IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人神戸大学の特許一覧 ▶ 三菱瓦斯化学株式会社の特許一覧

<>
  • 特許-カーボネート誘導体の製造方法 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-16
(45)【発行日】2022-03-25
(54)【発明の名称】カーボネート誘導体の製造方法
(51)【国際特許分類】
   C07C 68/00 20200101AFI20220317BHJP
   C07C 69/96 20060101ALI20220317BHJP
   C07C 273/02 20060101ALI20220317BHJP
   C07C 275/06 20060101ALI20220317BHJP
   C07C 275/18 20060101ALI20220317BHJP
   C07C 275/28 20060101ALI20220317BHJP
   C07C 329/20 20060101ALI20220317BHJP
   C07D 317/46 20060101ALI20220317BHJP
   C07D 317/38 20060101ALI20220317BHJP
   C07D 295/205 20060101ALI20220317BHJP
   C07D 233/61 20060101ALI20220317BHJP
   C08G 64/38 20060101ALI20220317BHJP
【FI】
C07C68/00 Z
C07C69/96 Z
C07C273/02
C07C275/06
C07C275/18
C07C275/28
C07C329/20
C07D317/46
C07D317/38
C07D295/205
C07D233/61
C08G64/38
【請求項の数】 9
(21)【出願番号】P 2019519162
(86)(22)【出願日】2018-04-27
(86)【国際出願番号】 JP2018017348
(87)【国際公開番号】W WO2018211952
(87)【国際公開日】2018-11-22
【審査請求日】2021-01-06
(31)【優先権主張番号】P 2017097681
(32)【優先日】2017-05-16
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】504150450
【氏名又は名称】国立大学法人神戸大学
(73)【特許権者】
【識別番号】000004466
【氏名又は名称】三菱瓦斯化学株式会社
(74)【代理人】
【識別番号】110002837
【氏名又は名称】特許業務法人アスフィ国際特許事務所
(72)【発明者】
【氏名】津田 明彦
【審査官】奥谷 暢子
(56)【参考文献】
【文献】特開2013-181028(JP,A)
【文献】特開平10-291965(JP,A)
【文献】KUWAHARA, Yuki et al.,Photochemical molecular storage of Cl2, HCl, and COCl2: Synthesis of organochlorine compounds, salts,Organic letters,2012年,Vol.14, No.13,pp.3376-3379
【文献】桑原佑貴ほか,ハロメタンの光リサイクル反応(1):クロロホルムと一級アミン類からの尿素誘導体の合成,日本化学会講演予稿集,2012年,92nd,pp.1251,2 K2-14
【文献】桑原佑貴ほか,ハロメタンの光リサイクル反応(2):クロロホルムとフェノール類からの炭酸エステル誘導体の合成,日本化学会第92春季年会(2012)講演予稿集IV,2012年,p.1251
(58)【調査した分野】(Int.Cl.,DB名)
C07C
C07D
C08G
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
カーボネート誘導体を製造するための方法であって、
塩素原子、臭素原子およびヨウ素原子からなる群から選択される1種以上のハロゲン原子を有するC1-4ハロゲン化炭化水素、求核性官能基含有化合物、および塩基を含む組成物に酸素存在下で光照射し、
前記求核性官能基含有化合物が下式(i)で表される化合物であり且つ前記カーボネート誘導体が下式(I)で表される鎖状カーボネート誘導体であるか、または、
前記求核性官能基含有化合物が下式(ii)で表される化合物、ビスフェノールA、ビスフェノールAP、ビスフェノールB、ビスフェノールBP、ビスフェノールTMC、もしくはビスフェノールZであり、前記カーボネート誘導体が下式(II-1)で表される単位を含むポリカーボネート誘導体、ビスフェノールA、ビスフェノールAP、ビスフェノールB、ビスフェノールBP、ビスフェノールTMC、もしくはビスフェノールZのポリカーボネートエステル、もしくは下式(II-2)で表される環状カーボネート誘導体であり、
前記塩基として、複素環式芳香族アミン、非求核性強塩基、および無機塩基から実質的になる群より選択される1以上の塩基を用いる、カーボネート誘導体の製造方法。
(i) R-A-H
(ii) H-A-R-A-H
(I) R-A-C(=O)-A-R1
(II-1) [-A-R-A-C(=O)-]
【化1】
[式中、
Aは、O、SまたはNR(Rは、HまたはC1-4アルキル基であるか、またはRおよびNと共に窒素含有ヘテロシクリル基を形成してもよい)であり、
は、C6-14アリール基、C4-14ヘテロアリール基またはC2-24アルキルポリオキシアルキレン基であり、
は、C2-10アルキレン基、C6-14アリーレン基、C4-14ヘテロアリーレン基またはC2-24ポリオキシアルキレン基である。]
【請求項9】
前記組成物に照射する光が180nm以上500nm以下の波長の光である請求項1~8のいずれかに記載の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、安全かつ効率的にカーボネート誘導体を製造するための方法に関するものである。
【背景技術】
【0002】
カーボネート誘導体のうち鎖状カーボネートは従来より溶媒などとして利用されてきたが、特に近年、リチウムイオン二次電池の電解液の非水溶媒として生産量が増えてきている。また、炭酸とビスフェノール化合物との縮合体であるポリカーボネートは、透明性や耐衝撃性に優れるエンジニアリングプラスチックとして広く利用されている。また、尿素樹脂は接着剤や食器の素材などとして汎用されている。ポリジチオカーボネートは、着色が少なく安定な光学材料としての利用が期待されている。
【0003】
カーボネート誘導体は、一般的に、ホスゲンと求核性官能基含有化合物から製造される。しかしホスゲンは水と容易に反応して塩化水素を発生させたり、毒ガスとして利用された歴史があるなど、非常に有毒なものである。その他、一酸化炭素とアルコールと酸素を反応させる方法もあるが、有毒である一酸化炭素を高圧で用いなければならないという問題がある。そこで、炭酸エステルやポリカーボネートの安全な製造方法が種々検討されている。
【0004】
例えば特許文献1には、触媒存在下に炭酸エステルをエステル交換反応に付して目的のカーボネート誘導体を製造する方法が記載されている。しかしこの方法では、原料化合物としてのカーボネート誘導体を如何に製造すべきかとの問題が残っており、根本的な解決とはならない。また、高価な触媒を用いなければならないことや、残留触媒による逆反応や副反応の問題もある。
【0005】
特許文献2には、触媒の存在下、エポキシ化合物と二酸化炭素からカーボネート誘導体を製造する方法が開示されている。この方法ではホスゲンや一酸化炭素を用いる必要は無いが、高価な触媒を用いなければならず、また、二酸化炭素を高圧にしなければならないなど、工業的な大量生産には適さないといえる。
【0006】
ところで本発明者は、ハロゲン化炭化水素とアルコールとを酸化的光反応に付すことによるハロゲン化カルボン酸エステルの製造方法(特許文献3)や、酸素存在下、クロロホルムに光照射してホスゲンを含有する混合物を得る工程、ホスゲンを単離することなくアルコールを前記混合物と反応させる工程を具備するハロゲン化ギ酸エステルの製造方法を開発している(特許文献4)。
【先行技術文献】
【特許文献】
【0007】
【文献】特開平7-10811号公報
【文献】特開2001-129397号公報
【文献】国際公開第2014/171367号パンフレット
【文献】特開2013-181028号公報
【非特許文献】
【0008】
【文献】大熊誠一ら,分析化学,Vol.24,pp.385-387(1975年)
【文献】釼実夫ら,日本ゴム協会誌,第43巻,第5号,pp.337-346(1970年)
【文献】Jerzy Herbichら,J.Photochem.Photobiol.A: Chem.,80,pp.157-160(1994)
【発明の概要】
【発明が解決しようとする課題】
【0009】
上述したように、カーボネート誘導体の製造にはホスゲンが一般的に使用されており、ホスゲンを使用しない製造方法であっても、その他の有毒な化合物や高価な触媒を使用するものであったり、原料化合物の製造にホスゲンを使用しなければならないといった問題があった。
そこで本発明は、安全かつ効率的にカーボネート誘導体を製造するための方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明者は、上記課題を解決するために鋭意研究を重ねた。その結果、酸素と特定の塩基の存在下、ハロゲノ基で置換された炭化水素化合物と特定の求核性官能基含有化合物とを光反応に付すことで、驚くべきことにカーボネート誘導体を安全に製造かつ効率的に製造できることを見出して、本発明を完成した。一般的に、有機塩基は光反応により色素を形成したり、ラジカルを捕捉する酸化防止剤として働いたり、電子移動などのメカニズムにより化合物の蛍光を消光させたり、ピリジンに至っては紫外線によりグルタコンアルデヒドなどに分解することなどが知られており(非特許文献1~3)、本発明者が開発した特許文献3や特許文献4の発明などの光反応には不利になると考えられていた。それに対して、特定の塩基の存在下での光反応でカーボネート誘導体が効率的に生成することは、非常に驚くべきことであった。
以下、本発明を示す。
【0011】
[1] カーボネート誘導体を製造するための方法であって、
塩素原子、臭素原子およびヨウ素原子からなる群から選択される1種以上のハロゲン原子を有するC1-4ハロゲン化炭化水素、求核性官能基含有化合物、および塩基を含む組成物に酸素存在下で光照射し、
前記求核性官能基含有化合物が下式(i)で表される化合物であり且つ前記カーボネート誘導体が下式(I)で表される鎖状カーボネート誘導体であるか、または、
前記求核性官能基含有化合物が下式(ii)で表される化合物であり且つ前記カーボネート誘導体が下式(II-1)で表される単位を含むポリカーボネート誘導体もしくは下式(II-2)で表される環状カーボネート誘導体であり、
前記塩基として、複素環式芳香族アミン、非求核性強塩基、および無機塩基から実質的になる群より選択される1以上の塩基を用いる、カーボネート誘導体の製造方法。
(i) R1-A-H
(ii) H-A-R2-A-H
(I) R1-A-C(=O)-A-R1
(II-1) [-A-R2-A-C(=O)-]
【化1】
[式中、
Aは、O、SまたはNR3(R3は、HまたはC1-4アルキル基であるか、またはR1およびNと共に窒素含有ヘテロシクリル基を形成してもよい)であり、
1は、C6-14アリール基、C4-14ヘテロアリール基またはC2-24アルキルポリオキシアルキレン基であり、
2は、C2-10アルキレン基、C6-14アリーレン基、C4-14ヘテロアリーレン基またはC2-24ポリオキシアルキレン基である。]
【0012】
[2] 前記C1-4ハロゲン化炭化水素がC1-4ポリハロゲン化炭化水素である上記[1]に記載の製造方法。
【0013】
[3] 前記C1-4ハロゲン化炭化水素がクロロホルムである上記[1]に記載の製造方法。
【0014】
[4] 前記複素環式芳香族アミンが、ピリジン、ピコリンまたはルチジンである上記[1]~[3]のいずれかに記載の製造方法。
【0015】
[5] 前記非求核性強塩基が、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エンまたは1,1,3,3-テトラメチルグアニジンである上記[1]~[4]のいずれかに記載の製造方法。
【0016】
[6] 前記無機塩基が、アルカリ金属水酸化物、アルカリ金属炭酸水素塩またはアルカリ金属炭酸塩である上記[1]~[5]のいずれかに記載の製造方法。
【0017】
[7] 前記C1-4ハロゲン化炭化水素に対して0.001倍モル以上1倍モル以下の前記求核性官能基含有化合物を用いる上記[1]~[6]のいずれかに記載の製造方法。
【0018】
[8] 前記求核性官能基含有化合物に対して1.5倍モル以上10倍モル以下の前記塩基を用いる上記[1]~[7]のいずれかに記載の製造方法。
【0019】
[9] 前記組成物に照射する光が180nm以上500nm以下の波長の光である上記[1]~[8]のいずれかに記載の製造方法。
【発明の効果】
【0020】
本発明方法では、ホスゲンや一酸化炭素といった毒性が極めて高い化合物や、高価な触媒を原料化合物として使う必要が無い。よって本発明方法は、有用なカーボネート誘導体を安全に且つ効率的に製造できる技術として、産業上極めて有用である。
【図面の簡単な説明】
【0021】
図1図1は、本発明方法で用いられる反応装置の構成の一例を示す模式図である。
【発明を実施するための形態】
【0022】
本発明に係るカーボネート誘導体の製造方法では、塩素原子、臭素原子およびヨウ素原子からなる群から選択される1種以上のハロゲン原子を有するC1-4ハロゲン化炭化水素、求核性官能基含有化合物、および特定の塩基を含む組成物に酸素存在下で光照射する。
【0023】
1. C1-4ハロゲン化炭化水素
本発明に係る反応においてC1-4ハロゲン化炭化水素は、おそらく照射光と酸素により分解され、ハロゲン化カルボニルまたはハロゲン化カルボニル様の化合物に変換され、水酸基含有化合物と反応してカーボネート誘導体が生成すると考えられる。たとえ有害なハロゲン化カルボニルが生成しても、ハロゲン化カルボニルは反応性が極めて高いために水酸基含有化合物と直ぐに反応し、反応液外へは漏出しないか、或いは漏出してもその漏出量は僅かである。なお、例えばハロゲン化カルボニルであるホスゲンは非常に毒性が高く、その運搬などには厳しい規制が課せられているが、C1-4ハロゲン化炭化水素は勿論それほど危険ではない。但し、後述するように本発明に係る反応は無機塩基水溶液の存在下でも進行することから、本発明に係る反応にはハロゲン化カルボニルまたはハロゲン化カルボニル様の化合物が介在していない可能性もある。
【0024】
特に常温常圧で液体であるC1-4ハロゲン化炭化水素は有機溶媒などとして大量に消費される一方で、大気に放出されると大気汚染やオゾン層の破壊といった環境汚染の原因となる。本発明は、かかるC1-4ハロゲン化炭化水素を光分解することで有用な化合物を製造する技術であり、工業的にもまた環境科学的にも寄与するところは大きい。
【0025】
1-4ハロゲン化炭化水素は、塩素原子、臭素原子およびヨウ素原子からなる群から選択される1種以上のハロゲン原子で置換された、炭素数1以上4以下のアルカン、アルケンまたはアルキンである。上述した通り、本発明においてC1-4ハロゲン化炭化水素は照射光と酸素により分解され、ハロゲン化カルボニルと同等の働きをすると考えられる。よってC1-2ハロゲン化炭化水素化合物が好ましく、ハロゲン化メタンがより好ましい。炭素数が2以上4以下である場合には、分解がより容易に進行するよう、1以上の不飽和結合を有するアルケンまたはアルキンが好ましい。また、2以上の上記ハロゲン原子を有するC1-4ハロゲン化炭化水素が好ましい。さらに、分解に伴って上記ハロゲン原子が転移する可能性もあるが、同一炭素に2以上の上記ハロゲン原子を有するC1-4ポリハロゲン化炭化水素化合物が好ましい。
【0026】
具体的なC1-4ハロゲン化炭化水素としては、C1-4ハロゲン化アルカン、C2-4ハロゲン化アルケンまたはC2-4ハロゲン化アルキンが好ましく、ハロゲン化カルボニル様化合物を容易に生成する観点から、ハロゲン化メタン、ハロゲン化エテンまたはハロゲン化アセチレンがより好ましく、2以上の上記ハロゲン原子を有するポリハロゲン化メタン、ポリハロゲン化エテンまたはポリハロゲン化アセチレンが特に好ましく、ポリハロゲン化メタンが最も好ましい。C1-4ハロゲン化炭化水素としては、例えば、ジクロロメタン、クロロホルム、ジブロモメタン、ブロモホルム、ヨードメタン、ジヨードメタン等のハロメタン;1,1,2-トリクロロエタン、1,1,1-トリクロロエタン、1,1,2,2-テトラクロロエタン、1,1,1,2-テトラクロロエタン等のハロエタン;1,1,1,3-テトラクロロプロパン等のハロプロパン;テトラクロロメタン、テトラブロモメタン、テトラヨードメタン、ヘキサクロロエタン、ヘキサブロモエタン等のパーハロアルカン;1,1,2,2-テトラクロロエテン、1,1,2,2-テトラブロモエテン等のパーハロエテン等を挙げることができる。
【0027】
1-4ハロゲン化炭化水素は目的とする化学反応や所期の生成物に応じて適宜選択すればよく、また、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。好適には、製造目的化合物に応じて、C1-4ハロゲン化炭化水素は1種のみ用いる。C1-4ハロゲン化炭化水素の中でもクロロ基を有する化合物が好ましい。
【0028】
本発明方法で用いるC1-4ハロゲン化炭化水素は、例えば溶媒としていったん使用したC1-4ハロゲン化炭化水素を回収したものであってもよい。その際、多量の不純物や水が含まれていると反応が阻害されるおそれがあり得るので、ある程度は精製することが好ましい。例えば、水洗により水や水溶性不純物を除去した後、無水硫酸ナトリウムや無水硫酸マグネシウムなどで脱水することが好ましい。但し、水が含まれていても反応は進行すると考えられるので、生産性を低下させるような過剰な精製は必要ない。かかる水含量としては、0.5容量%以下がより好ましく、0.2容量%以下がさらに好ましく、0.1容量%以下がよりさらに好ましい。また、上記再利用C1-4ハロゲン化炭化水素には、C1-4ハロゲン化炭化水素の分解物などが含まれていてもよい。
【0029】
2. 求核性官能基含有化合物
本発明において「求核性官能基含有化合物」とは、求核性の酸素原子、硫黄原子、および/または窒素原子を含む求核性官能基を含む化合物であって、式(i)または式(ii)で表される化合物であり、それぞれ「求核性官能基含有化合物(i)」または「求核性官能基含有化合物(ii)」と略記する場合がある。本発明で用いる求核性官能基含有化合物は、フッ素原子を置換基として有さない。その結果、本発明方法で製造されるカーボネート誘導体もフッ素原子を置換基として有さない。また、本発明では特定の求核性官能基含有化合物を用いることによって、カーボネート誘導体までの反応の進行が可能になる。
【0030】
本発明において、求核性官能基含有化合物(i)を用いる場合、得られるカーボネート誘導体は式(I)で表される鎖状カーボネート(以下、「鎖状カーボネート(I)」と略記する場合がある)であり、水酸基含有化合物(ii)を用いる場合、得られるカーボネート誘導体は式(II-1)で表される単位を含むポリカーボネート誘導体(以下、「ポリカーボネート誘導体(II-1)」と略記する場合がある)か、または式(II-2)で表される環状カーボネート誘導体(以下、「環状カーボネート誘導体(II-2)」と略記する場合がある)である。
【0031】
本発明の製造方法で原料化合物として用いる求核性官能基含有化合物(i)と求核性官能基含有化合物(ii)、および、目的化合物である鎖状カーボネート誘導体(I)とポリカーボネート誘導体(II-1)と環状カーボネート誘導体(II-2)は、以下の通りである。
(i) R1-A-H
(ii) H-A-R2-A-H
(I) R1-A-C(=O)-A-R1
(II-1) [-A-R2-A-C(=O)-]
【0032】
【化2】
【0033】
[式中、
Aは、O、SまたはNR3(R3は、HまたはC1-4アルキル基であるか、またはR1およびNと共に窒素含有ヘテロシクリル基を形成してもよい)であり、
1は、C6-14アリール基、C4-14ヘテロアリール基またはC2-24アルキルポリオキシアルキレン基であり、
2は、C2-10アルキレン基、C6-14アリーレン基、C4-14ヘテロアリーレン基またはC2-24ポリオキシアルキレン基である。]
【0034】
本明細書においては、炭素数1以上4以下のハロゲン化炭化水素を「C1-4ハロゲン化炭化水素」と記す。他の基と他の化合物とに関しても、同様に記す。
【0035】
求核性官能基含有化合物(i)中のR3としては、Hが好ましい。また、R1、R3およびNが形成する窒素含有ヘテロシクリル基は、非芳香族窒素含有ヘテロシクリル基であってもよいし、芳香族窒素含有ヘテロシクリル基であってもよい。非芳香族窒素含有ヘテロシクリル基としては、ピロリジニルおよびピペリジニルを挙げることができる。芳香族窒素含有ヘテロシクリル基としては、ピロリル、イミダゾリル、ピラゾールを挙げることができる。
【0036】
6-14アリール基の水素原子は、塩素原子、臭素原子、ヨウ素原子またはC1-8アルキル基で置換されていてもよい。
【0037】
4-14ヘテロアリール基は、窒素原子、酸素原子または硫黄原子を1以上有する芳香族ヘテロシクリル基をいう。ヘテロシクリル基としては、ピロリル基、イミダゾリル基、ピラゾリル基、チエニル基、フリル基、オキサゾリル基、イソキサゾリル基、チアゾリル基、イソチアゾリル基、チアジアゾール基等の5員環ヘテロアリール基;ピリジニル基、ピラジニル基、ピリミジニル基、ピリダジニル基等の6員環ヘテロアリール基;インドリル基、イソインドリル基、キノリニル基、イソキノリニル基、ベンゾフラニル基、イソベンゾフラニル基、クロメニル基等の縮合環芳香族ヘテロシクリル基が挙げられ、窒素原子を含むC4-14ヘテロアリール基が好ましく、ピリジニル基がより好ましい。
【0038】
2-24アルキルポリオキシアルキレン基としては、式-(QHO)mH基で表される基が好ましい。ただし、QHは-CH2-、-CH2CH2-、-CH2CH2CH2-、-CH2CH(CH3)-または-CH2CH2CH2CH2-であり、RHは-CH3または-CH2CH3であり、mは1以上20以下の整数である。mが2以上である場合、QHは1種のみからなっていてもよく複数種からなっていてもよい。QHが複数種からなる場合、複数種のQHの並び方はランダム状であってもブロック状であってもよい。
【0039】
2-24ポリオキシアルキレン基としては、式-(QHO)mH-基で表される基が好ましい。
【0040】
2-10アルキレン基は、直鎖状であってもよく、分岐鎖状であってもよく、環状であってもよい。C2-10アルキレン基としては、C2-6アルキレン基が好ましく、C2-4アルキレン基がより好ましい。また、環状カーボネートが得られ易いという観点からは、1個または2個のC1-4アルキル基で置換されていてもよいエチレン基が好ましく、1個または2個のC1-2アルキル基で置換されていてもよいエチレン基がより好ましく、1個または2個のメチル基で置換されていてもよいエチレン基がよりさらに好ましい。なお、上記のアルキル基で置換されていてもよいエチレン基は、1,2-アルキレン基とも表記できる。
【0041】
6-14アリーレン基、C4-14ヘテロアリーレン基およびC2-24ポリオキシアルキレン基は、それぞれC6-14アリール基、C4-14ヘテロアリール基およびC2-24アルキルポリオキシアルキレン基に対応する2価の有機基である。
【0042】
求核性官能基含有化合物(i)としては、水酸基含有化合物(i)、チオール基含有化合物(i)、およびアミノ基含有化合物(i)が挙げられる。水酸基含有化合物(i)としては、例えば、フェノール、2-クロロフェノール、3-クロロフェノール、4-クロロフェノール、2-ブロモフェノール、3-ブロモフェノール、4-ブロモフェノール、2-メチルフェノール、3-メチルフェノール、4-メチルフェノールなどのフェノールおよびその誘導体;シクロヘキサノールなどのC3-10シクロアルカノール;ベンジルアルコール、2,6-ベンジルアルコールなどのベンジルアルコールおよびその誘導体;エチレングリコールモノメチルエーテルやプロピレングリコールモノメチルエーテルなどのアルキレングリコールモノC1-4アルキルエーテル;ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、テトラエチレングリコールモノメチルエーテルなどのオリゴアルキレングリコールモノC1-4アルキルエーテルが挙げられる。
【0043】
チオール基含有化合物(i)としては、例えば、チオフェノール、2-クロロチオフェノール、3-クロロチオフェノール、4-クロロチオフェノール、2-ブロモチオフェノール、3-ブロモチオフェノール、4-ブロモチオフェノール、2-メチルチオフェノール、3-メチルチオフェノール、4-メチルチオフェノールなどのチオフェノールおよびその誘導体;シクロヘキサンチオールなどのC3-10シクロアルカンチオール;ベンジルメルカプタン、2-クロロベンジルメルカプタン、4-クロロベンジルメルカプタン、4-メトキシベンジルメルカプタンなどのベンジルメルカプタンおよびその誘導体;HSCH2CH2SCH3、HSCH2CH(CH3)SCH3、HSCH(CH3)CH2SCH3などの1,2-エタンジチオールモノC1-4アルキルチオエーテル;ジ(1,2-エタンジチオール)モノメチルチオエーテル、トリ(1,2-エタンジチオール)モノメチルチオエーテル、テトラ(1,2-エタンジチオール)モノメチルチオエーテルなどのオリゴ(1,2-エタンジチオール)アルキレングリコールモノC1-4アルキルチオエーテルが挙げられる。
【0044】
アミノ基含有化合物(i)としては、例えば、アニリン、2-クロロアニリン、3-クロロアニリン、4-クロロアニリン、2-ブロモアニリン、3-ブロモアニリン、4-ブロモアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリンなどのアニリンおよびその誘導体;シクロヘキシルアミンなどのC3-10シクロアルキルアミン;ピペラジンやピペリジンなどのヘテロサイクリックアミン;ベンジルアミン、4-(アミノメチル)ベンゾニトリル、2-クロロベンジルアミン、3-クロロベンジルアミン、4-クロロベンジルアミン、2-ブロモベンジルアミン、3-ブロモベンジルアミン、4-ブロモベンジルアミン、4-t-ブチルベンジルアミンなどのベンジルアルコールおよびその誘導体;N-メチルエチレンジアミン、N,N-ジメチルエチレンジアミン、N-メチルプロピレンジアミン、N,N-ジメチルプロピレンジアミンなどのアルキレングリコールモノC1-4アルキルエーテル;N-メチルジエチレントリアミン、N,N-ジメチルジエチレントリアミン、N-メチルトリエチレンテトラミン、N,N-ジメチルトリエチレンテトラミン、N-メチルテトラエチレンペンタミン、N,N-ジメチルテトラエチレンペンタミンなどのN-モノC1-4アルキルオリゴエチレンジアミンまたはN,N-ジC1-4アルキルオリゴエチレンジアミンが挙げられる。
【0045】
求核性官能基含有化合物(i)は、1種のみを単独で使用してもよく、2種以上を組み合わせて使用してもよい。例えば、2種の求核性官能基含有化合物(i)を併用することにより、非対象の鎖状カーボネート誘導体を合成することができる。但し、製造効率などから、1種のみの求核性官能基含有化合物(i)を単独で用いることが好ましい。
【0046】
求核性官能基含有化合物(ii)としては、下式(ii-1)および(ii-2)で表される化合物が好ましい。
(ii-1) H-A-R21-A-H
(ii-2) H-A-R22-R23-R24-A-H
[式中、
Aは上記と同義を示し、
21は、C2-10アルキレン基、C6-14アリーレン基またはC4-14ヘテロアリーレン基であり、
22とR24は、それぞれ独立にC6-14アリーレン基またはC4-14ヘテロアリーレン基であり、
23は、C1-10アルキレン基である。]
【0047】
水酸基含有化合物(ii)を出発原料化合物として用いた場合には、ポリカーボネート誘導体(II-1)または環状カーボネート誘導体(II-2)が得られる。具体的には、R2に含まれる主鎖の炭素数が2または3であり、炭酸エステル基(-O-C(=O)-O-)、炭酸ジチオエステル基(-S-C(=O)-S-)または炭酸アミド基(-NH-C(=O)-NH-)と共に五員環や六員環といった安定な構造が形成される場合には、主に環状カーボネート誘導体が生成する。特に、求核性官能基含有化合物(ii-1)におけるC2-10アルキレン基、C6-14アリーレン基およびC4-14ヘテロアリーレン基がそれぞれ1,2-C2-10アルキレン基、1,2-C6-14アリーレン基および1,2-C4-14ヘテロアリーレン基である場合は、主に環状カーボネートが生成する。R2に含まれる主鎖の炭素数が4以上である場合には、反応条件などにもよるが、環状カーボネート誘導体とポリカーボネート誘導体との間で化学的により安定な方が優先的に生成する。
【0048】
なお、1,2-アリーレン基には、1,2-フェニレン基や1,2-ビフェニレンの他、下記構造を有する1,2-ナフタレニレン、1,8-ナフタレニレン、2,3-ナフタレニレンが含まれるものとする。1,2-C2-10アルキレン基と1,2-C4-14ヘテロアリーレン基でも同様である。
【0049】
【化3】
【0050】
求核性官能基含有化合物(ii)としては、水酸基含有化合物(ii)、チオール基含有化合物(ii)、およびアミノ基含有化合物(ii)が挙げられる。水酸基含有化合物(ii)としては、例えば、1,2-プロパンジオール、1,2-エタンジオール、1,4-ブタンジオール等のグリコール化合物;カテコールやレゾルシノールなどのジヒドロキシベンゼン化合物;4,6-ジヒドロキシ-2-メチルピリミジン、3,6-ジヒドロキシ-4-メチルピリダジンなどのジヒドロキシヘテロアリール化合物;ビスフェノールA、ビスフェノールAP、ビスフェノールB、ビスフェノールBP、ビスフェノールE、ビスフェノールF、ビスフェノールTMC、ビスフェノールZなどのビスフェノール化合物が挙げられる。
【0051】
例えば、水酸基含有化合物(ii)として下式で表されるビスフェノールAを用いた場合には、下記式で表されるポリカーボネートエステルが得られる。
【0052】
【化4】
【0053】
チオール基含有化合物(ii)としては、例えば、1,2-プロパンジチオール、1,2-エタンジチオール、1,4-ブタンジチオール等のC1-4アルキレンジチオール化合物;1,2-ベンゼンジチオールや1,3-ベンゼンジチオールなどのベンゼンジチオール化合物;2-メチルピリミジン-4,6-ジチオール、4-メチルピリダジン-3,6-ジチオールなどのヘテロアリールジチオール化合物;4,4’-チオビスベンゼンチオール、2,2-ビス(4-メルカプトフェニル)プロパン、1,1-ビス(4-メルカプトフェニル)-1-フェニルエタン、2,2-ビス(4-メルカプトフェニル)ブタン、ビス(4-メルカプトフェニル)ジフェニルメタン、1,1-ビス(4-メルカプトフェニル)エタン、ビス(4-メルカプトフェニル)メタン、1,1-ビス(4-メルカプトフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-メルカプトフェニル)シクロヘキサンなどのビスチオフェノール化合物が挙げられる。
【0054】
アミノ基含有化合物(ii)としては、例えば、1,2-プロピレンジアミン、1,3-プロピレンジアミン、1,2-エチレンジアミン、1,4-ブチレンジアミン等のC1-4アルキレンジアミン化合物;1,2-フェニレンジアミンや1,4-フェニレンジアミンなどのフェニレンジアミン化合物;4,6-ジアミノ-2-メチルピリミジン、3,6-ジアミノ-4-メチルピリダジンなどのヘテロアリールジチオール化合物;2,2-ビス(4-アミノフェニル)プロパン、1,1-ビス(4-アミノフェニル)-1-フェニルエタン、2,2-ビス(4-アミノフェニル)ブタン、ビス(4-アミノフェニル)ジフェニルメタン、1,1-ビス(4-アミノフェニル)エタン、ビス(4-アミノフェニル)メタン、1,1-ビス(4-アミノフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-アミノフェニル)シクロヘキサンなどのビスアミノベンゼン化合物が挙げられる。
【0055】
1-4ハロゲン化炭化水素と求核性官能基含有化合物の使用量は、反応が進行し、所期の生成物が得られる限り特に限定されるものではなく、例えば、C1-4ハロゲン化炭化水素のモル数に対して1倍モルの求核性官能基含有化合物を使用する場合にも上記反応は進行する。なお、反応効率および反応時間などの観点からは、C1-4ハロゲン化炭化水素に対する求核性官能基含有化合物のモル比([求核性官能基含有化合物]/[C1-4ハロゲン化炭化水素])を0.001以上1以下とすることが好ましい。上記モル比率は、0.01以上がより好ましく、0.1以上がよりさらに好ましく、また、0.8以下がより好ましく、0.5以下がよりさらに好ましい。上記モル比が大き過ぎる場合には、相対的に求核性官能基含有化合物の量が多くなるため未反応の求核性官能基含有化合物が増加する一方で、上記モル比が小さ過ぎる場合には、未反応のC1-4ハロゲン化炭化水素が増加して、反応系外へハロゲン化カルボニルが放出されてしまう虞があり得る。また、C1-4ハロゲン化炭化水素が常温常圧で液体であり、溶媒としても用いることができる場合には、C1-4ハロゲン化炭化水素に対する求核性官能基含有化合物の割合を1mg/mL以上、500mg/mL以下としてもよい。
【0056】
3. 塩基
本発明方法においては、複素環式芳香族アミン、非求核性強塩基、および無機塩基から実質的になる群より選択される1以上の塩基を用いる。当該塩基により、ポリカーボネート誘導体が生成するまで反応が進行すると考えられる。
【0057】
複素環式芳香族アミンは、少なくとも一つの複素環を含み且つ少なくとも一つのアミン官能基を有している化合物をいう。複素環式芳香族アミンとしては、例えば、ピリジン、α-ピコリン、β-ピコリン、γ-ピコリン、2,3-ルチジン、2,4-ルチジン、2,6-ルチジン、3,5-ルチジン、2-クロロピリジン、3-クロロピリジン、4-クロロピリジンなどの、ピリジンおよびその誘導体などを挙げることができる。
【0058】
「非求核性強塩基」とは、立体的な障害により窒素原子上の孤立電子対の求核性が弱く、且つ、アセトニトリル中における塩基性度(pKBH+)が20以上の塩基をいうものとする。かかる非求核性強塩基としては、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD,pKBH+:25.98)、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(MTBD,pKBH+:25.44)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU,pKBH+:24.33)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN,pKBH+:23.89)、および1,1,3,3-テトラメチルグアニジン(TMG,pKBH+:23.30)を挙げることができる。
【0059】
無機塩基としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;水酸化カルシウムなどのアルカリ土類金属水酸化物;炭酸ナトリウムや炭酸カリウムなどのアルカリ金属炭酸塩;炭酸カルシウムなどアルカリ土類金属炭酸塩;炭酸水素ナトリウムなどアルカリ金属炭酸水素塩などを挙げることができる。
【0060】
無機塩基は、使用直前に微細化して反応液に添加してもよいが、その水溶液を添加することが好ましい。無機塩基水溶液の濃度は適宜調整すればよいが、例えば、0.05g/mL以上、2g/mL以下とすることができる。なお、無機塩基水溶液は、ホスゲンの分解に用いられる。具体的には、ホスゲンは水の存在により二酸化炭素と塩化水素に分解され、この塩化水素を無機塩基により中和することができる。よって、本発明者は本発明に係る反応はホスゲンを経由していると考えており、本発明反応は後記の実施例の通り無機塩基水溶液を使う場合でも進行することは驚くべきことであった。また、本発明に係る反応は無機塩基水溶液を使っても進行することから、ホスゲンを経由せずに進行している可能性もあり得る。
【0061】
上記塩基は、1種のみを単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0062】
上記塩基の使用量は、反応が良好に進行する範囲で適宜調整すればよいが、例えば、上記求核性官能基含有化合物に対して1.5倍モル以上10倍モル以下とすることができる。一般的に、上記塩基の使用量が多いほど収率が高くなるので、上記割合としては2.0倍モル以上が好ましく、3.0倍モル以上がより好ましく、4.0倍モル以上がよりさらに好ましい。
【0063】
4. 反応条件
本発明方法は、上記C1-4ハロゲン化炭化水素、求核性官能基含有化合物、および塩基を含む組成物に、酸素存在下で光照射する工程を含む。
【0064】
上記C1-4ハロゲン化炭化水素、求核性官能基含有化合物、および塩基の混合態様は特に限定されない。例えば、反応器中、各化合物の全量を予め混合しておいてもよいし、数回に分割して添加してもよいし、任意の速度で連続的に添加してもよい。また、上記C1-4ハロゲン化炭化水素と求核性官能基含有化合物の一方または両方が常温常圧で液体でない場合には、これら原料化合物を適度に溶解でき、且つ本発明反応を阻害しない溶媒を用いてもよい。かかる溶媒としては、例えば、n-ヘキサンなどの脂肪族炭化水素溶媒;ベンゼン、トルエン、キシレン、クロロベンゼンなどの芳香族炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒;アセトニトリルなどのニトリル系溶媒を挙げることができる。
【0065】
酸素源としては、酸素を含む気体であればよく、例えば、空気や、精製された酸素を用いることができる。精製された酸素は、窒素やアルゴン等の不活性ガスと混合して使用してもよい。コストや容易さの点からは空気を用いることが好ましい。光照射によるC1-4ハロゲン化炭化水素の分解効率を高める観点からは、酸素源として用いられる気体中の酸素含有率は約15体積%以上100体積%以下であることが好ましい。酸素含有率は上記C1-4ハロゲン化炭化水素などの種類によって適宜決定すればよい。例えば、上記C1-4ハロゲン化炭化水素としてジクロロメタン、クロロホルム、テトラクロロエチレン等のC1-4クロロ炭化水素化合物を用いる場合は、酸素含有率15体積%以上100体積%以下が好ましく、ジブロモメタンやブロモホルムなどのC1-4ブロモ炭化水素化合物を用いる場合は、酸素含有率90体積%以上100体積%以下が好ましい。なお、酸素(酸素含有率100体積%)を用いる場合であっても、反応系内への酸素流量の調節により酸素含有率を上記範囲内に制御することができる。酸素を含む気体の供給方法は特に限定されず、流量調整器を取り付けた酸素ボンベから反応系内に供給してもよく、また、酸素発生装置から反応系内に供給してもよい。
【0066】
なお、「酸素存在下」とは、上記各化合物が酸素と接している状態か、上記組成物中に酸素が存在する状態のいずれであってもよい。従って、本発明に係る反応は、酸素を含む気体の気流下で行ってもよいが、生成物の収率を高める観点からは、酸素を含む気体はバブリングにより上記組成物中へ供給することが好ましい。
【0067】
酸素を含む気体の量は、上記C1-4ハロゲン化炭化水素の量や、反応容器の形状などに応じて適宜決定すればよい。例えば、反応容器中に存在する上記C1-4ハロゲン化炭化水素に対する、反応容器へ供給する1分あたりの気体の量を、5容量倍以上とすることが好ましい。当該割合としては、25容量倍以上がより好ましく、50容量倍以上がよりさらに好ましい。当該割合の上限は特に制限されないが、500容量倍以下が好ましく、250容量倍以下がより好ましく、150容量倍以下がよりさらに好ましい。また、反応容器中に存在する上記C1-4炭化水素化合物に対する、反応容器へ供給する1分あたりの酸素の量としては、5容量倍以上25容量倍以下とすることができる。気体の流量が多過ぎる場合には、上記C1-4炭化水素化合物が揮発してしまう虞があり得る一方で、少な過ぎると反応が進行し難くなる虞があり得る。
【0068】
上記組成物に照射する光としては、短波長光を含む光が好ましく、紫外線を含む光がより好ましく、より詳細には180nm以上500nm以下の波長の光を含む光が好ましい。なお、光の波長は上記C1-4ハロゲン化炭化水素の種類に応じて適宜決定すればよいが、400nm以下がより好ましく、300nm以下がよりさらに好ましい。照射光に上記波長範囲の光が含まれている場合には、上記C1-4ハロゲン化炭化水素を効率良く酸化的光分解できる。
【0069】
光照射の手段は、上記波長の光を照射できるものである限り特に限定されないが、このような波長範囲の光を波長域に含む光源としては、例えば、太陽光、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、ケミカルランプ、ブラックライトランプ、メタルハライドランプ、LEDランプ等が挙げられる。反応効率やコストの点から、低圧水銀ランプが好ましく用いられる。
【0070】
照射光の強度や照射時間などの条件は、出発原料の種類や使用量によって適宜設定すればよいが、例えば、光の強度としては10μW/cm2以上500μW/cm2以下が好ましい。当該光強度としては100μW/cm2以下がより好ましく、40μW/cm2以下がよりさらに好ましい。光の照射時間としては、0.5時間以上10時間以下が好ましく、1時間以上6時間以下がより好ましく、2時間以上4時間以下がよりさらに好ましい。光照射の態様も特に限定されず、反応開始から終了まで連続して光を照射する態様、光照射と光非照射とを交互に繰り返す態様、反応開始から所定の時間のみ光を照射する態様など、いずれの態様も採用できるが、反応開始から終了まで連続して光を照射する態様が好ましい。
【0071】
反応時の温度も特に限定はされず、適宜調整すればよいが、例えば、0℃以上50℃以下とすることができる。当該温度としては、10℃以上がより好ましく、20℃以上がよりさらに好ましく、また、40℃以下がより好ましく、30℃以下がよりさらに好ましい。
【0072】
本発明の製造方法に使用できる反応装置としては、反応容器に光照射手段を備えたものが挙げられる。反応装置には、攪拌装置や温度制御手段が備えられていてもよい。図1に、本発明の製造方法に使用できる反応装置の一態様を示す。図1に示す反応装置は、筒状反応容器6内に光照射手段1を有するものである。筒状反応容器6内に、上記各原料化合物を添加し、当該反応容器6内に酸素を含有する気体を供給または上記組成物に酸素を含有する気体をバブリングしながら(図示せず)、光照射手段1より光を照射して反応を行う。前記光照射手段1をジャケット2等で覆う場合、該ジャケットは、前記短波長光を透過する素材であることが好ましい。また、反応容器の外側から光照射を行ってもよく、この場合、反応容器は、前記短波長光を透過する素材であることが好ましい。前記短波長光を透過する素材としては、本発明の効果を妨げない限り特に限定されないが、石英ガラス等が好ましく挙げられる。
【0073】
上記反応後の生成物は、従来公知の方法で精製をしてもよい。精製方法としては、蒸留、出発原料化合物の減圧留去、カラムクロマトグラフィー、分液、抽出、洗浄、再結晶などが挙げられる。
【0074】
原料化合物である求核性官能基含有化合物として水酸基含有化合物、チオール基含有化合物、アミノ基含有化合物を用いる場合には、それぞれ、炭酸エステル基(-O-C(=O)-O-)、炭酸ジチオエステル基(-S-C(=O)-S-)、ウレア基(-NH-C(=O)-NH-)を有するカーボネート誘導体が生成する。また、水酸基含有化合物とアミノ基含有化合物を併用する場合にはウレタン基(-O-C(=O)-NH-)を有するカーボネート誘導体が生成し、チオール基含有化合物とアミノ基含有化合物を併用する場合にはチオウレタン基(-S-C(=O)-NH-)を有するカーボネート誘導体が生成する。
【0075】
本発明方法により製造される鎖状カーボネート誘導体(I)は、非水溶媒などとして有用であり、例えば、鎖状カーボネート(I)はリチウムイオン二次電池の電解質の溶媒などとして利用することができる。さらに、ポリカーボネート(II)は、優れたエンジニアリングプラスチックとして有用である。
【0076】
本願は、2017年5月16日に出願された日本国特許出願第2017-97681号に基づく優先権の利益を主張するものである。2017年5月16日に出願された日本国特許出願第2017-97681号の明細書の全内容が、本願に参考のため援用される。
【実施例
【0077】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0078】
比較例1: 炭酸ジメチルの合成
【化5】
直径42mm、容量100mLの筒状反応容器内に、直径30mmの石英ガラスジャケットを装入し、さらに石英ガラスジャケット内に低圧水銀ランプ(「UVL20PH-6」SEN Light社製,20W,φ24×120mm)を装入した反応システムを構築した。当該反応システムの模式図を図1に示す。反応容器内に精製したクロロホルム(20mL)、メタノール(0.405mL,10mmol)、メタノールに対して5倍モルのピリジン(4.03mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。3時間後、反応液を1H-NMRで分析したところ、目的化合物である炭酸ジメチルの収率は僅か1.6%であることが確認された。
【0079】
比較例2
メタノールの代わりにエタノールを用いた以外は上記比較例1と同様にして、反応を行ったが、3時間の反応後においても、反応の進行は認められなかった。比較例1の結果と合わせて考えれば、本発明方法は一価アルコールには適用し難いことが明らかとなった。
【0080】
実施例1: 炭酸ジフェニルの合成
【化6】
(1) 塩基としてピリジンを使用
メタノールの代わりにフェノール(0.94g,10mmol)を用い、ピリジンの使用量をフェノールに対して3.5倍モルに調整し、反応時間を2時間にした以外は上記比較例1と同様にして、反応を行った。反応終了後、反応液に水とジクロロメタンを加えて分液し、有機相を無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた固体をジクロロメタンとn-ヘキサンから再結晶し、白色固体状の目的化合物である炭酸ジフェノールを得た(単離収率:61%)。
【0081】
(2) 塩基としてピリジンを使用
フェノールに対して5倍モルのピリジンを用い、反応時間を1時間にした以外は上記実施例1(1)と同様にして、白色固体状の目的化合物である炭酸ジフェノールを得た(単離収率:99%超)。
【0082】
(3) 塩基として2,6-ルチジンを使用
ピリジンの代わりに2,6-ルチジンを用い、反応時間を1時間にした以外は上記実施例1(1)と同様にして、目的化合物である炭酸ジフェノールを得た(単離収率:60%)。
【0083】
(4) 四塩化炭素を使用
クロロホルムの代わりに四塩化炭素(25mL)を用い、フェノールに対して5倍モルのピリジンを用いた以外は上記実施例1(1)と同様にして、反応を行った。反応終了後、反応液に水とジクロロメタンを加えて分液し、有機相を無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた固体をジクロロメタンとn-ヘキサンから再結晶し、白色固体状の目的化合物である炭酸ジフェノールを得た(単離収率:69%)。
【0084】
比較例3
ピリジンの代わりにトリエチルアミンを用いた以外は上記実施例1(2)と同様にして反応を行った。しかし、単離されたのは少量のタール状の黒色物質であり、目的化合物である炭酸ジフェノールを単離することはできなかった。この様に有機塩基としてトリエチルアミンを用いた場合には炭酸ジフェノールは得られなかった一方で、上記実施例1(2)の通り、有機塩基をトリエチルアミンからピリジンに変更するのみで炭酸ジフェノールが99%超の収率で得られた。
【0085】
実施例2: 炭酸ビス(ペンタクロロフェニル)の合成
【化7】
メタノールの代わりにペンタクロロフェノール(1.13g,5mmol)を用い、反応時間を1時間に変更した以外は上記比較例1と同様にして反応を行った。反応終了後、懸濁状態の反応液にメタノールを添加したところ、白色固体が生じた。生じた白色固体を吸引濾過することにより、目的化合物である炭酸ビス(ペンタクロロフェノール)を得た(単離収率:72%)。
【0086】
実施例3: 1,3-ベンゾジオキソール-2-オンの合成
【化8】
上記反応容器内に精製したクロロホルム(20mL)、カテコール(1.1g,10mmol)、カテコールに対して5倍モルのピリジン(4.03mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。2時間後、反応液に水とジクロロメタンを加えて分液し、有機相を無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた固体をジクロロメタンとn-ヘキサンから再結晶し、目的化合物である1,3-ベンゾジオキソール-2-オンを得た(単離収率:99%超)。
【0087】
実施例4: 炭酸エチレンの合成
【化9】
カテコールの代わりにエチレングリコール(0.28mL,10mmol)を用いた以外は上記実施例3と同様にして反応を行った。反応終了後、反応液を1H-NMRで分析し、目的化合物である炭酸エチレンが生成していることを確認した(単離収率:44%)。
【0088】
実施例5: ビスフェノールAポリカーボネートの合成
【化10】
上記反応容器内に精製したクロロホルム(20mL)、ビスフェノールA(2.28g,10mmol)、ビスフェノールAに対して5倍モルのピリジン(4.03mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。40分後、反応液の粘度が増大して攪拌子が回転できなくなったことから、反応液にメタノール(30mL)を添加して超音波を照射し、吸引濾過した。得られた固形分をメタノールで洗浄した後、真空乾燥することにより白色固体が得られた。当該白色固体を1H-NMRで分析したところ、収率:99%超で目的化合物であるポリ炭酸ビスフェノールAが生成していることが確認された。
また、得られたポリ炭酸ビスフェノールAを下記の条件のゲル浸透クロマトグラフィー(GPC)で分析し、分子量を求めた。結果を表1に示す。
装置: 高速GPC装置(「HLC-8320GPC」東ソー社製)
カラム: 超高分子用カラム(「TSKgel GMHHR-H×2」東ソー社製)
移動相: クロロホルム 流速: 1.0mL/min
オーブン温度: 40℃ 濃度: 0.3w/v%
注入量: 100μL 分子量標準: ポリスチレン
検出器: RI
【0089】
【表1】
【0090】
表1に示す結果の通り、本発明方法で合成されたポリ炭酸エステルは十分高い分子量を有し、且つその分子量分布は比較的狭いものであることが明らかとなった。
【0091】
実施例6: 炭酸ビス(トリエチレングリコールモノメチルエーテル)の合成
【化11】
メタノールの代わりにトリエチレングリコールモノメチルエーテル(1.64g,10mmol)を用いた以外は上記比較例1と同様にして、反応を行った。反応終了後、反応液に水とジクロロメタン:酢酸エチル=1:1の混合溶媒を加えて分液し、有機相を無水硫酸ナトリウムで乾燥した後、減圧濃縮することにより、褐色オイル状の目的化合物である炭酸ビス(トリエチレングリコールモノメチルエーテル)を得た(単離収率:99%超)。
【0092】
実施例7: テトラエチレングリコールポリカーボネートの合成
【化12】
メタノールの代わりにテトラエチレングリコール(1.50g,10mmol)を用い、反応時間を2時間とした以外は上記比較例1と同様にして、反応を行った。反応終了後、反応液に水と酢酸エチルを加えて分液し、有機相を食塩水で3回洗浄した。有機相を無水硫酸ナトリウムで乾燥した後、減圧濃縮することにより、褐色オイル状の目的化合物であるテトラエチレングリコールポリカーボネートを得た(単離収率:99%超)。
1H-NMR(400MHz,CDCl3) δ4.28(t,J=4.8Hz,-CO2CH2-),3.73(t,J=4.8Hz,-CH2-),3.68-3.63(m,-CH2-);
FAB-MS: m/z519,739,958;
IR(KBr): 2955,2891,1740,1459,1396,1354,1271,1100,1029,950,864,791cm-1
【0093】
実施例8: ビスフェノールAとヘキサメチレンジアミンとの光共重合
【化13】
上記反応容器内に精製したクロロホルム(30mL)、ビスフェノールA(0.685g,3mmol)、ヘキサメチレンジアミン(0.412g,3mmol)、および水酸化ナトリウム水溶液(20mL,100mmol)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。2時間後、反応液にジクロロメタンと水を添加し、生じた沈殿を濾過し、メタノールで洗浄後、70℃で真空乾燥した。また、濾液を分液し、有機相を減圧濃縮し、得られた残渣をメタノールで洗浄後、70℃で真空乾燥し、薄オレンジ色粉末を得た(収率:39%)。得られた粉末を1H-NMRとIRで分析したところ、目的化合物である共重合体が生成していることが確認された。
上記の通り、無機塩基の水溶液を用いてもカーボネート誘導体を製造することができた。無機塩基の水溶液はホスゲンを分解するために用いられるものであることから、上記の実験結果は全く予想外であり、本発明に係る反応はホスゲンを経由していない可能性もあると考えられた。
なお、最初に得られた沈殿は溶媒に不溶であり、濾液から得られた粉末はDMSOなどに可溶であることから、両粉末は分子量が異なると考えられる。
【0094】
実施例9: 炭酸ビスフェニルの合成
【化14】
上記反応容器内に精製したクロロホルム(20mL)、フェノール(0.941g,10mmol)と水酸化ナトリウム水溶液(20mL,100mmol)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。3時間後、反応液にクロロホルムと水を添加し、分液した。有機相を無水硫酸ナトリウムで乾燥した後、70℃で減圧濃縮し、肌色固体を得た(収率:55%)。得られた固体を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
【0095】
実施例10: 炭酸ジシクロヘキシルの合成
【化15】
フェノールの代わりにシクロヘキサノール(1.06mL,10mmol)を用いた以外は上記実施例9と同様にして、薄黄色液体を得た(収率:13%)。得られた液体を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
【0096】
実施例11: 炭酸ビス(4-t-ブチルフェニル)の合成
【化16】
上記反応容器内に精製したクロロホルム(20mL)、4-t-ブチルフェノール(1.53g,10mmol)、炭酸ナトリウム水溶液(20mL,50mmol)、およびピリジン(0.202mL,5mmol)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。3時間後、反応液にクロロホルムと水を添加し、分液した。有機相を無水硫酸ナトリウムで乾燥した後、70℃で減圧濃縮し、残渣から再結晶することにより、薄オレンジ色粉末を得た(収率:57.0%)。得られた粉末を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
【0097】
実施例12: 炭酸ビス(4-メトキシフェニル)の合成
【化17】
フェノールの代わりに4-メトキシフェノール(10mmol)を用い、30mLのクロロホルムを用いた以外は上記実施例9と同様にして、茶色固体を得た(収率:60%)。得られた固体を1H-NMRとIRで分析したところ、目的化合物が生成していることが確認された。
【0098】
実施例13: 炭酸ビス(4-ニトロフェニル)の合成
【化18】
フェノールの代わりに4-ニトロフェノール(1.391g,10mmol)を用い、30mLのクロロホルムを用い、反応時間を2時間とした以外は上記実施例9と同様にして、白色粉末を得た(収率:5%)。得られた粉末を1H-NMRとIRで分析したところ、目的化合物が生成していることが確認された。
【0099】
実施例14: ビスフェノールAポリカーボネートの合成
【化19】
上記反応容器内に精製したクロロホルム(20mL)、ビスフェノールA(1.14g,5mmol)と水酸化ナトリウム水溶液(100mmol,20mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。2時間後、分液し、有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮した。クロロホルムとメタノールを加え、デカンテーションで溶媒を除去した後、70℃で減圧乾燥することにより、白色固体を得た(収率:79%)。得られた固体を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
得られたポリ炭酸ビスフェノールAの分子量を上記実施例5と同様の条件により求めた。結果を表2に示す。
【0100】
【表2】
【0101】
表2に示す結果の通り、本発明方法で合成されたポリ炭酸エステルは十分高い分子量を有し、且つその分子量分布は比較的狭いものであることが明らかとなった。
【0102】
実施例15: 炭酸ジヘキシルの合成
【化20】
フェノールの代わりに1-ヘキサノール(1.25mL,10mmol)を用いた以外は上記実施例9と同様にして、反応を行った。無水硫酸ナトリウムで乾燥した溶液に内部標準としてジクロロメタン(0.64mL,10mmol)を添加し、溶液を1H-NMRで直接分析することにより、目的化合物の生成を確認した(収率:>99%)。
【0103】
実施例16: 炭酸ジペンチルの合成
【化21】
フェノールの代わりに1-ペンタノール(10mmol)を用いた以外は上記実施例9と同様にして、反応を行った。無水硫酸ナトリウムで乾燥した溶液に内部標準としてジクロロメタン(0.64mL,10mmol)を添加し、溶液を1H-NMRで直接分析することにより、目的化合物の生成を確認した(収率:12%)。
【0104】
実施例17: 1,3-ジフェニルウレアの合成
【化22】
上記反応容器内に精製したクロロホルム(20mL)、アニリン(0.93g,10mmol)、および水酸化ナトリウム水溶液(NaOH:4g,20mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。2時間後、ジクロロメタンと水を加えて分液し、有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた黒色固体からジクロロメタンとヘキサンを用いて再結晶し、黒色粉末を得た(収量:0.13g,収率:12%)。得られた固体を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
【0105】
実施例18: 1,3-ジシクロヘキシルウレアの合成
【化23】
アニリンの代わりにシクロヘキシルアミン(1.17mL,10mmol)を用い、反応時間を3時間とし、反応終了後、反応液にヘキサンと水を加えて生成した沈殿を濾取し、真空乾燥した以外は上記実施例17と同様にして、白色粉末を得た(収量:0.69g,収率:62%)。得られた粉末を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
【0106】
実施例19: 1,3-ジベンジルウレアの合成
【化24】
アニリンの代わりにベンジルアミン(1.07g,10mmol)を用い、反応時間を5時間とし、反応終了後、反応液にヘキサンと水を加えて生成した沈殿を濾取し、真空乾燥した以外は上記実施例17と同様にして、薄茶色粉末である目的化合物を得た(収量:0.78g,収率:65%)。得られた粉末を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
【0107】
実施例20: 1,3-ジヘキシルウレアの合成
【化25】
アニリンの代わりに1-ヘキシルアミン(1.01g,10mmol)を用い、反応温度を10℃、反応時間を3時間とした以外は上記実施例17と同様にして、白色粉末を得た(収量:0.58g,収率:51%)。得られた粉末を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
【0108】
実施例21: 1,3-ジヘキシルウレアの合成
【化26】
アニリンの代わりにエチルアミン塩酸塩(0.82g,10mmol)を用い、反応温度を10℃、反応時間を5時間とし、反応終了後、ジクロロメタンの代わりに酢酸エチルを用いた以外は上記実施例17と同様にして、黄色結晶を得た(収量:0.08g,収率:14%)。得られた結晶を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
【0109】
実施例22: 1,3-ジピペリジニルウレアの合成
【化27】
アニリンの代わりにピペリジン(0.85g,10mmol)を用い、反応時間を3時間とし、反応終了後、目的化合物をショートシリカゲルカラム(溶離液:ジクロロメタン)で精製した以外は上記実施例17と同様にして、黄色結晶を得た(収量:0.38g,収率:38%)。得られた結晶を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
【0110】
実施例23: ビスフェノールAとヘキサメチレンジアミンとの光共重合
水酸化ナトリウム水溶液の代わりにジアザビシクロウンデセン(60mmol)を用いた以外は上記実施例8と同様にして、20℃で2時間反応を行った。次いで、更に50℃で15分間反応を行った。反応後、水を添加し、一晩静置してから分液した。有機相を無水硫酸ナトリウムで乾燥した後、減圧濃縮した。残渣をヘキサンで洗浄し、70℃で減圧乾燥した。更に、ジクロロメタンとヘキサンで洗浄した後、70℃で減圧乾燥することにより、薄オレンジ色粉末を得た(収率:>99%)。得られた粉末を1H-NMRとIRで分析したところ、目的化合物が生成していることが確認された。
【0111】
実施例24: 1,3-ジフェニルウレアの合成
【化28】
上記反応容器内に精製したクロロホルム(20mL)、アニリン(0.93g,10mmol)、およびピリジン(4.01mL,50mmol)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。2時間後、反応液にジクロロメタンと水を加えて分液し、有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣にジクロロメタンと酢酸エチルを加えて溶解し、溶液をアルミナカラムに通してアニリンブラックを除去した。カラム処理液を減圧濃縮した後、酢酸エチルとヘキサンを用いて再結晶することにより、薄茶色針状結晶を得た(収量:0.54g,収率:51%)。得られた結晶を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
【0112】
実施例25: 1,3-ジフェニルウレアの合成
【化29】
ピリジンの代わりにジアザビシクロウンデセン(7.48mL,50mmol)を用いた以外は上記実施例24と同様にして、20℃で2時間反応を行った。反応後、反応液にジクロロメタンと水を加えて分液し、有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をTHFに溶解し、溶液をアルミナカラムに通して不純物を除去した。カラム処理液を減圧濃縮した後、ジクロロメタンとヘキサンを用いて再結晶することにより、薄肌色結晶を得た(収量:0.44g,収率:38%)。
【0113】
実施例26: 1,3-ジシクロヘキシルウレアの合成
【化30】
アニリンの代わりにシクロヘキシルアミン(1.17mL,10mmol)を用いた以外は上記実施例24と同様にして、20℃で4時間反応を行った。反応後、反応液にジクロロメタンと水を加えて分液し、有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣からジクロロメタンとヘキサンを用いて再結晶することにより、薄茶色結晶を得た(収量:0.16g,収率:14%)。得られた結晶を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
【0114】
実施例27: ポリウレアの合成
【化31】
上記反応容器内に精製したクロロホルム(20mL)、4,4’-ジアミノジフェニルエーテル(0.50g,2.5mmol)、およびピリジン(1.0mL,12.5mmol)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。1.5時間後、反応液にジクロロメタンと水を加えて分液し、有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をメタノールで洗浄することにより、茶色粉末を得た(収量:0.14g,収率:25%)。得られた粉末を1H-NMRとIRで分析したところ、目的化合物が生成していることが確認された。
【0115】
実施例28: カルボニルジイミダゾールの合成
【化32】
上記反応容器内に精製したクロロホルム(20mL)、イミダゾール(0.68g,10mmol)、および2,6-ルチジン(5.79mL,50mmol)を入れ、攪拌混合した。当該反応液を攪拌しつつ、0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを20℃で2時間照射し、次いで照射を停止してから50℃で30分間反応を行った。反応液に内部標準としてジクロロメタン(5mmol)を添加し、反応液を1H-NMRで分析したところ、収率:38%で目的化合物が生成していることが確認された。
【0116】
実施例29: S,S’-ジフェニル ジチオカーボネートの合成
【化33】
上記反応容器内に精製したクロロホルム(20mL)、チオフェノール(1.03mL,10mmol)、および水酸化ナトリウム水溶液(NaOH:4g,20mmol)を入れ、攪拌混合した。当該反応液を攪拌しつつ、0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射し、20℃で2時間反応を行った。次いで、反応液にジクロロメタンと水を添加し、分液した。有機相を無水硫酸ナトリウムで乾燥した後、減圧濃縮することに茶色液体を得た。得られた茶色液体を1H-NMRで分析したところ、収率:20%で目的化合物が生成していることが確認された。
【符号の説明】
【0117】
1: 光照射手段, 2: ジャケット, 3: ウォーターバス,
4: 撹拌子, 5: 熱媒または冷媒, 6: 筒状反応容器
図1