(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-16
(45)【発行日】2022-03-25
(54)【発明の名称】胎児ヘモグロビンプローブ及びシステム
(51)【国際特許分類】
A61B 5/1455 20060101AFI20220317BHJP
A61B 5/00 20060101ALI20220317BHJP
A61B 5/01 20060101ALI20220317BHJP
A61B 8/02 20060101ALI20220317BHJP
【FI】
A61B5/1455
A61B5/00 101Q
A61B5/01
A61B8/02
(21)【出願番号】P 2018533655
(86)(22)【出願日】2016-12-28
(86)【国際出願番号】 US2016068994
(87)【国際公開番号】W WO2017117280
(87)【国際公開日】2017-07-06
【審査請求日】2019-12-13
(32)【優先日】2015-12-30
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】518219055
【氏名又は名称】レイディアント オキシメトリ,インコーポレイテッド
【氏名又は名称原語表記】RAYDIANT OXIMETRY, INC.
【住所又は居所原語表記】1425 37th Street, Sacramento, CA 95816 US
(74)【代理人】
【識別番号】100147511
【氏名又は名称】北来 亘
(74)【代理人】
【識別番号】100169904
【氏名又は名称】村井 康司
(74)【代理人】
【識別番号】100181021
【氏名又は名称】西尾 剛輝
(72)【発明者】
【氏名】ニール パダリア レイ
【審査官】冨永 昌彦
(56)【参考文献】
【文献】米国特許出願公開第2011/0218413(US,A1)
【文献】特表2010-534100(JP,A)
【文献】米国特許出願公開第2004/0116789(US,A1)
【文献】特表2007-504883(JP,A)
【文献】国際公開第2015/020886(WO,A1)
【文献】米国特許第07515948(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/06 - 5/22
A61B 5/00 - 5/01
A61B 8/00 - 8/15
(57)【特許請求の範囲】
【請求項1】
システムであって、
第1の光源、第2の光源、検出器、送受信機、
超音波検出器、及び電源を収容するように構成された収容器と、
内部に含有された胎児に向かって妊娠哺乳動物の腹部内に第1の波長の光を投影するように適合された前記第1の光源と、
前記胎児に向かって前記妊娠哺乳動物の腹部内に第2の波長の光を投影するように適合された前記第2の光源と、
前記検出器であって、前記妊娠哺乳動物の腹部及び前記胎児から反射された光を検出し、前記検出された光を電子反射信号へと変換し、かつ前記電子反射信号を前記送受信機に伝達するように適合された前記検出器と、
前記送受信機であって、前記検出器から前記電子反射信号を受信し、かつ前記受信された電子反射信号をプロセッサに伝達するように適合された前記送受信機と、
前記第1の光源、前記第2の光源、及び前記検出器に電気的に連結された前記電源であって、
前記第1の光源、前記第2の光源、前記検出器、及び前記送受信機に電力を提供するように適合された前記電源と、
前記収容器内に収容されるとともに、前記電源、前記プロセッサ、及び送受信機に連結された
前記超音波検出器であって、胎児心拍信号を検出しその胎児心拍信号を前記プロセッサに伝達する前記超音波検出器と、
前記超音波検出器から前記胎児心拍信号を受信し、前記検出器から前記電子反射信号を受信し、前記胎児心拍信号を用いて前記胎児から反射された前記電子反射信号の一部分を隔離し、前記電子反射信号の前記隔離された部分を分析して前記胎児の胎児ヘモグロビン酸素飽和レベルを判定し、かつ胎児血液の前記
胎児ヘモグロビン酸素
飽和レベルの指示を表示装置に提供するように構成された前記プロセッサと、を備える、システム。
【請求項2】
前記第1及び第2の光源の少なくとも一方に連結された調節機構であって、前記それぞれの第1及び第2の光源により放射された光の周波数、前記妊娠哺乳動物の腹部内に投影されたときに前記それぞれの第1及び第2の光源により放射された前記光の入射角のうちの少なくとも1つを調節し、かつ前記それぞれの第1及び第2の光源から放射されたときに前記妊娠哺乳動物の腹部内に投影される光ビームを集中させるように適合された調節機構をさらに備える、請求項1に記載のシステム。
【請求項3】
前記収容器に連結された調節装置であって、前記妊娠哺乳動物の腹部内に投影されたときに、前記それぞれの第1及び第2の光源により放射された光の周波数、前記それぞれの第1及び第2の光源により放射された前記光の入射角のうちの少なくとも1つを調節し、かつ前記それぞれの第1及び第2の光源から放射されたときに前記妊娠哺乳動物の腹部内に投影される光ビームを集中させるように適合された調節装置をさらに備える、請求項1に記載のシステム。
【請求項4】
追加の検出器であって、前記収容器内に位置付けられ、前記送受信機及び前記電源に連結され、前記追加の検出器が、前記妊娠哺乳動物の腹部及び前記胎児から反射された光を検出し、前記検出された光を追加の電子反射信号へと変換し、かつ前記追加の電子反射信号を前記送受信機に伝達するように適合されている、追加の検出器をさらに備える、請求項1に記載のシステム。
【請求項5】
前記収容器内に収容された4つの追加の光源であって、前記追加の光源の各々が、前記電源に連結されている、4つの追加の光源と、
追加の検出器であって、前記収容器内に位置付けられ、前記送受信機及び前記電源に連結され、前記追加の検出器が、前記妊娠哺乳動物の腹部及び前記胎児から反射された光を検出し、前記検出された光を追加の電子反射信号へと変換し、かつ前記追加の電子反射信
号を前記送受信機に伝達するように適合されている、追加の検出器と、をさらに備え、
前記収容器が、前記妊娠哺乳動物の腹部の一部分の周りに延在し、かつ前記胎児の2つの側に光を配向するように、少なくとも10cmの長さを有するように適合され、さらに、前記検出器が、前記収容器の第1の側上に位置付けられ、前記追加の検出器が、前記収容器の第2の側上に位置付けられ、前記光源が、前記収容器の前記第1及び第2の側間に位置付けられている、請求項1に記載のシステム。
【請求項6】
前記第1の光源が、700nm~740nmの波長の光を放射し、前記第2の光源が、800~900nmの波長の光を放射する、請求項1に記載のシステム。
【請求項7】
温度プローブであって、前記収容器内に収容され、前記電源及び送受信機に連結され、前記温度プローブが、前記妊娠哺乳動物の腹部の温度を測定し、かつ前記温度
の測定値を前記送受信機に伝達するように適合されている、温度プローブをさらに備える、請求項1に記載のシステム。
【請求項8】
前記超音波検出器が、前記妊娠哺乳動物の腹部及び前記胎児の組織と、前記第1の光源及び前記第2の光源の少なくとも一方から放射された光との相互作用から得られた過渡的熱弾性膨張により生じた前記妊娠哺乳動物の腹部及び胎児の超音波放射を検出するようにさらに構成されている、請求項1に記載のシステム。
【請求項9】
子宮収縮測定装置であって、前記収容器内に収容され、前記電源及び送受信機に連結され、前記子宮収縮測定装置が、前記妊娠哺乳動物の子宮の筋肉状態の変化を測定し、かつこれらの測定値を前記送受信機に伝達するように適合されている、子宮収縮測定装置をさらに備える、請求項1に記載のシステム。
【請求項10】
胎児ヘモグロビンプローブであって、
第1の光源、第2の光源、検出器、送受信機、及び電源を収容するように構成された収容器と、
内部に含有された胎児に向かって妊娠哺乳動物の腹部内に第1の波長の光を投影するように適合された前記第1の光源と、
前記胎児に向かって前記妊娠哺乳動物の腹部内に第2の波長の光を投影するように適合された前記第2の光源と、
前記検出器であって、前記妊娠哺乳動物の腹部及び前記胎児から反射された光を検出し、前記検出された光を電子反射信号へと変換し、かつ前記電子反射信号を前記送受信機に伝達するように適合された前記検出器と、
前記収容器内に収容されるとともに、前記電源及び送受信機に連結された超音波検出器であって、胎児心拍信号を検出しその胎児心拍信号を前記送受信機に伝達する前記超音波検出器と、
前記送受信機であって、前記検出器から前記電子反射信号を受信し、前記超音波検出器から前記胎児心拍信号を受信し、かつ前記受信された電子反射信号及び前記受信された胎児心拍信号をプロセッサに伝達するように構成された前記送受信機と、
前記第1の光源、前記第2の光源、及び前記検出器に電気的に連結された前記電源であって、第1の光源、前記第2の光源、前記検出器、及び前記送受信機に電力を提供するように適合された前記電源と、を備える、胎児ヘモグロビンプローブ。
【請求項11】
前記収容器に連結された調節装置であって、前記妊娠哺乳動物の腹部内に投影されたときに、前記それぞれの第1及び第2の光源により放射された光の周波数、前記それぞれの第1及び第2の光源により放射された光の入射角のうちの少なくとも1つを調節し、かつ前記それぞれの第1及び第2の光源から放射されたときに前記妊娠哺乳動物の腹部内に投影される光ビームを集中させるように適合された調節装置をさらに備える、請求項10に
記載の胎児ヘモグロビンプローブ。
【請求項12】
追加の検出器であって、前記収容器内に位置付けられ、前記送受信機及び前記電源に連結され、前記追加の検出器が、前記妊娠哺乳動物の腹部及び前記胎児から反射された光を検出し、前記検出された光を追加の電子反射信号へと変換し、かつ前記追加の電子反射信号を前記送受信機に伝達するように適合されている、追加の検出器をさらに備える、請求項10に記載の胎児ヘモグロビンプローブ。
【請求項13】
前記収容器内に収容された4つの追加の光源であって、前記追加の光源の各々が、前記電源に連結されている、4つの追加の光源と、
追加の検出器であって、前記収容器内に位置付けられ、前記送受信機及び前記電源に連結され、前記追加の検出器が、前記妊娠哺乳動物の腹部及び前記胎児から反射された光を検出し、前記検出された光を追加の電子反射信号へと変換し、かつ前記追加の電子反射信号を前記送受信機に伝達するように適合されている、追加の検出器と、をさらに備え、
前記収容器が、前記妊娠哺乳動物の腹部の一部分の周りに延在し、かつ前記胎児の2つの側に光を配向するように、少なくとも10cmの長さを有するように適合され、さらに、前記検出器が、前記収容器の第1の側上に位置付けられ、前記追加の検出器が、前記収容器の第2の側上に位置付けられ、前記光源が、前記収容器の前記第1及び第2の側間に位置付けられている、請求項10に記載の胎児ヘモグロビンプローブ。
【請求項14】
前記第1の光源が、700nm~740nmの波長の光を放射し、前記第2の光源が、800~900nmの波長の光を放射する、請求項10に記載の胎児ヘモグロビンプローブ。
【請求項15】
温度プローブであって、前記収容器内に収容され、前記電源及び送受信機に連結され、前記温度プローブが、前記妊娠哺乳動物の腹部の温度を測定し、かつ前記温度
の測定値を前記送受信機に伝達するように適合されている、温度プローブをさらに備える、請求項10に記載の胎児ヘモグロビンプローブ。
【請求項16】
前記超音波検出器が、前記妊娠哺乳動物の腹部及び前記胎児の組織と、前記第1の光源及び前記第2の光源の少なくとも一方から放射された光との相互作用から得られた過渡的熱弾性膨張により生じた前記妊娠哺乳動物の腹部及び胎児の超音波放射を検出するようにさらに構成されている、請求項10に記載の胎児ヘモグロビンプローブ。
【請求項17】
子宮収縮測定装置であって、前記収容器内に収容され、前記電源及び送受信機に連結され、前記子宮収縮測定装置が、前記妊娠哺乳動物の子宮の筋肉状態の変化を測定し、かつこれらの測定値を前記送受信機に伝達するように適合されている、子宮収縮測定装置をさらに備える、請求項10に記載の胎児ヘモグロビンプローブ。
【請求項18】
前記超音波検出器がドップラー超音波検出器である、請求項1に記載のシステム。
【請求項19】
前記超音波検出器がドップラー超音波検出器である、請求項10に記載の胎児ヘモグロビンプローブ。
【請求項20】
システムであって、
第1の光源、第2の光源、検出器、パルス酸素測定プローブ、及び電源を収容するように構成された収容器と、
内部に含有された胎児に向かって妊娠哺乳動物の腹部内に第1の波長の光を投影するように適合された前記第1の光源と、
前記胎児に向かって前記妊娠哺乳動物の腹部内に第2の波長の光を投影するように適合された前記第2の光源と、
前記検出器であって、前記妊娠哺乳動物の腹部及び前記胎児から反射された光を検出し、前記検出された光を電子反射信号へと変換し、かつ前記電子反射信号をプロセッサに伝達するように適合された前記検出器と、
前記パルス酸素測定プローブであって、前記妊娠哺乳動物の心拍を検出し、かつ前記妊娠哺乳動物の心拍を
前記プロセッサに伝達するように構成された前記パルス酸素測定プローブと、
前記第1の光源、前記第2の光源、及び前記検出器に電気的に連結された前記電源であって、第1の光源、前記第2の光源、前記検出器、及び前記パルス酸素測定プローブに電力を提供するように適合された前記電源と、
前記パルス酸素測定プローブから前記妊娠哺乳動物の心拍を受信し、前記検出器から前記電子反射信号を受信し、前記妊娠哺乳動物の心拍を用いて前記胎児から反射された前記電子反射信号の所定の部分を隔離し、前記電子反射信号の前記隔離された所定の部分を分析して前記胎児の胎児ヘモグロビン酸素飽和レベルを判定し、かつ胎児血液の前記
胎児ヘモグロビン酸素
飽和レベルの指示を表示装置に提供するように構成された前記プロセッサと、を備えており、
前記収容器が超音波検出器を収容しており、前記電源に連結された前記超音波検出器が、胎児心拍信号を検出しその胎児心拍信号を前記プロセッサに伝達する、システム。
【請求項21】
前記プロセッサが、前記胎児心拍信号を用いて前記胎児から反射された前記電子反射信号の所定の部分を隔離するようにさらに構成された、請求項20に記載のシステム。
【発明の詳細な説明】
【関連出願】
【0001】
本願は、2015年12月30日に出願された、米国仮特許出願第62/273,196号、発明の名称「SYSTEMS,DEVICES,AND METHODS FOR DETECTING/DETERMINING FETAL HEMOGLOBIN OXYGEN SATURATION LEVELS」の非仮出願であり、その優先権を主張し、その全体は、参照により本明細書に組み込まれる。
【技術分野】
【0002】
本発明は、医療装置の分野に関し、より具体的には、経腹腔的な胎児酸素測定法及び経腹腔的な胎児パルス酸素測定法の分野に関する。
【背景技術】
【0003】
妊娠哺乳動物がその胎児の陣痛及び分娩過程のさなかにあるとき、胎児心拍及び妊娠哺乳動物の子宮の緊張の両方を観察するのが、一般的な慣行である。妊娠哺乳動物の子宮の緊張は、例えば、子宮筋により加えられる圧力を測定することにより、水銀柱ミリメートル(mmHg)及び/またはキロパスカル(kPg)等の圧力単位で、妊娠哺乳動物の子宮収縮に関する情報を提供する。胎児心拍及び子宮の緊張に関する情報を医師もしくは他の医療提供者に提供するための1つの方法は、胎児心拍及び子宮の緊張を経時的に表示するグラフを紙もしくは電子フォームのいずれかで提供することである。大部分の事例において、この情報は、特定の時間に対する胎児心拍及び子宮の緊張を同時に観察し得るように同期される。特定の時間の胎児心拍を同じ時間の子宮の緊張と比較することにより、医師は、妊娠哺乳動物が子宮収縮に見舞われているときに胎児心拍が減少するかどうかを判定することができ得る。
【0004】
図1A及び1Bは、対応する時間に対して同時に表示された胎児心拍及び子宮の緊張の2つの例を提供している。
図1A及び1Bにおいて、グラフ10A及び10Bは、それぞれ、グリッド上に提供された各垂線が1分を表す時間の関数としての1分当たりの拍動における胎児心拍を表示している。
図1A及び1Bにおいて、グラフ12A及び12Bは、それぞれ、時間の関数としてのmmHg及びkPaにおける子宮の緊張を表示している。
図1Aにおいて、グラフ10Aは、正常範囲である1分当たり120~180回の拍動内の胎児心拍を示しており、子宮の緊張の変化に対応する胎児心拍における顕著な変動はない。
図1Aで提供された情報を用いて、医師は、胎児が子宮収縮により悪影響を受けておらず、かつ不全状態にないとの結論を下し得る。対照的に、グラフ10Bは、子宮収縮(すなわち、子宮内の圧力の増加)に対応する有意な低下(例えば、子宮収縮前の1分当たりおよそ150回の拍動から、子宮収縮直後の間の1分当たり90回未満の拍動への)に見舞われた胎児心拍を示している。
図1Bで提供された情報を用いて、医師は、胎児が子宮収縮により悪影響を受けており、かつ不全状態にあり得る(例えば、神経損傷を引き起こし得る酸素の欠乏に見舞われている)との結論を下し得る。この結論を下す際、医師は、胎児の健康が危険な状態にあり、よって、開腹分娩法(帝王切開)を介して子宮から外科手術的に取り除くべきであると決定し得る。しかしながら、胎児心拍の低下には多くの他の可能な原因があるため、
図1Bで示されている種類の胎児心拍の変化は、胎児が不全状態にあることを常に示しているわけではない。したがって、医師が、帝王切開が必要とされない場合に帝王切開を処方して、妊娠哺乳動物に不当な害を生じさせる可能性がある。
【0005】
酸素測定法は、哺乳動物の血液中のヘモグロビンの酸素飽和を判定するための方法である。典型的に、成人のヒトのヘモグロビンの90%(以上)が、酸素で飽和され(すなわち、結合され)、胎児の血液の30~60%のみが、酸素で飽和される。
【0006】
パルス酸素測定法は、心拍周期を通した動脈血液量の変化を使用して、血液の酸素レベルの酸素飽和測定値を内部的に較正する酸素測定法の一種である。
【0007】
胎児酸素測定法を行う現在の方法は、多くの理由で不完全である。例えば、米国特許公開第2004/0116789号は、パルス酸素測定法を使用した胎児酸素濃度計を記載しているが、この酸素濃度計は、少なくとも3つの理由で不完全である。第1に、胎児酸素測定法を判定するために‘789公報により使用された電磁放射線の波長は短く、結果として、十分な強度で胎児に到達するように、妊娠哺乳動物の腹部を通した距離を移動することができない。したがって、信号反射信号は、過度に弱いために解読することができない。第2に、‘789公報は、胎児ヘモグロビンが成人ヘモグロビンとは異なる構造を有し、よって光を異なるように吸収/反射するため、胎児ヘモグロビンとは根本的に異なる成人ヘモグロビンを用いた調査に基づいているという内在する前提に起因して不完全である。最後に、‘789出願は、雑音を減少させるための受信された信号の処理を行っていない。
【0008】
‘789公報と同様に、特許WO2009/032168は、近赤外分光法を使用した胎児酸素濃度計を記載しているが、信号処理アルゴリズムを提供していない。加えて、WO2009/032168は、胎児酸素測定法を判定するために成人ヘモグロビンに関する前提を使用しており、胎児ヘモグロビン及び成人ヘモグロビンが上記のような異なる構造を有するため、光を異なるように反射することに起因して不正確な結果を生じる。
【0009】
米国特許公開第2011/0218413号は、母体心電図記録法(ECG)、ドップラー、及びパルス酸素測定法を使用した信号処理のためのアルゴリズムを記載している。しかしながら、少なくとも上で指摘されている理由のために、母体(すなわち、成人)パルス酸素測定法を使用して胎児酸素測定法信号を得ようとする試みは機能しないだろう。さらに、‘413公報は、胎児及び成人ヘモグロビンにおける構造差に対するいかなる補償も行っていない。
【0010】
米国特許公開第2011/0218413号は、妊娠哺乳動物が腹部の他側上で検出された腹及び胎児に向かって光を照らすベルトを着用している別の例を提供している。光が移動する距離は、15~30インチ、または35~75cmであり、これは、検出器が受信した信号が過度に弱いために解読することができないため、技術的に不可能である。過度に強い光は、例えば、妊娠哺乳動物に対する火傷及び胎児に対する網膜損傷を生じさせる可能性があるため、光はすぐに強度を緩め、妊娠哺乳動物の腹部内に配向された光があり得る強度についてのFDA制限がある。
【発明の概要】
【0011】
経腹腔的な胎児酸素測定法及び/または経腹腔的な胎児パルス酸素測定法を行うためのシステム、装置、及び方法を本明細書に開示している。本システム、装置、及び方法は、妊娠哺乳動物の腹部に接触する(すなわち、接着剤、ストラップ、ハーネス等を介して心身哺乳動物に取り付けられる)1つ以上の胎児ヘモグロビンプローブを使用して行われ得る。いくつかの実施形態において、胎児ヘモグロビンプローブの全てまたは一部分は、非接触パルス酸素測定法の測定及び計算を行ったときにあり得るように、妊娠哺乳動物の腹部と接触しない場合がある。非接触パルス酸素測定法の測定及び計算を使用するとき、胎児ヘモグロビンプローブ及び/またはそれらの一部は、例えば、足場もしくはカート上の妊娠哺乳動物の腹部の上に位置付けられ得る。
【0012】
本明細書に開示されている例示的な胎児ヘモグロビンプローブは、収容器と、複数の光源と、1つ以上の検出器と、送受信機と、電源とを含み得る。本明細書に開示されている例示的なシステムは、1つ以上の胎児ヘモグロビンプローブと、表示装置(例えば、モニタまたはタッチスクリーン)と連結され得るプロセッサまたはコンピュータとを含む。より具体的には、胎児ヘモグロビンプローブの収容器は、第1の光源、第2の光源、検出器、送受信機、及び電源を収容するように構成され得る。いくつかの事例において、収容器、第1の光源、第2の光源、検出器、送受信機、及び/または電源は、1回の使用後に使い捨てであるように構成されている。
【0013】
第1の光源は、内部に含有された胎児に向かって妊娠哺乳動物の腹部内に第1の波長の光を投影するように適合されており、第2の光源は、胎児に向かって妊娠哺乳動物の腹部内に第2の波長の光を投影するように適合されている。いくつかの例において、第1及び第2の光源は、複数の光源(例えば、LED)により構成された単一の光収容器内に存在し得、他の例において、第1及び第2の光源は、個別に収容され得る。第1の光源から放射される光に対する例示的な波長は、700nm~740nmであり得、第2の光源から放射される光に対する例示的な波長は、800~900nmであり得る。
【0014】
検出器は、妊娠哺乳動物の腹部及び胎児から反射された光を検出するように適合され得る。例示的な検出器は、限定されないが、光検出器、光センサ、フォトダイオード、及びカメラを含む。検出器が光検出器(または同様のもの)であるとき、検出器はまた、検出された光を電子反射信号へと変換し得、かつ電子反射信号を送受信機に伝達し得る。
【0015】
送受信機は、検出器から電子反射信号を受信し、かつ受信された電子反射信号をプロセッサまたはコンピュータに伝達するように適合され得る。送受信機は、検出器から情報を受信し、かつ胎児ヘモグロビンプローブから情報を伝達することができる任意の装置であり得る。
【0016】
電源は、第1の光源、第2の光源、及び検出器に電気的に連結され得、かつ第1の光源、第2の光源、検出器、及び送受信機に電力を提供するように適合され得る。例示的な電源は、限定されないが、電池、及び胎児ヘモグロビンプローブを従来型の電源(例えば、壁コンセント)に連結する機器を含む。
【0017】
プロセッサは、検出器から電子反射信号を受信し、かつ胎児から反射された電子反射信号の一部分を隔離するように構成され得る。次に、プロセッサは、電子反射信号の隔離された部分を分析して、胎児ヘモグロビン酸素飽和レベルを判定し、かつ胎児血液の酸素レベルの、モニタ等の表示装置への指示を提供し得る。
【0018】
いくつかの実施形態において、本システムは、第1及び第2の光源の一方で連結された調節機構を含み得る。調節機構は、例えば、それぞれの第1及び/または第2の光源により放射された光の周波数、妊娠哺乳動物の腹部内に投影されたときに、それぞれの第1及び/または第2の光源により放射された光の入射角を調節し、かつそれぞれの第1及び/または第2の光源から放射されたときに妊娠哺乳動物の腹部内に投影される光ビームを集中させるように適合され得る。
【0019】
1つの例示的な実施形態において、本システムは、収容器に連結された調節装置、またはその一部分をさらに含む。調節装置は、それぞれの第1及び/または第2の光源により放射された光の周波数、妊娠哺乳動物の腹部内に投影されたときに、それぞれの第1及び/または第2の光源により放射された光の入射角を調節し、かつそれぞれの第1及び/または第2の光源から放射されたときに妊娠哺乳動物の腹部内に投影される光ビームを集中させるように適合され得る。
【0020】
いくつかの実施形態において、本システムは、追加の検出器を含み得、追加の検出器は、収容器内に位置付けられ得、かつ送受信機及び電源に連結され得る。追加の検出器は、妊娠哺乳動物の腹部及び胎児から反射された光を検出し、検出された光を追加の電子反射信号へと変換し、かつ追加の電子反射信号を送受信機及び/またはプロセッサもしくはコンピュータに伝達するように適合され得る。
【0021】
いくつかの実施形態において、本システム及び/または胎児ヘモグロビンプローブは、収容器内に収容されるか、または別個の収容器内に収容された4つ以上の追加の光源を含み得る。追加の光源の各々は、電源に連結されている。これらの実施形態はまた、追加の検出器を含み得る。追加の検出器は、収容器内に位置付けられ得、かつ送受信機及び電源に連結され得、妊娠哺乳動物の腹部及び胎児から反射された光を検出し、検出された光を追加の電子反射信号へと変換し、かつ追加の電子反射信号を送受信機及び/またはプロセッサもしくはコンピュータに伝達するように適合され得る。これらの実施形態において、収容器は、妊娠哺乳動物の腹部の一部分の周りに延在し、かつ胎児の複数の位置(例えば、2つ以上の側)に光を配向するように、少なくとも10cmの長さを有するように適合され得る。これらの実施形態において、検出器は、収容器の第1の側上に位置付けられ得、追加の検出器は、収容器の第2の側上に位置付けられ得、光源は、収容器の第1及び第2の側間に位置付けられている。
【0022】
いくつかの事例において、本システムは、収容器内に収容され、かつ電力供給装置及び送受信機に連結されている、温度プローブを含み得る。温度プローブは、妊娠哺乳動物の腹部及び/または皮膚の温度を測定し、かつ温度測定値を例えば、送受信機及び/または制御装置に伝達するように適合され得る。時には、閾値を超えた温度測定値は、システムが過度に高温であり、妊娠哺乳動物及び/または胎児に対する損傷を生じさせ得ることを示し得る。これが生じると、制御装置は、システムの1つ以上の構成要素を遮断し得、かつ/または妊娠哺乳動物の温度の上昇を操作者に知らせ得る。
【0023】
別の実施形態において、本システムは、収容器内に収容され、電力供給装置及び送受信機に連結されている、超音波検出器を含み得る。超音波検出器は、いわゆる光音響効果に起因した、妊娠哺乳動物の腹部及び胎児の組織と、第1の光源及び第2の光源の少なくとも一方から放射された光との相互作用から得られた過渡的熱弾性膨張により生じた妊娠哺乳動物の腹部及び胎児の超音波放射を検出するように適合され得る。
【0024】
別の実施形態において、本システムは、収容器内に収容されており、かつ電力供給装置及び送受信機、プロセッサ、及び/またはコンピュータに連結された子宮収縮測定をさらに含み得る。子宮収縮測定は、妊娠哺乳動物の子宮の筋肉状態の変化を測定し、かつこれらの測定値を送受信機、プロセッサ、及び/またはコンピュータに伝達するように適合され得る。
【0025】
本明細書に記載されている例示的な方法は、光源から放射された光ビームを、内部に含有された胎児に向かって妊娠哺乳動物の腹部へと光源により配向することを含み得る。妊娠哺乳動物及び胎児により反射された光は、検出器で第1の時間領域にわたって受信され得る。次に、検出器は、受信された光を電子反射信号へと変換し得、かつ電子反射信号をコンピュータ/プロセッサに伝達し得る。
【0026】
次に、コンピュータは、電子反射信号を処理して、胎児から反射された電子反射信号の一部分を隔離し、かつ胎児から反射された電子反射信号の一部分を分析して、胎児の胎児ヘモグロビン酸素飽和レベルを判定し得る。次に、コンピュータは、胎児ヘモグロビン酸素飽和レベルの指示の、医師もしくは医療技術者等の操作者への提供を促進し得る。
【0027】
いくつかの実施形態において、電子反射信号を処理して胎児から反射された電子反射信号の一部分を隔離することは、妊娠哺乳動物の心拍信号を第2の時間領域にわたって受信することを含む。心拍信号は、第2の時間領域において、妊娠哺乳動物の心拍がいつ生じるのかを示す。次に、電子反射信号及び妊娠哺乳動物の心拍信号を、第1の時間領域及び第2の時間領域にわたって同期し得、かつ同期された第1及び第2の時間領域内で、妊娠哺乳動物の心拍信号に対応する電子受信信号の一部分を判定し得る。このとき、電子受信信号からの妊娠哺乳動物の心拍信号に対応する電子受信信号の一部分は、減算された電子受信信号であり得る。
【0028】
別の実施形態において、電子反射信号を処理して胎児から反射された電子反射信号の一部分を隔離することは、胎児の胎児心拍信号を第2の時間領域にわたって受信することを含み得る。胎児心拍信号は、第2の時間領域内で、胎児心拍がいつ生じるかを示し得る。次に、電子反射信号及び胎児心拍信号を、第1の時間領域及び第2の時間領域にわたって同期し得、かつ同期された第1及び第2の時間領域内で、胎児に対する受信された心拍信号により示されるような胎児の個々の心拍に対応する電子反射信号の一部分を検査して、胎児の胎児ヘモグロビン飽和レベルを判定し得る。
【0029】
さらなる実施形態において、電子反射信号を処理して胎児から反射された電子反射信号の一部分を隔離することは、胎児の胎児心拍信号を第2の時間領域にわたって受信することを含み、心拍信号は、第2の時間領域内で、胎児心拍がいつ生じるかを示す。次に、電子反射信号及び胎児心拍信号を、第1の時間領域及び第2の時間領域にわたって同期し得る。次に、同期された電子反射信号を、同期された胎児心拍信号により乗算し得る。
【図面の簡単な説明】
【0030】
本発明は、添付の図面の図において、限定でない例示の方法で図示されている。
【0031】
【
図1A-1B】対応する時間に対して同時に表示された胎児心拍及び子宮の緊張の例を提供している。
【
図2A】本発明の実施形態に一致する、胎児酸素レベルを判定するための例示的なシステム100を提供している。
【
図2B-2E】本発明の実施形態に一致する、例示的な胎児ヘモグロビンプローブのブロック図を提供している。
【
図3A-3D】本発明の実施形態に一致する、胎児ヘモグロビンプローブからの光が妊娠哺乳動物の腹部内に配向され得る方法の図を提供している。
【
図4A】本発明の実施形態に一致する、胎児ヘモグロビン飽和レベルを判定するためのプロセスを図示するフローチャートである。
【
図4B-4C】本発明の実施形態に一致する、電子反射信号を処理して胎児からの電子反射信号の一部分を隔離することについてのプロセスを図示するフローチャートである。
【
図5A】本発明の実施形態に一致する、総電子反射信号強度対時間のグラフを提供している。
【
図5B】本発明の実施形態に一致する、胎児ドップラー信号対時間のグラフを提供している。
【
図5C】本発明の実施形態に一致する、総電子反射信号強度及びドップラー信号を経時的に同期させると同時に共に乗算した積を示すグラフを提供している。
【
図5D】本発明の実施形態に一致する、総電子反射信号強度、胎児心拍/ドップラー信号、ならびに経時的に同期された総電子反射信号強度及びドップラー信号を乗算した結果のグラフを提供している。
【
図6A】本発明の実施形態に一致する、胎児ドップラー信号対時間のグラフを提供している。
【
図6B】本発明の実施形態に一致する、λ
1に対する電子反射信号強度対時間のグラフを提供している。
【
図6C】本発明の実施形態に一致する、λ
1に対する総電子反射信号強度及び胎児ドップラー信号を経時的に同期させると同時に共に乗算した積を示すグラフを提供している。
【
図6D】本発明の実施形態に一致する、λ
1に対する総電子反射信号強度及び胎児ドップラー信号をいくつかの期間にわたって平均化された経時的に同期させると同時に共に乗算した積を示すグラフを提供している。
【
図6E】本発明の実施形態に一致する、λ
2に対する電子反射信号強度対時間のグラフを提供している。
【
図6F】本発明の実施形態に一致する、λ
2に対する総電子反射信号強度及び胎児ドップラー信号を経時的に同期させると同時に共に乗算した積を示すグラフを提供している。
【
図6G】本発明の実施形態に一致する、λ
2に対する総電子反射信号強度及び胎児ドップラー信号をいくつかの期間にわたって平均化された経時的に同期させると同時に共に乗算した積を示すグラフを提供している。
【
図6H】赤色/赤外波長の変調割当量と動脈酸素飽和(%SaO2)との間の関係を示すグラフを提供している。
【
図7A】本発明の実施形態に一致する、分娩直後の臍帯の穿刺により得られた成人ドナーの血液及び胎児血液内に照らされた光の波長の関数としての種々のヘモグロビン測定値の表を提供している。
【
図7B】本発明の実施形態に一致する、光の可視波長における胎児及び妊婦ヘモグロビンの酸素化状態と非酸素化状態との間の吸収率の差を示すグラフを図示している。
【
図7C】本発明の実施形態に一致する、近赤外(NIR)光の波長における胎児及び妊婦ヘモグロビンの酸素状態と脱酸素状態との間の吸収率の差を示すグラフを図示している。
【
図8A】本発明の実施形態に一致する、妊娠哺乳動物及び胎児の測定値に関する他の情報と共に胎児ヘモグロビン酸素飽和のレベルを提供する例示的な表示を提供している。
【
図8B】本発明の実施形態に一致する、対応する時間に対して同期された胎児心拍、胎児ヘモグロビン酸素飽和率、及び子宮の緊張の例示的な表示を提供している。
【0032】
図面全体を通して、別段の記載がない限り、同じ符号及び文字は、図示されている実施形態の同様の特徴、要素、構成要素、または一部分を示すように使用されている。さらに、主題発明は、図面を参照してこれより詳細に記載されるが、図示的な実施形態に関連して説明がなされている。添付の特許請求の範囲により定義されているような主題発明の範囲及び精神から逸脱することなく、記載されている実施形態に対して変更及び変形を行うことができることを企図している。
【発明を実施するための形態】
【0033】
経腹腔的かつ子宮内での胎児酸素測定法及び/または胎児パルス酸素測定法に対するシステム、装置、及び方法を、本明細書に記載している。胎児酸素測定法及び/または胎児パルス酸素測定法の重要な出力は、酸素に結合した胎児の血液内に存在するヘモグロビンの割合としても理解され得る、胎児の血液の酸素飽和のレベル(「胎児ヘモグロビン酸素飽和レベル」及び「酸素飽和レベル」とも称される)である。胎児の血液の酸素飽和レベルは、例えば、陣痛及び分娩過程中の胎児の健康ならびに胎児が受け得る圧力のレベルを評価し得るために熟練の医療専門家により使用され得る。典型的に、胎児血液に対する酸素飽和の値は、30~60%の範囲内に該当し、30%未満の値は、胎児が不全状態にあり得ることを示す。
【0034】
下記の考察のために、「妊娠哺乳動物」または「母体」「母親」という用語は、胎児を妊娠している雌のヒトまたは動物(例えば、馬または牛)を指すのに使用されている。大部分の実施形態において、妊娠している個体は、ヒトであるが、これは、本発明が略いかなる妊娠哺乳動物に対しても使用され得るため、必ずしもそうである必要はない。妊娠哺乳動物が胎児の生物学上の母親(すなわち、胎児が成長する卵の源)であるか否かは、本発明とは関係がない。関係があるのは、女性が胎児を妊娠しているということである。
【0035】
典型的に、1分当たりの拍動で測定される絶対的な胎児心拍を見て、いかに胎児心拍が変化するか、またはいかに子宮収縮に反応するかについて観察することにより、陣痛及び分娩中に健康な胎児を評価する。1分当たり120~160回の拍動の範囲内の胎児心拍が、正常であり、胎児の不全状態を示していないと一般に認められている。しかしながら、胎児心拍の突然の変化、ならびに過度に高い(例えば、1分当たり180回の拍動)または過度に低い(例えば、1分当たり100または80回の拍動)胎児心拍は、特に、長引く困難な、または別様に複雑な陣痛及び分娩過程中にこうした変化が生じた場合に懸念の原因となる。
【0036】
例えば、子宮が産道から赤ん坊を追い出すように収縮すると、子宮の収縮が、血管、故に血流を胎盤へと、かつ胎盤から抑制し、血液を胎児へと、かつ胎児から供給する。制限された胎児への血流が、胎児心拍を遅くし得ると予測される。しかしながら、各子宮収縮後の150~120回の胎児心拍の低下は、胎児の不全状態の指示であり得、出産過程中の医師または他の臨床医による介入(例えば、帝王切開、薬剤投与等)を促し得る。
【0037】
しかしながら、いくつかの例において、全ての低下が、胎児の不全状態により引き起こされるわけではないため、この介入は、必ずしも必要ではない。実際に、胎児は、その心拍が変化する-が、医師が胎児心拍の変化が正常な状態であるか、または病的な状態であるかどうかを判定する助けとなるさらなる情報がない-場合であっても健康であることが多い。したがって、胎児ヘモグロビンの酸素飽和レベルの指示は、外科手術または他の治療的処置により陣痛及び分娩過程に介入するべきかどうかを判定するときに、健康な胎児の有用な追加の指示となるだろう。例えば、胎児ヘモグロビン酸素飽和レベルが一定であるという指示は、胎児心拍が低下または変化した場合であっても胎児が健康な状態であるとの医師への指示を提供している。反対に、心拍の減少に伴う子宮収縮後の胎児ヘモグロビン酸素飽和レベルの低下は、懸念の原因であり、帝王切開等の介入が必要であると医師に示すものであり得る。
【0038】
現在、多くの帝王切開は、医師が胎児の不全状態の兆候とみる胎児心拍の変動または低下にのみ起因して行われている。米国では、年間2百万件の帝王切開が行われており、米国のいくつかの地域では、全出産の略半数(50%)において帝王切開が行われている。いくつかの例において、こうした帝王切開は、胎児がまさに不全状態にあるわけではない場合があるため、必ずしも必要ではない場合がある。しかしながら、さらなる情報(胎児パルス酸素測定法を介して提供され得るような)なく、医師は、十分に注意せずに帝王切開及び他の介入を過剰処方し得る。
【0039】
本発明は、陣痛及び分娩過程中の胎児の健康についてのより完全な実態を提供しており、よって、帝王切開を行うという決定が胎児心拍の読み取りのみに基づいている場合に不要に行われる帝王切開の数を低減し得る。不要に行われる帝王切開の数を低減することで、妊婦及び新生児に対する医療の全体的な費用を低減し、かつ非常に重篤であり得る帝王切開から生じる合併症の数を低減すると予測される。例えば、1000件の帝王切開中の1件で、血栓、輸血の要求、または外科手術創傷感染等の主要な合併症が生じ、10,000件の帝王切開中の1件で、母親の死が生じるだろう。
【0040】
胎児ヘモグロビンは、成人ヘモグロビンの構造ヘモグロビンとはわずかに異なる構造を有する。より具体的には、成人ヘモグロビンは、2アルファ及び2ベータポリペプチド鎖を有し、胎児ヘモグロビンは、2アルファ及び2ガンマポリペプチド鎖を有する。さらに、胎児ヘモグロビンは、成人ヘモグロビンよりも強い酸素親和性を有する。これらの要因に起因して、胎児ヘモグロビンは、母体のヘモグロビンとは異なる光を吸収する。
【0041】
さらに、胎児ヘモグロビンは、酸素と結合されない場合の胎児ヘモグロビンの配座とは異なる、酸素に結合された場合の配座を有する。これらの異なるヘモグロビンの配座は、異なる量で光を吸収するため、異なる量で光を反射する。したがって、胎児静脈ヘモグロビンの酸素飽和レベルの観察は、胎児動脈ヘモグロビンの酸素飽和レベルより臨床的に有用であり得る。
【0042】
近赤外分光法(NIRS)を使用した非侵襲的子宮内胎児酸素測定法を行って、動脈及び/または静脈胎児ヘモグロビンの酸素飽和レベルを判定するためのシステム、装置、及び方法を、本明細書に記載している。次に、例えば、身体的または他の介護者が、判定された動脈及び/または静脈胎児ヘモグロビンの酸素飽和レベルを使用して、胎児の健康及び/または不全状態に関する情報を確認し得る。いくつかの実施形態において、本システム、装置、及び方法は、胎児酸素飽和レベルを観察するために妊娠哺乳動物の腹部上に配置され得る非侵襲的モニタを採用し得る。
【0043】
胎児ヘモグロビンは微細であるため、直接観察することができない。しかしながら、胎児ヘモグロビンからの近赤外光の反射を観察し得る。さらに、胎児ヘモグロビンにより反射された異なる光の波長に対する異なる強度も観察し得る。さらに、胎児デオキシヘモグロビンと比較した場合の胎児オキシヘモグロビンにより反射された光に対する異なる強度も観察し得る。この観察された反射光の処理は、胎児酸素飽和レベルの判定を生じさせ得る。
【0044】
図2Aは、胎児酸素レベルを判定するための、いくつかの例において、胎児ヘモグロビン酸素飽和レベルを検出及び/または判定するための、例示的なシステム100を提供している。システム100の構成要素は、有線または無線通信回線を介して共に連結され得る。いくつかの例において、システム100の1つ以上の構成要素の無線通信は、例えば、下に記載されているようなコンピュータまたは個人電子装置と比較的短距離(例えば、BLUETOOTH(登録商標)近距離無線通信(NFC)、無線自動識別(RFID)、及びWi-Fi)にわたって通信するように設計された短距離無線通信プロトコルを使用することを可能にし得る。いくつかの実施形態において、システム100の1つ以上の構成要素は、1つ以上の短距離通信プロトコル(例えば、近距離無線通信(NFC)、BLUETOOTH(登録商標)、無線自動識別(RFID)、及びWi-Fi)を介して通信するように構成された1つ以上の装置を含み得る。
【0045】
システム100は、母体及び/または胎児の健康の種々の態様を観察し、かつ妊娠哺乳動物と接触するように設計された多数の独立したセンサ/プローブを含む。これらのプローブ/センサは、胎児ヘモグロビンプローブ115、NIRS成人ヘモグロビンプローブ125、パルス酸素測定プローブ130、ならびにドップラー及び/または超音波プローブ135である。いくつかの実施形態において、システム100はまた、妊娠哺乳動物及び/または胎児心拍を判定するのに使用され得る心電図記録法(EKGもしくはECG)機械(図示せず)、ならびに/または胎児心拍を判定するのに使用され得る子宮内パルス酸素測定プローブを含み得る。ドップラー及び/または超音波プローブ135は、妊娠哺乳動物の腹部上に配置されるように構成され得、米国ドル銀貨に近似する大きさ及び形状からなり得る。パルス酸素測定プローブ130は、妊娠哺乳動物の酸素飽和を判定するために妊娠哺乳動物の手及び/または指上に配置された従来型のパルス酸素測定プローブであり得る。NIRS成人ヘモグロビンプローブ125は、例えば、妊娠哺乳動物の第2指上に配置され得、例えば、近赤外分光法を使用して、成人オキシヘモグロビンと成人デオキシヘモグロビンとの比率を計算するように構成され得る。NIRS成人ヘモグロビンプローブ125はまた、妊娠哺乳動物の心拍を判定するのに使用され得る。
【0046】
任意に、システム100は、妊娠哺乳動物の子宮収縮の強度及び/または時機を測定するように構成された子宮収縮測定装置140を含み得る。いくつかの実施形態において、子宮収縮は、子宮収縮測定装置140により圧力の関数(例えば、mmHgで測定される)として経時的に測定され得るだろう。いくつかの例において、子宮収縮測定装置140は、子宮活動を測定するために腹部外形の変化を検出し、このように、子宮収縮の周波数及び持続時間を観察する圧力検知領域を含む器具である陣痛トランスデューサであり、かつ/またはこれを含む。
【0047】
別の実施形態において、子宮収縮測定装置140は、妊娠哺乳動物を通して電流を通過させ、子宮が収縮するときの電流の変化を測定するように構成され得る。追加的または代替的に、子宮収縮はまた、筋肉収縮である子宮収縮が収縮状態と弛緩状態との間の子宮筋の振動であるため、近赤外分光法を介して測定され得る。これらの段階の両方の間の子宮筋の酸素消費量は異なり、これらの差は、NIRSを使用して検出可能であり得る。
【0048】
NIRS成人ヘモグロビンプローブ125、パルス酸素測定プローブ130、ドップラー及び/または超音波プローブ135、及び/または子宮収縮測定装置140による測定値は、コンピュータ150と通信し、かつ表示装置155上に表示するために受信機145に伝達され得る。いくつかの例において、NIRS成人ヘモグロビンプローブ125、パルス酸素測定プローブ130、ドップラー及び/または超音波プローブ135、子宮収縮測定装置140のうちの1つ以上は、例えば、操作者または医療的治療提供者に測定値を提供する専用の表示を含み得る。
【0049】
下に考察されるように、NIRS成人ヘモグロビンプローブ125、パルス酸素測定プローブ130、ドップラー及び/または超音波プローブ135、子宮収縮測定装置140により提供された測定値を、胎児ヘモグロビンプローブ115と併せて使用して、母体パルス信号及び/または母体心拍から胎児パルス信号及び/または胎児心拍を隔離し得る。
【0050】
これらのプローブの全てを全ての例で使用し得るわけではないことに留意することが重要である。例えば、妊娠哺乳動物が、病院または治療施設以外の環境で(例えば、自宅または仕事場で)胎児ヘモグロビンプローブ115を使用しているとき、システム100のプローブのうちのいくつか(例えば、NIRS成人ヘモグロビンプローブ125、パルス酸素測定プローブ130、ドップラー及び/または超音波プローブ135、子宮収縮測定装置140)は、使用されない場合がある。
【0051】
受信機145は、限定されないが、胎児ヘモグロビンプローブ115、NIRS成人ヘモグロビンプローブ125、パルス酸素測定プローブ130、ドップラー及び/または超音波プローブ135、及び/または子宮収縮測定装置140を含むシステム100の1つ以上の構成要素から信号及び/またはデータを受信するように構成され得る。システムの他の構成要素を含む受信機145の通信は、有線または無線通信を使用して行われ得る。
【0052】
いくつかの例において、受信機145は、例えば、コンピュータ150と互換性がある信号を生成し(例えば、光学信号を電気信号へと変換する)、SNRを改善し、受信された信号を増幅させる等のように、受信された信号を処理または前処理するように構成され得る。いくつかの例において、受信機145は、コンピュータ150内に存在し得、かつ/またはその構成要素であり得る。また、受信機145は、単一の受信機として
図2Aに図示されているが、これは、任意の数の適切な受信機(例えば、2、3、4、5)を使用してシステム100の構成要素から信号を受信し得、かつそれらをコンピュータ150に伝達し得るときには、必ずしもそうではない。いくつかの実施形態において、コンピュータ150は、例えば、信号対雑音比を改善するように、受信された反射信号を増幅させ得るか、または別様に条件付け得る。
【0053】
受信機145は、受信、前処理、及び/または処理された信号をコンピュータ150に伝達し得る。コンピュータ150は、下により詳細に考察されるように、受信された信号を処理するように作用し得、かつ表示装置155への結果の提供を促進し得る。例示的なコンピュータ150は、デスクトップ及びラップトップコンピュータ、サーバ、タブレットコンピュータ、個人電子装置、携帯装置(例えば、スマートフォン)等を含む。例示的な表示装置155は、コンピュータモニタ、タブレットコンピュータ装置、及びシステム100の構成要素のうちの1つ以上により提供された表示である。いくつかの例において、表示装置155は、受信機145及び/またはコンピュータ150内に存在し得る。
【0054】
胎児ヘモグロビンプローブ115を使用して、胎児に到達するように妊娠哺乳動物の腹部内にNIR光を配向し得、かつ胎児から反射された光を検出し得る。NIR光は、胎児ヘモグロビンプローブ115により、例えば、連続的及び/またはパルス状に放射され得る。次に、この反射光は、胎児ヘモグロビン酸素飽和レベルが判定され得るように、種々の波長で胎児オキシヘモグロビン及び/またはデオキシヘモグロビンにより反射及び/または吸収される光の量を判定するために処理され得る。この処理は、下により詳細に考察されるだろう。いくつかの実施形態において、胎児ヘモグロビンプローブ115は、部分的もしくは全体的に、例えば、妊娠哺乳動物の腹部上で、いくつかの実施形態において、恥骨上(ビキニ)領域で、妊娠哺乳動物の皮膚に固着された1回の使用もしくは使い捨てプローブとして構成され得る。
【0055】
胎児ヘモグロビンプローブ115の例示的な寸法は、限定されないが、長さ2~16インチ及び幅0.5~8インチを含む。いくつかの例において、胎児ヘモグロビンプローブ115は、例えば、種々の臨床的必要性、胎児の大きさ、胎児位置、妊娠哺乳動物の大きさ、及び/または妊娠哺乳動物の腹部の大きさに合わせるように、多様な大きさになり得る。
【0056】
胎児ヘモグロビンプローブ115は、
図2B~2Eに関して下により詳細に記載されるような1つ以上の構成要素を含み得、そのうち、
図2B~2D(すなわち、115A、115B、115C、及び115D)の胎児ヘモグロビンプローブは、経腹腔的な胎児ヘモグロビンプローブである。本明細書に記載されている胎児ヘモグロビンプローブ115は、胎児ヘモグロビンプローブ115の1つ以上の構成要素を収容するように構成された収容器102を含み得る。本明細書に開示されている実施形態は、単一の収容器102内に含有されている胎児ヘモグロビンプローブ115の構成要素の全てを有するが、これは、例えば、胎児ヘモグロビンプローブ115の2つ以上の構成要素が別個の収容器102内に収容され得るときには必ずしもそうではない。収容器102は、例えば、正方形、円形、もしくは長方形の形状であり得、いくつかの例において、例えば、妊娠哺乳動物の腹部のトポロジー、妊娠哺乳動物及び/またはその胎児の皮膚色素沈着のレベル等に応じて調節可能であるように設計され得る。
【0057】
いくつかの実施形態において、胎児ヘモグロビンプローブ115及び/または収容器102は、使い捨てであり得、他の実施形態において、胎児ヘモグロビンプローブ115(収容器102を含む、かつ/または収容器102)は、複数回使用する(すなわち、再使用可能である)ように構成され得る。いくつかの実施形態において、(例えば、胎児ヘモグロビンプローブが使い捨てであるように構成されている場合)、収容器102/胎児ヘモグロビンプローブ115を妊娠哺乳動物の腹部の皮膚に直接適用し、かつステッカーと同様の方法で所定位置に保持するように構成された妊娠哺乳動物の腹部の皮膚に塗布されるように設計された接着剤(例えば、糊、テープ等)を含み得る。いくつかの例において、胎児ヘモグロビンプローブ115は、収容器102により提供された機構(例えば、スナップ、ループ等)(図示せず)と協働するテープまたはストラップを介して妊娠哺乳動物の皮膚に適用され得る。いくつかの状況において、収容器102は、除去しないように妊娠哺乳動物の皮膚に取り付けられ得/これに隣接し得、他の例において、例えば、より良好な測定/読み取りを達成するために、除去可能であり得る。いくつかの事例において、収容器102及び/またはその一部分は、妊娠哺乳動物の腹部に接触するように適合されない場合がある。
【0058】
いくつかの実施形態において、収容器102及び/またはその一部分は、胎児ヘモグロビンプローブ115が、妊娠哺乳動物の皮膚に適用され得るように、収容器102の再使用可能及び/または使い捨てスリーブ内に配置され得るように、胎児ヘモグロビンプローブ115にわたって嵌合する再使用可能及び/または使い捨てスリーブ(図示せず)と協働し得る。
【0059】
胎児ヘモグロビンプローブ115は、1つ以上の波長の光を妊娠哺乳動物の腹部内に配向するか、または照らし、かつ妊娠哺乳動物の組織及び流体ならびに胎児の組織及び流体からの光の一部分の反射に対応する信号を受信するように適合され得る。
【0060】
任意に、胎児ヘモグロビンプローブ115は、放射された光を特定の方向に配向することを可能にする1つ以上の機構を含み得る。そのような機構は、限定されないが、透明もしくは略透明であり得る楔もしくは接着材料を含む。例えば、胎児ヘモグロビンプローブ115は、妊娠哺乳動物の皮膚の表面に対して特定の方向に光を配向し、かつ/または最適量の反射光を受信するように検出器もしくは送受信機を位置付けるように動作する片側上に位置付けられた楔を含み得る。
【0061】
いくつかの実施形態において、胎児ヘモグロビンプローブ115は、例えば、胎児の健康を観察するために、陣痛及び分娩過程と必ずしも一致する必要はない長時間(例えば、数日、数週等)の間、妊娠哺乳動物が着用するように適合され得る。いくつかの実施形態において、胎児ヘモグロビンプローブ115の1つ以上の構成要素は、胎児ヘモグロビンプローブ115の外側に位置付けられ得、かつ例えば、1つ以上の光ファイバーまたはイーサネットケーブル(イーサネットは登録商標)(複数可)を介して光学的にこれに接続され得る。
【0062】
胎児ヘモグロビンプローブ115は、任意の適切な大きさからなり得、いくつかの状況において、適切なサイズ決めシステム(例えば、ウエストサイズ及び/または小、中、大等)を使用して妊娠哺乳動物の大きさに合わせるようにサイズ決めされ得る。胎児ヘモグロビンプローブ115に対する例示的な長さは、長さ4cm~40cm及び幅2cm~10cmを含む。いくつかの状況において、胎児ヘモグロビンプローブ115、またはその構成要素の大きさ及び/または構成は、妊娠哺乳動物及び/または胎児の皮膚の色素沈着に応答可能であり得る。
【0063】
胎児ヘモグロビンプローブ115の構成要素は、単一のプローブ内に含まれるように本明細書に記載されているが、それは、胎児ヘモグロビンプローブ115の構成要素が妊娠哺乳動物に適用された2つ以上の異なる物体/装置内に存在し得るときには必ずしもそうではないことが理解されるだろう。いくつかの例において、1つ超の胎児ヘモグロビンプローブ115を使用して、例えば、胎児酸素飽和測定の正確性を改善し得る。例えば、第1の胎児ヘモグロビンプローブ115(またはその構成要素)は、妊娠哺乳動物の腹部の左側上に配置され得、第2の胎児ヘモグロビンプローブ115(またはその構成要素)は、妊娠哺乳動物の腹部の右側上に配置され得る。
【0064】
いくつかの実施形態において、胎児ヘモグロビンプローブ115及び/または胎児ヘモグロビンプローブ115を着用している妊娠哺乳動物は、例えば、電気絶縁装置120によりシステム100の1つ以上の構成要素から電気的に絶縁され得る。例示的な電気絶縁装置120は、回路遮断器、地絡スイッチ、及びヒューズを含む。
【0065】
次に、経腹腔的に使用されることを企図した、それぞれ、115A、115B、115C、及び115Dとしてラベルされた例示的な胎児ヘモグロビンプローブ115の異なる実施形態を示している
図2B~2Eを参照されたい。本明細書で製造された胎児ヘモグロビンプローブ115の参照はまた、胎児ヘモグロビンプローブ115A、胎児ヘモグロビンプローブ115B、胎児ヘモグロビンプローブ115C、及び胎児ヘモグロビンプローブ115Dを含む胎児ヘモグロビンプローブの他の実施形態を参照し得、かつこれらを含み得ることが理解されるだろう。
図2Bは、電力供給装置160、光源(複数可)105、送受信機107、及び検出器114を含む例示的な胎児ヘモグロビンプローブ115Aを図示している。
【0066】
例示的な電力供給160は、内蔵電池及び/または外部電源への電気接続を含む。検出器114は、妊娠哺乳動物及び/または胎児から反射された光信号を受信し、かつこの光信号を電子信号へと変換して、送受信機107に伝達され得るように適合され得る。胎児ヘモグロビンプローブ115のいくつかの実施形態は、例えば、検出器114が例えば、コンピュータ150と直接通信するときにあり得るように、送受信機107を含まない場合がある。例示的な検出器114は、限定されないが、カメラ、従来型の光電子増倍管(PMT)、シリコンPMT、アバランシェフォトダイオード、及びシリコンフォトダイオードを含む。いくつかの実施形態において、検出器は、比較的低費用(例えば、$50以下)、低電圧要求(例えば、100ボルト未満)、及び非ガラス(例えば、プラスチック)形成要因を有するだろう。しかしながら、これらの代替物は、PMTに対する感受性が同じではない。他の実施形態において、(例えば、非接触パルス酸素測定法)超高感度カメラを配備して、妊娠哺乳動物の腹部により反射された光を受信し得る。
【0067】
光源(複数可)105は、NIRを含む種々の波長で、光を妊娠哺乳動物の腹部へと伝達し得る。典型的に、光源(複数可)105により放射された光は、妊娠哺乳動物の腹部への進入時の光の拡散を低減するように、狭ビームとして集中または放射されるだろう。光源(複数可)105は、例えば、LED及び/またはレーザーであり得る。いくつかの実施形態において、光源(複数可)105は、
図2C~2Eに関して下に考察されるように、2つ以上の光源(複数可)105のアレイであり得る。例示的な光源105は、光源105により放射された熱を制限するように、比較的小さい形成要因及び高性能を有するものである。一実施形態において、光源105は、850nmで光を放射するように構成されており、その例が、長さ7.080mm及び幅6.080mmを有するオスラムオプトセミコンダクターズ社(型番SFH4783)により製造された850nmの光を放射するDragon Dome PackageのLEDである。別の例示的な光源105は、高さ1.58mm及び長さ3.1mmを有するオスラムオプトセミコンダクターズ社により製造されたGF CSHPM1.24-3S4S-1等の730nmの光を放射するように構成されたLEDである。光源(複数可)の例示的な流出比は、限定されないが、175~260mWの光束/放射束、300~550mWの総放射束、及び0.6W~3.5Wの電力定格を含む。
【0068】
いくつかの実施形態において、1つ以上の光源105は、胎児ヘモグロビンプローブ115内に存在しない別の源(例えば、レーザーまたは波長可変電球もしくはLED)により生成された光ファイバーケーブル伝送光であり得る。いくつかの例において、光源(複数可)105は、波長可変であるか、または別様に、ユーザ構成可能であり得、他の例において、光源のうちの1つ以上は、事前定義範囲の波長内で光を放射するように構成され得る。追加的または代替的に、1つ以上のフィルタ(図示せず)及び/または偏光子は、1つ以上の好ましい波長からなるように、光源(複数可)105により放射された光をフィルタ処理/偏光させ得る。これらのフィルタ/偏光子はまた、波長可変またはユーザ構成可能であり得る。
【0069】
いくつかの実施形態において、胎児ヘモグロビンプローブ115は、光源105を介して複数の波長(例えば、7、6、5、4、3、2)のNIR光を配向し得る。好ましい実施形態において、5つの異なる波長が使用されており、第1の波長を使用して成人オキシヘモグロビンの酸素飽和レベルを測定し、第2の波長を使用して成人デオキシヘモグロビンの酸素飽和レベルを測定し、第3の波長を使用して胎児オキシヘモグロビンの酸素飽和レベルを測定し、第4の波長を使用して胎児デオキシヘモグロビンの酸素飽和レベルを測定する。第5の波長を使用して、妊娠哺乳動物及び/または胎児ヘモグロビン以外の物質により生じ得、かつ/または変形され得る反射信号の一部分の検出を助けることにより信号を除去/改善し得る。例えば、メラニン及びビリルビンは、赤外光を吸収することが知られている。したがって、胎児及び/または妊娠哺乳動物がより黒い色素を有するか、またはいずれかもしくは両方が黄疸にかかった例において、関連するメラニン及び/またはビリルビンは、胎児ヘモグロビンプローブ115の読み取りを変形させ得、胎児及び/または妊娠哺乳動物ヘモグロビンの酸素飽和の不正確な計算を生じ得る。第5の波長は、受信された信号から除去され得、かつ正確な酸素飽和レベルが判定され得るように、これらの変形に対して試験する機能を果たし得る。
【0070】
いくつかの実施形態において、検出器114は、胎児心拍としての心臓血管圧力の変化により生じた胎児の肌色の小さい変化を捕捉するように適合された感度カメラであり得る。これらの実施形態において、胎児ヘモグロビンプローブ115は、本実施形態を使用して、いわゆる非接触パルス酸素測定法を行い得るときに、妊娠哺乳動物の腹部と接触するか、または接触しない場合がある。これらの実施形態において、胎児ヘモグロビンプローブ115の光源(複数可)105は、検出器114が妊娠哺乳動物の腹部及び胎児により反射された光を受信することができるように、妊娠哺乳動物の腹部に向かって配向された光(例えば、可視スペクトル、近赤外等で)を提供するように適合され得る。本実施形態において検出器114により捕捉された反射光は、例えば、本明細書に記載されているプロセスのうちの1つ以上による胎児ヘモグロビン酸素飽和の測定値に画像を変換するように、送受信機107を介して処理のためにコンピュータ150に伝達され得る。
【0071】
本実施形態において、調節機構122は、例えば、光源(複数可)105を集中させ、光源(複数可)105により放射された光の周波数を変更し、光源(複数可)105及び/または検出器114が妊娠哺乳動物の腹部の表面から離れるように位置付けられた距離を変更し、かつ/または放射された光の入射場所を変更するように適合され得る。
【0072】
任意に、胎児ヘモグロビンプローブ115はまた、1つ以上の偏光子(図示せず)を含み得る。偏光子は、胎児ヘモグロビンプローブ115による放射前に光の波長のうちの1つ超を偏光させるように作用し得る。光を偏光させ、かつ光に特定の配向を与えることは、例えば、信号の識別及び/または所望の信号の雑音との区別を助け、それにより、受信された信号の信号対雑音比(SNR)を改善する機能を果たし得る。
【0073】
送受信機107は、検出器114から電子信号(検出器114により検出された反射された光信号に対応する)に、かつ例えば、光ファイバーケーブル(光信号の事例において)及び/または無線もしくは有線信号を介して(例えば、電気信号の事例におけるイーサネットポート(イーサネットは登録商標)もしくは配線接続を介して)、電子信号を胎児ヘモグロビンプローブ115の外部の機器(例えば、受信機145及び/またはコンピュータ150)に伝達するように構成され得る。いくつかの例において、送受信機107は、個体送受信機であり得る。いくつかの実施形態において、送受信機107は、検出器114内に存在し得、かつ/またはその一部であり得、妊娠哺乳動物及び胎児から反射された光及び/または光子を検出し、かつ検出された光/光子を電気信号へと変換するように構成され得る。
【0074】
図2Cは、電力供給装置160、光源(複数可)105、送受信機107、検出器114、調節機構122、温度プローブ165、及び制御装置112を含む、別の例示的な胎児ヘモグロビンプローブ115Bを示している。
【0075】
温度プローブ165は、妊娠哺乳動物に対する温度測定値を得るための任意の適切な機構であり得る。調節機構122は、光源(複数可)105により放射された光の1つ以上の特性、及び/または妊娠哺乳動物の腹部内に配向された光の方向/入射角を調節するように適合された1つ以上の機構であり得る。例示的な調節機構は、限定されないが、光源(複数可)105により放射された光の周波数/波長、及び/または光の配向を調節するのに使用され得るフィルタ及び偏光子を含む。他の例示的な調節機構122は、例えば、妊娠哺乳動物の腹部内に配向された光を集中または拡散させるように適合されたレンズを含む。いくつかの例において、レンズは、妊娠哺乳動物の腹部に配向された光に対する入射角を変更し得る。いくつかの実施形態において、調節機構122はまた、光源105を移動させ、かつ/またはレンズ、フィルタ、もしくは偏光子を動作させることが可能である機構を含み得る。いくつかの実施形態において、調節機構122は、電気に対して感受性がある材料を含み得、かつ通電時に透明及び/または部分的に不透明であることが可能であり得る。調節機構(複数可)122は、調節機構122の動作を(全体的または部分的に)制御し得る制御装置112からの命令を受信し得ることが多い。
【0076】
任意に、胎児ヘモグロビンプローブ115はまた、1つ以上の1つ以上の超音波検出器170を含み得る。超音波検出器170は、光もしくは無線周波数パルスを光源(複数可)105から妊娠哺乳動物305の腹部へと配向する方法により、オプト音響/光音響及び/または熱音響撮像を行うように構成された胎児ヘモグロビンプローブ115の実施形態において採用され得る。入射光の一部分は、胎児及び妊娠哺乳動物により吸収され得、かつ熱へと変換され得、胎児及び妊娠哺乳動物からの超音波放射を引き起こす過渡的熱弾性膨張を生じさせる。この超音波放射を超音波検出器170により検出及び分析して、胎児及び/または妊娠哺乳動物の血液に対する酸素飽和のレベルを判定し得る。いくつかの例において、オプト音響/光音響及び/または熱音響撮像を行うための胎児ヘモグロビンプローブ115の配備は、レーザー及び/または無線周波数パルスエミッター(図示せず)の使用を必要とし得る。
【0077】
制御装置112は、胎児ヘモグロビンプローブ115の1つ以上の構成要素(例えば、調節機構122、光源(複数可)105、電力供給装置160、温度プローブ165、検出器114、及び/または送受信機107)を制御するように適合され得る。いくつかの状況において、制御装置112は、胎児ヘモグロビンプローブ115の1つ超の構成要素(例えば、調節機構122、光源(複数可)105、電力供給装置160、温度プローブ165、検出器114、及び/または送受信機107)から測定値/情報を受信するように適合されたプロセッサを含み得る。プロセッサは、受信された測定値を処理し、それらを用いて決定を行い、かつこうした決定及び/または測定値に基づく命令を胎児ヘモグロビンプローブ115の1つ以上の構成要素に伝達するようにさらに適合され得る。例えば、温度プローブ165は、妊娠哺乳動物の体温を測定するように作用し得、かつこれらの測定値を制御装置112及び/または送受信機に提供し得る。いくつかの実施形態において、これらの測定値を使用して、妊娠哺乳動物の温度が閾値測定値を超えたかどうかを判定し得、いくつかの例において、光源(複数可)105及び/または胎児ヘモグロビンプローブ115が妊娠哺乳動物に過度に多くの熱/エネルギーを送達していることを示し得る。そのような判定に達すると、制御装置112は、光源(複数可)105及び/または調節機構122に命令を提供して、これを補正し得る。例示的な命令は、限定されないが、入射光を再配向し、遮断し、周波数を調節し、光源(複数可)105うちの1つ以上の強度を調節するための方向を含む。
【0078】
いくつかの例において、制御装置112により提供された命令は、例えば、反射信号の強度(strength)/強度(intensity)、反射信号内に受信された光の周波数/波長に関する、例えば、検出器114及び/または送受信機107からのフィードバックに基づき得る。例えば、制御装置112、送受信機107、及び/または検出器114が、妊娠哺乳動物の腹部から反射された受信された信号が不十分な強度(strength)/強度(intensity)を有すると判定した場合、次に、制御装置112は、調節機構112及び/または光源(複数可)105に命令を提供して、妊娠哺乳動物の腹部上の光入射の強度及び/または波長/周波数を増加し得る。
【0079】
別の例において、温度プローブ165は、妊娠哺乳動物の体温を測定するように作用し得、かつこれらの測定値を制御装置112及び/または送受信機に提供し得る。いくつかの実施形態において、これらの測定値を使用して、妊娠哺乳動物の温度が閾値測定値を超えたかどうかを判定し得、いくつかの例において、光源(複数可)105及び/または胎児ヘモグロビンプローブ115が妊娠哺乳動物に過度に多くの熱/エネルギーを送達していることを示し得る。そのような判定に達すると、制御装置112は、光源(複数可)105及び/または調節機構122に命令を提供して、これを補正し得る。例示的な命令は、限定されないが、入射光を再配向し、遮断し、周波数を調節し、かつ/または光源(複数可)105のうちの1つ以上の強度を調節するための方向を含む。
【0080】
いくつかの例において、光源(複数可)105は、分娩過程中の妊娠哺乳動物を助ける例えば、医師もしくは臨床医により、波長可変または別様に、ユーザ構成可能であり得る。例えば、光源105は、複数の周波数/波長及び/または強度で光を放射するように構成され得、かつ光源105は、例えば、光源105の直接的な身体操作(例えば、ノブ上のボタンを介して)、または所望の周波数/波長及び/もしくは強度に関する命令の、例えば、コンピュータ150及び/もしくは制御装置112内への進入を介して調整され得る。
【0081】
1つ以上の光源(複数可)105により放射された光の周波数/波長及び/または強度の調整は、多様な状況(例えば、胎児位置、胎児の大きさ、妊娠哺乳動物及び/または胎児の皮膚内のメラニンの量、妊娠哺乳動物の大きさ及び/または形状等)における十分な強度もしくは明確さの帰還信号を達成する際に有用であり得る。例えば、比較的より高い強度の光は、妊娠哺乳動物が、胎児(すなわち、帰還信号)から反射された信号の強度を抑制するような方法で位置付けられた比較的高い肥満度指数(BMI)もしくは体脂肪を有する場合に所望され得る。別の例において、胎児は、妊娠哺乳動物の内臓器官に対して(すなわち、腹の皮膚から離れるように)位置付けられ得、かつ比較的より高い強度及び/または異なる波長の光は、帰還信号が例えば、検出器114により検出され得るように、光が十分に強い信号により胎児に達するように所望され得る。
【0082】
胎児ヘモグロビンプローブ115が1つ超の光源105を含むとき、光源105は、
図2D及び2Eに関して下に考察されるようなアレイ170等の帰還信号の強度を最大化するように適合されたアレイ内に配設され得る。アレイ170は、任意の適切な数の光源105を含み得る。いくつかの例において、アレイ170は、第1の列の第1の種類の光源105A、105B~105Nと、第2の列の第2の種類の光源105AA、105AB~105ANとを含み得る。異なる種類の光源は、例えば、特定の周波数/波長及び/または強度の光を放射するように構成され得る。例えば、光源105A、105B~105Nは、赤色スペクトル及び光源105AA、105AB~105ANにおける波長を有する光を放射するように構成され得、かつ赤外または近赤外スペクトルにおける波長を有する光を放射するように構成され得る。アレイ170は、2つの列を有しているが、任意の数の列(例えば、3、4、5、6、7、8等)は、アレイ170内に含まれ得ることが理解されるだろう。
【0083】
比較的大きい長さ(例えば、10cm~40cm)を有する胎児ヘモグロビンプローブ115の実施形態は、例えば、10、15、20、25、30、35、40、45、または50個の光源105を各々含む複数の光源列の長い胎児ヘモグロビンプローブ115を有するアレイ170を有し得る。胎児ヘモグロビンプローブ115はまた、第1の検出器114A及び第2の検出器114Bを含む、
図2Eに示されているような1つ超の検出器114を含み得る。いくつかの実施形態において、第1の検出器114Aは、第2の検出器114Bと同じであり得、他の実施形態において、それらは、異なり得る。例えば、第1の検出器114Aは、反射光に対する第1の範囲の周波数に対して感受性があり得、第2の検出器114Bは、反射光に対する第2の範囲の周波数に対して感受性があり得る。追加的または代替的に、第1の検出器114Aは、第2の検出器114Bとは異なる大きさであり得る。本明細書に開示されている胎児ヘモグロビンプローブ115のいずれも、例えば、アレイ170内に含まれた1つ以上の光源(複数可)105に対して反射された光を配向するように適合された複数の検出器を含み得る。
【0084】
図2C~2Eに別個の構成要素として示されているが、調節機構122は、部分的及び/または全体的に、1つ以上の光源105内に、かつ/またはこれに隣接して位置付けられ得ることを、当業者であれば理解するだろう。
【0085】
システム100の構成要素は、任意の許容可能な方法で妊娠哺乳動物に適用され得る。例えば、NIRS成人ヘモグロビンプローブ125は、妊娠哺乳動物305の第2の指上に配置され得、パルス酸素測定プローブ130は、妊娠哺乳動物305の親指上に配置され得、ドップラー及び/または超音波プローブ135は、妊娠哺乳動物の腹部上に配置され得る。
【0086】
いくつかの実装において、子宮収縮測定装置140はまた、妊娠哺乳動物の腹部上に配置され得る。他の実装において、子宮収縮測定装置140は、胎児ヘモグロビン装置115内に具現化され得る。いくつかの事例において、子宮収縮測定装置140は、圧力単位(mmHg及び/またはkPa)での子宮筋の圧力の変化を検出するように構成された圧力センサであり得る。
【0087】
いくつかの実施形態において、1つ以上の光源(複数可)105及び検出器(複数可)114は、別個の子宮収縮測定装置140の必要なく、オプト電子筋肉収縮センサとして作用し得る。これらの実施形態において、妊娠哺乳動物の子宮から反射された光は、子宮が収縮状態(より少ない散乱)とは対照的な弛緩状態(より多くの散乱)にあるときに、自然に変化し得る。光の散乱におけるこうした変化は、1つ以上の検出器(複数可)114により検出され、かつ例えば、コンピュータ150により処理されて、子宮筋の状態の変化を判定し得る。いくつかの実施形態において、1つ以上の光源(複数可)105は、子宮収縮の測定値が専用のビーム/光の周波数を有するように、特定の周波数/波長の光を配向し得る。
【0088】
好ましくは、胎児ヘモグロビンプローブ115は、妊娠哺乳動物305のビキニ/恥骨上領域に、またはその近くに配置される。この領域は、典型的に、陰部の生え際の直ぐ上にある。この位置は、胎児の頭が頸部の産道内に係合し、よって、妊娠哺乳動物の腹部内のかなり予測可能な場所にあるため、例えば、妊娠の進展の9か月または36週後の妊娠の後期段階において有益である。さらに、胎児が頸部の産道内に位置しているとき、妊娠哺乳動物と胎児との間の距離は最小であり、よって、妊娠哺乳動物の腹部を通過するNIR光は、胎児と接触し、かつ胎児ヘモグロビンプローブ115に反射し返される可能性がより高い。
【0089】
図3A、3B、及び3Cは、胎児ヘモグロビンプローブ115からの光が妊娠哺乳動物305の腹部内に配向され得、かつ反射光が胎児ヘモグロビンプローブ115の1つ以上の検出器114により検出され得る方法についての図を提供している。より具体的には、
図3Aは、正面から見たときの妊娠哺乳動物305の中心を通して(すなわち、顔の中心を通して、胸部間、等)延在している中線に沿って分割された、胎児ヘモグロビンプローブ115及び妊娠哺乳動物305の断面図を提供している。
図3Aは、妊娠哺乳動物305の子宮320内に存在する羊水及び他の組織315により囲まれた胎児310の近似を図示している。胎児ヘモグロビンプローブ115は、妊娠哺乳動物305のビキニ/恥骨上領域の、またはその近くの妊娠哺乳動物305の下腹部上に位置付けられるように
図2Cに示されている。
【0090】
図3Aに示されているように、1つ以上の光源(複数可)105から放射された光ビーム325(本明細書で「入射ビーム」との称される)は、妊娠哺乳動物305の腹部上に入射し、かつ胎児310に向かって配向される。光ビーム325は、任意の波長/周波数または波長/周波数の組み合わせであり得る。一実施形態において、入射ビーム325は、赤色スペクトル及び近赤外スペクトルである光を含み得る。
【0091】
いくつかの実施形態において、入射ビーム325は、例えば単一の光源105(同じ周波数の光の2つのビーム及び/または2つの異なる周波数の光ビームを放射する)または2つの異なる光源105(例えば、光源当たり1つの周波数)から放射され得る光の2つ以上のビームを含み得る。2つ以上のビームが入射ビーム325内に含まれるとき、それらは、例えば、ビームの光の周波数の差、妊娠哺乳動物305の状態(例えば、皮膚の色素沈着、肥満度指数等)、及び/または胎児の状態(例えば、大きさ、位置、子宮内の場所、皮膚の色素沈着等)に合わせるように、わずかに異なる方向に配向され得ることもある。
【0092】
入射ビーム325の一部分は、反射されたビーム330として胎児310、羊水及び他の組織315、及び子宮320から反射され得、かつ胎児ヘモグロビンプローブ115により提供された1つ以上の検出器114により受信され得る。反射されたビーム330は、1つのビームとして示されているが、任意の数のビームまたは個々の光子であり得る。入射ビーム325の光の一部は、例えば、散乱及び/または吸収に起因して失われ/検出されない場合があるため、入射ビーム325の光の全てが、反射されたビーム330内に含まれるわけではないと予測される。
【0093】
図3Bは、調節装置335が、妊娠哺乳動物305の腹部の皮膚と胎児ヘモグロビンプローブ115の一部分との間に位置付けられた状態の胎児ヘモグロビンプローブ115の画像を提供している。
図3Bの実施形態において、調節装置335は、三角形の形状であり、かつ妊娠哺乳動物の腹部に対する胎児ヘモグロビンプローブ115の配向/位置(及び光源(複数可)105及び/または検出器(複数可)114の対向する配向/位置)を変更する楔として作用する。いくつかの事例において、調節装置335は、入射ビーム325の入射角及び/または1つ以上の検出器114の配向を変更し得る。いくつかの実施形態において、調節装置335は、妊娠哺乳動物305の腹部内及び外への光の通過を可能にし得るように透明であり得る。他の実施形態において、調節装置335は、例えば、入射ビーム325及び/または反射されたビーム330の周波数を変更するように、半透明もしくは不透明であり得る。
【0094】
調節装置335は、十分な強度の反射されたビームを受信することを困難にする妊娠哺乳動物305の腹部の生理的状態を調節するように構成され得る。例えば、腹部の周りの脂肪含量が高い妊娠哺乳動物305に対して、妊娠哺乳動物305の皮膚に胎児ヘモグロビンプローブ115を直接適用することは、入射ビーム325を正しい方向に配向せず、かつ/または反射されたビーム330の検出を可能にしない場合がある。追加的または代替的に、調節装置335は、子宮320内の胎児310の大きさ及び/または配置を含む胎児310の生理的状態を調節するように構成され得る。例えば、調節装置335は、入射ビーム325を胎児310の頭に向かって配向するように配備され得る。
【0095】
いくつかの実施形態において、2つ以上の調節機構335を使用し得る。調節装置335は、限定されないが、三角形、円形、もしくは長方形を含む任意の適切な形状及び/または構成からなり得、かつ胎児ヘモグロビンプローブ115の構成要素のうちのいくつかまたは全ての位置付けもしくは動作を調節するように構成され得る。いくつかの例において、調節装置335は、胎児ヘモグロビンプローブ115を着用している間の妊娠哺乳動物305の快適さを改善するように設計され得、そのために、妊娠哺乳動物の腹部の外形に適合するように設計された軟性及び/または可撓性材料(例えば、発泡体)を含むように構成され得る。これらの例において、調節装置335は、その1つ以上の構成要素を覆い隠さない方法で、胎児ヘモグロビンプローブ115と係合するように設計されるだろう。
【0096】
別の実施形態において、調節装置335は、入射ビーム325及び/または反射されたビーム330の1つ以上の特徴を調節するように構成された光学、フィルタ、または他の機械的及び/もしくは電気的構成要素を含み得る。いくつかの例において、調節装置335の1つ以上の動作は、例えば、胎児ヘモグロビンプローブ115及び/またはコンピュータ150の構成要素からの命令の受信時に行われ得る。
【0097】
図3Cは、胎児ヘモグロビンプローブ115が固着された状態の妊娠哺乳動物305の腹部の正面図を提供している。斜視は、入射ビーム325及び反射されたビーム330が見え得るように、
図3Cに対していくらか調節されている。実際には、入射ビーム325及び反射されたビーム330の両方が、Z軸に沿って妊娠哺乳動物305の腹部内に配向され/そこから反射される。
【0098】
図3Dは、胎児ヘモグロビンプローブ115及びドップラー/超音波プローブ135が一致している状態の妊娠哺乳動物305の腹部の正面断面図を提供している。
図3Dに示されているように、ドップラー/超音波プローブ135は、ビームを胎児310に向かって妊娠哺乳動物305の腹部内に送信し、かつ反射信号を受信する。次に、ドップラー/超音波プローブ135は、この反射信号を使用して、胎児心拍信号を判定し、かつ/または1分当たりの胎児心拍数を判定する。
【0099】
図3Dの胎児ヘモグロビンプローブ115は、2つの光源を有し、それらのうちの第1の光源105Aは、第1の波長(λ
1)の光ビーム325A(それぞれ、105A、λ
1及び325A、λ
1をして図に記述されている)を放射し、それらのうちの第2の波長105Bは、第2の波長(λ
2)の光ビーム325B(それぞれ、105B、λ
2及び325B、λ
2として図に記述されている)を放射する。入射ビーム325A及び325Bの一部分は、妊娠哺乳動物305及び胎児310により反射され、かつそれぞれ、反射されたビーム330A及び330Bとして((それぞれ、330A、λ
1及び330B、λ
2として図に記述されている)検出器114により受信される。
【0100】
図4Aは、胎児酸素測定法及び/または胎児パルス酸素測定法を経腹腔的に、かつ/または子宮内で行って、胎児ヘモグロビン酸素飽和レベルを判定するための例示的なプロセス400を図示している。プロセス400は、例えば、システム100及び/またはその構成要素により行われ得る。
【0101】
最初に、入射ビーム325等の光ビームは、例えば、胎児ヘモグロビンの哺乳動物の妊娠哺乳動物の腹部のうちの1つ以上により提供された光源(複数可)105等の1つ以上の光源により、妊娠哺乳動物305等の妊娠哺乳動物の腹部内に配向され(ステップ405)、上で考察されている
図3A及び3Bに示されているような胎児310等の妊娠哺乳動物の胎児に向かって配向され得る。
【0102】
妊娠哺乳動物の腹部内に配向された光ビームは、入射ビーム325に関して上に記載されているような任意の数の光ビーム及び/または周波数/光の波長を含み得る。いくつかの例において、ステップ405の光ビームは、例えば、
図2D及び2Eに示されているような妊娠哺乳動物の腹部に沿った複数の異なる場所に位置付けられた複数の光源から放射された複数の光ビームであり得る。追加的または代替的に、ステップ405の光ビームは、複数のLEDを含み得る単一の光源により放射された複数の波長/周波数を含み得る。
【0103】
いくつかの実施形態において、ステップ405の光ビームは、第1及び第2の波長の光を含み得、第1の波長は、電磁気スペクトル(すなわち、620~750nm)の赤色部分にあり、第2の波長は、電磁気スペクトル(例えば、750nm~2,500nm)の近赤外(NIR)部分にある。赤色及び近赤外スペクトルでの波長の光は、皮膚及び体組織を通して移動し、かつ/またはこれらにより反射されることが知られているため、これらの波長の使用は、必要ではないが、好ましい。いくつかの実施形態において、例えば、第3、第4、第5以上の異なる波長の光は、妊娠哺乳動物の腹部に向かって配向され得る。いくつかの状況において、2つ超の光の波長の使用は、限定されないが、妊娠哺乳動物(すなわち、胎児の深度)の外表皮膚もしくは子宮壁からの胎児の距離、妊娠哺乳動物及び/または胎児内のメラニン/色素のレベル、胎児パルス信号の強度、胎児が妊娠哺乳動物の胎盤及び/または子宮内を移動する量等を含む種々の状況において、反射信号強度及び/または明確さを向上させるのに有用であり得る。
【0104】
いくつかの実施形態において、ステップ405で妊娠哺乳動物内に配向された光の強度は、異なる光の波長に対して可変及び/または異なり得る。例えば、妊娠哺乳動物の腹部内に配向された赤色光の強度は、赤色光対近赤外光の送信/反射特性に起因して(すなわち、近赤外光は、体組織内に示されるときに赤色光より多くの光を反射することが知られている)近赤外光の強度より大きい場合がある。しかしながら、ステップ405の光ビームの強度は、妊娠哺乳動物及びその胎児の両方に対して安全であろう(例えば、妊娠哺乳動物の皮膚に対する火傷及び/または胎児の組織(例えば、目)に対する損傷を生じさせない)と予測される。
【0105】
ステップ410において、妊娠哺乳動物(及び胎児)の腹部により反射された光(例えば、波及び/または光子)は、検出器115及び/または送受信機107等の1つ以上の検出器(例えば、光センサ、光検出器または光ダイオード)により受信され得、かつ反射光(この信号は、光センサ/光ダイオード/光検出器により「電子反射信号」と本明細書で称され得る)を表す電子信号へと変換され(ステップ415)得る。いくつかの例において、妊娠哺乳動物の腹部内に配向された光は、例えば、3~5cmの距離を移動して胎児に接触し得、いったん胎児から反射されるとさらに3~5cm移動して検出器により検出され得る。したがって、入射及び反射されたビームに対する総移動距離は、8または10cm程の高さであり得る。この距離を移動すると、反射信号の検出における実質的な量の散乱及び他の干渉が生じ、かつ妊娠哺乳動物の腹部上の光入射のごく一部(例えば、0.5~5%)のみが、胎児により反射され、かつ検出器により受信される可能性がある。
【0106】
任意に、ステップ420において、電子反射信号が、例えば、パルス及び/または胎児の胎児酸素飽和を検出するのに十分な強度を有するかどうかが判定され得る。十分である例示的な信号強度は、およそ3~4.5の好ましいSNRを有する、1~8の信号対雑音(SNR)比を有する30~500dBの範囲にある。
【0107】
信号が十分な強度を有しないとき、光源(複数可)及び/または検出器(複数可)は、自動的に(すなわち、操作者の介入なく)調節され得、かつ/または光源(複数可)及び/または検出器(複数可)の調節が所望され得るか、もしくは必要とされ得るとの指示の操作者(例えば、医師もしくは看護師)への提供が、促進され得る(ステップ425)。ステップ425で提供された例示的な指示は、限定されないが、警告、メッセージ(例えば、書き込みまたは映像)、及び助言を含む。例示的な自動調節は、限定されないが、光源(複数可)により反射され、かつ/または検出器(複数可)により受信された光を集中させるための妊娠哺乳動物の腹部と光源(複数可)及び/または検出器(複数可)との間に位置付けられたレンズの調節、光源(複数可)及び/または検出器(複数可)に送達される電力量の調節、光源(複数可)のうちの1つ以上により放射される光の強度及び/または周波数の調節等を含む。いくつかの実施形態において、妊娠哺乳動物の腹部内に光を配向するための追加の光源の活性化は、電子反射信号が十分な強度を有しないとの判定に応答可能であり得る。
【0108】
いくつかの例において、ステップ425の調節(複数可)は、調節機構122等の1つ以上の調節機構及び/または制御装置112等の制御装置により行われ得、かつ/または促進され得る。いったん調節されると、光ビームは、再び、妊娠哺乳動物の腹部内に配向され得(すなわち、ステップ405を繰り返し得る)、かつステップ410~420が繰り返され得る。電子反射信号が十分な強度を有するとき、またはステップ420及び425が行われないとき、プロセス400は、ステップ430に進み得る。
【0109】
ステップ430において、電子反射信号を処理して胎児から反射された電子反射信号(妊娠哺乳動物または雑音とは対照的である)の一部分を隔離し得る。考察を容易にするために、胎児から反射された電子反射信号の一部分は、本明細書で胎児電子反射信号と称され得る。ステップ430が実行され得る方法の例は、
図5A~5Dに関して下に考察されている。ステップ430に続いて、胎児の電子反射信号を分析し、例えば、酸素測定法及び/またはパルス酸素測定法技術を介して胎児の血液内に含有されたヘモグロビンの酸素飽和レベルを判定し得る(ステップ440)。胎児血液の酸素飽和に対する典型的な値は、30~70%の範囲に該当する。胎児ヘモグロビン飽和レベルを判定する例示的な方法は、参照により本明細書に組み込まれる、Zourabian、Annaらによる、Trans-abdominal Monitoring of Fetal Arterial Blood Oxygenation Using Pulse Oximetry,Journal of Biomedical Optics,5(4),pp.391~405(2000年10月)に記載されているような、体内の組織により散乱される反射光の散乱効果の主な要因となるように改変されたランベルトベールの法則の一種を使用している。ステップ435の実行に関するさらなる詳細は、
図6A~6Hに関して下に提供されている。
【0110】
次に、ステップ440において、胎児酸素レベルの指示の操作者への提供が促進され得る。例示的な操作者は、限定されないが、医師、看護師、及び他の介護者を含む。例示的な指標は、表示装置(例えば、コンピュータモニタ)上に示される波形、表示装置を介して提供される数値、及び/または胎児ヘモグロビン酸素飽和レベル等のメッセージ(例えば、SMSテキストメッセージ)を含む。ステップ465の指示の提供の促進は、コンピュータ150等のコンピュータ、及び/または表示装置155等の表示装置への指示の提供を含み得る。胎児ヘモグロビン酸素飽和レベルのそのような表示の例は、
図8A及び8Bに提供されており、かつ下に考察される。
【0111】
信号を処理して胎児から反射された電子反射信号の一部分を総電子反射信号から隔離する一方法は、例えば、ドップラー/超音波プローブ135等のドップラー及び/または超音波プローブにより提供され得るような、胎児の心(すなわち、ステップ430を行う)拍動を提供する信号により総電子反射信号を乗算することである。得られた信号(すなわち、総電子反射信号及び胎児心拍信号を乗算した積である信号)は、胎児により反射された総電子反射信号の一部分に近似し得る。この近似を改善するために、信号読取を多数の周期にわたって平均化して、胎児により反射された総電子反射信号の一部分のより正確な近似を提供し得る。このプロセスの例は、
図5A~5Dで提供されており、それらのうちの
図5Aは、総電子反射信号強度対時間についてのグラフ500を提供しており、ステップ410で検出された妊娠哺乳動物の腹部により反射された光を表している。
図5Bは、ドップラー信号対時間についてのグラフ501を提供している。この信号は、ステップ410で検出された妊娠哺乳動物の腹部により反射された光を表している。ドップラー信号は、胎児心拍を表している。この信号は、例えば、ドップラー/超音波プローブ135から受信され得る。
図5Cは、特定の時間での総電子反射信号の信号強度が、その同じ特定の時間でドップラー信号強度により乗算されるように経時的に同期させると同時に、総電子反射信号強度(
図2Aより)及びドップラー信号(
図2Bより)を共に乗算した積を示すグラフ502を提供している。
図5Cに示されていている得られた信号は、胎児から反射された総電子反射信号の一部分に近似している。次に、この信号を分析し、例えば、酸素測定法またはパルス酸素測定法技術を使用して、胎児酸素飽和レベルを判定し得る。
【0112】
いくつかの実施形態において、胎児から反射された総電子反射信号の近似部分の正確性は、総電子反射信号強度、胎児心拍/ドップラー信号、ならびに経時的に同期された総電子反射信号強度及びドップラー信号を乗算した結果(グラフ503上で「胎児反射信号」と称される)についてのグラフ503を提供している
図5Dに示されているように、長時間にわたる(例えば、多くの期間)多くの信号強度を平均化することにより改善され得る。
【0113】
電子反射信号を処理して総電子反射信号により胎児から反射された電子反射信号の一部分を隔離する別の方法は、サブプロセス401を示している
図4Bにより提供された胎児心臓を提供する信号により総電子反射信号を乗算すること(すなわち、ステップ430の実行)である。
【0114】
サブプロセス401のステップ445において、妊娠哺乳動物の心拍信号は、例えば、パルス酸素測定プローブ130等のパルス酸素測定プローブ及び/またはNIRS成人ヘモグロビンプローブ125等の成人ヘモグロビンプローブから受信される。次に、受信された妊娠哺乳動物の心拍信号は、時間領域内で電子反射信号と同期され得る(ステップ450)。次に、妊娠哺乳動物により反射された電子反射信号の一部分を判定するように、妊娠哺乳動物の心拍と電子反射信号における変化との間の相関が構築され得る(ステップ455)。次に、ステップ460において、妊娠哺乳動物により反射された電子反射信号の一部分の一部分は、電子反射信号から減算され、ここでは胎児により反射された電子反射信号の一部分が隔離される。
【0115】
信号を処理して胎児から反射された電子反射信号の一部分を総電子反射信号から隔離する別の方法は、サブプロセス402を示している
図4Cにより提供された胎児心臓を提供する信号により総電子反射信号を乗算すること(すなわち、ステップ430の実行)である。
【0116】
サブプロセス465のステップ465において、胎児の心拍信号は、例えば、ドップラー/超音波プローブ135等の超音波装置及び/またはドップラー装置から受信され得る。次に、受信された胎児心拍信号は、時間領域内で電子反射信号と同期され得る(ステップ470)。次に、時間領域内で個々の心拍に対応する電子反射信号の一部分を検査し得る。このように、電子反射信号全体を処理/分析する必要はなく、胎児心拍またはパルスが生じる電子反射信号の一部分のみが検査される。これは、信号全体を処理する必要がないため、処理時間及び資源を節約する。
【0117】
いくつかの実施形態において、ステップ430の処理及び/またはステップ435の分析は、胎児の酸素化ヘモグロビン及び非酸素化ヘモグロビンによりNIR光の吸収/反射に対応する信号を確認するために、電子反射信号を処理することを含み得る。この情報を使用して、胎児ヘモグロビン酸素飽和(ステップ435)のレベル(または割合)を判定し得る。
【0118】
胎児ヘモグロビンは、成人ヘモグロビンとは構造的に異なるため、光を異なるように吸収し、種々の波長で胎児ヘモグロビンから反射された信号は、妊婦により反射されたこうした同じ波長での信号の大きさと比較したときに異なる大きさになるだろう。このように、妊婦及び胎児のヘモグロビンから反射されたある量の光を種々の波長で測定することで、胎児ヘモグロビンならびに妊婦ヘモグロビンにより吸収された特定の波長の光の量の指示を提供するだろう。種々の波長で反射された光の比率を見ることで、特定の胎児血液酸素レベルに相関する基準を提供するだろう。いくつかの例において、妊婦ヘモグロビンと比較したときの胎児ヘモグロビンの波長吸収の変動は、臨床及び/または診断のために胎児ヘモグロビン酸素飽和レベルを示す十分に強いか、もしくは明確な信号を提供するのに十分ではない場合がある。したがって、下に詳細に考察されるように、1つ以上の信号処理技術を胎児ヘモグロビンプローブ115により受信された信号に適用して、胎児ヘモグロビン酸素飽和を判定し得る。
【0119】
例示的な信号処理技術において、妊婦のパルス酸素測定プローブ(例えば、パルス酸素測定プローブ130)から受信された信号を使用して、妊婦ヘモグロビンの酸素化状態に対応する妊婦の動脈血液酸素飽和レベルを判定し得る。ヒトの指の深度が1~2cmであり、測定可能な量の深度の光が指の先端を通過することができ、かつ胎児血液流からの干渉もしくは妊婦の指の先端位置での胎児ヘモグロビンの循環がないため、パルス酸素測定プローブを使用してこの判定を行う。故に、パルス酸素測定プローブ130からの読み取りは、妊婦の成人ヘモグロビンにより種々の波長で吸入及び/または反射される光の量に直接対応するだろう。この情報を使用して、胎児近くの妊婦ヘモグロビンと相互作用する光の量を理解し得、かつこの情報を胎児ヘモグロビンプローブ115により受信された信号から減算して、胎児ヘモグロビンにより種々の波長で吸収及び/または反射される光の量を判定し得る。
【0120】
追加的または代替的に、胎児ヘモグロビンプローブ115により受信された信号は、胎児及び/または妊婦の心拍を使用して処理され得る。妊婦の心拍の時機は、種々のレベルの妊婦の血液酸素飽和に対する時機と相関している。この相関を使用して、胎児ヘモグロビンプローブ115により受信された信号内での妊婦の血液酸素飽和のレベルに対応する信号を検出し得る。次に、妊婦の血液酸素飽和のレベルに対応する検出された信号を、胎児ヘモグロビンプローブ115により受信された信号から減算するか、または別様にフィルタ処理することにより、胎児酸素飽和レベルを判定し得る。
【0121】
追加的または代替的に、胎児心拍は、種々のレベルの胎児の血液酸素飽和に対する時機と相関している。次に、この相関を使用して、胎児ヘモグロビンプローブ115により受信された信号内の胎児の血液酸素飽和のレベルに対応する信号を検出し得る。例えば、ドップラー/超音波プローブ135及び/または超音波装置は、胎児心拍が1分当たり120~160回の拍動の範囲にあることを示し得、この胎児心拍を使用して、胎児からのNIR信号をゲート制御及び/または相関させ得る。
【0122】
胎児心拍及び母体心拍が同様である(胎児徐脈及び母体頻脈)まれな状況において、2つの心拍は、呼吸中の心拍においてわずかな中断があるという既知の事実を使用して、互いに区別され得る。したがって、心拍信号(例えば、パルス酸素測定プローブ130を介して)を観察することにより、妊婦が深呼吸をしたときに妊婦の心拍が一時低下することを観察し得る。この低下は、胎児が子宮内で呼吸していないため、妊婦の心拍を提供する信号内にのみ存在するだろう。このように、2つの心拍は、互いに区別され得る。
【0123】
いくつかの実施形態において、NIRS成人ヘモグロビンプローブ125からの信号を処理して、成人オキシヘモグロビンの成人デオキシヘモグロビンとの比率を判定し得る。次に、この比率を使用して、胎児の血流による信号を隔離及び分析して、例えば、胎児ヘモグロビン酸素飽和のレベルを判定するように、妊婦の血流からの読み取りを減算し得る。
【0124】
他の実施形態において、胎児ヘモグロビンプローブ115により受信された信号の処理は、時間領域と周波数領域分析との間の振動を含み得る。この振動は、ランダムまたは非周期的(非環式/非周期的)である信号とは対照的な循環的(周期的)構成要素を有する識別信号を可能にし得る。ランダムもしくは非周期的信号は、雑音である可能性が高く、ランダムもしくは非周期的信号に対する受信された信号の検査は、フィルタ処理され得るか、もしくは除去され得る信号ならびに信号の一部分の雑音レベルの判定の助けとなるだろう。
【0125】
いくつかの実施形態において、プロセス400は、胎児オキシヘモグロビン及びデオキシヘモグロビンにより一定の波長で反射/吸収された光の強度と、胎児オキシヘモグロビン及びデオキシヘモグロビンの酸素飽和レベルとの間での一連の相関の構築を含み得る。この一連の相関は、胎児の陣痛及び分娩過程中の特定の妊娠哺乳動物に対するプロセス400の実行前に行われ得、例えば、コンピュータ150内に保存され得る。例示的な相関は、酸素に結合している胎児ヘモグロビンの50%の胎児酸素飽和レベルに対する、強度Xを有する波長Aの光の反射及び強度0.8Xを有する波長Bの光の反射であり得る。別の例示的な相関は、酸素に結合している胎児ヘモグロビンの25%の胎児酸素飽和レベルに対する、強度Xを有する波長Aの光の反射及び強度0.5Xを有する波長Bの光の反射であり得る。
【0126】
(それぞれ、105A、λ1及び325A、λ1として図に記述されている)及びそれらのうちの第2の波長105Bは、第2の波長(λ2)(それぞれ、105B、λ2及び325B、λ2として図に記述されている)の光ビーム325Bを放射する。入射ビーム325A及び325Bの一部分は、妊娠哺乳動物305及び胎児310により反射され、それぞれ、反射されたビーム330A及び330B(330A、λ1及び330B、λ2として図に記述されている)として検出器114により受信される。
【0127】
図6A~6Hは、電子反射信号を分析して胎児ヘモグロビン酸素飽和レベルを判定する方法についての一例に関するグラフの形態での情報を提供している。時には、胎児ヘモグロビン酸素飽和レベルは、本明細書で(%SaO2)と短縮され得る胎児動脈の酸素飽和レベルとも称され得る。より具体的には、
図6Aは、ドップラー信号対時間についてのグラフ601を提供している。ドップラー信号は、胎児心拍信号に対応している。
図6Aのドップラー信号は、
図5Bのドップラー信号と同様である。
【0128】
図6Bは、λ
1に対する電子反射信号強度対時間についてのグラフ602を提供している。このグラフは、反射信号330A、λ
1に対応し得る。上に考察されているプロセスのいずれかを使用して、胎児により反射された信号の一部分をλ
1に対する電子反射信号から隔離し得る。提供されている例において、
図6Cのグラフ603に示されているように、λ
1に対する総電子反射信号強度及び胎児ドップラー信号を、経時的に同期させると同時に共に乗算して、λ
1に対する総電子反射信号強度及びドップラー信号を経時的に同期させると同時に共に乗算した積を提供する。
【0129】
図6Dは、いくつかの期間にわたって平均化された経時的に同期させると同時に、λ
1に対する総電子反射信号強度及び胎児ドップラー信号を共に乗算した積を示すグラフ604を提供している。このグラフ(または、グラフを生成するのに使用されたデータ)を分析して、曲線のピーク(すなわち、最高値)に対応する第1の波長λ
1610に対する収縮値の強度、及び曲線の底値(すなわち、最低//最小値)に対応する第1の波長λ
1615に対する心臓拡張値の強度を判定する。
【0130】
図6Eは、λ
2に対する電子反射信号強度対時間についてのグラフ605を提供している。上で考察されているプロセスのいずれかを使用して、胎児により反射された信号の一部分をλ
2に対する電子反射信号強度から隔離し得る。提供されている例において、
図6Fのグラフ606に示されているように、λ
2に対する総電子反射信号強度及び胎児ドップラー信号を経時的に同期させると同時に共に乗算して、経時的に同期させると同時に、λ
2に対する総電子反射信号強度及びドップラー信号を共に乗算した積を提供する。
【0131】
図6Gは、いくつかの期間にわたって平均化された経時的に同期させると同時に、λ
2に対する総電子反射信号強度及び胎児ドップラー信号を共に乗算した積を示すグラフ607を提供している。このグラフ(または、グラフを生成するのに使用されたデータ)を分析して、曲線のピーク(すなわち、最高値)に対応する第2の波長λ
2620に対する収縮値の強度、及び曲線の底値(すなわち、最低/最小値)に対応する第2の波長λ
2625に対する心臓拡張値の強度を判定する。
【0132】
2つの光の波長の反射された強度間の変調比(R)は、下記のように計算され得、
【数1】
式中、T
sysλ1が、第1の波長(λ
1)に対する収縮値の強度であり、
T
diasλ1が、第1の波長(λ
1)に対する心臓拡張値の強度であり、
T
sysλ2が、第2の波長(λ
2)に対する収縮値の強度であり、
T
diasλ2が、第2の波長(λ
2)に対する心臓拡張値の強度である。
【0133】
次に、変調比Rを使用して、少なくとも2つの形態のうちの1つにおける動脈酸素飽和値(%SaO2)のレベルを判定し得る。一対の波長(すなわち、λ
1及びλ
2)に対する変調比Rと動脈酸素飽和との間の関係が知られている(例えば、実験的に判定された値により)場合、Rの値を使用して、対応する動脈酸素飽和レベルを調べ得る。
図6H1は、Rに対する値(λ
1が赤色スペクトルであり、λ
2が赤外スペクトルであるとき)と動脈酸素飽和値との間の既知の関係を描画した例示的なグラフを提供している。
1図6Hの源:Paul D.らの、Wavelength Selection for Low-Saturation Pulse Oximetry,IEEE Transactions on Biomedical Engineering,Vol.44、No.3、1997年3月、p.149.
【0134】
上の例(グラフ604及び607から挿入された強度値に対する適切な参照番号を有する)の終了後、方程式1に対する下記の計算を生じることになる。
【数2】
【0135】
次に、この方程式により計算された比Rを使用して、胎児の対応する動脈酸素飽和レベル(すなわち、胎児ヘモグロビン酸素飽和レベル)を発見し得る。
【0136】
胎児酸素飽和レベルはまた、下記の方程式(方程式2)を使用して計算され得、
【数3】
式中、Sが、ヘモグロビン酸素飽和であり、
Rが、方程式1を使用して計算された変調比であり、
ε
Hbが、非酸素化ヘモグロビンに対するモル吸光係数であり、
ε
HbOが、酸素化ヘモグロビンに対するモル吸光係数であり、
Bが、下記の式(方程式3)を介した適切な測定形状に対する光子拡散方程式を解くことにより推定され得る要因であり、
【数4】
式中、Lが、長さであり、
μ
sが、散乱係数であり、
μ
aが、吸収係数であり、
μ
s’が、下記の式(方程式4)により提供された輸送散乱係数であり、
【数5】
式中、gが、単一相散乱関数の平均余弦に等しい散乱の異方性要因である。
【0137】
方程式1、2、3、及び4を使用した計算ならびに胎児ヘモグロビン酸素飽和レベルを判定する方法に関するさらなる詳細は、Mannheimer,Paul D.らの、Wavelength Selection for Low-Saturation Pulse Oximetry,IEEE Transactions on Biomedical Engineering,Vol.44、No.3、1997年3月、pp.148~158、及びZourabian,Annaらの、Trans-abdominal Monitoring of Fetal Arterial Blood Oxygenation Using Pulse Oximetry,Journal of Biomedical Optics,5(4)、pp.391~405(2000年10月)により提供されており、それらの両方は、参照により本明細書に組み込まれる。
【0138】
図7Aは、分娩
2直後の臍帯の穿刺により得られた成人ドナーの血液及び胎児血液内に照らされた光の波長の関数としての種々のヘモグロビン測定値の表700を提供している。表の縦列2~8の値は、ミリモル吸収率(L*mmol
-1*cm
-1)で測定されている。より具体的には、表700の第1の縦列は、450nm~1000nmの範囲のナノメートル(nm)で測定された波長のリストを提供しており、表700の第2の縦列は、デオキシヘモグロビン状態(Hb)での胎児ヘモグロビン(HbF)測定値を提供しており、表700の第3の縦列は、デオキシヘモグロビン状態(Hb)で測定された成人ヘモグロビン(HbA)を提供しており、表700の第4の縦列は、オキシヘモグロビン状態(HbO2)での胎児ヘモグロビン状態を提供しており、表700の第5の縦列は、オキシヘモグロビン状態(HbO2)で測定された成人ヘモグロビンを提供しており、表700の第6の縦列は、デオキシヘモグロビン状態での胎児ヘモグロビン測定値とオキシヘモグロビン状態での胎児ヘモグロビン測定値との間の差(Hb-HbO2)を表す値を提供しており、表700の第7の縦列は、デオキシヘモグロビン状態での成人ヘモグロビン測定値とオキシヘモグロビン状態での成人ヘモグロビン測定値との間の差(Hb-HbO2)を表す値を提供しており、表700の第8の縦列は、胎児の割合(Hb-HbO2)/HbO2を提供している。表700によるデータを使用して、
図7B及び7Cで図示されたグラフを作成する。
2実験結果は、Zijistra,W.G.らにより提供されている:Absorption Spectra of Human Fetal and Adult Oxyhemoglobin,De-Oxyhemoglobin,Carboxyhemoglobin,and Methemoglobin,Clin.Chem.Vol.39/9、pp.1633~1638(1991年)
【0139】
図7Bは、450nm~700nmの光の可視波長における胎児及び妊婦ヘモグロビンの酸素化(オキシ)状態と非酸素化(デオキシ)状態を示すグラフ701を図示しており、緑色の破線は、波長の関数としての胎児ヘモグロビンの酸素状態と脱酸素状態との間の吸収率の差を表しており、赤色の破線は、波長の関数としての妊婦の胎児ヘモグロビンの酸素状態と脱酸素状態との間の吸収率の差を表している。
【0140】
図7Cは、700nm~1000nmの近赤外(NIR)光の波長における胎児及び妊婦ヘモグロビンの酸素状態と脱酸素状態との間の吸収率の差を示すグラフ702を図示しており、緑色の破線は、波長の関数としての胎児ヘモグロビンの酸素状態と脱酸素状態との間の吸収率の差を表しており、赤色の破線は、波長の関数としての妊婦の胎児ヘモグロビンの酸素状態と脱酸素状態との間の吸収率の差を表している。
【0141】
図7A~7Cに見られ得るように、胎児と妊婦との間の吸収率の最大差は、およそ700~750nm及び950~1000nmの波長範囲内で生じる。したがって、胎児ヘモグロビンプローブ115によるこれらの波長範囲内の赤外光の放射は、妊婦ヘモグロビン及び胎児ヘモグロビンからの信号間の最適差を達成するのに好ましい。
【0142】
本明細書に記載されている信号処理及び分析技術のうちの全てが、限定されないが、妊娠哺乳動物が配置されている部屋内の光及び妊娠哺乳動物近くの電気機器の動作から生じ得る周囲雑音から消去することを含む、1つ以上の雑音低減技術を採用し得る。雑音消去技術はまた、信号に対する非周期的寄与が妊娠哺乳動物または胎児のいずれかの血流を示している可能性が低いため、電子反射信号の非周期的変調を検索し、そのような変調を信号から消去することを含み得る。
【0143】
追加的または代替的に、本明細書に記載されている信号処理及び分析技術のうちの1つ以上を互いに組み合わせ得る。例えば、プロセス401及び402を使用して、電子反射信号を処理し、胎児により反射された電子反射信号の一部分を隔離し得る。
【0144】
図8Aは、妊娠哺乳動物及び胎児の測定値に関する他の情報と共に、胎児ヘモグロビン酸素飽和のレベルを提供する例示的な表示800を提供している。表示800は、例えば、100の割合、経時的な胎児心拍を表す連続的波形(すなわち、容積脈波)810、及び1分当たりの拍動で表された胎児心拍を表す数値815として式で表された胎児ヘモグロビン酸素飽和レベル805を提供している。表示800はまた、例えば、100の割合、妊娠哺乳動物の心拍を経時的に表す連続的波形825、1分当たりの拍動で表される妊婦の心拍を表す数値830として表現される、妊娠哺乳動物のヘモグロビン酸素飽和レベル820を提供している。表示800は、数時間測定される経時的な胎児心拍を示すグラフ835をさらに提供しており、mmHg対分単位で測定されたときに経時的に測定される子宮収縮により生成された子宮の緊張もしくは圧力についての指示が、数値845として提供されている。経時的な胎児心拍についてのグラフ835により、子宮収縮中に胎児心拍が変化する方法を視覚的に評価し、かつ胎児がいかに良好に陣痛及び分娩過程に耐えているかを判定することができる。子宮収縮の数値845は、圧力センサにより計算される0~50の数字であり、子宮収縮が続く時間、子宮収縮の強度、及び子宮収縮の周波数を評価することを可能にする。
【0145】
図8Bは、対応する時間に対して同期された胎児心拍、胎児ヘモグロビン酸素飽和率、及び子宮の緊張についての例示的な表示801を提供している。表示801は、時間の経過を表す垂線(例えば、各垂線は、1分を表す)及び測定尺度を示す水平線により、上に印刷されたデカルトグリッドを有する紙テープ上に提供される。この種の紙テープは、これらのテープが典型的に、時間尺度が1で始まり、2、3、4等へと前進する、長時間も続き得る観察期間を通じて連続的に使用されるため、特定の時間尺度により印刷されず、妊娠哺乳動物の治療に当たる医師に提供される情報とは関係がない。
【0146】
表示801の上グラフは、1分当たりの拍動で経時的に測定されたときの胎児心拍のグラフ860を提供している。表示801の第2のグラフは、経時的な胎児ヘモグロビン酸素濃度(簡潔にするために、グラフ上で「胎児酸素」と称される)についてのグラフ865を提供している。表示801の第3のグラフは、子宮の緊張(簡潔にするために、グラフ上で「子宮収縮」と称される)についてのグラフ870を提供している。全3つのグラフ860、865、及び870は、特定の時間の間の胎児心拍の測定値が胎児ヘモグロビン酸素濃度レベル及びそのような特定の時間での子宮の緊張に対応するように、時間領域内で同期される。このように、治療に当たる医師(または他の医療専門家)は、例えば、陣痛及び分娩過程中に、妊娠哺乳動物の子宮の緊張、胎児心拍、及び胎児ヘモグロビン酸素濃度レベルを同時に観察して、胎児の健康を評価することができる。
【0147】
故に、胎児酸素レベルを判定するためのシステム、装置、及び方法を、本明細書に開示している。いくつかの実施形態において、本明細書に記載されているシステム、装置、及び方法の使用は、陣痛及び分娩過程中に胎児の健康を評価することが困難であるため、陣痛及び胎児の分娩中に(例えば、陣痛の第1及び/または第2の段階中に)特に有用であり得る。