクル数分だけ抜き出した第1波形、又は前記第1波形の振幅を所定倍した第2波形を前記テンプレートとして保持するテンプレート保持部を有することを特徴とする。
【0007】
本発明に係る超音波距離測定装置によれば、周期が一定であり、サイクル数が10~15サイクル程度の第1サイクル数である矩形波の後、周波数が0となる送信信号に基づいて超音波を送信し、対象物で反射した超音波を受信する。そして、センサで受信した超音波の受信波形と、基本波形(所定条件下における受信波形)を立ち上がりから第2サイクル数(第2サイクル数<第1サイクル数)分だけ抜き出した第1波形、又は第1波形の振幅を所定倍にした第2波形であるテンプレートとの相関に基づいて、センサと対象物との距離を測定する。このように、所定条件下における受信波形の一部を予めテンプレートとして保持し、測定対象物で反射して得られた実際の受信波形とテンプレートとを比較することで、高い精度で距離を測定することができる。また、サイクル数が10~15サイクル程度の第1サイクル数である矩形波の後、周波数が0とすることで、センサの共振を止め、超音波の送信及び受信を同一のセンサで行いつつ、短い距離(例えば、40mm)だけ離れた対象物までに距離を測定することができる。
【0008】
ここで、前記信号処理部は、前記受信波形と前記テンプレートとを差分し、当該差分の絶対値を加算して相関値を求め、前記相関値が一番小さいときに前記受信波形と前記テンプレートが一致したとして前記受信波形の立ち上がりの時刻を求め、当該時刻に基づいて前記センサと前記対象物との距離を測定してもよい。これにより、受信波形の立ち上がりのタイミングを正確に知ることでき、高い精度で距離を測定することができる。
【0009】
ここで、前記信号処理部は、前記テンプレートの振幅を調整するテンプレート調整部を有してもよい。これにより、対象物Oまでの距離等の条件により受信波形の振幅が変化したとしても、受信波形とテンプレートとの相関を正しく得ることができる。
【0010】
ここで、前記テンプレート調整部は、前記テンプレートのピーク値と、前記受信波形のピーク値とが一致するように前記テンプレートの振幅を調整してもよい。これにより、受信波形のピーク値、すなわち振幅が変化したとしても、受信波形とテンプレートとの相関を正しく得ることができる。
【0011】
ここで、前記センサは、前記第1波形の周波数の略20倍の周波数でサンプリングを行ってもよい。これにより、高い精度(例えばセンサで送受信する超音波の周波数が300kHzであり、サンプリング周波数が6MHzであるすると、超音波の波長の1/20の半分(片道分)である30μmの分解能)で距離を測定することができる。
【0012】
ここで、前記センサから所定の距離だけ離れて設けられた波長測定用対象物を備え、前記信号処理部は、前記センサから超音波が送信されてから、当該送信された超音波が前記波長測定用対象物で反射されて前記センサで受信されるまでの時間と、前記所定の距離とに基づいて前記センサから送信された超音波の波長を求め、当該求められた波長に基づいて、前記センサと前記対象物との距離を求めてもよい。超音波の波長は温度が変化すると微小に変化するが、センサから送信された超音波の波長を求め、求められた波長に基づいて距離を求めることで、温度変化によらず高い精度で距離を測定することができる。
【0013】
ここで、前記信号処理部は、前記受信波形において、前記受信波形と前記テンプレートとの相関が最も高い時点の近傍における、前記受信波形と中心線とが一致する点において前記受信波形と前記テンプレートが一致したとして前記センサと前記対象物との距離を測定してもよい。これにより、より高い精度で距離を測定することができる。
【0014】
ここで、反射板を更に備え、前記センサは、前記対象物に向けて斜めに超音波を送信し、前記反射板は、前記センサから前記反射板との間の超音波の経路と前記反射板から前記センサとの間の超音波の経路とが一致するように、前記センサから送信されて前記対象物で反射された超音波を反射し、前記信号処理部は、前記センサと前記反射板との距離と、前記センサから前記対象物へ送信される超音波の入射角とに基づいて前記センサと前記対象物との距離を求めてもよい。これにより、センサと対象物との距離の測定精度をより高くすることができる。
【0015】
ここで、筐体を更に備え、前記センサは、枠体を有し、前記枠体には、金属製の重りが設けられ、前記枠体と前記筐体との間には、弾性部材が設けられ、前記弾性部材が前記枠体を挟持してもよい。これにより、センサの振動を収まりやすくし、送信の後すぐに受信を行うことができる。
【0016】
上記課題を解決するために、本発明に係る超音波距離測定方法は、例えば、周期が一定であり、サイクル数が10~15サイクル程度の第1サイクル数である矩形波の後、周波数が0となる送信信号を用いてセンサから超音波を送信し、対象物で反射された超音波を前記センサで受信し、前記センサで受信された超音波の受信波形と、予め保持されたテンプレートと、の相関に基づいて距離を求める超音波距離測定方法であって、所定条件下において、前記送信信号を用いて前記センサから超音波を送信し、前記対象物で反射された超音波を前記センサで受信し、前記センサで受信された超音波の受信波形のうちの反射波形の立ち上がりから前記第1サイクル数より少ない第2サイクル数分だけ抜き出した第1波形、又は前記第1波形の振幅を所定倍した第2波形を前記テンプレートとすることを特徴とする。これにより、高い精度で距離を測定することができる。また、超音波の送信及び受信を同一のセンサで行いつつ、短い距離(例えば、40mm)だけ離れた対象物までに距離を測定することができる。
【発明の効果】
【0017】
本発明によれば、高い精度で距離を測定することができる。
【図面の簡単な説明】
【0018】
【
図1】第1の実施の形態に係る超音波距離測定装置1の概略構成を示すブロック図である。
【
図2】超音波センサ10の回路構成の一例を示す図である。
【
図3】超音波距離測定装置1における受信信号の処理を模式的に示す図である。
【
図5】サイクル数が9であるテンプレートTaの一例である。
【
図6】サイクル数が4である場合のテンプレートTbの一例である。
【
図7】対象物Oまでの距離が125mmのときの受信波形と、サイクル数が9であるテンプレートTaに基づいたテンプレートT1aとを差分し、差分の絶対値を加算した結果である相関値の一例を示す図である。
【
図8】
図7に示す結果の、
図7丸印近傍の横軸を拡大した図である。
【
図9】対象物Oまでの距離が125mmのときの受信波形と、サイクル数が4であるテンプレートTbに基づいたテンプレートT1bとを差分し、差分の絶対値を加算した結果である相関値の一例を示す図である。
【
図11】受信波形とテンプレートTbに基づいたテンプレートT1bとの関係を示す図であり、受信波形の立ち上がり部分を拡大表示している。
【
図12】テンプレート調整入力部22bから入力される倍率を変化させたときにおける、受信波形とテンプレートT1の相関値の一例を示す図であり、(A)はテンプレート調整入力部22bから入力される倍率が1より小さい場合の相関値の一例であり、(B)はテンプレート調整入力部22bから入力される倍率が1の場合の相関値の一例であり、(C)はテンプレート調整入力部22bから入力される倍率が1より大きい場合の相関値の一例である。
【
図13】本発明にかかる超音波距離測定装置1を適用したオートフォーカス装置5の一例を示す図である
【
図14】距離hの変化と距離Lの変化との関係を模式的に示す図であり、(A)はθが45度の場合を示し、(B)はθが0度の場合を示す。
【
図15】超音波センサ10の取付構造の一例を模式的に示す図である
【
図16】第2の実施の形態に係る超音波距離測定装置2の概略構成を示すブロック図である。
【
図17】受信波形の立ち上がり部分を横方向に拡大して表示した図である。
【
図18】
図17に示す受信波形のクロスポイントβ’の近傍を拡大した図である。
【発明を実施するための形態】
【0019】
以下、本発明の実施形態を、図面を参照して詳細に説明する。本発明は、超音波を用いて対象物との距離を測定するものである。超音波とは、人間の耳には聞こえない高い周波数、一般的には20kHzを超える周波数をもつ可聴域以上の弾性振動波(音波)であるが、20kHz以下の人間に聞こえる音波でも人間の耳で聞くことを目的にしない音も超音波に含まれる。
【0020】
<第1の実施の形態>
図1は、第1の実施の形態に係る超音波距離測定装置1の概略構成を示すブロック図である。超音波距離測定装置1は、主として、超音波センサ10と、超音波センサ駆動部15と、信号処理部20と、出力部30と、を有する。
【0021】
超音波センサ10は、電源に電気的に接続されており、電気信号が与えられることにより振動して、超音波を発生する。超音波センサ10は、センサ(トランスデューサ)103(
図2参照)を含み、送信信号(後に詳述)に基づいて超音波を対象物Oへ向けて送信し、かつ、対象物Oで反射された超音波を受信する。本実施の形態では、300kHzの周波数を有する超音波を用いる。この周波数の超音波は、指向性が高い点に特徴がある。ただし、超音波距離測定装置1が用いる超音波の周波数はこれに限られない。
【0022】
超音波センサ10から発信された超音波は、対象物Oで反射されて超音波センサ10へと到達する(
図1二点鎖線参照)。つまり、超音波は、超音波センサ10と対象物Oとの間を往復する(ダブルパス)。超音波センサ10は、センサ103で受信された超音波を電気信号へと変換する。
【0023】
超音波センサ駆動部15は、主として、高周波駆動回路16と、高周波生成ロジック部17と、を有する。高周波駆動回路16は、D/Aコンバータ101a(
図2参照)を含む。高周波生成ロジック部17は、周波数が300kHzの矩形波でD/Aコンバータを10~15サイクル程度振動させてから、DC(周波数が0)の信号を加えるように、高周波駆動回路16を駆動する。また、超音波センサ駆動部15は、スイッチ18を有し、超音波センサ10を超音波センサ駆動部15に接続するか(駆動)、信号処理部20に接続するか(受信)の切り替えを行う。
【0024】
図2は、超音波センサ10及び超音波センサ駆動部15の回路構成の一例を示す図である。超音波センサ10は、多数のセンサ103(103a~103h)を有する多チャンネルのセンサである。超音波センサ駆動部15は、主として、高周波駆動回路101と、半導体リレー102、105と、受信回路104と、を有する。ここでは、半導体リレー102、105にフォトMOSリレーを用いる。
【0025】
高周波駆動回路101は、D/Aコンバータ101aと、トランス101bと、アンプ101cと、を含み、送信信号を生成する。高周波駆動回路101は、周波数が300kHzの矩形波でD/Aコンバータ101aを10~15サイクル程度振動させてから、DC(周波数が0)の信号を加えて振動を止める。つまり、送信信号は、周期が一定であり、サイクル数が10~15サイクル程度の第1サイクル数(例えば本実施の形態では、第1サイクル数を15サイクルとする)である矩形波の後、周波数が0となる信号である。
【0026】
アンプ101cのdisable端子をenable側にすると、D/Aコンバータ101aからの送信信号は、トランス101bを介して半導体リレー102に入力される。半導体リレー102は、多数のセンサ103を、順次駆動、受信するように切り替える。
図2では、センサ103は8チャンネルであり、8個のセンサ103a~103hを有するが、センサ103の数(チャンネル数)はこれに限られない。
【0027】
半導体リレー102は、略1msec毎に順次センサ103を駆動、受信する。例えば、20チャンネルのセンサを略1msec毎に順次駆動、受信すると、略20msec毎にセンサの各チャンネルで距離計測が行われる。
【0028】
センサ103が駆動されると、送信信号に基づいた超音波がセンサ103から送信される。本実施の形態では送信信号に矩形波が15サイクル含まれるため、センサ103からは、300kHzの周波数を有する超音波が15サイクル出力される。送信信号は矩形波であるが、センサ103から出力される超音波は一瞬で大きくならず、矩形波とはならない。実際にセンサ103から出力される超音波の波形は、正弦波のような形状であり、最初は0に近い小さな振幅であり、時間経過と共に徐々に振幅が大きくなる。
【0029】
300kHzの周波数を有する矩形波を15サイクル(15クロック分)出力した後で、周波数が0の信号を一定時間(例えば10クロック分)出力することで、振動するセンサ103の揺れを停止させる。したがって、センサ103から超音波を送信した後すぐにセンサ103で超音波を受信することが可能である。
【0030】
周波数が0の信号を出力したら、アンプ101cをdisableとし、また半導体リレー105の光電素子に電流を流して半導体リレー105をONして、センサ103を発信側から受信側に切り替える(スイッチ18(
図1参照)の切り替えに相当)。
【0031】
半導体リレー105によりセンサ103が受信側に切り替えられると、センサ103で受信された超音波は受信回路104に出力され、受信回路104で電気信号が生成される。
【0032】
受信回路104は、所定範囲の周波数(ここでは300kHzを含む)のみを通過させるバンドパスフィルタ104aを有する。バンドパスフィルタ104aを通過した信号は、A/Dコンバータ104bを通過して、受信信号として信号処理部20(
図1参照)に出力される。
【0033】
センサ103の駆動中は、半導体リレー105をOFFして受信回路104に大きな送信信号が入らないようにする。また、バンドパスフィルタ104aの前後には、リミッタ104cが設けられている。これは、半導体リレー105をONするときにはセンサ103が300kHzで共振しており、これによる大きな信号がアンプやA/Dコンバータ104bに入らないようにするためである。リミッタ104cには、順方向電圧が0.3V程度と小さいショットキーバリアダイオードを用いる。
【0034】
図1の説明に戻る。信号処理部20には、超音波センサ10から出力された受信信号が入力される。信号処理部20は、主として、テンプレート保持部21と、テンプレート調整部22と、相関算出部23と、距離算出部24と、温度補正部25と、を有する。
【0035】
テンプレート保持部21は、テンプレートを保持する。テンプレート調整部22は、テンプレート保持部21が保持するテンプレートの振幅を調整する。相関算出部23は、受信信号と、テンプレート保持部21が保持するテンプレート又はテンプレート調整部22により振幅が調整されたテンプレートと、の相関を求める。
【0036】
図3は、超音波距離測定装置1における受信信号の処理を模式的に示す図である。センサ103で受信した超音波は、受信回路104で受信信号に変換されて相関算出部23に入力される。受信回路104では、6MHzのクロック信号を出力し、連続的に受信信号を生成する。6MHzは、センサ103で受信される超音波の周波数300kHzの20倍である。つまり、受信回路104では、受信する超音波の1周期の間に20回受信信号を取得する(20倍オーバーサンプリング)。受信回路104では、連続的に得られた複数の受信信号をつなげて受信波形が生成される。
【0037】
受信回路104で生成された受信波形は、相関算出部23のシフトレジスタ231に入力される。これにより、相関算出部23は、一定期間の超音波受信による受信波形を取得する。なお、
図3では、シフトレジスタ231は80個のDフリップフロップ231-1、231-2、231-3・・・231-80を有する。80個は、20倍オーバーサンプリング(後に詳述)×4サイクル分を意味し、テンプレート保持部21(後に詳述)に記録されたテンプレートTの数と一致する。またA/Dコンバータ104bが16bitの分解能でアナログ信号をデジタル化する場合には、Dフリップフロップ231-1~231-80はそれぞれ16個のDフリップフロップを含む。
【0038】
1つのDフリップフロップ231-1~231-80には1クロック分の超音波受信結果(受信レベル)が保持されている。ここで受信レベルとは、1クロック分の受信信号をA/D変換した値である。受信回路104のA/Dコンバータ104bからシフトレジスタ231へ次の受信レベルが入力されると、シフトレジスタ231に保持されている受信レベルが右側に順送りされ(例えば、Dフリップフロップ231-1に保持されている受信レベルはDフリップフロップ231-2に送られ)、受信回路104から入力された新しい受信レベルがシフトレジスタ231に保持される。このように、シフトレジスタ231は、テンプレートTと同じ長さの受信レベルを保持する。
【0039】
テンプレート保持部21にはテンプレートTが保持されている。テンプレートTは、80クロック分のテンプレートレベル情報からなる。テンプレートレベル情報とは、標準的な受信波形(基本波形)の立ち上がり部80クロック分をA/D変換したときの各クロックの値である。テンプレートレベル情報は、テンプレート保持部21から相関算出部23に読み出され、シフトレジスタ232に保持される。シフトレジスタ232は、シフトレジスタ231と同様、80個のDフリップフロップ232-1~232-80を有し、シフトレジスタ232には、80クロック分のテンプレートレベル情報が保持される。なお、Dフリップフロップ231-1~231-80がそれぞれ16個のDフリップフロップを含む場合には、Dフリップフロップ232-1~232-80もそれぞれ16個のDフリップフロップを含む。
【0040】
ここで、テンプレートTについて説明する。テンプレートは、所定条件下における受信波形である基本波形を、立ち上がりから数サイクル(ただし、送信される超音波のサイクル数以下)分だけ抜き出したものである。基本波形は、送信直後のセンサ残響が入った波形(例えば、対象物Oまでの距離が40mm程度の場合の波形)や、値が小さくS/N比が低い波形(例えば、対象物Oまでの距離が120mm程度の場合の波形)でなく、
図4に示すようなきれいな波形である。
【0041】
図4は、基本波形の一例である。ここでは、所定条件を対象物Oまでの距離が75mmであるとして基本波形を取得している。
図4の横軸はクロック数(すなわち、時間)である。基本波形は、ピーク値が高い領域Aと、その後のピーク値が低い領域Bとに分けられる。領域Aは、主に、15サイクルの矩形波により送信された超音波を受信する期間である。領域Aの共振周波数は300kHz(送信した超音波の周波数と同じ)であり、領域Aにおける基本波形の周期は送信信号の矩形波の周期と略同じである。また、領域Aにおいて、立ち上がりから9サイクル程度で振幅がピークに達する。それに対し、領域Bの共振周波数は、センサ103に依存し、300kHzとはわずかに異なる。つまり、領域Bにおける基本波形の周期は送信信号の矩形波の周期とわずかに異なる。
【0042】
受信波形は、対象物Oまでの距離、センサ103のばらつき、センサ103からのケーブル長などの条件によって変化する。しかしながら、受信波形は、基本波形に対して振幅のみ(高さ方向の幅)が全体的に変化し、対象物Oまでの距離変化等による条件変化により波形の特徴は変化しない。例えば、対象物Oまでの距離が75mmより遠くなると、受信波形は、
図4に示す基本波形の位置よりも後ろ側にずれ、かつ
図4に示す基本波形よりも振幅が全体的に小さくなる。ただし、領域A、Bを有すること、領域Aは300kHzの共振周波数を有するが領域Bは300kHzの共振周波数を有しない(条件によってばらつきが生じる)こと、領域Aは立ち上がりから9サイクル程度で振幅がピークに達すること、は変化しない。
【0043】
したがって、本発明では、基本波形の立ち上がり部分(領域Aの一部)を予めテンプレートとして保持し、実際の受信波形とテンプレートとを比較することで、実際の受信波形の立ち上がり部分、つまり対象物Oまでの距離を正確に求めている。
【0044】
図5、6に、
図4に示す受信波形の立ち上がり部分を抜き出したテンプレートTの例を示す。
図5は、サイクル数が9であるテンプレートTaの一例であり、
図6は、サイクル数が4である場合のテンプレートTbの一例である。9サイクルは、受信波形が立ち上がりきってピーク値に達するまでのサイクル数であり、4サイクルは、受信波形が立ち上がりきってピーク値に達するまでのサイクル数の約半分のサイクル数である。ただし、予め取得しておいた受信波形の立ち上がりからテンプレートとして抜き出すサイクル数は、送信信号に含まれるサイクル数(ここでは15サイクル)より少ない数であればよく、4サイクルや9サイクルに限定されない。
【0045】
なお、テンプレート保持部21が保持するテンプレートTは1つであり、テンプレートTaでもよいしテンプレートTbでもよいが、テンプレートTa、Tbの両方は保持しない。
【0046】
図3の説明に戻る。テンプレート調整部22は、テンプレートTの振幅を所定倍するものであり、主として、ピークホールド回路22aと、ユーザがテンプレートTの倍率調整に用いるテンプレート調整入力部22bと、を有する。
【0047】
ピークホールド回路22aは、最後のDフリップフロップ231-80に保持された受信波形のピーク値を保持する。テンプレート調整入力部22bは、“0”から“9”の10段階で倍率の変更が可能であり、テンプレート調整入力部22bが“5”(“5”は例示である)に設定されたときに倍率が1倍となるように構成されている。
【0048】
テンプレート調整部22は、テンプレート調整入力部22bから倍率変更の入力がされなかった(ここでは、テンプレート調整入力部22bが“5”に設定されている)場合には、ピークホールド回路22aが保持するピーク値を相関算出部23に出力する。すなわち、テンプレート調整部22は、テンプレートTを得た時のピーク値と、受信信号のピーク値とが一致するようにテンプレートTの振幅(テンプレートレベル情報の値)を調整する。
【0049】
また、テンプレート調整部22は、テンプレート調整入力部22bから倍率変更の入力がされた場合には、ピークホールド回路22aが保持するピーク値に、テンプレート調整入力部22bで入力された倍率を掛け合わせて相関算出部23に出力する。
【0050】
相関算出部23では、受信波形とテンプレートT(または、テンプレートT1)との相関を求める。ここでは、シフトレジスタ231の各Dフリップフロップ231-1~231-80に保持された受信レベルと、シフトレジスタ232の各Dフリップフロップ232-1~232-80に保持されたテンプレートレベル情報にテンプレート調整部22から入力された倍率を掛け合わせたテンプレートT1のレベル情報との相関をそれぞれ求める。テンプレートT1は、テンプレートTの振幅を所定倍したものであり、所定倍が1の場合にはテンプレートTとテンプレートT1とは一致する。
【0051】
本実施の形態では、受信波形とテンプレートT1とを差分し、当該差分の絶対値を加算した結果である相関値を求め、相関値が最も小さい時点で受信波形とテンプレートT1とが一致したとする。ただし、受信波形とテンプレートT1との差分の絶対値を加算する代わりに、受信波形とテンプレートT1との差分を二乗した値を用いて相関値を求めてもよい。
【0052】
図7は、対象物Oまでの距離が125mmのときの受信波形と、サイクル数が9であるテンプレートTaに基づいたテンプレートT1aとを差分し、差分の絶対値を加算した結果である相関値の一例を示す図である。
図7の横軸は時間、縦軸は相関値である。相関値が最も小さい位置(
図7丸印参照)で受信波形とテンプレートT1aとが一致し、又は最も一致に近いことが分かる。
【0053】
図8は、
図7に示す結果の、
図7丸印近傍の横軸を拡大した図である。
図8の点は、受信回路104で20倍オーバーサンプリングされたタイミングを示す。相関値が小さい点(
図8丸印参照)が3つ並んでおり、このうちの中央の点αにおいて相関値が最も小さい。これにより、点αのタイミングで、受信波形とテンプレートT1aとが一致したことが分かる。
【0054】
図9は、対象物Oまでの距離が125mmのときの受信波形と、サイクル数が4であるテンプレートTbに基づいたテンプレートT1bとを差分し、差分の絶対値を加算した結果である相関値の一例を示す図である。
図9の横軸は時間、縦軸は相関値である。相関値が最も小さい位置(
図9丸印参照)で受信波形とテンプレートT1bとが一致し、又は最も一致に近いことが分かる。
【0055】
図10は、
図9に示す結果の、
図9丸印近傍の横軸を拡大した図である。
図10の点は、受信回路104で20倍オーバーサンプリングされたタイミングを示す。点βのタイミングで相関値が最も小さく、受信波形とテンプレートT1bとが一致したことが分かる。
【0056】
このように、相関算出部23は、受信信号とテンプレートT1とが最も一致するのがいつであるかを算出する。
図9に示す例では、点αのタイミングで受信波形の9サイクル目が終ったことを示し、
図10に示す例では、点βのタイミングで受信波形の4サイクル目が終ったことを示す。
【0057】
図1の説明に戻る。距離算出部24は、相関算出部23で算出された結果に基づいて、超音波センサ10と対象物Oとの距離を算出する。
図11は、受信波形と、テンプレートTbに基づいたテンプレートT1bとの関係を示す図であり、受信波形の立ち上がり部分を拡大表示している。
【0058】
点βのタイミングで受信波形とテンプレートT1bの最後(4サイクル目)が一致する。点βにテンプレートT1bの最後が位置するように受信波形とテンプレートT1bとを重ね、テンプレートT1bの輪郭線(
図1点線参照)が交差する点γを受信波形の立ち上がりとすることで、受信波形の立ち上がりのタイミングが正確に分かる。距離算出部24は、このようにして求めた受信波形の立ち上がり(点γ)のときに超音波の受信を開始したとして、数式(1)で示すように、立ち上がりの時間をオーバーサンプリング数(ここでは20)で除算し、送信した超音波(ここでは300kHz)の波長の半分(ダブルパスであるため)である0.57mm(=1.13mm/2)を積算することで、超音波センサ10と対象物Oとの距離を算出する。
【0059】
[数1]
往復距離=点γのタイミング/20×0.57mm ・・・(1)
【0060】
ただし、超音波センサ10と対象物Oとの距離等の測定条件のばらつきにより、受信波形とテンプレートT1とがうまく一致しない場合がある。受信波形とテンプレートT1とがうまく一致しない理由としては、例えば、センサ103の共振周波数が300kHzから大きくずれていること、センサ103までのケーブル長が長く直列抵抗が大きいこと、対象物Oまでの距離が40mmに近く励振時の振動が反射波と干渉していることがある。このような場合には、
図3に示すテンプレート調整入力部22bを介して倍率の入力を行って、テンプレートT1のチューニングを行う。
【0061】
図12は、テンプレート調整入力部22bから入力される倍率を変化させたときにおける、受信波形とテンプレートT1の相関値の一例を示す図であり、(A)はテンプレート調整入力部22bから入力される倍率が1より小さい場合(ここでは、テンプレート調整入力部22bの設定が“1”)の相関値の一例であり、(B)はテンプレート調整入力部22bから入力される倍率が1の場合(ここでは、テンプレート調整入力部22bの設定が“5”)の相関値の一例であり、(C)はテンプレート調整入力部22bから入力される倍率が1より大きい場合(ここでは、テンプレート調整入力部22bの設定が“9”)の相関値の一例である。
【0062】
図12(A)、(C)に示す場合は、相関値の波形において値の低い点が2つ並んで存在しており、相関値の波形がいわゆる「ダブルボトム」となっている。それに対し、
図12(B)に示す場合は、相関値の波形において値の低い点が1つだけ存在しており、相関値の波形がいわゆる「シングルボトム」となっている。
【0063】
このようにテンプレートTの振幅に掛ける倍率を変化させることで、相関値の波形が変化する。したがって、相関値の波形がいわゆる「ダブルボトム」となっている場合には、テンプレート調整入力部22bを介して入力される倍率を変化させて、相関値の波形をいわゆる「シングルボトム」にする。これにより、相関値が最も小さいとき、すなわち受信波形とテンプレートT1とがよく一致し、又は最も一致に近くなるタイミングを求めることができる。
【0064】
図1の説明に戻る。温度補正部25は、温度変化による超音波の波長変化を補正する。超音波の波長は、温度が変化すると微小に変化する。高い精度で距離を求めるため、温度補正部25において、実際に超音波センサ10で送受信された超音波の波長を求め、距離算出部24において、温度補正部25で求めた波長を用いて距離を求める。
【0065】
例えば、温度補正部25は、温度を測定する温度計を有し、温度と波長との関係を示す情報に基づいて、温度計で測定した温度における超音波の波長を求めても良い。
【0066】
また例えば、温度補正部25は、実際に超音波センサ10から送信された超音波の波長を算出してもよい。この場合には、複数のセンサ103(
図2参照)のうちの1つを用いて超音波を送信し、センサ103から所定の距離(距離Dとする)だけ離れて設けられた波長測定用対象物で反射した超音波を同じセンサ103を用いて受信する。相関算出部23及び距離算出部24は、センサ103から超音波が送信され、波長測定用対象部で反射されてセンサ103で受信されるまでの時間tを測定し、温度補正部25は、時間tと距離Dとに基づいて超音波センサ10から送信された超音波の波長を求めることができる。相関算出部23及び距離算出部24は、温度補正部25で算出された波長に基づいて対象物Oまでの距離を求めることで、より正確に距離の測定が可能となる。
【0067】
出力部30は、距離算出部24で求められた距離を、表示装置等の外部装置に出力する。表示装置は、既に公知の一般的な表示装置であり、出力された距離を表示する。
【0068】
なお、
図1に示す超音波距離測定装置1の構成は、本実施形態の特徴を説明するにあたって主要構成を説明したのであって、例えば一般的な情報処理装置が備える構成を排除するものではない。また、
図1に示す機能構成は、超音波距離測定装置1の構成を理解しやすくするために分類したものであり、構成要素の分類の仕方や名称は
図1に記載の形態に限定されない。超音波距離測定装置1の構成は、処理内容に応じてさらに多くの構成要素に分類してもよいし、1つの構成要素が複数の構成要素の処理を実行してもよい。
【0069】
図13は、本発明にかかる超音波距離測定装置1を含むオートフォーカス装置5の一例を示す図である。オートフォーカス装置5は、超音波距離測定装置の一形態である。
【0070】
オートフォーカス装置5は、主として、超音波距離測定装置1(超音波センサ10、信号処理部20(
図13では図示省略)及び出力部30(
図13では図示省略))と、反射板51と、撮像装置52と、を備える。超音波センサ10は、対象物Oに向けて斜めに超音波を送信し、反射板51で反射し、かつ対象物Oで反射した超音波を受信する。
【0071】
反射板51は、超音波センサ10から反射板51との間の超音波の経路と、反射板51から超音波センサ10との間の超音波の経路とが一致する(
図13の矢印参照)位置に設けられる。
【0072】
信号処理部20は、超音波センサ10と反射板51との距離と、超音波センサ10から対象物Oへ送信される超音波の入射角θとに基づいて、超音波センサ10と対象物Oとの距離hを求める。
【0073】
出力部30は、測定された距離hを撮像装置52に出力する。撮像装置52は距離hに基づいて合焦処理を行う。合焦処理は公知であるため説明を省略する。
【0074】
オートフォーカス装置5では、対象物Oに向けて斜めに超音波を送信し、超音波が超音波センサ10と反射板51との間を往復する(ダブルパス)ため、超音波センサ10と反射板51との距離Lが変化したときの距離hの変化はL/2×cosθとなり、距離hの変化は距離Lの変化に対して大幅に小さい。例えばθが45度だとすると、距離LがΔLだけ変化したときの距離hの変化Δhは、Δh=ΔL/2×1/√2であり、ΔLはΔhの略2.8倍(ΔL=2×√2×Δh)となる。したがって、距離hの測定精度は、距離Lの測定精度より高くなる。
【0075】
図14は、距離hの変化と距離Lの変化との関係を模式的に示す図であり、(A)はθが45度の場合を示し、(B)はθが0度の場合を示す。表面O1、O2、O3は、対象物Oの表面であり、表面O1の位置は、超音波センサ10と対象物Oとの距離が距離hである場合を示し、表面O2の位置は、超音波センサ10と対象物Oとの距離が距離h+Δhである場合を示し、表面O3の位置は、超音波センサ10と対象物Oとの距離が距離h+Δ2hである場合を示す。
図14では、超音波の経路を二点鎖線で示す。
【0076】
図14(A)では、表面O1、O2、O3までの距離は、超音波センサ10と反射板53との距離から算出する。距離hがΔhだけ変化すると、超音波センサ10から反射板53までの距離は、2×√2×Δhだけ変化する。それに対し、
図14(B)では、表面O1、O2、O3までの距離を直接測定するため、超音波センサ10からの距離hがΔhだけ変化すると、超音波の経路は、2(往復分)×Δhだけ変化する。したがって、
図14(A)に示す場合は、
図14(B)に示す場合より√2倍細かく距離を求めることができる。
【0077】
本実施の形態によれば、所定条件下での実際の受信波形の一部を予めテンプレートTとして保持し、対象物Oで反射した超音波に基づいた受信波形と、テンプレートT(テンプレートT1)との相関に基づいて距離を求めるため、高い精度で距離を測定することができる。
【0078】
また、本実施の形態によれば、テンプレートTの振幅を調整するテンプレート調整部22を有するため、対象物Oまでの距離等の測定条件の変化により受信波形の振幅が変化したとしても、受信波形とテンプレートTとの相関を正しく得ることができる。したがって、測定条件の変化にかかわらず対象物Oまでの距離を精度良く測定することができる。
【0079】
また、本実施の形態によれば、超音波センサ10から送受信する超音波の周波数を300kHzとし、受信信号のサンプリング周波数を6MHzとする(300kHzの超音波の1周期を20回サンプリングする)ため、下記の数式(2)で求められるように、30μmという高い精度で距離を測定することができる。ここで0.6mmは、300kHzの超音波の波長λ=1.13mmの半分(ダブルパスであるため)である0.57mmの近似値である。
【0080】
[数2]
0.6mm/20=0.03mm(=30μm) ・・・(2)
【0081】
また、本実施の形態によれば、超音波センサ10で超音波の送信および受信を行い、超音波が超音波センサ10と対象物Oとの間を往復するダブルパス計測(往復計測)を行うため、超音波の経路における風速の影響を無くし、対象物Oまでの距離を精度良く測定することができる。
【0082】
周波数が300kHzの矩形波でD/Aコンバータを10~15サイクル程度振動させてからDC(周波数が0)の信号を加えることで、センサ103にブレーキをかけてセンサ103の揺れを停止させることができる。これにより、センサ103から超音波を送信した後、すぐにセンサ103で超音波を受信することが可能である。そのため、超音波の送信及び受信を同一のセンサ103で行いつつ、短い距離(例えば、40mm)の計測を行うことができる。
【0083】
なお、本実施の形態では、受信される超音波の周波数300kHzの20倍で受信信号を取得するが、受信される超音波の約10倍以上の周波数で受信信号を取得(オーバーサンプリング)すればよい。ただし、オーバーサンプリング数は整数倍であることが望ましい。
【0084】
また、本実施の形態では、信号処理部20がテンプレート調整部22を備えたが、テンプレート調整部22は必須ではない。例えば超音波距離測定装置1をオートフォーカス装置5に適用したときには、超音波センサ10と対象物Oとの距離の変化量が微小であり、受信波形のピーク値がほとんど変化しない。したがって、このような場合にはテンプレート調整部22は不要であり、テンプレート保持部21は、合焦時の受信波形を用いてテンプレートTを作成し、これを保持しておけばよい。
【0085】
また、本実施の形態では、10~15サイクル程度の矩形波のあとでDC(周波数が0)の信号を加えることでセンサ103の揺れを停止させたが、内部にセンサ103を有する超音波センサ10の取り付けを工夫することで、超音波センサ10の振動を更に抑えることも可能である。
図15は、超音波センサ10の取付構造の一例を模式的に示す図である。
【0086】
超音波センサ10は、枠体10aを有する。筐体113と枠体10aとの間に弾性部材111(例えば、Oリング)が設けられ、弾性部材111が弾性変形することで筐体113の内部に超音波センサ10が設けられる。言い換えれば、弾性部材111により超音波センサ10が挟持される。弾性部材111は、センサ103の振動面が設けられた面10bに隣接する側面10cに当接する。
【0087】
センサ103が超音波を送信するときには、空気を振動させるときの反動で、センサ103が前後に震え、超音波センサ10の振動が収まりにくい。超音波センサ10の振動が収まりやすいように、枠体10aに金属製の重りを設ける。ここでは、重りとして、鉛で形成されたシート状の部材である鉛シート112を用い、接着剤を塗布した鉛シート112を側面10cに巻回する。接着剤としては、弾性を有する接着剤(例えばアクリル変成シリコーン樹脂等の変成シリコーン樹脂系の接着剤)を用いる。これにより、振動エネルギーを効率よく熱に変換することができ、送受信の切り替えが早くなる。したがって、センサ103から超音波を送信した後、すぐにセンサ103で超音波を受信すること、すなわち短い距離(例えば、40mm)の計測が可能となる。
【0088】
<第2の実施の形態>
本発明の第1の実施の形態は、相関値が最も小さいときに受信波形とテンプレートT1とが一致し、又は最も一致に近いとして対象物Oまでの距離を求めたが、対象物Oまでの距離を求める方法はこれに限られない。
【0089】
本発明の第2の実施の形態は、受信波形と中心線とが一致する点、いわゆるクロスポイントで受信波形とテンプレートT1とが一致する、又は最も一致に近くなるとして対象物Oまでの距離を求める形態である。以下、第2の実施の形態に係る超音波距離測定装置2について説明する。なお、第1の実施の形態にかかる超音波距離測定装置1と同一の部分については、同一の符号を付し、説明を省略する。
【0090】
図16は、第2の実施の形態に係る超音波距離測定装置2の概略構成を示すブロック図である。超音波距離測定装置1は、主として、超音波センサ10と、信号処理部20Aと、出力部30と、を有する。
【0091】
信号処理部20Aは、主として、テンプレート保持部21と、テンプレート調整部22と、相関算出部23と、距離算出部24Aと、温度補正部25と、を有する。
【0092】
距離算出部24Aは、相関算出部23で算出された結果に基づいてクロスポイントを求め、クロスポイントに基づいて超音波センサ10と対象物Oとの距離を算出する。
図17は、受信波形の立ち上がり部分を横方向に拡大して表示した図である。
【0093】
図17における点βは、
図9、10において相関値が最も小さい点である。点β1は、点βの次のタイミングにおける測定点である。クロスポイントβ’は、点βと点β1との間に位置し、点β(相関値が最も小さい時点)の近傍におけるクロスポイントである。第2の実施の形態では、受信波形と中心線とが一致するクロスポイントβ’で受信波形とテンプレートT1の最後とが一致するとする。
【0094】
図18は、
図17に示す受信波形のクロスポイントβ’の近傍を拡大した図である。点βとクロスポイントβ’との高さ方向の距離をaとし、点β’と点β1との高さ方向の距離をbとし、点βとクロスポイントβ’との横方向の距離をa1とし、点β’と点β1との横方向の距離をb1とすると、a:b=a1:b1となり、距離a1は以下の数式(3)を用いて算出される。ここで30μmは、300kHzの超音波の波長の半分(ダブルパスであるため)の1/20(オーバーサンプリング数)であり、6MHzの超音波の波長の半分に相当する。
【0095】
[数3]
1/6MHz=30μm×a/(a+b) ・・・(3)
【0096】
距離算出部24は、クロスポイントβ’のタイミングで受信波形とテンプレートT1の最後が一致し、テンプレートT1の輪郭線が交差する位置で受信波形が立ち上がるとする。そして、距離算出部24は、このようにして求めた受信波形が立ち上がる位置で超音波の受信を開始したとして、数式(4)で示すようにして超音波センサ10と対象物Oとの距離を算出する。
【0097】
[数4]
往復距離=(点βのタイミング/20+距離a1)×1.13mm ・・・(4)
【0098】
本実施の形態によれば、クロスポイントに基づいて距離を求めるため、より高い精度で距離を測定することができる。
【0099】
以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。
【0100】
本発明において、「略」とは、厳密に同一である場合のみでなく、同一性を失わない程度の誤差や変形を含む概念である。例えば、略一致とは、厳密に一致する場合に限られない。また、例えば、単に鉛直、一致等と表現する場合において、厳密に鉛直、一致等の場合のみでなく、略鉛直、略一致等の場合を含むものとする。また、本発明において「近傍」とは、例えばAの近傍であるときに、Aの近くであって、Aを含んでもいても含んでいなくてもよいことを示す概念である。
【符号の説明】
【0101】
1、2 :超音波距離測定装置
5 :オートフォーカス装置
10 :超音波センサ
10a :枠体
10b :面
10c :側面
20、20A:信号処理部
21 :テンプレート保持部
22 :テンプレート調整部
22a :ピークホールド回路
22b :テンプレート調整入力部
23 :相関算出部
24、24A:距離算出部
25 :温度補正部
30 :出力部
51 :反射板
52 :撮像装置
101 :高周波駆動回路
101a :D/Aコンバータ
101b :トランス
101c :アンプ
102、105:半導体リレー
103 :センサ
104 :受信回路
104a :バンドパスフィルタ
104b :A/Dコンバータ
111 :弾性部材
112 :鉛シート
113 :筐体
231、232:シフトレジスタ
231-1~231-80、232-1~232-80:Dフリップフロップ