IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コーニンクレッカ フィリップス エヌ ヴェの特許一覧

特許7041128ノイズに起因するアーチファクト形成の動的抑制を用いた反復画像再構成
<>
  • 特許-ノイズに起因するアーチファクト形成の動的抑制を用いた反復画像再構成 図1
  • 特許-ノイズに起因するアーチファクト形成の動的抑制を用いた反復画像再構成 図2
  • 特許-ノイズに起因するアーチファクト形成の動的抑制を用いた反復画像再構成 図3
  • 特許-ノイズに起因するアーチファクト形成の動的抑制を用いた反復画像再構成 図4
  • 特許-ノイズに起因するアーチファクト形成の動的抑制を用いた反復画像再構成 図5
  • 特許-ノイズに起因するアーチファクト形成の動的抑制を用いた反復画像再構成 図6
  • 特許-ノイズに起因するアーチファクト形成の動的抑制を用いた反復画像再構成 図7
  • 特許-ノイズに起因するアーチファクト形成の動的抑制を用いた反復画像再構成 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-14
(45)【発行日】2022-03-23
(54)【発明の名称】ノイズに起因するアーチファクト形成の動的抑制を用いた反復画像再構成
(51)【国際特許分類】
   G01T 1/161 20060101AFI20220315BHJP
   A61B 6/03 20060101ALI20220315BHJP
   G06T 5/00 20060101ALI20220315BHJP
   G06T 1/00 20060101ALI20220315BHJP
【FI】
G01T1/161 C
A61B6/03 350X
G06T5/00 705
G06T1/00 290B
【請求項の数】 14
(21)【出願番号】P 2019516636
(86)(22)【出願日】2017-09-25
(65)【公表番号】
(43)【公表日】2019-12-05
(86)【国際出願番号】 EP2017074152
(87)【国際公開番号】W WO2018060106
(87)【国際公開日】2018-04-05
【審査請求日】2020-09-24
(31)【優先権主張番号】62/401,957
(32)【優先日】2016-09-30
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】590000248
【氏名又は名称】コーニンクレッカ フィリップス エヌ ヴェ
【氏名又は名称原語表記】Koninklijke Philips N.V.
【住所又は居所原語表記】High Tech Campus 52, 5656 AG Eindhoven,Netherlands
(74)【代理人】
【識別番号】110001690
【氏名又は名称】特許業務法人M&Sパートナーズ
(72)【発明者】
【氏名】アンドレーエフ アンドリー
(72)【発明者】
【氏名】バイ チュアンヨン
(72)【発明者】
【氏名】チャン ビン
(72)【発明者】
【氏名】チャン ファーグオ
(72)【発明者】
【氏名】ドゥヴィヴェディ シェカール
(72)【発明者】
【氏名】フー チーチャン
【審査官】井上 香緒梨
(56)【参考文献】
【文献】特開2014-004359(JP,A)
【文献】米国特許出願公開第2011/0097007(US,A1)
【文献】Chung et al,Regularized image reconstruction with an anatomically adaptive prior for positron emission tomography,PHYSICS IN MEDICINE AND BIOLOGY,54巻24号,UK,Institute of Physics and Engineering in Medicine,2009年,p.7379-7400,DOI:10.1088/0031-9155/54/24/009
(58)【調査した分野】(Int.Cl.,DB名)
G01T 1/161-1/166
A61B 6/00-6/14
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
画像再構成方法を実行するためにコンピュータによって読み取り可能かつ実行可能な命令を格納する非一時的記憶媒体であって、前記画像再構成方法は、
イメージングデータの反復再構成を実行して、再構成された画像で終わる一連の更新画像を生成するステップと、
前記反復再構成の間、前記反復再構成が前記再構成された画像で終了する前に、前記反復再構成によって生成された更新画像と、前記反復再構成のパラメータとのうちの少なくとも1つを、前記反復再構成とは別の調整プロセスを使用して調整するステップとを含む、非一時的記憶媒体において、
前記反復再構成は、エッジ保存閾値を有するエッジ保存正則化事前分布を含み、
前記調整プロセスは、前記反復再構成のより前の反復と比較して、前記反復再構成のより後の反復について、勾配急峻度が高いとエッジ保存が適用されて、勾配急峻度を低減するよう前記エッジ保存閾値を調整することを含む、非一時的記憶媒体
【請求項2】
前記エッジ保存正則化事前分布は、エッジ保存閾値γの増大に伴いエッジ保存が増大する当該エッジ保存閾値γを有する相対差事前分布を含み、
前記調整プロセスは、前記反復再構成の反復回数の増加に伴い前記エッジ保存閾値γを減少させることを含む、請求項に記載の非一時的記憶媒体。
【請求項3】
前記エッジ保存正則化事前分布は、下式に比例する相対差事前分布を含み、
【数8】
ここで、γは前記エッジ保存閾値であり、f及びfは画像ピクセル又はボクセルであり、
前記調整プロセスは、前記反復再構成の反復回数の増加に伴い前記エッジ保存閾値γを減少させることを含む、請求項に記載の非一時的記憶媒体。
【請求項4】
画像再構成方法を実行するためにコンピュータによって読み取り可能かつ実行可能な命令を格納する非一時的記憶媒体であって、前記画像再構成方法は、
イメージングデータの反復再構成を実行して、再構成された画像で終わる一連の更新画像を生成するステップと、
前記反復再構成の間、前記反復再構成が前記再構成された画像で終了する前に、前記反復再構成によって生成された更新画像と、前記反復再構成のパラメータとのうちの少なくとも1つを、前記反復再構成とは別の調整プロセスを使用して調整するステップとを含む、非一時的記憶媒体において、 前記調整プロセスは、
前記反復再構成における最後の再構成された画像より前の現在の更新画像の各ピクセル、ボクセル、又は領域について、前記現在の更新画像よりも前の複数の更新画像にわたるピクセル、ボクセル、又は領域の値の展開がアーチファクト特徴基準を満たすか否かを決定することと、
展開が前記アーチファクト特徴基準を満たす前記現在の更新画像の全てのピクセル、ボクセル、又は領域に対して局所的ノイズ抑制動作を実行し、展開が前記アーチファクト特徴基準を満たさない前記現在の更新画像の全てのピクセル、ボクセル、又は領域に対して前記局所的ノイズ抑制動作を実行しないこととを含む、請求項1に記載の非一時的記憶媒体。
【請求項5】
前記決定することは、
前記反復再構成の反復k及び反復lにおけるそれぞれの更新画像間のボクセルごとの又はピクセルごとの差又は絶対差を含む第1の差画像を計算することと、
前記反復再構成の反復m及び反復nにおけるそれぞれの更新画像間のボクセルごとの又はピクセルごとの差又は絶対差を含む第2の差画像を計算することと、
前記第1の差画像と第2の差画像とのボクセルごとの又はピクセルごとの比率を含む比率画像を計算することと、
前記現在の更新画像の各ピクセル、ボクセル、又は領域の前記展開が前記アーチファクト特徴基準を満たすか否かを、前記比率画像の対応するピクセル、ボクセル、又は領域が前記アーチファクト特徴基準を満たすか否かを決定することによって決定することとを含む、請求項に記載の非一時的記憶媒体。
【請求項6】
前記決定することは、
前記現在の更新画像の各ピクセル、ボクセル、又は領域について差比率を計算することを含み、
【数9】
ここで、Δf(k,l)は、反復k及び反復lにおけるそれぞれの更新画像内の対応するピクセル、ボクセル、又は領域の値の差又は値の絶対差であり、Δf(m,n)は、反復m及び反復nにおけるそれぞれの更新画像内の対応するピクセル、ボクセル、又は領域の値の差又は値の絶対差であり、
前記決定することはさらに、前記現在の更新画像の各ピクセル、ボクセル、又は領域の前記展開が前記アーチファクト特徴基準を満たすか否かを、対応する前記差比率が前記アーチファクト特徴基準を満たすか否かを決定することによって決定することを含む、請求項に記載の非一時的記憶媒体。
【請求項7】
前記局所的ノイズ抑制動作は、展開が前記アーチファクト特徴基準を満たす前記現在の更新画像のピクセル、ボクセル、又は領域の値を、より前の更新画像の対応するピクセル、ボクセル、又は領域の値で置き換えることを含む、請求項からのいずれか一項に記載の非一時的記憶媒体。
【請求項8】
前記局所的ノイズ抑制動作は、展開が前記アーチファクト特徴基準を満たす前記現在の更新画像のピクセル、ボクセル、又は領域の値を、前記現在の更新画像の隣接する複数のピクセル又はボクセルの集合値で置き換えることを含む、請求項からのいずれか一項に記載の非一時的記憶媒体。
【請求項9】
前記イメージングデータは、陽電子放出断層撮影(PET)イメージングデータ、単一光子放出コンピュータ断層撮影(SPECT)イメージングデータ、及び透過型コンピュータ断層撮影(CT)イメージングデータのうちの1つを含む、請求項1からのいずれか一項に記載の非一時的記憶媒体。
【請求項10】
イメージングデータの反復再構成を実行して、再構成された画像で終わる一連の更新画像を生成するようプログラムされたコンピュータと、
前記再構成された画像を表示するよう前記コンピュータと動作可能に接続されているディスプレイとを含む画像再構成装置であって、
前記コンピュータはさらに、複数の動作によって、前記反復再構成における最後の前記再構成された画像より前の前記反復再構成の現在の更新画像を調整するようプログラムされており、前記複数の動作は、
前記現在の更新画像の各ピクセル、ボクセル、又は領域について、前記反復再構成における前記現在の更新画像よりも前の複数の更新画像にわたるピクセル、ボクセル、又は領域の値の展開がアーチファクト特徴基準を満たすか否かを決定することと、
展開が前記アーチファクト特徴基準を満たす前記現在の更新画像の全てのピクセル、ボクセル、又は領域に対して局所的ノイズ抑制動作を実行し、展開が前記アーチファクト特徴基準を満たさない前記現在の更新画像の全てのピクセル、ボクセル、又は領域に対して前記局所的ノイズ抑制動作を実行しないこととを含む、画像再構成装置。
【請求項11】
前記決定することは、
前記反復再構成の反復k及び反復lにおけるそれぞれの更新画像間のボクセルごとの又はピクセルごとの差又は絶対差を含む第1の差画像を計算することと、
前記反復再構成の反復m及び反復nにおけるそれぞれの更新画像間のボクセルごとの又はピクセルごとの差又は絶対差を含む第2の差画像を計算することと、
前記第1の差画像と第2の差画像とのボクセルごとの又はピクセルごとの比率を含む比率画像を計算することと、
前記現在の更新画像の各ピクセル、ボクセル、又は領域の前記展開が前記アーチファクト特徴基準を満たすか否かを、前記比率画像の対応するピクセル、ボクセル、又は領域が前記アーチファクト特徴基準を満たすか否かを決定することによって決定することとを含む、請求項10に記載の画像再構成装置。
【請求項12】
前記決定することは、
前記現在の更新画像の各ピクセル、ボクセル、又は領域について差比率Δf(m,n)/Δf(k,l)を計算することを含み、ここで、Δf(k,l)は、反復k及び反復lにおけるそれぞれの更新画像内の対応するピクセル、ボクセル、又は領域の値の差又は値の絶対差であり、Δf(m,n)は、反復m及び反復nにおけるそれぞれの更新画像内の対応するピクセル、ボクセル、又は領域の値の差又は値の絶対差であり、
前記決定することはさらに、前記現在の更新画像の各ピクセル、ボクセル、又は領域の前記展開が前記アーチファクト特徴基準を満たすか否かを、対応する前記差比率が前記アーチファクト特徴基準を満たすか否かを決定することによって決定することを含む、請求項10に記載の画像再構成装置。
【請求項13】
前記局所的ノイズ抑制動作は、展開が前記アーチファクト特徴基準を満たす前記現在の更新画像のピクセル、ボクセル、又は領域の値を、より前の更新画像の対応するピクセル、ボクセル、又は領域の値で置き換えることを含む、請求項10から12のいずれか一項に記載の画像再構成装置。
【請求項14】
前記局所的ノイズ抑制動作は、展開が前記アーチファクト特徴基準を満たす前記現在の更新画像のピクセル、ボクセル、又は領域の値を、前記現在の更新画像の隣接する複数のピクセル又はボクセルの集合値で置き換えることを含む、請求項10から12のいずれか一項に記載の画像再構成装置。
【発明の詳細な説明】
【技術分野】
【0001】
以下は、一般的に放射線イメージング技術、反復画像再構成技術、医療用イメージング技術などに関する。
【背景技術】
【0002】
電波放出医療用イメージングは、例えば、陽電子放出断層撮影法(PET)及び単一光子放出断層撮影法(SPECT)を含む。PETイメージングでは、放射性崩壊中に陽電子を放出する放射性同位体を含有する放射性医薬品が医療用イメージングの対象者に投与される。結果として生じる電子-陽電子消滅イベントごとに、2つの反対方向の511keVガンマ線のペアが生じる。SPECTイメージングでは、放射性医薬品は、崩壊すると、ガンマカメラによって直接検出される放射性放出生成物を生成する放射性同位体を含む。いずれの場合も、患者の安全性を考慮して、医療用イメージングの対象者が受ける放射線量を制限するために、投与される放射性同位の濃度を可能な限り低くする必要がある。その結果、取得される撮像データにはノイズが多く、不完全なものとなる可能性がある。反復再構成技術は、ノイズを含む及び/又は不完全な撮像データセットから高品質の再構成画像を生成する能力を実証しており、そのため、PET及びSPECT撮像データ再構成のための標準的な画像再構成技術となっている。
【0003】
透過型コンピュータ断層撮影法(CT)は、X線ビームが医療用イメージングの対象者を通過するように外部X線管を使用し、通過したX線ビームを検出するためにX線検出器アレイが対向して配置されている。従来、CTにおける信号レベルは、PET及びSPECTイメージングにおけるものよりもはるかに高い。しかしながら、最近は、低減されたX線ビーム強度を使用する、又は、他の放射線被曝を低減する技術(例えば、X線ビームを間欠的に遮断する)を課す傾向がある。これらの手法はCTイメージングデータのノイズレベルを増大させ、また、不完全なイメージングデータセットをもたらす可能性がある。したがって、反復再構成技術のCTへの応用は益々増加している。
【0004】
反復再構成中に正則化を使用することによって、ノイズ及び不完全なデータに対するさらなる許容度を得ることができる。ある手法では、正則化は、二次事前分布(プライア)などの追加のノイズ抑制事前分布によって導入される。再構成画像内の実在する物理的特徴を抑制することを回避するために、エッジ保存事前分布が一般的に使用される(例えば、Nuytsらによって提案された相対差事前分布(relative differences prior)、“A concave prior penalizing relative differences for maximum-a-posteriori reconstruction in emission tomography”、IEEE Trans.on Nuclear Science vo.49 no.1 pp.56-60(2002))。エッジ保存事前分布は、ノイズによるものと思われる小さな振幅変動を抑制する一方、実在する物理的特徴に起因すると思われる大きな振幅変動は抑制しないように設計されている。より強いエッジ保存と、より強いノイズ抑制との間にはトレードオフが存在する。ほとんどのエッジ保存事前分布では、所望のトレードオフを達成するために閾値が調整可能である。
【0005】
エッジ保存相対差事前分布を用いた反復画像再構成は、医学的解釈に使用される実在する物理的特徴を保持しつつ、これらの特徴を不明瞭にする可能性がある不要なノイズを効果的に抑制する再構成画像を生成するのにしばしば有効である。しかしながら、一部の場合では、ノイズ抑制が不十分であり、結果として誤った放射線学的所見をもたらし得る。他の場合では、ノイズ抑制が強すぎ、低コントラストの実在する特徴を抑制することがあり、同様に誤った放射線学的所見をもたらす可能性がある。
【0006】
したがって、上記及びその他の欠点を克服する改良された反復的画像再構成技術へのニーズが依然としてある。
【発明の概要】
【0007】
開示される一側面では、非一時的記憶媒体が、画像再構成方法を実行するためにコンピュータによって読み取り可能かつ実行可能な命令を格納し、前記方法は、イメージングデータの反復再構成を実行して、再構成された画像で終わる一連の更新画像を生成するステップと、前記反復再構成の間、及び前記反復再構成が前記再構成された画像で終了する前に、前記反復再構成によって生成された更新画像と、前記反復再構成のパラメータとのうちの少なくとも1つを、前記反復再構成とは別の調整プロセスを使用して調整するステップとを含む。一部の実施形態では、前記反復再構成は、エッジ保存閾値を有するエッジ保存正則化事前分布を含み、前記調整プロセスは、前記反復再構成のより前の反復と比較して、前記反復再構成のより後の反復について、勾配急峻度が高いとエッジ保存が適用されて勾配急峻度を低減するよう前記エッジ保存閾値を調整することを含む。一部の実施形態では、前記調整プロセスは、前記反復再構成における最後の前記再構成された画像より前の現在の更新画像の各ピクセル、ボクセル、又は領域について、前記現在の更新画像よりも前の複数の更新画像にわたるピクセル、ボクセル、又は領域の値の展開がアーチファクト特徴基準を満たすか否かを決定することを含む。その後、展開が前記アーチファクト特徴基準を満たす前記現在の更新画像の全てのピクセル、ボクセル、又は領域に対して局所的ノイズ抑制動作が実行され、展開が前記アーチファクト特徴基準を満たさない前記現在の更新画像の全てのピクセル、ボクセル、又は領域に対して前記局所的ノイズ抑制動作を実行されない。
【0008】
他の開示される側面では、画像再構成方法が開示される。エッジ保存正則化事前分布を用いて反復再構成を実行し、再構成された画像を生成することによってイメージングデータが再構成される。前記反復再構成中に、前記反復再構成の実行された反復回数の関数として、前記エッジ保存正則化事前分布のエッジ保存閾値が調整される。前記再構成された画像はディスプレイ上に表示される。前記再構成するステップ及び前記調整するステップはコンピュータを使用して適切に実行される。
【0009】
他の開示される側面では、画像再構成装置が開示される。イメージングデータの反復再構成を実行して、再構成された画像で終わる一連の更新画像を生成するようコンピュータがプログラムされる。前記再構成された画像を表示するようディスプレイが前記コンピュータと動作可能に接続されている。前記コンピュータはさらに、複数の動作によって、前記反復再構成における最後の前記再構成された画像より前の前記反復再構成の現在の更新画像を調整するようプログラムされており、前記複数の動作は、前記現在の更新画像の各ピクセル、ボクセル、又は領域について、前記反復再構成における前記現在の更新画像よりも前の複数の反復からの複数の更新画像にわたるピクセル、ボクセル、又は領域の値の展開がアーチファクト特徴基準を満たすか否かを決定することと、展開が前記アーチファクト特徴基準を満たす前記現在の更新画像の全てのピクセル、ボクセル、又は領域に対して局所的ノイズ抑制動作を実行し、展開が前記アーチファクト特徴基準を満たさない前記現在の更新画像の全てのピクセル、ボクセル、又は領域に対して前記局所的ノイズ抑制動作を実行しないこととを含む。
【0010】
1つの利点は、反復画像再構成における改善されたノイズ誘起アーチファクト特徴抑制にある。
【0011】
他の利点は、実際の特徴について、エッジ保存における付随的な損失が低減された、反復画像再構成における改善されたノイズ誘起アーチファクト特徴抑制にある。
【0012】
他の利点は、反復画像再構成におけるノイズ誘起アーチファクト特徴の局所的検出及び抑制を提供することにある。
【0013】
他の利点は、ノイズ誘起アーチファクト特徴と実際の特徴の異なるプロセスフロー展開特性を利用して、後者を優先的に保持しつつ、前者の優先的抑制を提供することにある。
【0014】
所与の実施形態は、上記利点のうちのいずれも提供しない、又は1つ、2つ以上、又は全てを提供し、かつ/又は、本開示を読んで理解した当業者が想到する他の利点を提供し得る。
【図面の簡単な説明】
【0015】
本発明は、様々な構成要素及び構成要素の配置の形態、並びに様々なステップ及びステップの配置の形態を取り得る。図面は、好ましい実施形態を例示する目的のためだけのものであり、本発明を限定するものとして解釈されるべきではない。特に明記しない限り、図面は概略的なものであり、縮尺通りである、又は複数の異なる構成要素の相対的寸法を示しているとは解釈されるべきではない。
図1図1は、撮像装置及び画像再構成装置を含む放射線撮像システムを概略的に示す。
図2図2は、反復画像再構成の20回の反復の過程にわたる実際の直径10mmの球体特徴及び人工的ノイズ誘起ホットスポットの最大値を示すグラフである。
図3図3は、エッジ保存正則化事前分布を含む反復再構成の連続的反復にわたるエッジ保存正則化事前分布のエッジ保存閾値γの線形減少のためのプログラムを示すグラフである。
図4-8】図4図8は、本明細書に記載のファントム実験の結果を表す。
【発明を実施するための形態】
【0016】
本明細書に開示される改良された反復的画像再構成技術は、本明細書に開示される洞察に部分的に基づく。
【0017】
本明細書でなされる1つの洞察は、一般的にノイズを最小にすることが望ましいが、医療用イメージング用途におけるノイズの最大の悪影響は、画像を読み取る医療従事者が、実在する物理的特徴として誤解し得るアーチファクト特徴をノイズが生成する場合であるということである。
【0018】
本明細書では、画像推定に対する連続的補正更新によって進行する、反復的再構成のプロセスフロー展開に関連して、さらなる洞察がなされる。各連続的更新は、変更された再構成画像推定(本明細書では更新画像とも呼ばれる)を出力する。(望まれるように)反復的再構成が収束する場合、画像更新の反復カウントが増加するにつれて、連続的更新画像は、取得されたイメージングデータに対して益々近い忠実度を示すはずである。ある更新画像から次の更新画像への変化は、一般に、反復回数が増えるにつれて減少するはずであり、反復的再構成が収束に近づくにつれて、ある更新画像から次の更新画像への変化は無視できるほどになるはずである。
【0019】
本明細書では、実在する画像特徴のプロセスフロー展開は、多くの場合、ノイズによって生成されたアーチファクト特徴のプロセスフロー展開とは大きく異なることが認識される。典型的には、実在する物理的画像特徴は素早く収束し、例えば、多くの反復的再構成例にいて最初の数回の反復で収束する。その後、実在する特徴における更新毎の変化は、上記したように再構成が収束に近づくので小さい。このようになる理由は、実在する画像特徴は、基礎となる(underlying)イメージングデータ内の実際の構造に一致するように連続的更新画像を変更する反復的再構成によって取得され、基礎となるイメージングデータ内のこの実際の構造に対して一度忠実になると、特徴がさらに大きく変化しないからである。対照的に、ノイズによって生成されるアーチファクト特徴は、実際の特徴と比較して、反復的再構成のより遅いタイミングで通常「出現」し、画像の大部分が収束に近づいた後でも著しく変化し続ける可能性がある。これはなぜなら、アーチファクト特徴は、基礎となるイメージングデータ内の実際の構造に一致するのではなく、ノイズの過剰適合によって生成されるからである。
【0020】
本明細書でなされるさらなる洞察は、アーチファクト特徴は多くの場合、一種の正帰還又は増幅によって生成されるというものであり、これらの過程では、反復的再構成の後期の更新によるノイズの過剰適合によって、ノイズに起因する核構造が増幅される。増幅されたランダム構造核はそのように成長してアーチファクト特徴を生成する。
【0021】
上記のような洞察に部分的に照らして、本明細書では、アーチファクト特徴の核生成を抑制するように、ある画像更新から次の画像更新への反復的再構成を調整する、改善された画像再構成技術を開示する。
【0022】
本明細書に開示される一部の実施形態は、エッジ保存閾値を有するエッジ保存正則化事前分布を使用する。一般的に、かかるエッジ保存正則化事前分布は、画像勾配に罰則を科すが、実在のエッジであると推定される急勾配は保存するように設計されている。これらの実施形態では、反復再構成の初期の反復と比較して、反復再構成の後期の反復についてエッジ保存を減少させる(すなわち、エッジ保存が適用される勾配の急峻度を増加させる)よう、反復再構成中にエッジ保存閾値を調整する。このアプローチは、実際の特徴は、急勾配によって定められるエッジに比較的素早く収束するという本明細書における認識を利用するので、後期の反復における低減されたエッジ保存は、これらの実際の特徴に悪影響を及ぼさない。なぜなら、実際の特徴は急勾配に素早く収束し、かかる急勾配は、エッジ保存が適用される勾配の急峻度を増加させるようにエッジ保存閾値が後半の反復のために調整された後であっても保存されるからである。一方で、ノイズの過剰適合の効果が、後にアーチファクト特徴へと成長する「スペックル」又は「ホットスポット」の核形成をもたらすので、アーチファクト特徴は多くの場合、画像再構成プロセスフローの後半で核形成する。これらの特徴は、後半の反復における低減されたエッジ保存が実行されるまでに急勾配のエッジに収束する可能性は低い。よって、反復回数の増加に伴う低減されたエッジ保存は、事前分布によって、アーチファクト特徴のエッジがエッジ保存が適用される急勾配まで増幅する前に、後期に核形成されるアーチファクト特徴を抑制することを可能にする。
【0023】
本明細書で開示されるいくつかの実施形態は、よりアクティブな反復的再構成更新調整を採用する。これらの実施形態では、上記のような、実際の特徴とアーチファクト特徴の典型的なプロセスフロー展開の違いを利用して、アーチファクト特徴の核形成を識別する。識別された初期アーチファクト特徴は、例えば、アーチファクト特徴におけるピクセル又はボクセルの値を、アーチファクト特徴の核形成の開始前に生成されたより前の画像更新のピクセル又はボクセルの値と局所的に置き換えることによって抑制される。変形例では、局所的置換は、識別されたアーチファクト特徴の外側に位置する隣接ピクセル又はボクセルの値によるものである。アーチファクト特徴の核を初期形成の時点で(プロセスフロー展開に沿って)除去することによって、より後の画像更新によって増幅されてアーチファクト特徴になる核はもはや存在しない。
【0024】
図1を参照して、撮像装置10はイメージングデータ、例えば、医療用イメージングの場合には医療患者のイメージングデータを取得する。例示的な撮像装置10は、透過型コンピュータ断層撮影(CT)ガントリ12と陽電子放出断層撮影(PET)ガントリ14とを含むデュアルモダリティ撮像装置である。一般的患者支持カウチ16は、患者がイメージングのためにいずれかのガントリ12、14内に移動することを可能にする。イメージングデータ記憶装置18は、撮像装置10によって取得されたCT及び/又はPETイメージングデータを記憶する。より一般的には、イメージングデータは、反復再構成によって再構成されるべきイメージングデータを生成する任意の撮像装置によって取得され得る。当該技術分野で知られているように、反復画像再構成は、一般的にはPETイメージングデータを再構成するために適用され、場合によっては、CTイメージングデータを再構成するために適用され、また一般的に、ガンマカメラによって取得された単一光子放出断層撮影(SPECT)イメージングデータ等の他の種類のイメージングデータを再構成するために使用される。マルチモダリティ撮像装置10は、同一の対象者のCT及びPETイメージングデータの両方を取得し、これらは通常別々に再構成される。すなわち、CTイメージングデータは、再構成されたCT画像を生成するための反復再構成プロセスを使用して再構成され、これとは別に、PETイメージングデータは、再構成されたPET画像を生成するための同じ又は異なる反復再構成プロセスを使用して再構成される。マルチモダリティ撮像装置10を使用してCT及びPETイメージングデータセットの両方を取得する場合、患者又は他の撮像対象を共通のカウチ16上に配置することにより、再構成されたCT画像とPET画像との間の空間的位置合わせを容易にするという利点がある。
【0025】
イメージングデータを再構成するために、反復画像再構成プロセスは、反復再構成更新プロセス20の連続的パスを実行する。反復再構成更新20の各パスは、更新画像22(次の画像推定としても知られる)を出力する。表記を簡略化するために、反復再構成更新20のn番目のパスは、更新画像nとして記載される更新画像を出力するものとして示される。一般的に、反復再構成更新20の(n+1)番目のパスは、入力として、nの番号が付けられた直前の更新画像を受け取り、選択された反復再構成更新プロセス20を使用して、番号がnの更新画像を、(投影空間又は他のイメージングデータ空間に順投影されたとき又は他の態様で変換されたとき)記憶装置18に格納されている取得済みのイメージングデータに対する忠実度が改善された番号がn+1の次の更新画像に変更する。反復再構成プロセスは、適切な停止基準に基づき更新画像がイメージングデータに十分に近い忠実度を有するとき、例えば、画像内の反復間の変化がある閾値よりも小さいとき、及び/又は順投影された更新画像と取得されたイメージングデータとの間の定量的な差がある閾値より低いとき、終了する。このようにすることで、イメージングデータの反復再構成の実行により、再構成画像で終わる一連の更新画像22が生成される。反復画像再構成プロセスを開始するにあたり、反復再構成更新プロセス20の最初のパス(例えば、n=0)は、一般的には均一強度画像である初期画像24を入力として受け取る(ただし、先験的情報が利用可能である場合、初期画像24の生成のために任意選択的に使用されてもよい)。
【0026】
本明細書に開示される反復再構成の間、及び反復再構成が再構成画像で終了する前に、更新画像と、反復再構成のパラメータとのうちの少なくとも1つが、反復再構成とは別の調整プロセスを用いて調整される。「反復再構成とは別の」とは、調整プロセスが反復再構成の反復再構成更新プロセス20ではないことを意味する。図1の例示的実施形態では、2つのかかる調整プロセスが概略的に示されている。
【0027】
第1の反復調整は、エッジ保存正則化事前分布26を使用する反復再構成更新プロセス20に関連して実行される。本明細書のいくつかの例では、反復再構成プロセスはワンステップレイト(OSL)MAPアルゴリズムフレームワークを使用し、これは、番号が(n+1)の更新画像22が以下のように反復的に改善されるものである。
【数1】
ここで、f (n+1)は、番号がn+1の出力更新画像のボクセルiを表し、f (n)は、番号がnの入力更新画像のボクセルiを表し、Hij TOFは、所与のラインオブレスポンス(LOR)gに属するボクセルを全て組み込む順投影及び逆投影演算子である。例示的演算子Hij TOFは、上付き文字のTOFで示されるように、511keVガンマ線ペアごとのタイムオブフライト(TOF)位置特定を含むPETイメージングデータを仮定する。TOF位置特定を行わない(又は利用可能であってもTOF位置特定を利用せずに再構成する)SPECTイメージングデータ又はPETイメージングデータについては、標準的な非TOF位置特定順/逆投影演算子Hijが代わりに使用される。また、式(1)において、Corrは、投影jのための任意選択的データ補正係数であり、sは、ボクセルiの感度係数である。式(1)の実施形態では、エッジ保存正則化事前処理26はU(f (n))と表される。一般的に、任意のエッジ保存正則化事前分布が使用可能であるが、説明のための実施例では、エッジ保存正則化事前分布26は下式によって与えられる相対差事前分布(RDP)である(Nuyts et al.、“A concave prior penalizing relative differences for maximum-a-posteriori reconstruction in emission tomography”、IEEE Trans.on Nuclear Science vo.49 no.1 pp.56-60(2002)を参照されたい)。
【数2】
ここで、βは、エッジ保存正則化事前分布の全体的重みであり、γは、エッジ保存閾値を制御する。エッジ保存閾値は、特徴(又はエッジ)保存を制御する、エッジ保存正則化事前分布26のパラメータである。一般的に、エッジ保存閾値γは、勾配急峻度大きい場合にエッジ保存が適用されて、勾配急峻度をスケーリング(調整)する。式(2)のRDP正則化事前分布の具体例では、エッジ保存閾値γによって設定されるスケールよりも大きい画像勾配(画像内の特徴のエッジを表す)に関しては、分母の中の項γ|f -f |が、U(f )の正則化の影響を限定し、一方、γによって設定されるスケールよりも小さい画像勾配に関しては、二次分子(f -f が、正則化を提供するために支配する。上記したように、式(2)のRDPは、エッジ保存正則化事前分布26の単なる例に過ぎず、より一般的に、急峻度がエッジ保存閾値によって設定されたスケールを上回る画像勾配によって定められるエッジについて正則化の抑制を提供するような値を有するエッジ保存閾値を含む(そして、それによってかかるエッジ及び対応する特徴が正則化によって劣化するのを防ぐ)他の正則化事前分布が使用され得る。
【0028】
一般的には、正則化パラメータ(例えば、例示的な式(2)のRDPではβ及びγ)の選択により、ノイズを抑制することによって最終的な画質を大幅に改善することができる。一方、これらのパラメータの準最適な設定は、実際の特徴を定めるエッジを抑制することによって診断ポテンシャルを著しく悪化させる可能性がある。従来、エッジ保存閾値γの値は、これら2つの相反する効果のバランスが最も良くなるように選択される。しかし、実際の特徴の診断上重要なエッジを抑制することを避けるようにγが選択される場合、同時に、一般に「スペックル」又は「ホットスポット」と呼ばれるノイズアーチファクト特徴が一定量もれることになる。本明細書では、これらのスペックルアーチファクト特徴は以下のようにして生じると認識されている。γの値は、実際のエッジを保持するのに十分な高さに設定される。しかしこのようにすると、このγ値は、特定のノイズ変動がエッジ保存閾値γを上回ることを可能にするほどに低い。次いで、これらのノイズ変動は、エッジ保存正則化事前分布26によって提供されるエッジ保存によって保存され、その後、解像度回復モデリングによって増幅され、最終的に、病変として誤解される可能性があるアーチファクト特徴(スペックル)として現れる。したがって、従来はγは、実際のエッジを保存するために小さい画像勾配を保護するために十分に高い値であると同時に、正規化によってノイズ変動が除去されることを確実にするために十分に低い値であるという矛盾する目標の間でバランスをとるように選択される。このバランスは一般的には完全には達成することができず、したがって、実際の特徴の抑制、そして結果として診断における実際の病変の定量化の欠如又は劣化をもたらし、及び/又は病変の誤検出をもたらし得るアーチファクト特徴(スペックル)の保存及び増幅をもたらす。
【0029】
図2を簡潔に参照すると、本明細書でなされるいくつかの洞察は、γが実際の特徴の保存とアーチファクトスペックルの抑制という望まれる組み合わせを達成することができない不満足な状態を改善するために活用する。図2は、直径10mmの球体を有するファントムの反復再構成のためのデータをプロットしている(よって、これは実際の特徴である)。より具体的には、図2は、n=1~n=30の範囲の画像更新反復回数nの関数として、実際の10mmの球体を取り囲む関心領域(ROI)内の再構成された画像強度値の最大値と、ノイズの増幅によって生成された人工的ホットスポットを取り囲むROI内の画像強度の最大値とをプロットする。図2において、10mmの球体(真の特徴)の最大値は、約20回の反復後に収束した(すなわち、ほぼ一定になった)ことが分かる。このように、反復回数の関数としての最大値の変化は、真の特徴については、数回の反復後に遅くなった。これは、10mmの球体を表す実際の画像特徴が、実際の10mmの球体を撮像することによって生じたイメージングデータ内の実際の構造に対して忠実度を増した再構成画像に対応することを反映していると見なすことができる。一般的に、本明細書では、実際の特徴は、反復画像再構成中に比較的速く収束する可能性が高いと認識されている。
【0030】
一方、ホットスポットでは動作がかなり異なっていた。図2に見られるように、ノイズによって誘起されたホットスポットの最大値はすぐには現われず、連続的反復回数nが反復1から30に至るまでにゆっくりと継続的に成長する。これは、このホットスポットエッジは、イメージングデータ内の実際の構造を反映しているのではなく、解像度回復を含む反復画像再構成プロセスによる比較的小さい初期ノイズ変動の増幅によって生成されたという事実を反映している。
【0031】
ここで図1を再び参照するとともに、さらに図3を参照して、上記洞察は、反復再構成中に、エッジ保存閾値26が、反復再構成の前半の反復と比較して、反復再構成の後半の反復に関して、勾配急峻度が高い場合にエッジ保存が適用されて、勾配急峻度が低減するよう調整される本開示のアプローチにつながる。例示的な実施形態では、これは、例示的RDP正則化事前分布のエッジ保存閾値γのための線形減少プログラム30によって達成される。例示的線形プログラム30は、例示的設計の理論的解釈を記載する選択的注釈と共に、図3に詳細に示される。初期の反復の間、γは最高値を有する。これは、エッジ保存によって小さい画像勾配が保存されることを意味する。これは、より弱いノイズフィルタリングをもたらすが、図2に見られるように、初期の反復におけるノイズの初期レベルは比較的低い。したがって、γが高い値を有するこの初期段階は、(保存されるための勾配急峻度のスケール要件が小さいために)エッジ保存が強力であることを保証し、よって実際の特徴を定める実際のエッジがエッジ保存によって保存され、成長させられることを可能にする。この成長は初期の反復では大きい(図2の10mm球体特徴のための曲線を参照されたい)。図3を再び参照すると、反復再構成が進むにつれて更新数nは増加し、γがプログラム30に従って減少する。より高い反復回数については、これによりエッジ保存が、大きな勾配急峻度のエッジのみを保護するようになる。実際のエッジは初期の反復で晶出しているので(図2の10mm球体特徴の曲線を参照されたい)、これらの強い実際のエッジはγの減少(そして、その結果としてのエッジ保存に対するより厳しい制限)にもかかわらず、後半の反復でもなお保存される。対照的に、アーチファクト特徴は、「遅い」ノイズ増幅プロセスに起因してより後の段階でノイズとして核形成するので(図2のホットスポットアーチファクト特徴の曲線を参照されたい)、これらのノイズ特徴は、γ値の減少とともにエッジ保存が弱くなるにつれて、正則化によって抑制される可能性が高い。これは、γを反復回数依存値γ(n)で置き換えることにより、例示的RDP事前分布で表すことができる。
【数3】
別の具体的かつ非限定的な例示的実施形態によれば、γは下式により、指定されたnmaxの反復にかけて線形減少するように設計される。
【数4】
ここで、nmaxよりも高い番号(存在するならば)の反復については、γ(n)=γ(end)である。さらに、ある具体的かつ非限定的な実施形態では、式(3)の線形プログラムは、γ(start)=1.5、γ(end)=0.5、かつnmax=20であるプログラム30として使用される。これらは単に説明のための例であり、特定のイメージングデータの反復再構成中の実際のエッジ対人工的エッジのプロセスフロー展開の事前経験的解析の形式に依存して、エッジ保存正則化事前分布26のエッジ保存閾値を調整するための他のプログラムが考えられる。例えば、実際のエッジが安定化するのに上記例示的実施形態よりも長い時間かかる場合、プログラムは、反復回数nの増加とともにγ(n)が減少を始める前に、γ(n)=γ(start)である初期一定期間を含むことができる。追加的に又は代替的に、初期の反復に関してγ(n)における初期サブリニア(sub-linear)減少を採用することによって、実際のエッジのためのより長い安定化期間が許容され得る。
【0032】
ここで図4を参照すると、エッジ保存閾値26の本開示に係るプログラムされた調整30を使用して達成可能な画質改善の例が提示されている。図3に係る線形減少γを用いた再構成を、固定されたγ=1.0及び固定されたγ=0.5を含む2つの異なる固定の反復非依存値と比較するために、ファントム実験が行われた。より具体的には、図4の上列、左から右に向かって、固定されたγ=1、図3の線形プログラム30に従って動的に変化するγ=1.5→0.5、及び固定された低いγ=0.5が示されており、また、右端のグラフは対応する再構成画像強度プロファイルを示し、2番目と3番目の画像でのスペックルの減少が表されている。図4の下段、左から右に向かって、上段と同じものが示されているが、最初の2つの画像において保存された有用な特徴を持つスライスが示されている(γ=1.0及びγ=1.5→0.5)。図4に見られるように、動的に変化するγ=1.5→0.5だけが、スペックルの低減及びコントラストの維持の両方を達成することができた。図4に示す全ての再構成が、同じ3次元データセットについて、20反復及び17サブセットの条件で反復再構成OSEM‐MAP(ordered subsets expectation maximization-maximum a posteriori)を使用して行われた。右端の各グラフにおいて、最も高い曲線はγ=1.0を表し、最も低い曲線はγ=0.5を表し、中間の曲線はγ=1.5→0.5を表す。
【0033】
図4に示すように、固定されたγ=1.0でのファントム実験は、全体的に良好なコントラスト及びノイズ制御を有していたが、スペックルアーチファクトの核形成及び後半の反復での成長が見られた。これは、強いエッジ保存が、相当に大きく成長するノイズ誘起画像勾配も保存するという有害な効果を有することを反映している。固定されたγ=0.5でのファントム実験はスペックルの不在を示したが、同時に、有用な特徴のコントラストが著しく低下した(10mm球体のコントラストは>70%低下した)。これは、弱いエッジ保存が、一部の実際の特徴を保護できなかったことを反映している。図4に見られるように、本明細書に開示される動的変化するエッジ保存閾値は、有利なトレードオフを達成しており、すなわち、スペックルが抑制された一方、10mm球体の有用なコントラストはわずか20%しか低減されなかった。
【0034】
例示的実施形態は、式(1)の例示的反復再構成と共に、式(3)の例示的(改変された)RDP正則化事前分布を使用する。より一般的には、反復の関数としてのエッジ保存閾値のプログラムされた調整の本開示のアプローチは、エッジ保存閾値を有する任意のタイプのエッジ保存正則化事前分布と共に使用され得る。例えば、エッジ保存正則化事前分布は、より一般的には、以下に比例する相対差事前分布であり得る。
【数5】
ここで、γはエッジ保存閾値であり、f及びfは画像ピクセル又はボクセルである。さらに一般的には、本開示のアプローチは、エッジ保存の程度を制御するパラメータを有する(すなわち、エッジ保存閾値を有する)他のエッジ保存正則化事前関数と併せて使用され得る。
【0035】
動的γの開始値及び終了値(例えば、式(4)のγ(start)及びγ(end)の値)の選択は、経験的に選択されて、信頼できる撮像対象群(例えば、医療イメージングの場合には患者又は他の医療対象)にかけての代表的なイメージングデータセットの集合にわたって検証されてもよい。さらに、式(3)の例では、エッジ保存閾値γのみが反復回数nとともに変化するようにプログラムされているが、正則化事前分布の他のパラメータ(例えば、式(3)の全体的事前分布重みβ)を、実際のエッジの保存と、ノイズに起因するアーチファクト特徴の抑制との間のバランスを最適にするように選択されたプログラムに従って、反復回数nの関数として変化させることも考えられる。
【0036】
図1に戻り、上記したように、本明細書に開示される反復再構成の間、及び反復再構成が再構成画像で終了する前に、更新画像と、反復再構成のパラメータとのうちの少なくとも1つが、反復再構成とは別に動作する調整プロセスを用いて調整される。1つの例示的な調整プロセスは、反復再構成において任意選択的に使用される、エッジ保存正則化事前分布26のエッジ保存閾値の直前に説明したプログラムされた調整30である。
【0037】
説明のための例として図1に概略的に示されている第2の調整プロセスは、ノイズに起因するアーチファクト特徴の局所的検出、及びそのような検出されたアーチファクト特徴の局所的抑制を実行する。このアプローチでは、各連続的更新画像22が記憶装置34に記憶される(あるいは、これらのサブセットが記憶されてもよく、例えば、記憶スペース要件を低減するために4つの更新画像ごとに記憶されてもよい)。また、記憶装置34は、「N」個の最新の更新画像を記憶する先入れ先出し(FIFO)バッファとして構成されてもよい。これらの更新画像に基づいて、過去の反復にわたる領域ごとの展開36が、画像の各領域について計算される。この文脈における「領域」とは、単一のピクセル又はボクセルであり、又は任意に定められるより大きな領域(例えば、各領域は、n×nの正方形のピクセルブロック又はn×n×nの立方体のボクセルブロックであり得る)、又は、何らかの選択された画像解析(例えば、勾配画像において定められたエッジの解析に基づいて画像特徴を検出する特徴検出器)に基づき定められるより大きな領域であり得る。大きな領域については、その領域の「値」は、例えば、図2で行われているように、その領域内の最大ピクセル値として定量化され得る。現在の更新画像の各領域について、動作38において、現在の更新画像より前の複数の更新画像にわたる領域の値の展開がアーチファクト特徴基準を満たすか否かが決定される。図2の例では、初期の反復の間は、実際の特徴の展開は急速であり、その後横ばいになるが、一方、アーチファクト特徴の展開はより緩やかで後半の反復でも変化し続ける。実際の特徴とアーチファクト特徴との間のこれらの異なる特性は、アーチファクト特徴を検出するための基準を定めることを可能にする。
【0038】
複数の連続的反復にわたる領域の値の展開を定量化するために、様々なアルゴリズムを使用することができる。あるアプローチでは、差比率が計算される。
【数6】
ここで、Δf(k,l)は、反復k及び反復lにおけるそれぞれの更新画像内の対応するピクセル、ボクセル、又は領域の値の差又は値の絶対差であり、Δf(m,n)は、反復m及びnにおけるそれぞれの更新画像内の対応するピクセル、ボクセル、又は領域の値の差又は値の絶対差である。例示として、図2の例では、示されている反復回数k、l、m、nの場合、実際の特徴については比率Δf(m,n)/Δf(k,l)は1よりはるかに小さくなり、一方、ホットスポット(アーチファクト特徴)については比率Δf(m,n)/Δf(k,l)は1にかなり近くなることがわかる。
【0039】
上記アプローチは、前記反復再構成の反復k及び反復lにおけるそれぞれの更新画像間のボクセルごとの又はピクセルごとの差又は絶対差を含む第1の差画像を計算することと、前記反復再構成の反復m及び反復nにおけるそれぞれの更新画像間のボクセルごとの又はピクセルごとの差又は絶対差を含む第2の差画像を計算することと、前記第1の差画像と第2の差画像とのボクセルごとの又はピクセルごとの比率を含む比率画像を計算することとを含む。得られた比率画像はその後解析され、アーチファクト特徴である可能性が高い値に近い値を有する領域が検出される。
【0040】
動作40において、局所的ノイズ抑制が、任意の検出されたアーチファクト特徴において実行される。例えば、あるアプローチでは、局所的ノイズ抑制は、展開がアーチファクト特徴基準を満たす現在の更新画像のピクセル、ボクセル、又は領域の値を、それより前の更新画像の値で置き換えることを伴い得る。このアプローチは、ノイズ誘起アーチファクト特徴は反復再構成の後半に展開する傾向があり、よって、より前の段階の更新画像はノイズ誘起特徴が低減されている又は存在しない可能性が高いという本明細書の所見を前提としている。別のアプローチでは、局所的ノイズ抑制動作40は、展開がアーチファクト特徴基準を満たす現在の更新画像のピクセル、ボクセル、又は領域の値を、現在の更新画像の隣接する複数のピクセル又はボクセルの集合値で置き換える。局所的ノイズ抑制は局所的であり、展開がアーチファクト特徴基準を満たさない現在の更新画像のピクセル、ボクセル、又は領域に対しては実行されない。上記の特定の組み合わせも考えられる。動作40の出力はその後、局所的修正42を有する更新画像となり、そして次の反復再構成更新20への入力として使用される。
【0041】
様々な画像再構成計算コンポーネント及びデータ記憶コンポーネントが、例示的コンピュータ50又は他の電子データ処理装置上に実装され得る。例示的コンピュータ50は、再構成された画像を表示するためのディスプレイ52を含み、また、画像又は画像スライスを選択するための、又は他の態様でユーザが画像再構成及び/又は再構成された画像とインタラクトすることを可能にするためのユーザ入力を受信するための1つ又は複数のユーザ入力装置(例えば、キーボード54及びマウス56)を含む。
【0042】
次に図5図8を参照して、ノイズ誘起アーチファクト特徴を局所的に検出及び抑制するアプローチの有効性を実証するいくつかの例示的ファントム実験を説明する。各例示的アプローチは、以下のように構築された比率画像を使用し、ここで式(6)を参照して、インデックスl、m、及びnは、インデックスkと以下のような関係を有する。l=m=k+xかつn=k+2x反復n=k+2xにおいて、画像の各ボクセルが、反復m=k+xにおける画像の同じボクセルと比較され、その差がΔf(k+x,k+2x)として計算される。次に、同じボクセルについて、反復l=k+xとkとの差が計算され、Δf(k,k+x)が取得される。言い換えれば、kはホットスポット制御のための開始反復であり、x及び2xは差を計算するために使用される反復間隔である。真の特徴は、初期の反復において、アーチファクト特徴と比較してより速く展開すると予想されるので(図2参照)、実際の特徴については、比率Δf(k+x,k+2x)/Δf(k,k+x)は1未満になると予想される。対照的に、ノイズブロブ及び人工的ホットスポットはゆっくりと展開し続けると予想されるので、比率Δf(k+x,k+2x)/Δf(k,k+x)は1より大きくなると予想される。ボクセルごとに比率Δf(k+x,k+2x)/Δf(k,k+x)を計算することによって比率画像が形成され、各ボクセルが人工的ホットスポット(ノイズに起因する)に属するのか、又は画像の通常の構造に属するのかを判断することができる。比率画像は、ボクセルが人工的ホットスポットに属する確率、及びボクセルが通常の構造に属する確率を決定するために使用され得る。正式には、これは次のように表され得る。
【数7】
ギブスアーチファクトのような画像又は特徴内のコールドな構造の場合には、プロセスを補助するために、差Δf(k,k+x)及びΔf(k+x,k+2x)の符号を利用することができる。例えば、コールドな領域の場合、通常、値はある反復回数の後に減少するが、ホットな領域におけるギブスアーチファクトの場合、ボクセル値は最初に上昇し、その後下降する可能性があるので、Δf(k,k+x)は正になる一方、Δf(k+x,k+2x)負になり得る。
【0043】
図1に示されるように、反復再構成では、通常、反復再構成を開始するために初期画像24が使用される。初期画像の平均値が真値からあまりにも異なる場合、大きなスケーリング効果が存在し、反復再構成がそのようなスケーリング効果をオフセットするには、数回の更新/反復が必要となる。したがって、一般的には、nは、画像初期化スケールに留意する必要がない程度に十分に大きい数に設定されることが好ましい。反復間隔xには、1又は1より大きい任意の数を使用することができる。各反復に対してサブセットが1つしかないMLEM(Maximum Likelihood Expectation Maximization)の場合、k及びxは一般的に、各反復に対して複数のサブセットが存在するOSEMよりも大きくなる。
【0044】
図5を参照すると、第1の例示的ファントム再構成の例が提示されている。図5は、400,000のイベントを有する2Dシミュレーション研究(TOF分解能320ps、TOF再構成)におけるOSEM再構成のノイズ制御に対する処理36、38、40の効果を示す。従来のOSEM画像(図5の左画像)及び後フィルタリングを用いたOSEM画像(図5の中央画像)の両方と比較すると、処理36、38、40を用いたOSEMによるホットスポット制御(図5の右画像)によって、肺におけるノイズブロブが大幅に減少した。図5の右画像の例におけるホットスポット制御のために、kは最初に1に設定され、xは1に設定された。調整は次の通りである。ボクセルについては、値Rが0.85より大きい場合、ボクセルは展開を止める。その後kは2に設定され、xは1で変わらず、各ボクセルについてRの再計算を行い、ノイズ/ホットスポット抑制プロセスが繰り返された。このプロセスの結果として、異なるボクセルが異なる反復においてホットスポットに起因するものとして識別され、識別された反復において、展開のために停止された。実効的には、このアプローチはホットスポットの識別及び抑制の両方を実行した。図5に見られるように、画像は、画像処理36、38、40(図5の右画像)を使用したホットスポット制御は、制御なしよりも顕著に優れており、さらに、再構成後のフィルタリングのためにローパスガウスフィルタを使用した場合(図5の中央画像)よりも顕著に優れていたことを示している。
【0045】
図6を参照すると、第2の例示的ファントム再構成の例が提示されている。図6は、図5と同じ2Dシミュレーション研究のMAP‐OSEM再構成におけるノイズ及びホットスポット制御に対する処理36、38、40の効果を示す。処理36、38、40を行わない場合(図6の左画像)と比較して、かかる処理を用いたホットスポット制御によって肺内のノイズブロブ及び画像内の人工的ホットスポットは大幅に低減された(図6の右画像)。図6の上段は、RDP事前分布を用いたOSEM‐MAPに対応するものである(β=20、γ=0.1)。下段は、ADF事前分布を用いたOSEM‐MAPに対応するものである(Zhu et al、Med Bio.Eng.Comput、44:983-997(2006)を参照されたい)(β=0.05、γ=0.1)。RDP事前分布及びADF事前分布の両方が、処理36、38、40を用いたホットスポット制御なしでの再構成画像では人工的ホットスポットを示す一方、処理36、38、40を用いた場合には人工的ホットスポットの有意な抑制を示す。
【0046】
図7を参照すると、第2の例示的ファントム再構成の例が提示されている。図7は、(Koninklijke Philips N.V.、Eindhoven(オランダ)から入手可能な)Philips Vereos digital PETシステム上で取得されたNEMA IQボディファントム研究のOSEM‐MAP再構成に関して処理36、38、40を使用した場合の効果を示す。図7の左端の画像は、9サブセット及び30反復の条件でOSEMアルゴリズムを用いた再構成を示す。反復回数が多いため、画像にはノイズが多く現れた。左から2番目の画像は、ノイズ低減のために、左端の画像にウィンドウ半径が2ボクセルのメディアンフィルタの形態の再構成後フィルタリングを適用した効果を示す。ノイズは大幅に減少したが、画像のテキスチャは依然としてぼやけていた。左から3番目の画像は、ADF事前分布を用いたOSEM‐MAPを使用して、同じ反復回数で生成されたものである。全体的なノイズは左端の画像と比較して有意に減少したが、ファントムの一様な領域にはいくらかのホットスポットが見られた。図7の右端の画像は、OSEM‐MAP再構成においてノイズ/ホットスポット制御処理36、38、40を用いて生成された。人工的ホットスポットは全て除去され、画像は左の3つの画像と比較して優れた品質を示す。真の特徴、すなわちファントム内の球体の定量化はわずかしか変化しなかった。例えば、最小のホットな球体(10mm球体)の平均は、左の画像で334.3、第3の画像で341、そして右端の画像では344.9であり、差は1%未満であった。17mmのホットな球体の平均値は、1番目、3番目、及び右端の画像の順に537.0、532.7、及び547.1であった。左右の画像の差は2%未満であった。最大の定量的な差は13mm球体で見られ、1番目、3番目、及び右端の画像の順に、最大値は626.4、626.3、及び557.8であった。差は約11%であった。
【0047】
図8を参照して、別の実施形態では、画像はまず、反復再構成を用いて再構成される。一部の又は全ての中間更新画像(すなわち、最終的な再構成画像の前の更新画像)が記憶装置34に保存される。例えば、反復k+x及びk+2xにおける中間更新画像が記憶装置34に保存され、他の中間更新画像は破棄され得る。画像の各ボクセルについて、該ボクセルがホットスポットに属するのか通常の構造に属するのかを判断するために、上記メカニズムが使用される。図8はこのアプローチの結果を示している。k+2x=30番目、k+x=20番目、及びk=10番目の反復における更新画像がノイズ/ホットスポット制御のために保存され、30番目の反復画像における人工的ホットスポットの除去に成功している。真の特徴は、視覚的にも定量的にも差を示さなかった(差は0.1%未満)。図8に示される画像は以下の通りである。4つの列は4つの異なるスライスを示す。上段:37mmコールド球体の近くの9時の位置に人工的ホットスポットが見られた30番目の反復画像。中段:ホットスポット制御を行った画像。下段:上段と中段の画像の差画像差は、ホットスポット領域又はその付近でしか見られなかった。真の特徴(全ての球体、ホット又はコールドを問わず)に差は見られなかった。
【0048】
図1に概略的に示された、本開示の調整プロセスの実施形態(すなわち、エッジ保存正則化事前分布のエッジ保存閾値のプログラムされた調整30、及びアーチファクト特徴の局所的検出/抑制)は、単独で又は組み合わせて使用され得ることを理解されたい。2つの調整プロセスを組み合わせて使用することにより相乗的な利益を提供することができる。例えば、後半の反復において抑制動作40がノイズ誘起アーチファクト特徴を、ノイズ増幅がより低い該領域のより前の段階のバージョンで置き換える場合、その後、この後半の反復において、エッジ保存閾値γのより低い値は、より大きいγを有するより前の段階の反復と比較して、ノイズをより効果的に抑制できる可能性が高い。
【0049】
本発明を好適な実施形態を参照しながら説明してきた。上記の詳細な説明を読んで理解した当業者は、改変や変更に想到する可能性がある。本発明は、添付の特許請求の範囲又はその均等物の範囲内にある限りにおいて、そのような改変及び変更の全てを含むと解釈されることが意図される。
図1
図2
図3
図4
図5
図6
図7
図8